
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

An efficient intruder detection algorithm against
sinkhole attacks in wireless sensor networks

Edith C.H. Ngai a, Jiangchuan Liu b,*, Michael R. Lyu a

a Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
b School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Available online 6 May 2007

Abstract

In a wireless sensor network, multiple nodes would send sensor readings to a base station for further processing. It is known that such
a many-to-one communication is highly vulnerable to a sinkhole attack, where an intruder attracts surrounding nodes with unfaithful
routing information, and then performs selective forwarding or alters the data passing through it. A sinkhole attack forms a serious
threat to sensor networks, particularly considering that the sensor nodes are often deployed in open areas and of weak computation
and battery power.

In this paper, we present a novel algorithm for detecting the intruder in a sinkhole attack. The algorithm first finds a list of suspected
nodes through checking data consistency, and then effectively identifies the intruder in the list through analyzing the network flow infor-
mation. The algorithm is also robust to deal with multiple malicious nodes that cooperatively hide the real intruder. We have evaluated
the performance of the proposed algorithm through both numerical analysis and simulations, which confirmed the effectiveness and accu-
racy of the algorithm. Our results also suggest that its communication and computation overheads are reasonably low for wireless sensor
networks.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor network; Sinkhole attack; Intruder detection; Intruder identification

1. Introduction

A wireless sensor network (WSN) consists of a set of
geographically distributed sensor nodes, which continu-
ously monitor their surroundings and forward the sensing
data to a base station (referred to as a sink) through
multi-hop routing. It has become increasingly popular in
solving such challenging real-world problem as geographi-
cal sensing and environmental monitoring.

Given the importance of the sensed data, various attacks
have targeted sensor networks [1,2]. While some of the
attacks are common in different types of networks, the
many-to-one communication pattern between the sensors
and the sink poses unique challenges [3–5]. A typical exam-

ple is the sinkhole attack, where an intruder attracts sur-
rounding nodes with unfaithful routing information, and
then alters the data passing through it or performs selective
forwarding [1,6,7]. The sinkhole attack prevents the base
station from obtaining complete and correct sensing data,
and thus leads to a serious threat. It is particularly severe
for wireless sensor networks given that the wireless links
are vulnerable and the sensors are often deployed in open
areas with weak computation and battery power. The exist-
ing routing protocols in sensor networks are generally sus-
ceptible to the sinkhole attack [1,8–10]. Although some
secure mechanisms are proposed and make use of crypto-
graphic techniques to protect network traffic [11–14], they
are often localized, or suffer from high computation over-
heads and require time synchronization among the nodes.

In this paper, we propose a novel lightweight algorithm
for detecting the sinkhole attack and identifying the intru-
der involved. We deviate from the traditional strategy of

0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.04.025

* Corresponding author. Tel.: +1 604 291 4336; fax: +1 604 291 3045.
E-mail addresses: chngai@cse.cuhk.edu.hk (E.C.H. Ngai), jclu@cs.sfu.

ca (J. Liu), lyu@cse.cuhk.edu.hk (M.R. Lyu).

www.elsevier.com/locate/comcom

Computer Communications 30 (2007) 2353–2364

Author's personal copy

defending against an attack using cryptography; instead,
we first detect the attack by observing the network flow
information, and then identify the intruder and malicious
nodes, which can later be isolated to protect the network.

We focus on a general many-to-one communication
model, where the routes are established based on the recep-
tion of route advertisements. Our solution explores the
asymmetricity between the sensor nodes and the base sta-
tion, and makes effective use of the relatively-high compu-
tation and communication power of the base station
[1,15,16]. It consists of two major parts: First, a secure
and low-overhead algorithm for the base station to collect
the network flow information from the attacked area; Sec-
ond, an efficient identification algorithm that analyzes the
routing pattern and locates the intruder. We also consider
the complex scenario with colluding nodes that coopera-
tively cheat the base station about the intruder location.
Specifically, we examine multiple suspicious nodes and
identify the intruder with a voting method. We show that
the solution is correct as long as the normal nodes are
dominant.

The performance of the proposed algorithm is evaluated
through simulations, which confirm the effectiveness and
accuracy of the algorithm. Our results also suggest that
its communication and computation overheads are reason-
ably low for wireless sensor networks.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work. In Section 3, we formally
describe the sinkhole attack in wireless sensor networks,
and state the problem to be solved. In Section 4, we present
our 2-step detection algorithm, which collects network flow
information and identifies the intruder. In Section 5, we
enhance the algorithm to handle multiple malicious nodes
and prove its correctness. The performance of the proposed
algorithm is further evaluated in Sections 6 through simu-
lations. Finally, Section 7 concludes this paper and offers
some future research directions.

2. Related work

Intrusion detection has long been an active research
topic in the Internet evolution [17]. Recently, many
detection algorithms have been proposed for wireless
ad hoc networks as well. Most of them assume uniform
nodes and symmetric data communication patterns
between the nodes [7,18,19]. The one-to-many communi-
cation pattern in wireless sensor networks however poses
different challenges, in particular, the sinkhole attack.
The weaker computation and battery power of the sensor
nodes further aggravates the problem. Pirzada et al. [20]
applied a trust scheme to the routing protocol to detect
sinkhole and wormhole attacks in a sensor network,
but it requires the nodes to operate in a promiscuous
mode. Hu et al. [21] introduced packet leash, which con-
fides the maximum transmission time and distance of
each packet. It assumes that a node can obtain a key
for any other node and authentication is applied to each

data packet. On the contrary, our work does not require
the nodes to support promiscuous mode nor authenticate
every data packet.

Our work is also motivated by the existing studies on
filtering false reports or avoiding jammed/failed nodes in
sensor networks. Specifically, Doumit and Agrawal [22]
showed a self-organized criticality (SOC) and Hidden
Markov models based algorithm, which can effectively
detect data inconsistencies in sensor networks. Wood
et al. [23] proposed a mechanism for detecting and map-
ping jammed regions. They described a protocol for iden-
tifying the surrounding nodes of a jammer, thus avoiding
the broken links and congested nodes in the region.
Staddon et al. [24] demonstrated that the topology of
the network could be efficiently conveyed to the base sta-
tion, allowing for quick tracing of failed nodes with
moderate communication overhead. Ding et al. [25] fur-
ther proposed a localized algorithm for identifying faulty
sensors. Ye et al. [26] presented a Statistical En-route
Filtering (SEF) mechanism for detecting and dropping
false reports. It integrates multiple authentication codes,
probabilistic verification, and data filtering to determine
the truthfulness of each report. Our work differs from
them in that we focus on sinkhole attacks, where the
intruder and multiple malicious nodes actively disturb
the one-to-many data communications or even interfere
the identification algorithm itself.

3. Network model and problem statement

We consider a wireless sensor network that consists of a
base station (BS) and a collection of geographically distrib-
uted sensor nodes, each denoted by a unique identifier IDv.
The sensor nodes continuously collect and forward the
sensed environmental data to the base station in a multi-
hop fashion.

As mentioned earlier, this commonly used many-to-one
communication pattern is vulnerable to sinkhole attacks.
In this type of attack, an intruder usually attracts network
traffic by advertising itself as having the shortest path to
the base station. For example, as shown in Fig. 1a, an
intruder, which is equipped with much higher computation
and communication power than a normal sensor node, cre-
ates a high-quality single-hop link to the BS. It can then
advertise imitated routing messages about the high quality
route, spoofing the surrounding nodes to create a sinkhole
(SH). A sinkhole can also be performed using a wormhole
[27], which creates a metaphorical sinkhole with the intru-
der being the center; the intruder then relays the messages
received in one part of the network toward the sink using a
tunnel (see Fig. 1b).

We assume the sensor nodes are either normal or mali-

cious. The center of a sinkhole attack is a malicious node
compromised by the intruder. Note that, even if there is
only one compromised node, it can affect many surround-
ing normal nodes by creating a high quality route to the
base station. Furthermore, this intruder may also collude

2354 E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364

Author's personal copy

with some other malicious nodes. They could even collab-
oratively cheat the detection algorithm by suggesting a nor-
mal node as the intruder (the victim, denoted as SH 0).

The focus of our work is to effectively identify the real
intruder (SH) in the sinkhole attack. Once it is identified,
a routing protocol or a higher-layer application can
easily isolate the intruder from the network to avoid fur-
ther loss. We assume that the base station is physically
protected or has tamper-robust hardware [15]; hence, it
acts as a central trusted authority in our algorithm
design. The base station also has a rough understanding
on the location of nodes, which could be available
after the node deployment stage or obtained by various
localization mechanisms [28]. For ease of exposition, in
Table 1, we list the major notations used throughout this
paper.

4. Intruder detection for sinkhole attack

We now describe our algorithm for detecting a sinkhole
attack, and then efficiently identifying the intruder. We first
focus on the case of a single malicious node only, i.e., the
intruder (SH). We assume that, in this simple scenario,
the SH will affect sensor data collection, but will not inter-
fere the detection algorithm through dropping or altering

the control messages. In the next section, we will present
enhancements dealing with multiple malicious nodes that
collude and even interfere the detection algorithm.

4.1. Estimating the attacked area

In a sinkhole attack, the intruder can drop, alter, or
selectively forward the sensing data. The BS can suspect
the existence of an attack through various statistical or
application-specific data analysis. The sensors, which are
closely located, are expected to have similar readings from
the environment. We divide the network into a number of
sub-areas and compare the data within each of them. The
BS can detect the attack by finding the inconsistent data
between the normal sensors and attacked sensors in the
sub-areas. It can also detect the missing data from the
attacked sensors and identify the attacked area. Since
the area affected by the attack is limited in size, it is
impossible for an intruder to alter the data from all the
sensors in the network. Thus, the attack must be detected
in some of the sub-areas.

For illustration, consider a monitoring application in
which sensor nodes submit data to the BS periodically.
Let X1, . . . ,Xn be the sensing data collected in a sliding win-
dow, and X be their mean. Define f(Xj) as,

f ðX jÞ ¼

ffi
ðX j � X Þ2

X

s
:

A simple measure for identifying a suspected node is
whether f(Xj) is greater than a certain threshold, for the
data from this node is noticeably inconsistent with others
in the same area. More advanced statistical methods can
be found in [29,30].

After identifying a list of suspected nodes, the BS can
estimate where the sinkhole locates. Specifically, it can cir-
cle a potential attacked area, which contains all the sus-
pected nodes. An example is shown in Fig. 2, where the
shaded nodes are found to contain missing or inconsistent
data. Note that all the nodes in the circle could be attracted
by the sinkhole sooner or later, and we thus refer to them
as affected nodes.

Fig. 1. Two examples of sinkhole attack in wireless sensor networks. (a) Using an artificial high quality route; (b) using a wormhole.

Table 1
List of notation

BS Base station
SH Real intruder in the sinkhole attack
SH0 False intruder (victim) in the sinkhole attack
IDv Identity of sensor node v

p Probability of a node being malicious
d Packet drop rate
k No. of neighbors to which a message will be forwarded
hmax Hops from the farthest node to the BS

hrc Hops from the BS where root correction takes place
l Levels from the BS in the tree of network flow
tl Number of nodes at level l

N Total number of nodes in the attacked area
Fr Number of correct network flow information collected
Fm Number of incorrect network flow information collected
Fs Number of missing network flow information
Fn Total number of network flow information collected

E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364 2355

Author's personal copy

4.2. Identifying the intruder

Since the attacked area may contain many nodes, and
the sinkhole is not necessarily the center of the area in a
multi-hop sensor network, it is necessary to further locate
the exact intruder and isolate it from the network. This
can be achieved through analyzing the routing pattern in
the affected area.

We now demonstrate a method for collecting the net-
work flow information, which facilitates the routing pat-
tern analysis. First, the BS sends a request message to the
network. The message contains the IDs of the affected
nodes, and is flooded hop by hop. For each node receiving
the request, if its ID is there, it should respond to the BS

with a message, which includes its own ID, the ID of the
next-hop node, and the cost for routing, e.g, hop-count
to the BS. Note that the next-hop and the cost could
already be affected by the attack; hence, the response mes-
sage should be transmitted along the reverse path in the
flooding, which corresponds to the original route with no
intruder.

At the BS, each piece of network flow information can
be represented by a directed edge, a!ct

b, where a denotes
an affected node, b denotes the next hop of a, and ct is
the cost from a to the BS. The BS can then visualize the
routing pattern by constructing a tree using the collected
next hop information. Note that the area invaded by a
sinkhole attack has a special routing pattern, where all net-
work traffic flows toward the same destination, that is, the
intruder SH. As shown in Fig. 3, once the tree is con-
structed, the BS can easily identify the SH, which is exactly
the root of the tree in this single malicious node case.

5. Enhancements against multiple malicious nodes

As mentioned before, there could be multiple malicious
nodes that prevent the BS from obtaining correct and com-
plete flow information for intruder detection. Specifically,
they may cooperate with the intruder to perform the fol-
lowing misbehaviors:

1. Forward the response messages selectively or even drop
all (denial of service);

2. Modify the response messages passing through; and
3. Respond with false network flow information of itself.

In this section, we present effective enhancements that
address these problems.

5.1. Dealing with dropped flow information

Malicious nodes may drop the response messages of net-
work flow information, as shown in Fig. 4a. To mitigate the
problem, the sensors can forward the information to the BS

through multiple redundant paths. Specifically, a node can
forward reply messages to k neighbors, k P 1. Let p be the
probability that a node is malicious, hmax be the number of
hops from the farthest node to the BS, and the number of
nodes in level l (i.e., hop count of l to the BS) be tl. For uni-
formly distributed sensors, tl can be estimated as

tl ¼ ½ðlRÞ2p� ðl� 1Þ2R2p� � D ¼ ð2l� 1ÞR2p � D;

where R is the transmission range, and D is the sensor dis-
tribution density.

Consider the extreme case in which a malicious node
does not generate a response and drops any responses pass-
ing by, the probability that the response message from a
node at level l reaches the BS is (1 � p)(1 � pk)l�1. Thus,
the expected number of responses reaching the BS is

n ¼
Xhmax

l¼1

ð1� pÞð1� pkÞl�1tl:

As an example, for p = 0.1, k = 2, hmax = 5, R = 10 m,
D = 0.01 node/m2, we have n = 67.73. That is, on average,
67.73 responses will reach the BS. Such a result is reason-
ably good, given that the total number of normal nodes
is around 78 in this setting.

BS

SH

Fig. 3. Network flow in the attacked area.

BS

SH

Nodes with missing
or inconsistent data

Fig. 2. Estimate the attacked area.

2356 E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364

Author's personal copy

Since there are still losses of the responses, the tree to be
constructed based on the network flow information might
be broken into several subtrees. Algorithm 1 shows a pro-
cedure to construct these trees, and the intruder is clearly in
the tree with direct connection to the BS.

In some extreme cases, the malicious nodes may perform
denial of service attacks. They may refuse to reply and
drop all the messages passing through. However, this kind
of attacks can be easily detected, as the information from
the same area is completely lost.

Algorithm 1. Identify multiple subtrees

R = / /*R: set of subtrees*/
for each v 2 S /*S: set of nodes in the attacked area*/

if v has no incoming edge
R = R [FindSubtree(v)

end for

subroutine FindSubtree(node u)
R 0 = /
if u is not yet visited

mark u is visited
else

return /
if u has no outgoing edge

return {u}
for each e(u,v)

R 0 = R 0 [FindSubtree(v)
end for

return R 0

end FindSubtree

5.2. Dealing with tampered or false flow information

In the process for collecting the network flow informa-
tion, the malicious nodes could even tamper the responses
passing by or generate false responses. The receiver thus
has to protect the reply message, so as to prevent an
attacker from forging the network flow information. To this
end, we assume every node v shares a secret key Kv with the

BS, which they use in conjunction with a message authenti-
cation code (MAC) function (for example HMAC [31]) to
authenticate control messages. This key can be loaded to
the node through a pre-distribution protocol, e.g., that in
[32]. To send a reply message R, v actually sends ÆR,
MACKv(R)æ to BS, where the notation MACKv(R) is the
MAC message authentication code computed over message
R with key Kv. MAC message authentication code is a short
piece of information used to authenticate a message. An
MAC algorithm accepts a secret key and an arbitrary-
length message to be authenticated as input, and outputs
an MAC (sometimes also known as a tag). Although the
encryption process for generating the MAC imposes addi-
tional calculations to the sensors and the base station, the
overhead is affordable with the existing lightweight symmet-
ric encryption algorithms. Recent studies have shown that
symmetric encryption and hashing function schemes can
be efficiently implemented in various small sensing devices
[33,34]. The code sizes in some of these algorithms, like
RC4 and RC5, are very small. They are suitable for the
low-cost processors in sensors which lack large amounts
of program memory. When BS receives this message, it
can verify the authenticity of the message by comparing
the received MAC value to the MAC that it computes for
itself over the received message with Kv. More importantly,
the encryption applies to the responses, whose volume is
much smaller than that of the normal data traffic.

The encryption, however, cannot solve the problem that
the malicious nodes themselves provide false responses to
hide the real SH. As shown in Fig. 4b, two colluding nodes
A and C, together with the real SH, suggest outgoing edges
to a victim node SH 0. To deal with this problem, the BS

can detect the inconsistency among the hop count informa-
tion. For instance, we can see that the incoming edges of
the SH 0 have different number of hop counts, which is sus-
picious because the nodes sending messages via the same
next hop should have the same hop counts to the BS. Also
note that the malicious nodes D, E, and F have identical

BS

SH
Colluding nodes

SH

3

3

3

3

3

3

3

2

33

3

2

2
1A

SH

SH

C

D

E

F

G H

a b
Fig. 4. Attacked area with colluding nodes. (a) Dropping responses; (b) providing false responses.

E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364 2357

Author's personal copy

hop counts in their incoming and outgoing edges, which is
again abnormal. In our algorithm, we calculate the differ-
ence between the hop counts provided by a node and the
number of edges from the node to the current root. We
then identify the SH and other suspicious nodes by spot-
ting the inconsistency of the hop counts.

To this end, we maintain an array Count, where the i-th
entry stores the total number of nodes having hop count
difference i. Note that index i can be negative, which indi-
cates that the hop count provided by a node is smaller than
its actual distance from the current root. Intuitively, if
Count[0] is not the dominated one in the array, it means
the current root is unlikely the real intruder. Through ana-
lyzing the array Count, we can estimate the hop counts
from the SH 0 to the SH. For example, if most non-zero
entries of Count fall in the index range [�2,2], we suspect
that the SH is two hops away from the SH 0, which is the
current root. Given this estimation, the BS can make root
correction and re-calculate the entries of Count for those
nodes within two hops from the SH 0. After several itera-
tions, it can conclude the intruder if a majority of the nodes
agree with a consistent result. A formal description of the
above procedure can be found in Algorithm 2.

As an example, consider the attacked area in Fig. 5a,
where the node SH 0 is the original root of the network flow
tree, and its array Count is as follow,

i �2 �1 0 1 2
Count[i] 0 14 8 6 0

Algorithm 2. Find the real intruder with root corrections

for each root r

initialize a new Array count[]
initialize a new Path correctPath

checkRootByCount(r, count, 1)
S = {x > 0jforall y > 0,count[x] + count[�x] > count[y] + count[�y]}
x = min(S)
correctRoot(r, r, x, 0, correctPath, count[0])
apply correctPath on Network G

end for

subroutine checkRootByCount (Node r, Array count[], int depth)
depth = depth +1
for each precedent Node c of r

increase count[hop_count(c) – depth] by 1
checkRootByCount (c, count, depth)

end for

end checkRootByCount

subroutine correctRoot (Node r, Path p, int totalLevel, int currentLevel,

Path correctPath, int bestCount)
if (currentLevel >= totalLevel)

return

end if

currentLevel = currentLevel+1
for each precedent node c of r

initialize a new array count[]
reverse edge (c,r)
checkRootByCount (c, count, 1)

if (count[0] > bestCount)
correctPath = p � >c

bestCount = count[0]
end if

correctRoot (c, p � >c, totalLevel, currentLevel, correctPath,

bestCount)
reverse edge (c,r)

end for

end correctRoot

It shows that only 8 nodes agree that the SH 0 is the
intruder. However, 14 nodes do not agree with it. Instead,
they suggest that the SH should be one hop closer to the
BS than the node SH 0. Since they are the majority, our cor-
rection algorithm runs again to look for a new root. After
that, the node SH becomes the new root (Fig. 5b), and the
corresponding Count[] becomes,

i �2 �1 0 1 2
Count[i] 0 1 21 6 0

We can see that 21 nodes provide consistent information
about the current root SH. Since the value of Count[0] is
the majority, the SH is concluded as the intruder.

2

3

2

3

3

34

4

4 4

4

4

3
4

2 3

3

4

4

3
44

3

4

4

3

2

2
1A

SH

SH

2

3

2

3

3

34

4

4 4

4

4

3
4

2 3

3

4

4

3
44

3

4

4

3

2

2
1A

SH

SH

Correct information
Missing information
Wrong information
Root correction

Fig. 5. Example of intruder identification with multiple malicious nodes.

2358 E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364

Author's personal copy

The time complexity for calculating array count is O(N),
and that for correcting the roots is

Phrc

l¼1tl � N ¼ Oðthrc � NÞ.
Here, hrc is the average number of hops where a root cor-
rection will take place, which can be estimated from count[]
and is in general quite small. The total time is thus
OðNÞ þ OðNÞ þ Oðthrc � NÞ ¼ Oðthrc � NÞ, which is relatively
low.

5.3. Proof of correctness

We now give a simple analysis on the correctness of the
above algorithm. We assume that N is the number of nodes
in the attacked area, namely, N = Fn + Fs = (Fm + Fr) +
Fs.

Property: For any Fm, our sinkhole detection algorithm
works if there are more than 2Fm sensors reporting their
network flow information successfully to the BS and at
most Fm are malicious among them.

Proof. Since there are more than 2Fm sensors successfully
reporting their network flow information, we have
Fn > 2Fm, and consequently Fr > Fm. In the worst case, all
the Fm malicious sensors are colluding and suggesting
victim SH 0 as the intruder. Yet, Fr normal sensors will
suggest SH, the real intruder, and the number of these
nodes (Fr) is greater than the malicious nodes (Fm). Hence,
our algorithm can correctly identify the real intruder
through the majority vote.

Our algorithm might not work if Fn 6 2Fm and the mali-
cious nodes are all colluding. Nevertheless, it unlikely hap-
pens in most sensor networks, where a majority of sensors
should be in normal condition.

6. Performance evaluation

We further evaluate the performance of our sinkhole
detection algorithm through simulations. We simulate a
wireless sensor network with a 200 meter by 200 meter field
in which 400 nodes are placed with uniform random distri-
bution. The sensors adopt IEEE 802.11 MAC protocol
with radio range of 10 meter. A base station is placed at
the center of the network to collect data from the sensors.
Moreover, a sinkhole is added to the network at x- and
y-coordinates (50, 50) for emulating a sinkhole attack. We
are interested in evaluating the accuracy on intruder iden-
tification, communication overhead, and energy consump-
tion of our intruder detection algorithm. Table 2 shows the
default environment settings of our implementation,
mostly adapted from [23,26].

6.1. Accuracy of intruder identification

In the first set of experiments, we investigate the accu-
racy of our intruder detection algorithm for sinkhole
attacks. We focus on the following three measures: (1) suc-
cess rate, which is the percentage that our algorithm can
correctly identify the SH; (2) false-positive rate, which is

the percentage that our algorithm incorrectly identifies
the SH; and (3) false-negative rate, which is the percentage
that our algorithm is not able to identify any intruder but it
does exist.

We first consider a mildly hostile environment in which
20% nodes are malicious. For those networks with less
malicious nodes or even one (the intruder itself) only, the
results are even better. We vary the ratio of colluding nodes
from 0% to 20% of the total nodes in the network. When
the ratio is 20%, all the malicious nodes are colluding with
the intruder; for the ratios lower than 20%, a malicious
node might randomly drop response messages only but
would not collaborate with the intruder to provide mislead-
ing routing information, if it is not a colluding node. Fig. 6
shows that the success rates for dropping rates of 0, 0.2,
0.4, 0.6 and 0.8, respectively. For the zero dropping rate
at the malicious nodes, we can see that the success rates
are 100%. Also the corresponding false-positive and
false-negative rates are zero, as shown in Figs. 7 and 8,
respectively. This is because the number of correct routing
information pieces is much more than that of the incorrect
ones in this scenario, and the intruder can always be iden-
tified through routing pattern analysis and majority vote.
When the drop rate increases, however, the success rate

Table 2
Parameter settings of the experiments

Number of nodes of network 400
Size of network 200 m · 200 m
Transmission range 10 m
Location of BS (100,100)
Location of sinkhole (50,50)
Percentage of malicious nodes m

Percentage of colluding nodes mc

Message drop rate (d) 0–80%
No. of neighbors which a message is forwarded to (k) 1–2
Packet size 30 bytes
Max. number of reply messages per packet 5

98

98.5

99

99.5

100

0 5 10 15 20

S
uc

ce
ss

 r
at

e
(%

)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 6. Success rate in intruder identification (m = 20%).

E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364 2359

Author's personal copy

slightly decreases. Intuitively, when the malicious nodes
randomly drop a lot of responses, it is possible that the cor-
rect information pieces become less than the incorrect ones,
which leads to lower success rate, and, not surprisingly,
higher false-positive and false-negative rates. Nevertheless,
the change is quite minor, even with a dropping rate of
80%. Such results suggest that our algorithm works well
under a normally hostile environment.

Given the above results, it is clear that for less than 20%
malicious nodes, our intrusion detection algorithm can be
even more effective. We are thus more interested in its per-
formance with other extreme hostile environments. To this
end, we repeat the above experiments for m = 50% and
80%, that is, more than half of the nodes are malicious.
We again vary the ratio of the colluding nodes (with upper
bounds of 50% and 80%, respectively). The corresponding
results are shown in Figs. 9–14. For m = 50%, the success,
false-positive, and false-negative rates have similar trends

0

0.5

1

1.5

2

0 5 10 15 20

F
al

se
-p

os
iti

ve
 r

at
e

(%
)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 7. False-positive rate in intruder identification (m = 20%).

0

0.5

1

1.5

2

0 5 10 15 20

F
al

se
-n

eg
at

iv
e

ra
te

 (
%

)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 8. False-negative rate in intruder identification (m = 20%).

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

S
uc

ce
ss

 r
at

e
(%

)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 9. Success rate in intruder identification (m = 50%).

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

F
al

se
-p

os
iti

ve
 r

at
e

(%
)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 10. False-positive rate in intruder identification (m = 50%).

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

F
al

se
-n

eg
at

iv
e

ra
te

 (
%

)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 11. False-negative rate in intruder identification (m = 50%).

2360 E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364

Author's personal copy

as those with m = 20%. Though the results are generally
worse, they are still acceptable. It is worth noting that some
of the curves are not monotonic, e.g., Fig. 11 (false-nega-
tive rates), when the ratio of colluding nodes is around
40%. This is mainly due to the random drops by the mali-
cious nodes.

For m = 80%, the performance of our detection is gen-
erally unacceptable, because the malicious nodes become
dominating in the network. Also note that the trends of
the curves in this case are often the inverse of that in the
previous two cases. For example, the success rate is the
highest with a dropping rate of 0.8, and the false-negative
rate decreases with increasing the ratio of colluding nodes.
The reason again is because the misbehaved nodes domi-
nate the network. Nevertheless, we do not expect any
detection algorithms would work well in such an extreme
environment.

6.2. Communication cost

In this experiment, we evaluated the communication
overhead of our algorithm. Fig. 15 shows the number
of packets sent or received by nodes of different hops
to the BS. We can see that the nodes closer to the BS

have higher overheads. This is because most of the com-
munication overhead is incurred in collecting the net-
work flow information, and, in this process, a node
closer to the BS has to relay more messages. Note that,
however, the BS (0 hop) sends one request messages
only, and does not have to relay response messages.
The figure also shows the overhead when path redun-
dancy is introduced for responses, where k represents
the number of neighbors to which a message will be for-
warded. Clearly, the larger the value of k is, the less the

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

S
uc

ce
ss

 r
at

e
(%

)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 12. Success rate in intruder identification (m = 80%).

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

F
al

se
-p

os
iti

ve
 r

at
e

(%
)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 13. False-positive rate in intruder identification (m = 80%).

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

F
al

se
-n

eg
at

iv
e

ra
te

 (
%

)

Ratio of colluding nodes (%)

d=0
d=0.2
d=0.4
d=0.6
d=0.8

Fig. 14. False-negative rate in intruder identification (m = 80%).

0

5

10

15

20

0 1 2 3 4 5 6 7

P
ac

ke
ts

 p
er

 n
od

e

Hops to base station

packet receive (k=1)
packet receive (k=2)

packet send (k=1)
packet send (k=2)

Fig. 15. Communication cost for intrusion detection.

E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364 2361

Author's personal copy

network flow information will be dropped by malicious
nodes. Yet, our experiment shows that, when k = 2, the
overhead is reasonably low while a good delivering ratio
can be expected. In addition, for the nodes that are far
away from the attacked area (in Fig. 15, those of six
or more hop counts), their communication overhead is
almost independent of k because they do not have to
respond to the request from the BS.

6.3. Energy consumption

Finally, we study the energy consumption for our intru-
der identification algorithm. As mentioned, we assume that
the BS has high-enough computation and battery power;
hence, we mainly focus on the energy consumption in the
individual sensors. It is related to both the transmission
cost for request and response messages and the computa-
tion cost for encrypting messages. Table 3 shows a typical
energy consumption for a sensor node, as adapted from
[16,35].

Fig. 16 shows the average energy consumption for our
algorithm at each single node as a function of its hop
counts to the BS. It can be seen that the consumption
monotonically decreases with increasing the hop count.
This is consistent with the data in Table 3 and the result
from the previous section; basically, the communication
overhead is the dominated one, and the computation part
is less than 5% in the total consumption. In addition, sim-
ilar to the previous experiments, applying redundant paths
consumes more energy, as seen in the curve for k = 2.

Nonetheless, the energy consumption for our intruder
detection algorithm is indeed lightweighted. For example,
consider a sensor node equipped with two 3 V 1.2 Amp-
Hour batteries [36,37]. The total energy available at this
node is Et = 7.2 VÆAÆHour, which translates into 2000 lJ.
Hence, the node needs to spend only a minor portion of
the available energy for intruder identification throughout
its lifetime.

7. Conclusion and future work

In this paper, we presented an effective method for iden-
tifying sinkhole attacks in a wireless sensor network. The
algorithm consists of two steps: It first locates a list of sus-
pected nodes by checking data consistency, and then iden-
tifies the intruder in the list through analyzing the network
flow information. We also presented a series of enhance-
ments to deal with cooperative malicious nodes that inter-
fere the detection algorithm and attempt to hide the real
intruder.

The performance of the proposed algorithm was exam-
ined through simulations. The results demonstrated the
effectiveness and accuracy of the algorithm. They also sug-
gested that its communication and computation overheads
are reasonably low for wireless sensor networks. There
could be many future directions toward enhancing this
work; in particular, we are working on more effective statis-
tical methods for identifying data inconsistency, which will
facilitate our algorithm to precisely locate the suspected
nodes in sinkhole attacks.

Acknowledgements

The work described in this paper was substantially sup-
ported by grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project
No. CUHK4205/04E). J. Liu’s work was supported in part
by a Canadian NSERC Discovery Grant 288325, an
NSERC Research Tools and Instruments Grant, a Canada
Foundation for Innovation (CFI) New Opportunities
Grant, and an SFU President’s Research Grant.

References

[1] C. Karlof, D. Wagner, Secure routing in sensor networks: attacks and
countermeasures, in: Proceedings of the 1st IEEE Workshop on
Sensor Network Protocols and Applications, May 2003, pp. 1–15.

[2] A.D. Wood, J.A. Stankovic, Denial of service in sensor networks,
IEEE Computer 35 (2002) 54–62.

[3] C. Karlof, N. Sastry, D. Wagner, Tinysec: a link layer security
architecture for wireless sensor networks, in: Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems,
2004, pp. 162–175.

[4] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, D.E. Culler, Spins:
security protocols for sensor networks, Wireless Network Journal 8
(2002) 521–534.

[5] A. Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, H. Wong,
Decentralized intrusion detection in wireless sensor networks, in:
Proceedings of the 1st ACM International Workshop on Quality

Table 3
Parameters of energy consumption

Communication circuit power 5 · 10�8 J/bit
Communication antenna power 1 · 10�10 J/bit/m2

Encryption and MAC computation 3 · 10�9 J/bit

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7

E
ne

rg
y

co
ns

um
pt

io
n

pe
r n

od
e

(u
J)

Hops to base station

k=1
k=2

Fig. 16. Energy consumption for intruder identification.

2362 E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364

Author's personal copy

of Service & Security in Wireless and Mobile Networks, 2005, pp.
16–23.

[6] B.J. Culpepper, H.C. Tseng, Sinkhole intrusion indicators in DSR
MANETs, in: Proceedings of BroadNets ’04, October 2004, pp. 681–
688.

[7] H. Deng, W. Li, D.P. Agrawal, Routing security in wireless ad hoc
networks, IEEE Communications Magazine 40 (2002) 70–75.

[8] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: A
scalable and robust communication paradigm for sensor networks, in:
Proceedings of MobiCom ’00, Aug 2000, pp. 56–67.

[9] F. Ye, A. Chen, S. Lu, L. Zhang, A scalable solution to minimum cost
forwarding in large sensor networks, in: Proceedings of ICCCN ’01,
Oct 2001, pp. 304–309.

[10] D. Braginsky, D. Estrin, Rumour routing algorithm for sensor
networks, in: Proceedings of the WSNA ’02, September 2002, pp.
22–31.

[11] J. Hubaux, L. Buttyan, S. Capkun, The quest for security in mobile
ad hoc networks, in: Proceedings of ACM MobiHoc ’01, October
2001, pp. 146–155.

[12] A.A. Pirzada, C. McDonald, Secure routing protocols for mobile ad-
hoc wireless networks, in: T.A. Wysocki, A. Dadej, B.J. Wysocki
(Eds.), Advanced Wired and Wireless Networks, Springer, 2004.

[13] F. Delgosha, F. Fekri, Key pre-distribution on wireless sensor
networks using multivariate polynomials, in: Proceedings of SECON
’05, September 2005, pp. 118–129.

[14] J. Deng, R. Han, S. Mishra, INSENS: intrusion-tolerant routing for
wireless sensor networks, Elsevier Computer Communications 29
(2006) 216–230.

[15] E. Shi, A. Perrig, Designing secure sensor networks, IEEE Wireless
Communications 11 (2004) 38–43.

[16] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS:
security protocols for sensor networks, in: Proceedings of MobiCom
’01, July 2001, pp. 189–199.

[17] D.E. Denning, An intrusion detection model, in: Proceedings of the
IEEE Symposium on Security and Privacy, 1986, pp. 118–131.

[18] Y. Zhang, W. Lee, Intrusion detection in wireless ad-hoc networks,
in: Proceedings of MobiCom ’00, August 2000, pp. 275–283.

[19] Y. Huang, W. Lee, A cooperative intrusion detection system for ad
hoc networks, in: Proceedings of SASN ’03, October 2003, pp. 135–
147.

[20] A.A. Pirzada, C.S. Mcdonald, Circumventing sinkholes and worm-
holes in ad-hoc wireless networks, Proceedings of International
Workshop on Wireless Ad-hoc Networks, London, England, Kings
College, London, 2005.

[21] Y.-C. Hu, A. Perrig, D.B. Johnson, Packet leashes: a defense against
wormhole attacks, in: Proceedings of INFOCOM ’05, March 2005,
pp. 1976–1986.

[22] S.S. Doumit, D.P. Agrawal, Self-organized critically & stochastic
learning based intrusion detection system for wireless sensor
networks, in: Proceedings of MILCOM ’03, October 2003, pp.
609–614.

[23] A.D. Wood, J.A. Standovic, S.H. Son, JAM: A jammed-area
mapping service for sensor networks, in: Proceedings of RTSS ’03,
December 2003, pp. 286–297.

[24] J. Staddon, D. Balfanz, G. Durfee, Efficient tracing of failed nodes in
sensor networks, in: Proceedings of WSNA ’02, September 2002, pp.
122–130.

[25] M. Ding, D. Chen, K. Xing, X. Cheng, Localized fault-tolerant event
boundary detection in sensor networks, in: Proceedings of INFO-
COM ’05, March 2005, pp. 902–913.

[26] F. Ye, H. Luo, S. Lu, L. Zhang, Statistical en-route filtering of
injected false data in sensor networks, in: Proceedings of INFOCOM
’04, March 2004, pp. 2446–2457.

[27] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, L.W. Chang,
Preventing wormhole attacks on wireless ad hoc networks: a graph
theoretic approach, in: Proceedings of WCNC ’05, March 2005,
pp.1193–1199.

[28] L. Hu, D. Evans, Localization for mobile sensor networks, in:
Proceedings of MobiCom ’04, September 2004, pp. 45–57.

[29] D. Wagner, Resilient aggregation in sensor networks, in: Proceedings
of SASN ’04, October 2004, pp. 78–87.

[30] N. Ye, Q. Chen, An anomaly detection technique based on a chi-
square statistic for detecting intrusions into information systems,
Quality and Reliability Engineering International 17 (2001)
105–112.

[31] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for
message authentication, in: Neal Koblitz (Ed.), Advances in
Cryptology CRYPTO ’96. vol. 1109, of Lecture Notes in
Computer Science, Springer-Verlag, Berlin Germany, 1996, pp.
1–15.

[32] D. Liu, P. Ning, Establishing pairwise keys in distributed sensor
networks, in: Proceedings of CCS ’03, October 2003, pp. 52–61.

[33] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F.
Mueller, M. Sichitiu, Analyzing and modeling encryption overhead
for sensor network nodes, in: Proceedings of WSNA ’03, September
2003, pp. 151–159.

[34] S. Zhu, S. Setia, S. Jajodia, LEAP: efficient security mechanisms for
large-scale distributed sensor networks, in: Proceedings of CCS ’03,
October 2003, pp. 62–72.

[35] W.B. Heinzelman, A. Chandrakasan, H. Balakrishnan, An appli-
cation-specific protocol architecture for wireless microsensor net-
works, IEEE Transactions on Wireless Communications 1 (2002)
660–670.

[36] MPR/MID User’s Manual, Document 7430-0021-06, Rev. B, Cross-
bow Technology, Inc., April 2005.

[37] R. Jurdak, C.V. Lopes, P. Baldi, Battery lifetime estimation and
optimization for underwater sensor networks, IEEE Sensor Network
Operations (2004).

Edith C. H. Ngai received her B.Eng. degree in
Computer Engineering and M.Phil. degree in
Computer Science and Engineering from The
Chinese University of Hong Kong in 2002 and
2004, respectively. She is currently a Ph.D. can-
didate in the Computer Science and Engineering
Department of The Chinese University of Hong
Kong. Her research interests include mobile ad
hoc networks, wireless sensor networks, network
security, network protocol and algorithm design,
and video information processing. She is a stu-
dent member of IEEE.

Jiangchuan Liu received the B.Eng. degree (cum
laude) from Tsinghua University, Beijing, China,
in 1999, and the Ph.D. degree from The Hong
Kong University of Science and Technology in
2003, both in computer science. He is currently
an assistant professor in the School of Comput-
ing Science, Simon Fraser University, BC, Can-
ada, and was an assistant professor at The
Chinese University of Hong Kong from 2003 to
2004. His research interests include Internet
architecture and protocols, media streaming,

wireless ad hoc networks, and service overlay networks. He serves as TPC
member for various international conferences, including IEEE INFO-
COM and IWQoS. He was Information System Co-Chair for IEEE
INFOCOM’04, and a guest-editor for ACM/Kluwer Journal of Mobile
Networks and Applications (MONET), Special Issue on Energy Con-
straints and Lifetime Performance in Wireless Sensor Networks. He is an
editor of IEEE Communications Surveys and Tutorials. He is a member of
IEEE and ACM, and an elected member of Sigma Xi.

E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364 2363

Author's personal copy

Michael R. Lyu received the B.S. (1981) in elec-
trical engineering from National Taiwan Uni-
versity, the M.S. (1985) in computer engineering
from University of California, Santa Barbara,
and the Ph.D. (1988) in computer science from
University of California, Los Angeles. He is a
Professor in the Computer Science and Engi-
neering Department of the Chinese University of
Hong Kong. He worked at the Jet Propulsion
Laboratory, Bellcore, and Bell Labs; and taught
at the University of Iowa. His research interests

include software reliability engineering, software fault tolerance, distrib-
uted systems, image and video processing, multimedia technologies, and
mobile networks. He has published over 200 papers in these areas. He has
participated in more than 30 industrial projects, and helped to develop

many commercial systems and software tools. Professor Lyu was fre-
quently invited as a keynote or tutorial speaker to conferences and
workshops in U.S., Europe, and Asia. He initiated the International
Symposium on Software Reliability Engineering (ISSRE), and was Pro-
gram Chair for ISSRE’1996, Program Co-Chair for WWW10 and
SRDS’2005, and General Chair for ISSRE’2001 and PRDC’2005. He also
received Best Paper Awards in ISSRE’98 and in ISSRE’2003. He is the
editor-in-chief for two book volumes: Software Fault Tolerance (Wiley,
1995), and the Handbook of Software Reliability Engineering (IEEE and
McGraw-Hill, 1996). He has been an Associate Editor of IEEE Trans-
actions on Reliability, IEEE Transactions on Knowledge and Data
Engineering, and Journal of Information Science and Engineering. Pro-
fessor Lyu was elected to IEEE Fellow (2004) and AAAS Fellow (2007)
for his contributions to software reliability engineering and software fault
tolerance.

2364 E.C.H. Ngai et al. / Computer Communications 30 (2007) 2353–2364

