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Abstract  

We consider two kinds of software testing-resource allocation problems. The first problem is 

to minimize the number of remaining faults given a fixed amount of testing-effort, and a 

reliability objective. The second problem is to minimize the amount of testing-effort given the 

number of remaining faults, and a reliability objective. We have proposed several strategies 

for module testing to help software project managers solve these problems, and make the best 

decisions. We provide several systematic solutions based on a non-homogeneous Poisson 

process model, allowing systematic allocation of a specified amount of testing-resource 

expenditures for each software module under some constraints. We describe several numerical 

examples on the optimal testing-resource allocation problems to show applications & impacts 

of the proposed strategies during module testing. Experimental results indicate the advantages 

of the approaches we proposed in guiding software engineers & project managers toward best 

testing resource allocation in practice. Finally, an extensive sensitivity analysis is presented to 

investigate the effects of various principal parameters on the optimization problem of 

testing-resource allocation. The results can help us know which parameters have the most 

significant influence, and the changes of optimal testing-effort expenditures affected by the 

variations of fault detection rate & expected initial faults.   
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Acronyms3  

NHPP non-homogeneous Poisson process 
SRGM software reliability growth model 
TEF testing-effort function 
TE  testing-effort   
MLE  maximum likelihood estimation 
LSE  least squares estimation 
 
Notation 
m(t)  expected mean number of faults detected in time (0, t], mean value function 
λ(t)   failure intensity for m(t), dm(t)/dt 
wκ(t)   current testing-effort consumption at time t 
Wκ(t)  cumulative testing-effort consumption at time t  
a    expected number of initial faults  
r   fault detection rate per unit testing-effort 
N     total amount of testing-effort eventually consumed 
α    consumption rate of testing-effort expenditures in the generalized logistic  
  testing-effort function 
A   constant parameter in the generalized logistic testing-effort function 
κ     structuring index whose value is larger for better structured software 

development efforts 
β   constant parameter 
vi    weighting factor to measure the relative importance of a fault removal from 
   module i  
R(x|t)  conditional software reliability 
 
 

1. INTRODUCTION 

A computer system comprises two major components: hardware, and software. With the 

steadily growing power & reliability of hardware, software has been identified as a major 

stumbling block in achieving desired levels of system dependability. We need quality software 

to produce, manage, acquire, display, and transmit information anywhere in the world. 

Software producers must ensure the adequate reliability of the delivered software, the time of 

delivery, and its cost. According to the ANSI definition: “Software reliability is defined as the 

probability of failure-free software operation for a specified period of time in a specified 

environment” [1]. Alternatively, it may be viewed from the perspective of general use on a 

variety of different inputs, in which case it is the probability that it will correctly process a 

randomly chosen input. Many Software Reliability Growth Models (SRGM) were developed 

in the 1970s-2000s [1]-[2]. SRGM describe failures as a random process, which is 

characterized in either times of failures, or the number of failures at fixed times.  

                                                 
3 The singular and plural of an acronym are always spelled the same.  
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In addition to software reliability measurement, SRGM can help us predict the fault 

detection coverage in the testing phase, and estimate the number of faults remaining in the 

software systems. From our studies, there are some SRGM that describe the relationship 

among the calendar testing, the amount of testing-effort, and the number of software faults 

detected by testing. The testing-effort (TE) can be represented as the number of CPU hours, 

the number of executed test cases, or human power, etc [2]. Musa et al. [2] showed that the 

effort index, or the execution time is a better time domain for software reliability modeling 

than the calendar time because the observed reliability growth curve depends strongly on the 

time distribution of the TE.  

In the software development phase, testing begins at the component level, and different 

testing techniques are appropriate at different points in time. Testing is conducted by the 

developer of the software, as well as an independent test group [3]. One major software 

development challenge is that testing is too expensive & lengthy, yet the project schedule has 

to meet a delivery deadline. Most popular commercial software products are complex systems 

composed of a number of modules. As soon as the modules are developed, they have to be 

tested in a variety of ways, and tests are derived from the developer’s experience. Practically, 

module testing is the most detailed form of testing to be performed. Thus, project managers 

should know how to allocate the specified testing resources among all the modules & develop 

quality software with high reliability.   
From our studies [4]-[23], there are many papers that have addressed the problems of 

optimal resource allocation. In this paper, we first consider two kinds of software 

testing-resource allocation problems, and then propose several strategies for module testing. 

Namely, we provide systematic methods for the software project managers to allocate a 

specific amount of TE expenditures for each module under some constraints, such as 1) 

minimizing the number of remaining faults with a reliability objective, or 2) minimizing the 

amount of testing-effort with a reliability objective. Here we employ a SRGM with 

generalized logistic testing-effort function to describe the time-dependency behaviors of 

detected software faults, and the testing-resource expenditures spent during module testing. 

The proposed model is based on Non-homogeneous Poisson processes (NHPP).  

The remaining contents of this paper consist of four sections. Section 2 describes an 

SRGM with generalized logistic TEF. In Section 3, the methods for testing resource allocation 

& optimization for modular software testing are introduced. Numerical examples for the 

optimum TE allocation problems are demonstrated in Section 4. In Section 5, we analyze the 

sensitivity of parameters of proposed SRGM.   
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2. SRGM WITH GENERALIZED LOGISTIC TESTING-EFFORT FUNCTION  

 

2.1 Software Reliability Modeling 

A number of SRGM have been proposed on the subject of software reliability [1]. 

Traditional SRGM, such as the well-known Goel-Okumoto model, and the Delayed S-shaped 

model, have been shown to be very useful in fitting software failure data. Yamada et al. [6]-[8] 

modified the G-O model, and incorporated the concept of TE in an NHPP model to get a 

better description of the software fault phenomenon. Later, Huang et al. [24], [25] proposed a 

new SRGM with the logistic TEF to predict the behavior of failure occurrences, and the fault 

content of a software product. Based on our past experimental results [26], [27], this approach 

is suitable for estimating the reliability of software application during the development 

process. The following are the modeling assumptions:  

1) The fault removal process is modeled as a NHPP, and the software application is 

subject to failures at random times caused by the remaining faults in the system.     

2) The mean number of faults detected in the time interval (t, t+∆t) by the current TE is 

proportional to the mean number of remaining faults in the system at time t, and the 

proportionality is a constant over time. 

3) TE expenditures are described by a generalized logistic TEF. 

4) Each time a failure occurs, the corresponding fault is immediately removed, and no new 

faults are introduced. 

  

Let m(t) be the mean value function of the expected number of faults detected in time (0, 

t]. Because the expected number of detected faults is finite at any time, m(t) is an increasing 

function of t, and m(0)=0. According to these assumptions, we get 

          ttmar
tw

tmttm
∆−×=

−∆+ )]([
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)()(

κ

.   (1) 

That is,  
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Consequently, if the number of detected faults due to the current TE expenditures is 

proportional to the number of remaining faults, we obtain the differential equation 
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Solving the above differential equation under the boundary condition m(0)=0, we have  
 

           ( )))]((exp[1))])0()((exp[1()( tWraWtWratm −−=−−−= κκ . (4) 

Note that parameter a is the number of initial faults, and this number is usually a 

representative measure of software reliability. It can also provide an estimate of the number of 

failures that will eventually be encountered by the customers. Besides, parameter r is the fault 

detection rate, or the rate of discovering new faults in software during the testing phase. In 

general, at the beginning of the testing phase, many faults can be discovered by inspection, 

and the fault detection rate depends on the fault discovery efficiency, the fault density, the 

testing-effort, and the inspection rate [3]. In the middle stage of the testing phase, the fault 

detection rate normally depends on other parameters, such as the execution rate of CPU 

instruction, the failure-to-fault relationship, the code expansion factor, and the scheduled CPU 

execution hours per calendar day [2]. We can use this rate to track the progress of checking 

activities, to evaluate the effectiveness of test planning, and to assess the checking methods 

we adopted [25]. In fact, m(t) is non-decreasing with respect to testing time t. Knowing its 

value can help us determine whether the software is ready for release, and if not, how much 

more of the testing resources are required. It can also provide an estimate of the number of 

failures that will eventually be encountered by the customers.  

Yamada et al. [11], [26] reported that the TE could be described by a Weibull-type curve, 

and the Weibull curve is one of the three known extreme-value distributions. Although a 

Weibull-type curve can fit the data well under the general software development environment, 

it will show the apparent peak phenomenon when the value of the shape parameter is greater 

than 3 [26]. From our past studies [27], [28], a logistic TEF with a structuring index was 

proposed, which can be used to consider & evaluate the effects of possible improvements on 

software development methodology. The idea of a logistic TEF was proposed by F. N. Parr 

[29]; it predicts essentially the same behavior as the Rayleigh curve, except during the early 

part of the project. For a sample of some two dozen projects studied in the Yourdon 

1978-1980 project survey, the logistic TEF was fairly accurate in describing expended TE 

[30]. In [28], we extended the logistic TEF to a generalized form, and the generalized logistic 

TEF is formulated as      

                            
κ κακ tAe

NtW
−+

=
1

)( .     (5) 

The current TE consumption is  

        
dt

tdWtw )()( κ
κ = .    (6) 

Comment [JWR1]: Do you 

instead mean “never 

reported”? 
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The TE reaches its maximum value at time 

     
κα
κ
A

t
ln

max = .     (7)  

The conditional reliability function after the last failure occurs at time t is obtained by [1], [2]  

   ))]()((exp[)|()( tmttmtttRtR condcond −∆+−=∆+≡ . (8) 
Taking the logarithm on both sides of the above equation, we obtain   
  ))()(()(ln tmttmtRcond −∆+−= .   (9) 

Here we will define another measure of reliability, i.e., the ratio of the cumulative number 

of detected faults at time t to the expected number of initial faults.  

  
a
tmtR )()( ≡ .    (10) 

Note that R(t) is an increasing function in t. Using R(t), we can obtain the required testing 

time needed to reach the reliability objective R0, or decide whether the reliability objective 

can be satisfied at a specified time. If we know that the value of R(t) has achieved an 

acceptable level, then we can determine the right time to release this software. 

 
2.2 Methods of Model’s Parameter Estimation 

To validate the proposed model, experiments on real software failure data will be 

performed. Two most popular estimation techniques are Maximum Likelihood Estimation 

(MLE), and Least Squares Estimation (LSE) [1], [2], [26]. For example, using the method of 

LSE, the evaluation formula S1(N, A, α) of Equation (5) with κ=1 is depicted as  

   Minimize ∑
=

−=
n

i
iki tWWANS

1

2* )]([),,(1 α ,    (11) 

where *
iW  is the cumulative testing-effort actually consumed in time (0, ti], and Wk(ti) is the 

cumulative TE estimated by Equation (5). Differentiating S1 with respect to N, A, and α, 

setting the partial derivatives to zero, and rearranging these terms, we can solve this type of 

nonlinear least square problems. We obtain  
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Thus, the least squares estimator N is given by solving the above equation to yield 
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Next, we have  
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and 
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The other parameters A & α can also be obtained by substituting the least squares estimator N 

into Equations (14) & (15). Similarly, if the mean value function is described in Equation (4), 

then the evaluation formula S2(a, r) can be obtained as 

  Minimize ∑
=

−=
n

i
ii tmmraS

1

2* )]([),(2 ,      (16) 

where *
im  is the cumulative number of detected faults in a given time interval (0, ti], and m(ti) 

is the expected number of software faults estimated by Equation (4). Differentiating S2 with 

respect to a & r, setting the partial derivatives to zero, and rearranging these terms, we can 

solve this type of nonlinear least square problems.   

On the other hand, the likelihood function for the parameters a & r in the NHPP model 

with m(t) in Equation (4) is given by 
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 where m0 ≡ 0 for t0 ≡ 0. Therefore, taking the logarithm of the likelihood function in Equation 

(17), we have 
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From Equation (3), we know that m(ti) − m(ti-1) = a(exp[−rW (ti-1)]− exp[−rW (ti)]). Thus, 
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Consequently, the maximum likelihood estimates a & r can be obtained by solving 
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3. TESTING-RESOURCE ALLOCATION FOR MODULE TESTING 

In this section, we will consider several resource allocation problems based on an SRGM 

with generalized logistic TEF during software testing phase.  

  

Assumptions [4], [5], [7], [11]-[14], [27]: 

1) The software system is composed of N modules, and the software modules are tested 

individually. The number of software faults remaining in each module can be estimated 

by an SRGM with generalized logistic TEF. 

2) For each module, the failure data have been collected, and the parameters of each 

module, including the fault detection rate and the module fault weighting factor, can be 

estimated. 

3) The total amount of testing resource expenditures available for the module testing 

processes is fixed, and denoted by W. 

4) If any of the software modules fails upon execution, the whole software system is in 

failure.  

5) The system manager has to allocate the total testing resources W to each software 

module, and minimize the number of faults remaining in the system during the testing 

period. The desired software reliability after the testing phase should achieve the 

reliability objective R0. 

  

From Section 2.1, the mean value function of a software system with N modules can be 

formulated as 

               M(t) = ∑ −−=∑
==

N

i
iiii

N

i
ii tWravtmv

11
)])(exp[1()(        (21) 

If vi =1 for all i=1, 2,…, N, the objective is to minimize the total number of faults remaining 

in the software system after this testing phase. This indicates that the number of remaining 

faults in the system can be estimated by  

                    ∑ −≡∑ −
==

N

i
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i
ii WravtWrav ii

11
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We can further formulate two optimization problems as follows. 
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3.1 Minimizing the number of remaining faults with a given fixed amount of TE, and a 

reliability objective 

A successful test is one that uncovers an as-yet-undiscovered fault. We should know that 

tests show the presence, not the absence, of defects [3]. It is impossible to execute every 

combination of paths during testing. The Pareto principle implies that 80 percent of all faults 

uncovered during testing will likely be traceable to 20 percent of all program components [3]. 

Thus the question of how much to test is an important economic question. In practice, a fixed 

amount of TE is generally spent in testing a program. Therefore, the first optimization 

problem in this paper is that the total amount of TE is fixed, and we want to allocate these 

efforts to each module in order to minimize the number of remaining faults in the software 

systems. Suppose the total amount of TE is W, and module i is allocated Wi testing efforts; 

then the optimization problem can be represented as [11]-[14], [17]-[18], [27]  

 

Minimize:  ∑ −
=

N

i
iiii Wrav

1
]exp[                        (23)  

 Subject to:   

0,
1

≥≤∑
=

i
N

i
i WWW      (24)  

0]exp[1)( RWrtR iii ≥−−=     (i=1, 2, ..., N). (25) 

From Equation (25), we can obtain    

NiR
r

W
i

i ..., 2, 1,],1ln[1
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−
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Let NiR
r

D
i
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−
≡ . Thus, we have  

NiWWW i
N

i
i ..., 2, 1,  ,0  ,

1
=≥≤∑

=
, and ii CW ≥ , where ),.....,,,,0max( 321 NDDDDCi = . 

That is, the optimal testing resource allocation can be specified as below [7]-[9] 

Minimize:  ∑ −
=

N

i
iiii Wrav

1
]exp[                        (27)  

Subject to: 0,
1

≥≤∑
=

i
N

i
i WWW  and ii CW ≥ . 

Let iii CWX −= , then we can transform the above equations to 

Minimize:  ∑ −−
=

N

i
iiiiii XrCrav

1
]exp[]exp[                        (28)  
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Subject to:  0,
11

≥∑−≤∑
==

i
N

i
i

N

i
i XCWX , i=1, 2,..., N.            (29)  

Note that the parameters vi, ai, and ri should already be estimated by the proposed model.  

To solve the above problem, the Lagrange multiplier method can be applied. The Lagrange 

multiplier method transforms the constrained optimization problem into the unconstrained 

problem by introducing the Lagrange multipliers [22], [27], [31], [32].  

Consequently, Equations (28) & (29) can be simplified as 

Minimize: )(]exp[]exp[),,...,,(
111

21 ∑+−∑+∑ −−=
===

N

i
i

N

i
i

N

i
iiiiiiN CWXXrCravXXXL λλ   (30) 

 
Based on the Kuhn-Tucker conditions (KTC), the necessary conditions for a minimum value 

of Equation (30) exist, and can be stated as [12]-[15], [31], [32] 

A1: 0),,...,,( 21 ≥
∂

∂

i

N

X
XXXL λ , i=1, 2,..., N.    (31a) 

A2: 0),,...,,( 21 =
∂

∂

i

N
i X

XXXLX λ , i=1, 2,..., N.   (31b) 

A3: 0)}({
11

=∑−−∑×
==

N

i
i

N

i
i CWXλ , i=1, 2, ..., N.   (31c) 

 
Theorem 1.  A feasible solution Xi (i=1, 2,..., N) of Equation (30) is optimal iff 

a) ]exp[]exp[ iiiiiii XrCrrav −×−≥λ , 

b) 0])}exp[]exp[({ =−×−−× iiiiiiii XrCrravX λ  

Proof:  

a) From Equation (30), we have 

λλ
+−×−×−=

∂
∂ ]exp[]exp[),,...,,( 21

iiiiiii
i

N XrCrrav
X

XXXL . Therefore, from Equation (31a), 

we know that ]exp[]exp[ iiiiiii XrCrrav −×−≥λ . 

b) From Equations (30) & (31b), we have 0])}exp[]exp[({ =−×−−× iiiiiiii XrCrravX λ . 

 

Corollary 1. Let Xi be a feasible solution of Equation (13) 

a) Xi=0 iff ]exp[ iiiii Crrav −≥λ .   

b) If Xi>0, then iiiiiii rCrravX /}ln])exp[{ln( λ−−= . 

Proof:  
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a) If Xi=0, then Theorem 1 part a) implies that ]exp[ iiiii Crrav −≥λ .  Besides, if 

]exp[ iiiii Crrav −=λ , then from Theorem 1 part b), we know that  

0]}exp[]exp[]exp[{ =−×−−−× iiiiiiiiiiiii XrCrravCrravX  or  

0]}exp[1{]exp[ =−−×−× iiiiiiii XrCrravX . Because vi≠0, ai≠0, and ri≠0, we have Xi=0 

or 0]exp[1 =−− ii Xr , i.e., Xi=0. That is, Xi=0. If ]exp[ iiiii Crrav −>λ , then 

]exp[]exp[]exp[ iiiiiiiiiiii XrCrravCrrav −×−≥−>λ  (because 1]exp[ ≤− ii Xr ) or 

0]exp[]exp[ ≠−×−− iiiiiii XrCrravλ . Therefore, from Theorem 1 part b), we have Xi=0. 

Q.E.D. 

b) From Theorem 1 part b), we know that if Xi>0, then 0]exp[]exp[ =−×−− iiiiiii XrCrravλ .  

Therefore, iiiiiii rCrravX /}ln])exp[{ln( λ−−= . Q.E.D. 

From Equation (30), we have 

0]exp[]exp[),,...,,( 21 =+−×−×−=
∂

∂ λλ
iiiiiii

i

N XrCrrav
X

XXXL  

0),,...,,(
11

21 =∑+−∑=
∂

∂
==

N

i
i

N

i
i

N CWXXXXL
λ

λ  

Thus, the solution 0
iX  is 

iiiiiii rCrravX /)ln])exp[(ln( 00 λ−−×= , i=1, 2,..., N.         (32) 

The solution 0λ  is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑

∑ ∑+−−×
=

=

= =
N

i
i

N

i

N

i
iiiiiii

r

CWCrravr

1

1 10

)/1(

])exp[)(ln/1(
expλ      (33) 

Hence, we get ),...,,,( 00
3

0
2

0
1

0
NXXXXX =  as an optimal solution to Equation (30). However, 

the above X0 may have some negative components if 0]exp[ λ<−× iiiii Crrav , making 0X  

infeasible for Equations (28) & (29). If this is the case, the solution X0 can be corrected by the 

following steps [4], [5], [10]. 

 

   Algorithm 1 
Step 1: Set l=0. 
Step 2: Calculate the equations 

]ln])exp[[ln(1 λ−−×= iiiii
i

i Crrav
r

X , i=1, 2,..., N−l. 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑

∑ ∑+−−×
=

=

−

= =
N
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i

lN

i

N

i
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r
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1

1 1

)/1(

])exp[)(ln/1(
expλ  

Step 3: Rearrange the index i such that .... ***
21 lNXXX −≥≥≥  

Step 4: If 0* ≥−lNX , then stop (i.e., the solution is optimal) 
Else, 0* =−lNX ; l=l+1. 
End If. 

Step 5: Go to Step 2.   
  

The optimal solution has the form  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑

∑ ∑+−−×
=

−=−−×=

−

=

−

= =
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)/1(

])exp[)(ln/1(
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,,...,2,1,/)ln]exp[)(ln(

*
1

1 1

*

i

lN

i
i

lN

i

N

i
iiiiiii

iiiiiii

X

r

CWCrravr

lNirCrravX

λ

λ

     (34) 

Algorithm 1 always converges in, at worst, N−1 steps. Thus, the value of the objective 

function given by Equation (28) at the optimal solution ),...,,( **
2

*
1 NXXX  as  

∑ −−
=

N

i
iiiiii XrCrav

1

* ]exp[]exp[   (35) 

 

3.2 Minimizing the amount of TE given the number of remaining faults, and a reliability 

objective 

Now suppose Z specifies the number of remaining faults in the system, and we have to 

allocate an amount of TE to each software module to minimize the total TE. The optimization 

problem can then be represented as 

 Minimize: ∑
=

N

i
iW

1
,                                 (36) 

 Subject to:  

 0,]exp[
1

≥≤∑ −
=

i
N

i
iiii WZWrav .            (37)  

 0]exp[1)( RWrtR iii ≥−−=        (38) 

Similarly, from Equation (38), we can obtain Wi   

 .,...,2,1),1ln(1
0 NiR

r
W

i
i =−

−
≥              (39) 

Following similar steps described in Section 3.1, and letting iii CWX −= , where 
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),.....,,,,0max( 321 NDDDDCi = , we can transform the above equations to 

Minimize: ∑
=

+
N

i
ii CX

1
)( ,                        (40)           

Subject to: 0,]exp[]exp[
1

≥+≤∑ −−
=

iCXZXrCrav i
N

i
iiiiii        (41) 

To solve this problem, the Lagrange multiplier method can again be used.  Equations (40) & 

(41) are combined to the equation 

Minimize: ∑ −−−+∑ +=
==

N

i
iiiiii

N

i
N ZXrCravCXXXXL ii

11
21 )]exp[]exp[()(),,...,,( λλ  (42) 

 

Theorem 2. A feasible solution Xi (i=1, 2,..., N) of Equation (42) is optimal iff 

a) iiiiii ravXCr /)](exp[ +≤λ , 

b) 0]}exp[]exp[1{ =−−−× iiiiiiii XrCrravX λ  

Proof:  

a) From Equation (42), we know that =
∂

∂

i

N

X
XXXL ),,...,,( 21 λ  

]exp[]exp[1 iiiiiii XrCrrav −−− λ . Besides, from Equation (31a), we have 

0]exp[]exp[1 ≥−−− iiiiiii XrCrravλ , i.e., 1]exp[]exp[ ≤−− iiiiiii XrCrravλ . Therefore, 

iiiiii ravXCr /)](exp[ +≤λ . 

b) From Equations (42) & (31b), we have 0]}exp[]exp[1{ =−−−× iiiiiiii XrCrravX λ . 

 

Corollary 2. Let Xi be a feasible solution of Equation (42) 

a) Xi=0 iff iiiii ravCr /)](exp[≤λ .   

b) If Xi>0, then iiiiii rCrravX i /])exp[ln( −= λ . 

Proof:  

a) If Xi=0, then Theorem 2 part a) implies that iiiii ravCr /)](exp[≤λ . Besides, if  

iiiii ravCr /)](exp[=λ , then from Theorem 2 part b), we know that 0]}exp[1{ =−−× iii XrX .  

Thus, we have Xi=0 or 0]exp[1 =−− ii Xr , i.e., Xi=0. That is, Xi=0. If iiiii ravCr /)](exp[<λ , 

that is, )](exp[ iiiii Crrav <λ  or 1)](exp[ <− iiiii Crravλ . Hence, 

]exp[]exp[]exp[ iiiiiiiii XrXrCrrav −<−−λ . Because 1]exp[ ≤− ii Xr , then we have 

1]exp[]exp[ ≤−− iiiiiii XrCrravλ  or 0]exp[]exp[1 ≠−−− iiiiiii XrCrravλ . Therefore, from 
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Theorem 2 part b), we have Xi=0. Q.E.D. 

b) From Theorem 2 part b), we know that if Xi>0, 1]exp[]exp[ =−− iiiiiii XrCrravλ . 

Therefore, iiiiii rCrravX i /])exp[ln( −= λ . Q.E.D. 

 

From Equation (42), we have  

01]exp[]exp[),,...,,( 21 =+−−−=
∂

∂
iiiiiii

i

N XrCrrav
X

XXXL λλ    (43) 

0]exp[]exp[),,...,,(
1

21 =∑ −−−=
∂

∂
=

N

i
iiiiii

N ZXrCravXXXL
λ

λ      (44) 

Thus, the solution 0
iX  is 

 iiiiii rCrravX
i

/])exp[ln(0 −= λ , i=1, 2,..., N.           (45) 

The solution 0λ  is  

 
Z

r
N

i
i∑

= =1
)/1(

0λ                   (46) 

That is,  

iii
iii r

r
Cr

Z
ravX

N

i i
i /))1]exp[(ln(

1

0 ∑−=
=

, i=1, 2,..., N.         (47) 

Hence, we get ( )00
3

0
2

0
1

0 ,...,,, NXXXXX =  as an optimal solution to Equation (42).  

However, the above X0 may have some negative components if 
∑

<−

=

N

i ir

ZCrrav iiiii

1

1]exp[ , 

making X0 infeasible for Equations (40) & (41). In this case, the solution X0 can be corrected 

by the following steps. Similarly, we propose a simple algorithm to determine the optimal 

solution for the TE allocation problem.  

 

Algorithm 2 
Step 1: Set l=0. 
Step 2: Calculate 

])1]exp[[ln(1
1

∑−=
−

=

lN

i ii
i r

Cr
Z

rav
r

X ii
iii , i=1, 2,..., N− l. 

Step 3: Rearrange the index i such that .... **
2

*
1 lNXXX −≥≥≥  

Step 4: If 0* ≥−lNX  then stop. 
Else update 0* =−lNX ; l=l+1. 
End If. 
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Step 5: Go to Step 2.     
 

The optimal solution has the form 

         .,...,2,1],)1]exp[[ln(1
1

* lNi
r

Cr
Z

rav
r

X
lN

i ii
i ii

iii −=∑−=
−

=
   (48) 

Algorithm 2 always converges in, at worst, N −1 steps.   

 

4. EXPERIMENTAL STUDIES AND RESULTS  
 

In this section, three cases for the optimal TE allocation problems are demonstrated.  

Here we assume that the estimated parameters ai & ri in Equation (21), for a software system 

consisting of 10 modules, are summarized in Table I. Moreover, the weighting vectors vi in 

Equation (21) are also listed. In the following, we illustrate several examples to show how the 

optimal allocation of TE expenditures to each software module is determined. Suppose that 

the total amount of TE expenditures W is 50,000 man-hours, and R0=0.9. Besides, all the 

parameters ai & ri of Equation (21) for each software module have been estimated by using 

the method of MLE or LSE in Section 2.2. We apply the proposed model to software failure 

data set [12], [15], [27], [33]. Here we have to allocate the expenditures to each module, and 

minimize the number of remaining faults. From Table I & Algorithm 1 in Section 3.1, the 

optimal TE expenditures for the software systems are estimated, and shown in Table II.   

For example, using the estimated parameters ai, ri, the weighting factor vi in Table I, and 

the optimal TE expenditures in Table II, the value of the estimated number of remaining faults 

is 172 for Example 1. That is, the total number of remaining faults is intended to decrease 

from 514 to 172 by using testing-resource expenditures of 50,000 man-hours, and about a 

33.6% reduction in the number of remaining faults. Conversely, if we want to decrease more 

remaining faults, and get a better reduction rate, then we have to re-plan & consider the 

allocation of testing-resource expenditures; i.e., using the same values of ai, ri, κ, and vi, the 

optimal TE expenditures should be re-estimated. Therefore, we can know how much extra 

amount of testing-resource expenditures is expected [12], [15]. The numbers of initial faults, 

the estimated remaining faults, and the reduction in the number of remaining faults for the 

other examples are shown in Table III.   

Finally, suppose the total number of remaining faults Z is 100. We have to allocate the 

expenditures to each module, and minimize the total amount of TE expenditures. Similarly, 

using Algorithm 2 in Section 3.2 & Table I, the optimal solutions of TE expenditures are 
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derived & shown in Table IV. Furthermore, the relationship between the total amount of 

testing-effort expenditures, and the reduction rate of the remaining faults, are also depicted in 

Figure 1. 

 

 

Table I: The estimated values of ai, ri, vi , and κ. 
 

Module ai ri   κ vi in Example1 vi in Example 2 vi in Example 3 
1 89 4.18×10-4 1 1.0 1.0 0.5 
2 25 5.09×10-4 1 1.5 0.6 0.5 
3 27 3.96×10-4 1 1.3 0.7 0.7 
4 45 2.30×10-4 1 0.5 0.4 0.4 
5 39 2.53×10-4 1 2.0 1.0 1.5 
6 39 1.72×10-4 1 0.3 0.2 0.2 
7 59 8.82×10-5 1 1.7 0.5 0.6 
8 68 7.27×10-5 1 1.3 0.6 0.6 
9 37 6.82×10-5 1 1.0 0.1 0.9 
10 14 1.53×10-4 1 1.0 0.5 0.5 

 
 
 

Table II: The optimal TE expenditures using Algorithm 1. 
 

Module Xi
* for Example 1 Xi

* for Example 2 Xi
* for Example 3

1 6254 8105 6015 
2 3826 3547 2833 
3 4117 4409 4052 
4 2791 5191 4402 
5 7825 8145 9030 
6 0 403 0 
7 13366 8267 8280 
8 11820 11833 9343 
9 0 0 6046 
10 0 0 0 

 
 
 
 

Table III: The reduction in the number of remaining faults. 
 

Example Initial faults Remaining faults Reduction (%)
1 514.0 172.0 33.6 
2 268.7 68.5 25.5 
3 276.7 97.4 35.2 
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Table IV: The optimal TE expenditures using Algorithm 2. 
 

Module Xi
* for Example 1 Xi

* for Example 2 Xi
* for Example 3

1 7700 6962 5941 
2 4976 2608 2772 
3 5692 3302 3974 
4 5669 3109 4268 
5 10168 6258 8908 
6 2096 0 0 
7 20505 2847 7931 
8 20293 5263 8919 
9 7265 0 5595 
10 2388 0 0 

 
 

Example1 

Example2 

Example3 

 
Figure 1: The Reduction Rate of Remaining Faults vs. the Total TE Expenditures. 

 

5. SENSITIVITY ANALYSIS 

In this section, sensitivity analysis of the proposed model is conducted to study the effect 

of the principal parameters, such as the expected initial faults, and the fault detection rate. In 

Equation (4), we know that there are some parameters affecting the mean value function, such 

as the expected total number of initial faults, the fault detection rate, the total amount of TE, 

the consumption rate of TE expenditures, and the structuring index, etc. Consequently, we 

have to estimate all these parameters for each software module very carefully because they 

play an important role for the optimal resource allocation problems. In general, each 

parameter is estimated based on the available data, which is often sparse. Thus, we analyze 
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the sensitivity of some principal parameters, but not all parameters due to the limitation of 

space.  Nevertheless, we still can evaluate the optimal resource allocation problems for 

various conditions by examining the behavior of some parameters with the most significant 

influence.  We perform the sensitivity analysis of optimal resource allocation problems with 

respect to the estimated parameters so that attention can be paid to those parameters deemed 

critical [34]-[40]. In this paper, we define 

 Relative Change (RC) = 
OTEE

OTEEMTEE − ,  (49) 

where OTEE is the original optimal TE expenditures, and MTEE is the modified optimal TE 

expenditures.   

 

5.1 Effect of variations on expected initial faults & fault detection rate (Algorithm1).  

Assuming we have obtained the optimal TE expenditures to each software module that 

minimize the expected cost of software, then we can calculate the MTEE concerning the 

changes of expected number of initial faults ai for the specific module i. The procedure can be 

repeated for various values of ai. For instance, for the data set used in Section 4 (here we only 

use Example 1 as illustration), if the expected number of initial faults a1 of module 1 is 

increased or decreased by 40%, 30%, 20%, or 10%, then the modified TE expenditures for 

each software module can be obtained by following the similar procedures. Table V shows 

some numerical values of the optimal TE expenditures for the case of 40%, 30%, 20%, and 

10% increase to a1. The result indicates that the estimated values of optimal TE expenditures 

will be changed when a1 changes. That is, if a1 is increased by 40%, then the estimated value 

of optimal TE expenditure for module 1 is changed from 6254 to 7011, and its RC is 0.121 

(about 12% increment). But for modules 2, 3, 4, 5, 7, and 8, the estimated values of optimal 

TE expenditures are about 1.02%, 1.21%, 0.12%, 1.01%, 1.69%, and 2.32% decrement, 

respectively. Therefore, the variation in a1 has the most significant influence on the optimal 

allocation of TE expenditures. From Table V, we can also know that, if the change of a1 is 

small, the sensitivity of the optimal testing-resources allocation with respect to the value of a1 

is low. Next, from Table VI, it is shown that, if a1 is decreased by 30%, the estimated value of 

optimal TE expenditure for module 1 is changed from 6254 to 5452, and its RC is -0.128 

(about 12.8% decrement). It is noted that for modules 2, 3, 4, 5, 7, and 8, the estimated values 

of optimal TE expenditures are about 1.10%, 1.31%, 3.29%, 1.07%, 1.79%, and 2.47% 

increment, respectively.   

We have performed an extensive sensitivity analysis for the expected initial faults as 
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shown above. But each ai is considered in isolation. Now we try to study the effects of 

simultaneous changes of ai & aj (j≠i). If we let a1 & a2 both be increased by 40%, then the 

estimated values of optimal TE expenditure for modules 1, and 2 are changed from 6254 to 

6972 (about 11.48% increment), and 3826 to 4415 (about 15.39% increment), respectively.  

But for modules 3, 4, 5, 7, and 8, the estimated values of optimal TE expenditures are about 

2.21%, 5.66%, 1.83%, 3.09%, and 4.23% decrement, respectively. Therefore, the variation in 

a1 & a2 has the significant influence on the optimal allocation of TE expenditures. Similarly, 

from Table VII, we can also know that if the changes of a1 & a2 are less, the sensitivity of the 

optimal testing-resources allocation with respect to the values of a1 & a2 is low. From Table 

VIII, it is also shown that if a1 & a2 are both decreased by 30%, the estimated values of 

optimal TE expenditure for modules 1, and 2 are changed from 6254 to 5494 (about 12.2% 

decrement), and 3826 to 3201 (about 16.3% decrement), respectively. It is also noted that for 

module 3, 4, 5, 7, and 8, the estimated values of optimal TE expenditures are, respectively, 

about 2.38%, 6.02%, 1.94%, 3.27%, and 4.49% increment. Based on these observations, we 

can conclude that if ai is changed, it will have much influence on the estimated values of 

optimal TE expenditure for module i.   

In fact, we can investigate the sensitivity of fault detection rate following the similar steps 

described above. Table IX shows numerical values of the optimal TE expenditures for the 

case of 40%, 30%, 20%, and 10% increase to r1. Table X shows numerical values of the 

optimal TE expenditures for the cases of 40%, 30%, 20%, and 10% decrease in r1. Numerical 

values of the optimal TE expenditures for the cases of 40%, 30%, 20%, and 10% increase in 

r1 & r2 are shown in Table XI. Finally, Table XII shows numerical values of the optimal TE 

expenditures for the cases of 40%, 30%, 20%, and 10% decrease in r1 & r2. 

 

Table V: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in a1 (Algorithm 1).  

 

Module Xi
* (a1×1.4) Xi

* (a1×1.3) Xi
* (a1×1.2) Xi

* (a1×1.1)
1 7011 6844 6664 6469 
2 3787 3795 3805 3815 
3 4067 4078 4090 4103 
4 2704 2723 2744 2766 
5 7746 7764 7782 7803 
6 0 0 0 0 
7 13139 13189 13243 13301 
8 11546 11606 11672 11743 
9 0 0 0 0 
10 0 0 0 0 
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Table VI: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in a1 (Algorithm 1). 

 

Module Xi
* (a1×0.6) Xi

* (a1×0.7) Xi
* (a1×0.8) Xi

* (a1×0.9)
1 5105 5452 5752 6017 
2 3886 3868 3852 3838 
3 4194 4171 4151 4133 
4 2923 2883 2849 2818 
5 7945 7909 7877 7850 
6 0 0 0 0 
7 13710 13606 13516 13437 
8 12237 12112 12003 11906 
9 0 0 0 0 

10 0 0 0 0 
 
 

Table VII: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in a1 & a2 (Algorithm 1). 

 

Module Xi
* 

(a1×1.4 & a2×1.4) 
Xi

* 
(a1×1.3 & a2×1.3)

Xi
* 

(a1×1.2 & a2×1.2)
Xi

* 
(a1×1.1 & a2×1.1) 

1 6972 6814 6643 6447 
2 4415 4285 4145 4155 
3 4026 4046 4068 4081 
4 2633 2668 2705 2728 
5 7682 7713 7747 7768 
6 0 0 0 0 
7 12953 13044 13142 13201 
8 11320 11430 11549 11620 
9 0 0 0 0 
10 0 0 0 0 

 

 

Table VIII: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in a1 & a2 (Algorithm 1). 

 

Module Xi
* 

(a1×0.6 & a2×0.6) 
Xi

* 
(a1×0.7 & a2×0.7)

Xi
* 

(a1×0.8 & a2×0.8)
Xi

* 
(a1×0.9 & a2×0.9) 

1 5165 5494 5778 6030 
2 2931 3201 3435 3641 
3 4257 4215 4178 4146 
4 3032 2959 2896 2841 
5 8043 7977 7920 7870 
6 0 0 0 0 
7 13992 13803 13639 13495 
8 12580 12351 12152 11977 
9 0 0 0 0 
10 0 0 0 0 
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Table IX: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in r1 (Algorithm 1). 

 

Module Xi
* (r1×1.4) Xi

* (r1×1.3) Xi
* (r1×1.2) Xi

* (r1×1.1)
1 5094 5338 5609 5912 
2 3886 3873 3859 3844 
3 4195 4178 4160 4140 
4 2925 2897 2865 2830 
5 7946 7921 7892 7861 
6 0 0 0 0 
7 13713 13640 13559 13468 
8 12241 12153 12055 11944 
9 0 0 0 0 
10 0 0 0 0 

 
 
 

Table X: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in r1 (Algorithm 1). 

 

Module Xi
* (r1×0.6) Xi

* (r1×0.7) Xi
* (r1×0.8) Xi

* (r1×0.9)
1 8185 7595 7085 6642 
2 3726 3756 3783 3806 
3 3989 4028 4062 4092 
4 2569 2637 2696 2747 
5 7624 7685 7739 7785 
6 0 0 0 0 
7 12788 12964 13117 13250 
8 11120 11334 11519 11680 
9 0 0 0 0 
10 0 0 0 0 

 

 

Table XI: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in r1 & r2 (Algorithm 1). 

 

Module Xi
* 

(r1×1.4 & r2×1.4) 
Xi

* 
(r1×1.3 & r2×1.3)

Xi
* 

(r1×1.2 & r2×1.2)
Xi

* 
(r1×1.1 & r2×1.1) 

1 5122 5361 5626 5922 
2 3271 3395 3529 3672 
3 4236 4210 4182 4152 
4 2996 2952 2903 2850 
5 8011 7971 7927 7878 
6 0 0 0 0 
7 13898 13784 13658 13519 
8 12466 12327 12174 12006 
9 0 0 0 0 
10 0 0 0 0 
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Table XII: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in r1 & r2 (Algorithm 1). 

 

Module Xi
* 

(r1×0.6 & r2×0.6) 
Xi

* 
(r1×0.7 & r2×0.7)

Xi
* 

(r1×0.8 & r2×0.8)
Xi

* 
(r1×0.9 & r2×0.9) 

1 8110 7546 7057 6629 
2 4476 4325 4157 3989 
3 3941 3992 4038 4080 
4 2487 2574 2654 2726 
5 7550 7628 7701 7766 
6 0 0 0 0 
7 12574 12800 13008 13196 
8 10861 11135 11387 11615 
9 0 0 0 0 
10 0 0 0 0 

 

 

5.2 Effect of variations on expected initial faults & fault detection rate (Algorithm 2). 

Assuming we have obtained the optimal TE expenditures to each software module, then 

we can calculate the MTEE concerning the changes of expected number of initial faults ai for 

the specific module i. The procedure can be repeated for various values of ai. Similarly, we 

investigate the possible change of optimal TE expenditures when the expected number of 

initial faults a1 is changed. For the data set (Example 1) used in Section 4, if the expected 

number of initial faults a1 of module 1 is increased or decreased by 40%, 30%, 20%, or 10%, 

then the modified TE expenditures for each software module can be re-estimated from the 

algorithms in Section 3. First, Table XIII shows some numerical values of the optimal TE 

expenditures for the cases of 40%, 30%, 20%, and 10% increase in a1. The result indicates 

that the estimated values of optimal TE expenditures will be changed when a1 changes.   

For example, if a1 is increased by 40%, then the estimated value of optimal TE 

expenditure for module 1 is changed from 7700 to 8504, and its RC is 0.104 (about 10% 

increment). Besides, for modules 3, 4, 6, 7, and 8, the estimated values of optimal TE 

expenditures are about 0.86%, 4.32%, 15.55%, 1.39%, and 0.798% decrement, respectively.  

But for modules 2, 5, and 9, the estimated values of optimal TE expenditures are about 0.74%, 

0.42%, and 6.79% increment, respectively. Therefore, from Table XIII, we can know that, if 

the change of a1 is small, the sensitivity of the optimal testing-resources allocation with 

respect to the value of a1 is low. Next, we show the same comparison results in case that a1 is 

decreased. From Table XIV, it is shown that, if a1 is decreased by 30%, the estimated value of 

optimal TE expenditure for module 1 is changed from 7700 to 6847, and its RC is -0.111 
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(about 10.7% decrement).   

So far, we have performed an extensive sensitivity analysis for the expected initial faults 

as shown above. However, each ai is considered in isolation. Again we study the effects of 

simultaneous changes of ai & aj (j≠i). If we let a1 & a2 both be increased by 40%, then the 

estimated values of optimal TE expenditure for modules 1, and 2 are changed from 7700 to 

8504 (about 10.4% increment), and 4976 to 5674 (about 14.0% increment), respectively.  

From Table XV, we can find that the variation in a1 & a2 may have the most significant 

influence on the optimal allocation of TE expenditures.   

Similarly, we can also know that, if the changes of a1 & a2 are less, the sensitivity of the 

optimal testing-resources allocation with respect to the values of a1 & a2 is low. From Table 

XVI, we can see that, if a1 & a2 are both decreased by 30%, the estimated values of optimal 

TE expenditure for modules 1, and 2 are changed from 7700 to 6847 (about 11.1% 

decrement), and 4976 to 4313 (about 13.3% decrement), respectively. Similarly, we can 

investigate the sensitivity of fault detection rate for Algorithm 2 following the similar steps 

described above. Table XVII shows numerical values of the optimal TE expenditures for the 

cases of 40%, 30%, 20%, and 10% increase in r1. Table XVIII shows numerical values of the 

optimal TE expenditures for the cases of 40%, 30%, 20%, and 10% decrease in r1. Moreover, 

numerical values of the optimal TE expenditures for the cases of 40%, 30%, 20%, and 10% 

increase in r1 & r2 are shown in Table XIX. Finally, Table XX shows numerical values of the 

optimal TE expenditures for the cases of 40%, 30%, 20%, and 10% decrease in r1 & r2. 

 

 

Table XIII: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in a1 (Algorithm 2).  

 

Module Xi
* (a1×1.4) Xi

* (a1×1.3) Xi
* (a1×1.2) Xi

* (a1×1.1)
1 8504 8327 8136 7928 
2 5013 5013 5013 5013 
3 5643 5643 5643 5643 
4 5424 5424 5424 5424 
5 10211 10211 10211 10211 
6 1770 1770 1770 1770 
7 20220 20220 20220 20220 
8 20131 20131 20131 20131 
9 7759 7759 7759 7759 

10 2388 2388 2388 2388 
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Table XIV: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in a1 (Algorithm 2). 

 

Module Xi
* (a1×0.6) Xi

* (a1×0.7) Xi
* (a1×0.8) Xi

* (a1×0.9)
1 6478 6847 7166 7448 
2 5013 5013 5013 5013 
3 5643 5643 5643 5643 
4 5424 5424 5424 5424 
5 10211 10211 10211 10211 
6 1770 1770 1770 1770 
7 20220 20220 20220 20220 
8 20131 20131 20131 20131 
9 7759 7759 7759 7759 

10 2388 2388 2388 2388 
 
 
 

Table XV: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in a1 & a2 (Algorithm 2). 

 

Module Xi
* 

(a1×1.4 & a2×1.4) 
Xi

* 
(a1×1.3 & a2×1.3)

Xi
* 

(a1×1.2 & a2×1.2)
Xi

* 
(a1×1.1 & a2×1.1) 

1 8504 8327 8136 7928 
2 5674 5528 5371 5371 
3 5643 5643 5643 5643 
4 5424 5424 5424 5424 
5 10211 10211 10211 10211 
6 1770 1770 1770 1770 
7 20220 20220 20220 20220 
8 20131 20131 20131 20131 
9 7759 7759 7759 7759 
10 2388 2388 2388 2388 

 
 

Table XVI: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in a1 & a2 (Algorithm 2). 

 

Module Xi
* 

(a1×0.6 & a2×0.6) 
Xi

* 
(a1×0.7 & a2×0.7)

Xi
* 

(a1×0.8 & a2×0.8)
Xi

* 
(a1×0.9 & a2×0.9) 

1 6478 6847 7166 7448 
2 4010 4313 4575 4806 
3 5643 5643 5643 5643 
4 5424 5424 5424 5424 
5 10211 10211 10211 10211 
6 1770 1770 1770 1770 
7 20220 20220 20220 20220 
8 20131 20131 20131 20131 
9 7759 7759 7759 7759 
10 2388 2388 2388 2388 
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Table XVII: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in r1 (Algorithm 2). 

 

Module Xi
* (r1×1.4) Xi

* (r1×1.3) Xi
* (r1×1.2) Xi

* (r1×1.1) 
1 6507 6390 6768 7200 
2 4993 4997 5001 5007 
3 5618 5623 5628 5635 
4 5380 5389 5399 5410 
5 10171 10179 10188 10198 
6 1711 1723 1736 1752 
7 20104 20127 20153 20183 
8 19990 20018 20049 20086 
9 7610 7639 7672 7712 
10 2322 2335 2350 2367 

 
 
 

Table XVIII: Some numerical values of the optimal TE expenditures for the cases of 
40%, 30%, 20%, and 10% decrease in r1 (Algorithm 2). 

 

Module Xi
* (r1×0.6) Xi

* (r1×0.7) Xi
* (r1×0.8) Xi

* (r1×0.9)
1 10890 9833 8984 8286 
2 5059 5043 5030 5021 
3 5703 5682 5666 5653 
4 5526 5490 5463 5442 
5 10304 10271 10246 10227 
6 1906 1858 1822 1793 
7 20486 20392 20320 20265 
8 20453 20339 20252 20185 
9 8103 7981 7889 7817 
10 2541 2487 2446 2414 

 
 

Table XIX: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% increase in r1 & r2 (Algorithm 2). 

 

Module Xi
* 

(r1×1.4 & r2×1.4) 
Xi

* 
(r1×1.3 & r2×1.3)

Xi
* 

(r1×1.2 & r2×1.2)
Xi

*  
(r1×1.1 & r2×1.1) 

1 6042 6378 6758 7194 
2 4027 4230 4458 4717 
3 5596 5605 5616 5629 
4 5343 5359 5377 5399 
5 10137 10152 10168 10188 
6 1662 1683 1707 1736 
7 20008 20049 20097 20153 
8 19874 19924 19982 20050 
9 7486 7539 7600 7673 
10 2266 2290 2317 2350 
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Table XX: Some numerical values of the optimal TE expenditures for the cases of 40%, 
30%, 20%, and 10% decrease in r1 & r2 (Algorithm 2). 

 

Module Xi
* 

(r1×0.6 & r2×0.6) 
Xi

* 
(r1×0.7 & r2×0.7)

Xi
* 

(r1×0.8 & r2×0.8)
Xi

* 
(r1×0.9 & r2×0.9) 

1 10965 9875 9006 8294 
2 6821 6238 5758 5356 
3 5750 5713 5684 5662 
4 5609 5544 5494 5456 
5 10378 10319 10274 10239 
6 2015 1929 1683 1812 
7 20699 20530 20402 20301 
8 20712 20507 20352 20229 
9 8379 8160 7995 7864 
10 2664 2567 2493 2435 
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