
Optimal Software Release Policy Based on Cost and Reliability with
Testing Efficiency

Chin-Yu Huang', Sy-Yen Kuo', and Michael R. Lyu2
'Department of Electrical Engineering

National Taiwan University
*Computer Science & Engineering Department

The Chinese University of Hong Kong
Taipei, Taiwan Shatin, Hong Kong

sykuo@cc.ee.ntu.edu.tw lyu@cse.cuhk.edu.hk

Abstract
In this paper, we study the optimal software release
problem considering cost, reliability and testing eficiency.
We first propose a generalized logistic testing-effort

function that can be used to describe the actual
consumption of resources during the sojiware development
process. We then address the problem of how to decide
when to stop testing and when to release software for use. In
addressing the optimal release time, we consider cost and
reliability factors. Moreover, we introduce the concept of
testing eficiency, and describe how reliability growth
models can be adjusted to incorporate this new parameter.
Theoretical results are shown and numerical illustrations
are presented.

I. Introduction

For a large-scale or international software company,
successful development of a software system depends on its
software components. Therefore, the reliability of a large
software system needs to be modeledtanalyzed during the
software development process. The future failure behavior
of a software system is predicted by studying and modeling
its past failure behavior[l-31. It is very important to ensure
the quality of the underlying software systems in the sense
that they perform their functions correctly. Recently, we
[4-51 proposed a new software reliability growth model
which incorporates the concept of logistic testing-effort
function into an NHPP model to get a better description on
the software fault phenomenon. In this paper, we will
extend the logistic testing-effort function into a more
generalized form and show that the generalized logistic
testing-effort function has the advantage of relating the
work profile more directly to the natural structure of
software development through experiments on real data sets.
In practice, if we want to detect more additional faults, it is
advisable to introduce new toolsltechniques, which are
fundamentally different from the methods currently in use.
The advantage of these methods is that they candesign/

propose several testing programs or automated testing tools
to meet the client's technical requirements, schedule, and
budget. If software companies can afford a bigger budget
for testing and debugging, a project manager can maximize
the software reliability. Hence the cost trade-off of new
techniquesttools can be considered in the software cost
model and viewed as the investment required to improve the
long-term competitiveness. Therefore, in this paper, in
addition to modeling the software fault-detection process,
we will discuss the optimal release problem based on cost
and reliability considering testing-effort and efficiency.

2. Testing-effort function and software
reliability modeling

2.1. Review of SRGM with logistic testing-effort
function

If we let the expected number of faults be N(t), with
mean value function as m(t), then an SRGM based on NHPP
can be formulated as a Poisson process:

[m(t)l" exp[-m(t)~

n!
Furthermore, if the number of faults detected by the current
testing-effort expenditures is proportional to the number of
remaining faults, then we have the following differential
equation:

P , [N (r) = n] = , n=O, 1, 2,,

(1)
M r) 1 - x - = r x [a - m (t)]

where m(t) is the expected mean number of faults detected
in time (0, t] , w(t) is the current testing-effort consumption
at time t , a is the expected number of initial faults, and 00
is the error detection rate per unit testing-effort at time t.

Solving the above differential equation, we have

dt w (t)

m(t)=a(l-exp[-r(W(t)- W(O))])=a(~-exp[-rW(t)])

Recently, we [4-51 proposed a Logistic testing-effort

(2)

468
0-7695-0368-3/99 $10.00 0 1999 EEE

function to describe the possible test effort patterns. The
current testing-effort consumption is

N h
(3) - N h x e x p b]

(l+Aexpw]) (expt]+Aexpk;]) a 2 2 - 4 r o =

where N is the total amount of testing effort to be eventually
consumed, 01 is the consumption rate of testing-effort
expenditures, and A is a constant.
The cumulative testing effort consumption of Logistic
testing-effort function in time (0, t] is

N

1 + A exp[-m]
W (r) = and W (r) = cw(t)dt (4)

2.2. A generalized logistic testing-effort function

From the previous studies in [4-51, we know that the
Logistic testing-effort function (i.e. the Parr model [8]) is
based on a description of the actual software development
process and can be used to describe the work profile of
software development. In addition, this function can also be
used to consider and evaluate the effects of possible
improvements on software development methodology, such
as top-down design, stepwise refinement or structured
programming. Therefore, if we relax some assumptions
when deriving the original Parr model and take into account
the structured development effort, we get a generalized
Logistic testing-effort function

N x d m
(5)

where K is the structuring index and its value is large for
modeling well-structured software development efforts
and p is a constant.
When ~ = l , the above equation becomes

w k (r) = q-

N 2

l+Aexp[-m] p
If p is viewed as a normalized constant and we have
&2, the above equation is equal to Eq. (4) [SI. Similarly, if
@lc+l, we get a more generalized and plain solution for
describing the cumulative testing effort consumption in

(7)

W,(t) = X- (6)

N
time (0, t]: W, (r) =

‘cJT+Aexp[-ahtl

3. New tooldtechniques for increased
efficiency of software testing

It is well known that when the software coding is
completed, the testing phase comes next and it is a
necessary but expensive process. Once all the detectable
faults are removed from a new software, the testing team

will need to determine when to stop testing and make a
software risk evaluation. If the results meet their
requirement specifications and the related criteria are also
satisfied, the team will adorn and announce that this
software product is ready for releasing/selling. Therefore,
adequately adjusting some specific parameters of a SRGM
and adopting the corresponding actions in the proper time
interval can greatly help us to speedup obtaining the desired
solution. In fact, several existing approaches can satisfy our
requirements. For example, we have discussed the
applications of testing-effort control and management
problem in our previous studies [4]. The methods we
proposed can easily control the modified consumption rate
of testing-effort expenditures and could detect more faults
in the prescribed time interval. It means that the developers/
testers will devote all their available knowledge/energy to
complete such tasks without additional resources.
Alternative to controlling the testing-effort expenditures,
we believe that new testing schemes will help achieving a
given operational quality at a specific time. That is, through
some new techniquedtools, we can detecthemove more
additional faults (i.e. these faults may or may not cause any
failure or they are not easily exposed during the test phase),
although these new methods will increase the extra software
development cost. In practice, if we want to detect more
potential faults, we may introduce new techniques/tools that
are not yet used, or bring in experts to make a radical
software risk analysis. In addition, there are newly
proposed automated testing tools/techniques for increasing
test coverage and can be used to replace traditional manual
software testing regularly. The benefits to software
developers/testers include increased software quality,
reduced testing costs, improved release time to market,
repeatable test steps, and improved testing productivity.
These techniques can make software testing and correction
easier, detect more bugs, save more time, and reduce
expenses significantly [3]. Altogether, we hope that the
experts, automated testing tools or techniques could greatly
help us in detecting additional faults that are difficult to find
during regular testing and usage, in identifying and
correcting faults more cost effectively, and in assisting
clients to improve their software development processes.
To conclude, we introduce a gain parameter (GP) to
describe the behavior or characteristics of automated testing
techniques/tools and incorporate it into the mean value
function [111. Therefore, the modified mean value function
is depicted in the following:

*
me(t) = a(l -exp[-roWk (t)]),t Z Ts

me(t) = ~ (1 - exp[-rWK (t)]), t < Ts < T (8)
where Q is the gain parameter (GP) and T, is the starting
time of adopting new techniques/tools.
Eq. (8) means that if CT increases, me(?) increases. Thus the
gain of employing new automated techniques/tools is

*

469

t 2Ts

m (t) P = 0, t <Ts
(9)

where P is the additional fraction of faults detected by using
new automated tools or techniques during testing.
Substituting Eq. (8) into Eq. (9) and rearranging the above
equations, we obtain the estimated value of gain parameter:

I (I+P)xexpFrW 4 t) l - P (10)

In fact, we can interpret the gain parameter from different
views. If we make a premise that the main goal of
automated techniques/tools is to testldebug software with
less testing effort, then the gain parameter cs and the
testing-effort are inversely proportional to each other. That
is, they have a joint effect on the software development
process. On the other hand, under same testing effort,
introducing new automated tools/methods should help us in
detectindremoving more additional faults which are hard to
detect without these new methods. Actually the most
important thing is how to provide enough information about
these approaches to the test team. Before adopting these
automated techniques/tools, we should get the quantitative
information from the industrial data relative to the methods'
past performance applied in other instances (i.e. the
previous experience in software testing), or qualitative
information from the subjective valuation of methods'
attributes. Certainly, the methods' past performance in
aiding the reliability growth should be considered in
determining whether they will be successful again or not
[111. The distribution of (T can be estimated by performing
various simulations based on actual data sets. Additionally,
the test teams' capacity of exercising these techniques/tools
and the related environmental profiles also play an
important role in achieving the desired goals. Here, we
illustrate the new parameter with one real numerical
example. This data set is from Ohba [IO]. If we are given
the data sets whose parameters for test-effort function are in
Table 1, then we can analyze the distribution of the gain
parameter in various ways as follows.

Table 1 : Parameters of generalized logistic testing-
effort function and mean value function

-- - (l + P) { p'09
m, (t)

* 1 I -1
U =

r x (Wdt) - WK(0))

(about the 19th week), the number of faults detected is about
328. If we want to increase additional 0.01,0.03,0.05,0.07,
0.09, 0.1, 0.11 and 0.12 fraction of detected faults
respectively, we must ensure that the gain parameter cs will
be corresponding to growth as plotted in Fig. 1. That is, the
performance and the related assistance of new tools/
methods should fit the growth curve as time progresses. If
the trend fits, it means that through these new methods, we
can adjust the consumption of testing-effort expenditures or
raise the fault detection rate. In fact, in this data set, we find
that at the end of testing, P=O.Ol, 0.02,. .., 0.09,O.l or even
0.1 1, but P=O.12 is hard. The reason is that the value of 1-
rn(t)/u controls the maximum possible value of P. That is,
we should consider whether or not introducing new
techniques/tools to detect additional faults only when the
precondition: (1-m(t)/u)>P is satisfied. Finally, these tools
or techniques we discussed have a big impact on software
testing and reliability. In fact, they can provide the
developers or test teams with feedback of useful
information on the testing process for improvement as well
as scheduling. However, we know that with more efficient
testing, more time can be spent to make this software more
reliable. Besides, introducing these new methods also
requires that the original design of software be modified to
get the best performance. Thereafter, the continued use of
these tools/techniques can improve the software design.

GP

-p=0.01
---P=0.03

Pro. 07

c_---------_- ------------
- - - - - -- - --

I
0 . 8 1 1 T i m e (Weeks)

20 4 0 KO 8 0 1 0 0

Figure 1: GP graph for the data set (e2.63326).

4. Optimal software release time

When the software testing is completed, software product
is ready for release to users. However, proper timing is very
important. If the reliability of the software does not meet
the manager's goal, the developers or testers may request
external help in testing. An optimal release policy for the
proposed model based on such considerations is studied
here.

4.1. Software release time based on cost criterion
47.850715709.2910.1399331 4 1414.4261 0.0398619
47.6561 114839.310.1365071 4.5 1416.1141 0.0397324

From [IO], we know that when the testing is completed

Okumoto and Goel [6] were the first to discuss the
software optimal release policy from the cost-benefit
viewpoint. Using the total software cost evaluated by cost
criterion, the cost of testing-effort expenditures during

470

software development phase and the cost of correcting
errors before and after release are:
CI(T) = C , m (T) + C 2 [m (T L C) - m (T)] + C 3 x ~ w (x) &
Generally, in order to detect additional faults during testing,
the test teamddebuggers may use new automated tools or
techniques if they are available. Hence the cost trade-off of
tools should be considered in software cost model. But they
thereby save some of the greater expense of correcting
errors during operation. By summing up the above cost
factors, the modified software cost model is

a n = C,(T) + c, x(l+ P) x m(T) + c, [m(T,) - (1 + P) x

m(T)J+ c, x l: W(X)& (11)
where Co(T) is the cost function of including automated
tools/techniques to detect an additional fraction P of faults
during testing.
In fact, the cost of a new tool or technique Co(T) may not be

a constant during the testing phase of software development
process. Moreover, in order to determine the testing cost
C,(T), the most general cost estimating technique is to use
the parametric methods if there are some meaningful data
available. By differentiating Eq. (1 1) with respect to T and
let C, (1 +P)= C,' and C, (1 +P)= C2*, we have
d d *

-C2(T) = -Co(T)+C, am(T)exp[-rW*(T)]
dT dT

* *
-C, am(T)xexp[-rW (T)]+C, xw(T) (12)

However, the assumption that Co(r) is a constant may not be
realistic in many situations. In addition, the assumption
may lead to ill-defined testing. Therefore, we relax this
assumption and explore the results. Here we propose two
possibilities for Co(T) in order to interpret the cost
consumption: (1) Co(T) is a constant [5], and (2) CJT) is
proportional to the expenditures of testing-effort. The
second assumption considers that Co(T) is a convex non-
decreasing function of testing time t and initially is zero,
while the time in progress increases linearly or non-linearly.
For example, if in addition to introducing new automated
tools/ techniques, we also adopt effective approaches from
senior mentors in a professional software consultant
company. Normally the testers can solve general problems
by themselves when faults occur. But if some problems are
so difficult to solve, they must ask the consultants to get
more proper solutions. Therefore, we can conceive that
such extra cost may include travel expenses to clients,
charges for the phone support or root cause analysis of
software faults, etc [3]. Sometimes they also provide the
services for code inspections, diagramming, unit testing,
and test planning. Generally, if using good automated
approaches for software fault detection or usefuVpowerfu1
supports during software development becomes available,
the testers can detect more faults. But the cost will be
higher. Therefore, if C,(T) = CO, +CO x(fAw(t)dt)",

T 2 TS and Co(T)= 0, T<T,, then we get
d * * *

-C2(T) = w(t)x[ar(C, -C,)xexp[-rW (t)J+
dT

C, + CO x m x (I; w(t)dr)" - ' 1 . Since w(r)>O for

0 I T < - , therefore, -C2(T)=O if P(T) 1

(ar(C2 - C ,) e ~ p [- r W * (t)] - C ~ r n (~ ~ w (t) d r) ~ - ') = C3 (13)

The left-side in Eq. (13) is monotonically decreasing
function of T. Therefore, if

urx(C, - C,)expkr(W(Ts) - W(O))]> C, and P(TLc)<C,, it
means that there exists a finite and unique solution To
satisfying Eq. (13) which can be solved by numerical

methods. It is noted that - C2(T) <O for 0 I

d

dT
* *

* *

d

dT
I T < T,

d
and -C2(T) >O for DT,. Thus, T=To minimizes C2(T)

dT
for To <TLC

4.1.1. Numerical Example 1. Here we illustrate how to
minimize the software cost in which the new automated
tooldtechniques are introduced during testing. From the
previous estimated parameters for the data set in Table 1, we
get N=48.7768, A429.673, WO. 158042, -2.63326,
a=369.029, r=0.0509553, CO,=$ 1000, C,=$lO per error,
C2=$50 per error, C ~ $ l 0 , Ts=19, C,=$lOO per unit testing-
effort expenditures, and T L ~ l O O weeks. The numerical
example for the relationship between the cost optimal
release time and P is given in Table 2. From Table 2, we
find that the bigger the P , the larger the optimal release time
and the smaller the total expected software cost. The reason
is that if we have better testing performance, we can detect
more latent or undetected faults through additional
techniques/tools. Therefore, we can really shorten the
testing time and release this software earlier. Here, we
observe some facts as follows:
(1) When P is relatively small (such as 0.01, 0.02, or
0.03, ..., 0.06), the total expected cost is larger than the
expected value of traditional cost model (i.e. 4719.66). The
reason is due to CO, , i.e. the basic cost of adopting new
automated techniques/tools.
(2) As P increases, the optimal release time T* increases but
the total expected software cost C(T*) decreases since we
can detect more faults and reduce the cost of correcting the
errors during operational phase.
(3) Even under the same P and with different cost functions,
the larger the cost, the smaller the optimal release time. But
there is insignificant difference in estimating the total
expected software cost.

47 1

Table 2: Relationship between the cost optimal release
time T:, C(T,*), and P based on the cost function
CO (T) = 1 OOO+ 1 Ox (I:,"" w(t)dt)''*

I

4.2. Software release time based on reliability
criterion

I (At=O. 1) I (At=0.2) I I (AkO.1) I (Ak0.2)
0.01 122.6945 I 24.3281 10.07 I 22.8351 I 24.4677

In general, the software release time problem is also
associated with the reliability of a software system. Hence,
if we know that the software reliability has reached an
acceptable reliability level, we can determine the right time
to release this software. Software reliability is defined as
the probability that a software failure doesn't occur in (T,
T+At] given that the most recent failure occurred at T [1-2,5,
6, 121. Therefore,

R (A t I T) = e x p [- (m , (T + A t) - m , (T))] , A t , T 2 0 (14)
In addition, we also define the second measure of software
reliability for the proposed model, i.e., the ratio of the
cumulative number of detected faults at time T to the
expected number of initial faults.

We can solve this equation and obtain a unique TI satisfying
R,(T,)=R,. It is noted that the larger the value of R2(T), the
higher the software reliability.

R , (T) 2 m e (T) / a (15)

4.2.1. Numerical Example 2. Tables 3 shows the
relationships between the reliability optimal release time
TI*, At and P based on R,,= 0.95. From Tables 3, we find
that as P increases, the optimal release time TI* increases.
The reason is as follows. From Eq. (14), we know that
R(At1T) denotes the conditional reliability function that the
software will still operate after T+At given that it has not
failed after time T [5-61. In addition, from Eq. (8), we know
rn,(t)=(l+P)rn(t). That is, me(T +At) - me(T) = (1 + P) x
(m(T + At) - m (T)) 2 (m(T + At) - m(T)) . Therefore,
- (m (T + A f) - m , (T)) I - (m (T + A t) - m (T)) and
exp[-m.(T + At) - mc(T))] S exp[-(m(T + At) - m (T))] .
Hence, in Table 3, the reason why the optimal release time
TI G22.6945 under P=O.Ol , At=O. 1 , and Rp0.95 is slightly
larger thn the optimal release time (without introducing any
extra automated tools during testing) TI -22.6702 under
A e O . 1 , R ~ 0 . 9 5 is obvious. On the other hand, through
using these new tools, we may detect some extra faults in (T,

T+At] and these faults are potentially hard to detecaocate in
(T, T+At] if these automated tools are not available. In fact,
if the faults are hard to locateidetect after a long period of
testing, the tester may treat the software system as a
reliable/stable system. This phenomenon could occur in
practice and it is significant because the ability or
knowledge of testers/developers is limited. In this case
(without introducing any extra automated tool), the target
reliability R(AtlT,)=R, may be achieved at time TI, the
reliability optimal release time. In fact, through new
automated techniques/tools, it is probably easier to find
these extra latent faults in the interval (TI , Tl+At].
Therefore, the reliability optimal release time will be
delayed till the reliability goal is reached.

Table 3: Relationship between the reliability optimal
release time T,* and P based on the first measure of
software reliabjlity R.=0.95.

l P l TI* I TI* I P I TI* I TI* 1

11 0.02 i 22.7185 i 24.3519 j 0.08 i 22.8578 i 24.4902 11
0.03 122.7423 I 24.3755 10.09 I 22.8803 I 24.5125
0.04 122.7659 I 24.3989 IO . 10 I 22.9025 I 24.5346
0.05 122.7892 I 24.422 10.11 I 22.9245 I 24.5565
0.06 I 22.8 123 I 24.445 I I I

4.3. Software release time based on cost-reliability
criterion considering efficiency

From subsection 4.2, we can easily get the required
testing time needed to reach the reliability objective R,.
Here our goal is to minimize the total software cost to
achieve the desired software reliability and then the optimal
software release time is obtained. Therefore, the optimal
release policy problem can be formulated as minimizing
C(T), subject to R(AtlT)>R, where O<R,cl., i.e.,

r* = optimal software release time = mux(T, ,TI)

where T,,= finite and unique solution T satisfying Eq. (13),
and TI= finite and unique T satisfying Eq. (14), or Eq. (15).
Combining the cost and reliability requirements and
considering the efficiency, we have the following theorem.

Theorem 1:
Assume Co(T) = CO, +CO x (I; w(t)dr)" ,CoI>O, CaO, CpO,
C2>0, C3>0, and C2>Cl, we have

(1)if u r x (C , -C,) e x p [- r (W (T s) - W (0))] > C ~ andP(T&

<e3, T' = max(T,, T I) for R(A tlTs)<Ra<l or r'=T, for
O<R, I R(A AT,).

* *

* *
(2) if u r x (C , -C,)exp[-r (W(Ts) -W(0))] c C,,T'=T, for

472

R(ArIT,)cRo<l or T'=T, for OCR,< R(AtlT,).
(3) if P(T&C,, T' 2T, for R(ArIT,)cR,<I or T'2 T, for

O&, I R(AtlT,).

0.04
0.05
0.06

From the above theorem, we can easily determine the
optimal software release time based on the cost and
reliability requirements considering efficiency. Table 5
shows the cost-reliability optimal release time under
different R,, At, and cost function. Similarly, Table 6 shows
the relationship between the optimal release time T, * based
on the target reliability R,(T) and l? From these tables and
following the same arguments in Theorem 1, we can obtain
the optimal software release time based on the cost and
reliability criteria.

0.925 22.4203 0.10 0.982 27.2990
0.930 20.7667 0.11 0.991 27.6343
0.945 24.3389

Table 5: Relationship between the reliability optimal
release time T* and P with R.=0.95 and cost function
C,(T) = 1 0 0 0 + 1 0 ~ (~ ~ ~ w (t) d t) ' ' ~

(AeO.l) Ae0.2) (AeO. 1) (Ae0.2)
0.01 22.6945 24.3281 0.07 22.8351 24.4677
0.02 22.7185 24.3519 0.08 22.8578 24.4902
0.03 22.7423 24.3155 0.09 22.8803 24.5125 U 0.04 22.7659 24.3989 0.10 22.9025 24.5346
0.05 I 22.7892 I 24.422 1 0.11 I 22.9245 I 24.5565
0.06 I 22.8123 I 24.445 I I I

Table 6: Relationship between the cost optimal release
time T,* based on reliability R,(T) and P

I R,(T) I T,* I p I R2(T) I ll 0 p 01 I 0.900 123.81171 0.07 I 0.955 I 26.4809
0.02 I 0.910 125.47591 0.08 I 0.962 I 23.4478
0.03 I 0.915 121.81791 0.09 I 0.972 I 24.6907

5. Conclusions

In this paper we present an SRGM with generalized
testing-effort function. It is a much more realistic model
and more suitable for describing the software fault
detectionhemoval process. Furthermore, we also discussed
the effects of introducing new toolsltechniques for
increased software testing efficiency, and studied the related
optimal software release time problem from the cost-
reliability viewpoint. The procedure for determining the
optimal release time T* has been developed and the optimal
release time has been shown to be finite. In practice,
sometimes it is difficult for us to locate the faults that have
caused the failure based on the test data reported in the test
log and test anomaly documents. Therefore, it is advisable

to introduce, new toolsltechniques, which are fundamentally
different from the methods in use. In addition, there are still
many more potential cost functions. We will present further
investigations on describing the mathematical properties of
the SRGM with generalized testing-effort function in the
future.

Acknowledgment

We would like to express our gratitude for the support of
the National Science Council, Taiwan, R.O.C., under Grant
NSC 87-TPC-E-002-017. Partial support of this work (by
Michael R. Lyu) is provided by a UGC direct grant at
CUHK. Referees' insightful comments and suggestions are
also highly appreciated.

References

[l] S . Yamada, J. Hishitani, and S. Osaki, "Software Reliability
Growth Model with Weibull Testing Effort: A Model and
Application," IEEE Trans. on Reliability, Vol. R-42, pp.

[2] S . Yamada and S . Osaki, " Cost-Reliability Optimal Release
Policies for Software Systems," IEEE Trans. on Reliability,
Vol. 34, No. 5, pp. 422-424, 1985.

[3] J. D. Musa (1998). Sojiware Reliability Engineering: More
Reliable Software, Faster Development and Testing.
McGraw-Hill.

[4] C. Y. Huang, J. H. La and S . Y. Kuo, "A Pragmatic Study of
Parametric Decomposition Models for Estimating Software
Reliability Growth," Proceedings of the 9th Inrernational
Symposium on Sofmare Reliability Engineering (ISSRE98),
pp. 11 1-123, Nov. 4-7. 1998, Paderbom, Germany.

[SI C. Y. Huang, S . Y. Kuo and I. Y. Chen, "Analysis of a
Software Reliability Growth Model with Logistic Testing-
Effort Function," Proceedings of the 8th International
Symposium on Software Reliability Engineering (ISSRE97).
pp. 378-388, Nov. 1997, Albuquerque, New Mexico. U.S.A.

[6] K. Okumoto and A. L. Goel, "Optimum Release Time for
Software Systems Based on Reliability and Cost Criteria,"
Journal of Systems and Sojiware, Vol. 1, pp. 315-318, 1980.

[7] M. R. Lyu (1996). Handbook of Sofhvare Reliability
Engineering. McGraw Hill.

[SI F. N. Parr, "An Alternative to the Rayleigh Curve for
Software Development Effort," IEEE Trans. on Software
Engineering, SE-6, pp. 291-296, 1980.

[9] M. Lipow, "Prediction of Software Failures," Journal of
Systems and Software, Vol. 1, pp. 71-75, 1979.

[lo] M. Ohba, " Software Reliability Analysis Models," IBM J.
Res. Develop., Vol. 28, No. 4, pp. 428-443, July 1984.

[I 11 J. Farquhar and A. Mosleh, "An Approach to Quantifying
Reliability-Growth Effectiveness," Proceedings Annual Reli-
ability and Maintainability Symposium, pp. 166-173, 1995.

[12] P. K. Kapur and R. B. Garg, "Cost-Reliability Optimum
Release Policies for a Software System under Penalty Cost,"
Int. J. of Systems Science, Vol. 20, pp. 2547-2562, 1989.

[13] M. R. Lyu and A. Nikora, "Using Software Reliability
Models More Effectively," IEEE Software, pp. 43-52, 1992.

100-105, 1993.

473

