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Abstract 
In this paper, we study the optimal software release 
problem considering cost, reliability and testing eficiency. 
We first propose a generalized logistic testing-effort 

function that can be used to describe the actual 
consumption of resources during the sojiware development 
process. We then address the problem of how to decide 
when to stop testing and when to release software for  use. In 
addressing the optimal release time, we consider cost and 
reliability factors. Moreover, we introduce the concept of 
testing eficiency, and describe how reliability growth 
models can be adjusted to incorporate this new parameter. 
Theoretical results are shown and numerical illustrations 
are presented. 

I. Introduction 

For a large-scale or international software company, 
successful development of a software system depends on its 
software components. Therefore, the reliability of a large 
software system needs to be modeledtanalyzed during the 
software development process. The future failure behavior 
of a software system is predicted by studying and modeling 
its past failure behavior[l-31. It is very important to ensure 
the quality of the underlying software systems in the sense 
that they perform their functions correctly. Recently, we 
[4-51 proposed a new software reliability growth model 
which incorporates the concept of logistic testing-effort 
function into an NHPP model to get a better description on 
the software fault phenomenon. In this paper, we will 
extend the logistic testing-effort function into a more 
generalized form and show that the generalized logistic 
testing-effort function has the advantage of relating the 
work profile more directly to the natural structure of 
software development through experiments on real data sets. 
In practice, if we want to detect more additional faults, it is 
advisable to introduce new toolsltechniques, which are 
fundamentally different from the methods currently in use. 
The advantage of these methods is that they candesign/ 

propose several testing programs or automated testing tools 
to meet the client's technical requirements, schedule, and 
budget. If software companies can afford a bigger budget 
for testing and debugging, a project manager can maximize 
the software reliability. Hence the cost trade-off of new 
techniquesttools can be considered in the software cost 
model and viewed as the investment required to improve the 
long-term competitiveness. Therefore, in this paper, in 
addition to modeling the software fault-detection process, 
we will discuss the optimal release problem based on cost 
and reliability considering testing-effort and efficiency. 

2. Testing-effort function and software 
reliability modeling 

2.1. Review of SRGM with logistic testing-effort 
function 

If we let the expected number of faults be N(t), with 
mean value function as m(t), then an SRGM based on NHPP 
can be formulated as a Poisson process: 

[m(t)l" exp[-m(t)~ 

n! 
Furthermore, if the number of faults detected by the current 
testing-effort expenditures is proportional to the number of 
remaining faults, then we have the following differential 
equation: 

P , [ N ( r )  = n] = , n=O, 1, 2, ...., 

(1) 
M r )  1 - x -  = r x [ a  - m ( t ) ]  

where m(t) is the expected mean number of faults detected 
in time (0, t ] ,  w(t)  is the current testing-effort consumption 
at time t ,  a is the expected number of initial faults, and 00 
is the error detection rate per unit testing-effort at time t. 

Solving the above differential equation, we have 

dt w ( t )  

m(t)=a( l-exp[-r( W(t)- W(O))])=a( ~-exp[-rW(t)]) 

Recently, we [4-51 proposed a Logistic testing-effort 

(2) 
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function to describe the possible test effort patterns. The 
current testing-effort consumption is 

N h  
(3) - N h x  e x p b ]  

(l+Aexpw]) (expt]+Aexpk;]) a 2  2 -  4 r o  = 

where N is the total amount of testing effort to be eventually 
consumed, 01 is the consumption rate of testing-effort 
expenditures, and A is a constant. 
The cumulative testing effort consumption of Logistic 
testing-effort function in time (0, t] is 

N 

1 + A exp[-m] 
W ( r )  = and W ( r )  = cw(t)dt (4) 

2.2. A generalized logistic testing-effort function 

From the previous studies in [4-51, we know that the 
Logistic testing-effort function (i.e. the Parr model [8]) is 
based on a description of the actual software development 
process and can be used to describe the work profile of 
software development. In addition, this function can also be 
used to consider and evaluate the effects of possible 
improvements on software development methodology, such 
as top-down design, stepwise refinement or structured 
programming. Therefore, if we relax some assumptions 
when deriving the original Parr model and take into account 
the structured development effort, we get a generalized 
Logistic testing-effort function 

N x d m  
( 5 )  

where K is the structuring index and its value is large for 
modeling well-structured software development efforts 
and p is a constant. 
When ~ = l ,  the above equation becomes 

w k ( r )  = q- 

N 2 

l+Aexp[-m] p 
If p is viewed as a normalized constant and we have 
&2, the above equation is equal to Eq. (4) [SI. Similarly, if 
@lc+l, we get a more generalized and plain solution for 
describing the cumulative testing effort consumption in 

(7) 

W,(t)  = X- (6) 

N 
time (0, t]: W, ( r )  = 

‘cJT+Aexp[-ahtl 

3. New tooldtechniques for increased 
efficiency of software testing 

It is well known that when the software coding is 
completed, the testing phase comes next and it is a 
necessary but expensive process. Once all the detectable 
faults are removed from a new software, the testing team 

will need to determine when to stop testing and make a 
software risk evaluation. If the results meet their 
requirement specifications and the related criteria are also 
satisfied, the team will adorn and announce that this 
software product is ready for releasing/selling. Therefore, 
adequately adjusting some specific parameters of a SRGM 
and adopting the corresponding actions in the proper time 
interval can greatly help us to speedup obtaining the desired 
solution. In fact, several existing approaches can satisfy our 
requirements. For example, we have discussed the 
applications of testing-effort control and management 
problem in our previous studies [4]. The methods we 
proposed can easily control the modified consumption rate 
of testing-effort expenditures and could detect more faults 
in the prescribed time interval. It means that the developers/ 
testers will devote all their available knowledge/energy to 
complete such tasks without additional resources. 
Alternative to controlling the testing-effort expenditures, 
we believe that new testing schemes will help achieving a 
given operational quality at a specific time. That is, through 
some new techniquedtools, we can detecthemove more 
additional faults (i.e. these faults may or may not cause any 
failure or they are not easily exposed during the test phase), 
although these new methods will increase the extra software 
development cost. In practice, if we want to detect more 
potential faults, we may introduce new techniques/tools that 
are not yet used, or bring in experts to make a radical 
software risk analysis. In addition, there are newly 
proposed automated testing tools/techniques for increasing 
test coverage and can be used to replace traditional manual 
software testing regularly. The benefits to software 
developers/testers include increased software quality, 
reduced testing costs, improved release time to market, 
repeatable test steps, and improved testing productivity. 
These techniques can make software testing and correction 
easier, detect more bugs, save more time, and reduce 
expenses significantly [3]. Altogether, we hope that the 
experts, automated testing tools or techniques could greatly 
help us in detecting additional faults that are difficult to find 
during regular testing and usage, in identifying and 
correcting faults more cost effectively, and in assisting 
clients to improve their software development processes. 
To conclude, we introduce a gain parameter (GP) to 
describe the behavior or characteristics of automated testing 
techniques/tools and incorporate it into the mean value 
function [ 111. Therefore, the modified mean value function 
is depicted in the following: 

* 
me(t) = a(l -exp[-roWk (t)]),t Z Ts 

me(t) = ~ ( 1 -  exp[-rWK (t)]), t < Ts < T (8) 
where Q is the gain parameter (GP) and T, is the starting 
time of adopting new techniques/tools. 
Eq. (8) means that if CT increases, me(?) increases. Thus the 
gain of employing new automated techniques/tools is 

* 
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t 2Ts 

m ( t )  P = 0, t <Ts 
(9) 

where P is the additional fraction of faults detected by using 
new automated tools or techniques during testing. 
Substituting Eq. (8) into Eq. (9) and rearranging the above 
equations, we obtain the estimated value of gain parameter: 

I (I+P)xexpFrW 4 t ) l - P  (10) 

In fact, we can interpret the gain parameter from different 
views. If we make a premise that the main goal of 
automated techniques/tools is to testldebug software with 
less testing effort, then the gain parameter cs and the 
testing-effort are inversely proportional to each other. That 
is, they have a joint effect on the software development 
process. On the other hand, under same testing effort, 
introducing new automated tools/methods should help us in 
detectindremoving more additional faults which are hard to 
detect without these new methods. Actually the most 
important thing is how to provide enough information about 
these approaches to the test team. Before adopting these 
automated techniques/tools, we should get the quantitative 
information from the industrial data relative to the methods' 
past performance applied in other instances (i.e. the 
previous experience in software testing), or qualitative 
information from the subjective valuation of methods' 
attributes. Certainly, the methods' past performance in 
aiding the reliability growth should be considered in 
determining whether they will be successful again or not 
[ 111. The distribution of (T can be estimated by performing 
various simulations based on actual data sets. Additionally, 
the test teams' capacity of exercising these techniques/tools 
and the related environmental profiles also play an 
important role in achieving the desired goals. Here, we 
illustrate the new parameter with one real numerical 
example. This data set is from Ohba [IO]. If we are given 
the data sets whose parameters for test-effort function are in 
Table 1, then we can analyze the distribution of the gain 
parameter in various ways as follows. 

Table 1 : Parameters of generalized logistic testing- 
effort function and mean value function 

-- - ( l + P )  { p'09 
m, ( t )  

* 1 I -1 
U =  

r x (Wdt) - WK(0)) 

(about the 19th week), the number of faults detected is about 
328. If we want to increase additional 0.01,0.03,0.05,0.07, 
0.09, 0.1, 0.11 and 0.12 fraction of detected faults 
respectively, we must ensure that the gain parameter cs will 
be corresponding to growth as plotted in Fig. 1. That is, the 
performance and the related assistance of new tools/ 
methods should fit the growth curve as time progresses. If 
the trend fits, it means that through these new methods, we 
can adjust the consumption of testing-effort expenditures or 
raise the fault detection rate. In fact, in this data set, we find 
that at the end of testing, P=O.Ol, 0.02,. .., 0.09,O.l or even 
0.1 1, but P=O.12 is hard. The reason is that the value of 1- 
rn(t)/u controls the maximum possible value of P. That is, 
we should consider whether or not introducing new 
techniques/tools to detect additional faults only when the 
precondition: (1-m(t)/u)>P is satisfied. Finally, these tools 
or techniques we discussed have a big impact on software 
testing and reliability. In fact, they can provide the 
developers or test teams with feedback of useful 
information on the testing process for improvement as well 
as scheduling. However, we know that with more efficient 
testing, more time can be spent to make this software more 
reliable. Besides, introducing these new methods also 
requires that the original design of software be modified to 
get the best performance. Thereafter, the continued use of 
these tools/techniques can improve the software design. 

GP 

-p=0.01 
---P=0.03 

Pro. 07 

c_---------_- ------------ 
- - - - - --  - -- 

I 
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Figure 1: GP graph for the data set (e2.63326). 

4. Optimal software release time 

When the software testing is completed, software product 
is ready for release to users. However, proper timing is very 
important. If the reliability of the software does not meet 
the manager's goal, the developers or testers may request 
external help in testing. An optimal release policy for the 
proposed model based on such considerations is studied 
here. 

4.1. Software release time based on cost criterion 
47.850715709.2910.1399331 4 1414.4261 0.0398619 
47.6561 114839.310.1365071 4.5 1416.1141 0.0397324 

From [IO], we know that when the testing is completed 

Okumoto and Goel [6] were the first to discuss the 
software optimal release policy from the cost-benefit 
viewpoint. Using the total software cost evaluated by cost 
criterion, the cost of testing-effort expenditures during 
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software development phase and the cost of correcting 
errors before and after release are: 
CI(T) = C , m ( T ) + C 2 [ m ( T L C ) - m ( T ) ] + C 3  x ~ w ( x ) &  
Generally, in order to detect additional faults during testing, 
the test teamddebuggers may use new automated tools or 
techniques if they are available. Hence the cost trade-off of 
tools should be considered in software cost model. But they 
thereby save some of the greater expense of correcting 
errors during operation. By summing up the above cost 
factors, the modified software cost model is 

a n  = C,(T) + c, x( l+  P )  x m(T) + c, [m(T,) - (1 + P) x 

m(T)J+ c, x l: W(X)& (11) 
where Co(T) is the cost function of including automated 
tools/techniques to detect an additional fraction P of faults 
during testing. 
In fact, the cost of a new tool or technique Co(T) may not be 

a constant during the testing phase of software development 
process. Moreover, in order to determine the testing cost 
C,(T), the most general cost estimating technique is to use 
the parametric methods if there are some meaningful data 
available. By differentiating Eq. (1 1) with respect to T and 
let C, (1 +P)= C,' and C, (1 +P)= C2*, we have 
d d * 

-C2(T) = -Co(T)+C, am(T)exp[-rW*(T)] 
dT  dT 

* * 
-C, am(T)xexp[-rW (T)]+C, xw(T) (12) 

However, the assumption that Co(r) is a constant may not be 
realistic in many situations. In addition, the assumption 
may lead to ill-defined testing. Therefore, we relax this 
assumption and explore the results. Here we propose two 
possibilities for Co(T) in order to interpret the cost 
consumption: (1) Co(T) is a constant [5], and (2) CJT) is 
proportional to the expenditures of testing-effort. The 
second assumption considers that Co(T) is a convex non- 
decreasing function of testing time t and initially is zero, 
while the time in progress increases linearly or non-linearly. 
For example, if in addition to introducing new automated 
tools/ techniques, we also adopt effective approaches from 
senior mentors in a professional software consultant 
company. Normally the testers can solve general problems 
by themselves when faults occur. But if some problems are 
so difficult to solve, they must ask the consultants to get 
more proper solutions. Therefore, we can conceive that 
such extra cost may include travel expenses to clients, 
charges for the phone support or root cause analysis of 
software faults, etc [3]. Sometimes they also provide the 
services for code inspections, diagramming, unit testing, 
and test planning. Generally, if using good automated 
approaches for software fault detection or usefuVpowerfu1 
supports during software development becomes available, 
the testers can detect more faults. But the cost will be 
higher. Therefore, if C,(T) = CO, +CO x(fAw(t)dt)", 

T 2 TS and Co(T)= 0, T<T,, then we get 
d * *  * 

-C2(T) = w(t)x[ar(C, -C, )xexp[-rW (t)J+ 
dT 

C, + CO x m x (I; w(t)dr)" - ' 1 .  Since w(r)>O for 

0 I T < - , therefore, -C2(T)=O if P(T) 1 

(ar(C2 - C ,  ) e ~ p [ - r W * ( t ) ] - C ~ r n ( ~ ~ w ( t ) d r ) ~ - ' )  = C3 (13) 

The left-side in Eq. (13) is monotonically decreasing 
function of T. Therefore, if 

urx(C, - C, )expkr(W(Ts) - W(O))]> C, and P(TLc)<C,, it 
means that there exists a finite and unique solution To 
satisfying Eq. (13) which can be solved by numerical 

methods. It is noted that - C2(T) <O for 0 I 

d 

dT 
* *  

* *  

d 

dT 
I T < T,  

d 
and -C2(T) >O for DT,. Thus, T=To minimizes C2(T) 

dT 
for To <TLC 

4.1.1. Numerical Example 1. Here we illustrate how to 
minimize the software cost in which the new automated 
tooldtechniques are introduced during testing. From the 
previous estimated parameters for the data set in Table 1, we 
get N=48.7768, A429.673, WO. 158042, -2.63326, 
a=369.029, r=0.0509553, CO,=$ 1000, C,=$lO per error, 
C2=$50 per error, C ~ $ l 0 ,  Ts=19, C,=$lOO per unit testing- 
effort expenditures, and T L ~ l O O  weeks. The numerical 
example for the relationship between the cost optimal 
release time and P is given in Table 2. From Table 2, we 
find that the bigger the P ,  the larger the optimal release time 
and the smaller the total expected software cost. The reason 
is that if we have better testing performance, we can detect 
more latent or undetected faults through additional 
techniques/tools. Therefore, we can really shorten the 
testing time and release this software earlier. Here, we 
observe some facts as follows: 
(1) When P is relatively small (such as 0.01, 0.02, or 
0.03, ..., 0.06), the total expected cost is larger than the 
expected value of traditional cost model (i.e. 4719.66). The 
reason is due to CO, , i.e. the basic cost of adopting new 
automated techniques/tools. 
(2) As P increases, the optimal release time T* increases but 
the total expected software cost C(T*) decreases since we 
can detect more faults and reduce the cost of correcting the 
errors during operational phase. 
(3) Even under the same P and with different cost functions, 
the larger the cost, the smaller the optimal release time. But 
there is insignificant difference in estimating the total 
expected software cost. 
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Table 2: Relationship between the cost optimal release 
time T:, C(T,*), and P based on the cost function 
CO (T) = 1 OOO+ 1 Ox (I:,"" w(t)dt)''* 

I 

4.2. Software release time based on reliability 
criterion 

I (At=O. 1) I (At=0.2) I I (AkO.1)  I (Ak0.2) 
0.01 122.6945 I 24.3281 10.07 I 22.8351 I 24.4677 

In general, the software release time problem is also 
associated with the reliability of a software system. Hence, 
if we know that the software reliability has reached an 
acceptable reliability level, we can determine the right time 
to release this software. Software reliability is defined as 
the probability that a software failure doesn't occur in (T,  
T+At] given that the most recent failure occurred at T [ 1-2,5, 
6, 121. Therefore, 

R ( A t I T ) = e x p [ - ( m , ( T + A t ) - m , ( T ) ) ]  , A t , T  2 0  (14) 
In addition, we also define the second measure of software 
reliability for the proposed model, i.e., the ratio of the 
cumulative number of detected faults at time T to the 
expected number of initial faults. 

We can solve this equation and obtain a unique TI satisfying 
R,(T,)=R,. It is noted that the larger the value of R2(T), the 
higher the software reliability. 

R , ( T )  2 m e ( T ) / a  (15) 

4.2.1. Numerical Example 2. Tables 3 shows the 
relationships between the reliability optimal release time 
TI*,  At and P based on R,,= 0.95. From Tables 3, we find 
that as P increases, the optimal release time TI* increases. 
The reason is as follows. From Eq. (14), we know that 
R(At1T) denotes the conditional reliability function that the 
software will still operate after T+At given that it has not 
failed after time T [5-61. In addition, from Eq. (8), we know 
rn,(t)=(l+P)rn(t). That is, me(T +At) - me(T) = (1 + P )  x 
(m(T + At) - m ( T ) )  2 (m(T + At) - m(T))  . Therefore, 
- ( m ( T + A f ) -  m , ( T ) )  I - ( m ( T + A t ) - m ( T ) )  and 
exp[-m.(T + At)  - mc(T)) ]  S exp[-(m(T + At)  - m ( T ) ) ] .  
Hence, in Table 3, the reason why the optimal release time 
TI G22.6945 under P=O.Ol , At=O. 1 ,  and Rp0.95 is slightly 
larger thn the optimal release time (without introducing any 
extra automated tools during testing) TI -22.6702 under 
A e O . 1 ,  R ~ 0 . 9 5  is obvious. On the other hand, through 
using these new tools, we may detect some extra faults in (T, 

T+At] and these faults are potentially hard to detecaocate in 
(T, T+At] if these automated tools are not available. In fact, 
if the faults are hard to locateidetect after a long period of 
testing, the tester may treat the software system as a 
reliable/stable system. This phenomenon could occur in 
practice and it is significant because the ability or 
knowledge of testers/developers is limited. In this case 
(without introducing any extra automated tool), the target 
reliability R(AtlT,)=R, may be achieved at time TI,  the 
reliability optimal release time. In fact, through new 
automated techniques/tools, it is probably easier to find 
these extra latent faults in the interval (TI ,  Tl+At]. 
Therefore, the reliability optimal release time will be 
delayed till the reliability goal is reached. 

Table 3: Relationship between the reliability optimal 
release time T,* and P based on the first measure of 
software reliabjlity R.=0.95. 

l P l  TI* I TI* I P I TI* I TI* 1 

11 0.02 i 22.7185 i 24.3519 j 0.08 i 22.8578 i 24.4902 11 
0.03 122.7423 I 24.3755 10.09 I 22.8803 I 24.5125 
0.04 122.7659 I 24.3989 IO .  10 I 22.9025 I 24.5346 
0.05 122.7892 I 24.422 10.11 I 22.9245 I 24.5565 
0.06 I 22.8 123 I 24.445 I I I 

4.3. Software release time based on cost-reliability 
criterion considering efficiency 

From subsection 4.2, we can easily get the required 
testing time needed to reach the reliability objective R,. 
Here our goal is to minimize the total software cost to 
achieve the desired software reliability and then the optimal 
software release time is obtained. Therefore, the optimal 
release policy problem can be formulated as minimizing 
C(T),  subject to R(AtlT)>R, where O<R,cl., i.e., 

r* = optimal software release time = mux(T, ,TI)  

where T,,= finite and unique solution T satisfying Eq. (13), 
and TI= finite and unique T satisfying Eq. (14), or Eq. (15). 
Combining the cost and reliability requirements and 
considering the efficiency, we have the following theorem. 

Theorem 1: 
Assume Co(T)  = CO, +CO x (I; w(t)dr)" ,CoI>O, CaO, CpO, 
C2>0, C3>0, and C2>Cl, we have 

(1)if u r x ( C ,  -C, ) e x p [ - r ( W ( T s ) - W ( 0 ) ) ] > C ~  andP(T& 

<e3, T' = max(T,, T I )  for R(A tlTs)<Ra<l or r'=T, for 
O<R, I R(A AT,). 

* *  

* *  
(2) if u r x ( C ,  -C,  )exp[-r (W(Ts) -W(0)) ]  c C,,T'=T, for 
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R(ArIT,)cRo<l or T'=T, for OCR,< R(AtlT,). 
(3) if P(T&C,, T' 2T, for R(ArIT,)cR,<I or T'2 T, for 

O&, I  R(AtlT,). 

0.04 
0.05 
0.06 

From the above theorem, we can easily determine the 
optimal software release time based on the cost and 
reliability requirements considering efficiency. Table 5 
shows the cost-reliability optimal release time under 
different R,, At, and cost function. Similarly, Table 6 shows 
the relationship between the optimal release time T, * based 
on the target reliability R,(T) and l? From these tables and 
following the same arguments in Theorem 1,  we can obtain 
the optimal software release time based on the cost and 
reliability criteria. 

0.925 22.4203 0.10 0.982 27.2990 
0.930 20.7667 0.11 0.991 27.6343 
0.945 24.3389 

Table 5: Relationship between the reliability optimal 
release time T* and P with R.=0.95 and cost function 
C,(T) = 1 0 0 0 + 1 0 ~ ( ~ ~ ~ w ( t ) d t ) ' ' ~  

(AeO.l) Ae0.2) (AeO. 1) (Ae0.2) 
0.01 22.6945 24.3281 0.07 22.8351 24.4677 
0.02 22.7185 24.3519 0.08 22.8578 24.4902 
0.03 22.7423 24.3155 0.09 22.8803 24.5125 U 0.04 22.7659 24.3989 0.10 22.9025 24.5346 
0.05 I 22.7892 I 24.422 1 0.11 I 22.9245 I 24.5565 
0.06 I 22.8123 I 24.445 I I I 

Table 6: Relationship between the cost optimal release 
time T,* based on reliability R,(T) and P 

I R,(T) I T,* I p I R2(T) I ll 0 p 01 I 0.900 123.81171 0.07 I 0.955 I 26.4809 
0.02 I 0.910 125.47591 0.08 I 0.962 I 23.4478 
0.03 I 0.915 121.81791 0.09 I 0.972 I 24.6907 

5. Conclusions 

In this paper we present an SRGM with generalized 
testing-effort function. It is a much more realistic model 
and more suitable for describing the software fault 
detectionhemoval process. Furthermore, we also discussed 
the effects of introducing new toolsltechniques for 
increased software testing efficiency, and studied the related 
optimal software release time problem from the cost- 
reliability viewpoint. The procedure for determining the 
optimal release time T* has been developed and the optimal 
release time has been shown to be finite. In practice, 
sometimes it is difficult for us to locate the faults that have 
caused the failure based on the test data reported in the test 
log and test anomaly documents. Therefore, it is advisable 

to introduce, new toolsltechniques, which are fundamentally 
different from the methods in use. In addition, there are still 
many more potential cost functions. We will present further 
investigations on describing the mathematical properties of 
the SRGM with generalized testing-effort function in the 
future. 
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