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14.1 Introduction

Software development processes and methods have been studied for
decades. Despite that, we still do not have reliable tools to guarantee
that complicated software systems are fault-free. In fact, it may never
happen that we will be able to guarantee error-free software. The rea-
son is that the two basic ways of showing that software is correct, proof
of program correctness and exhaustive testing, may never be practical
for use with very complex software-based systems, although reuse of
reliable software building blocks (objects) may go a long way toward
achieving that goal. Techniques for proving software correct tend to
work only for relatively small and simple synchronous systems, while
testing methods, although increasingly more sophisticated, do not
guarantee production of error-free code because exhaustive testing is
not practical in most cases. Therefore, it is reasonable to investigate
techniques that permit software-based systems to operate reliably and
safely even when (potential) faults are present.

A way of handling unknown and unpredictable software (and hard-
ware) failures (faults) is through fault tolerance. Over the last two
decades, there has been a considerable amount of research, as well as
practical software engineering, in this area. In this chapter, we intro-
duce some elementary principles that underlie construction of fault-
tolerant software based on the software diversity principle, that is,
provision of fault tolerance through functional redundancy. We leave
the details of advanced analyses and the details of practical implemen-
tations to other texts. The reader who wishes to implement fault toler-
ance in a software-based system in practice is strongly advised to
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consult additional texts such as [Eckh85, Voge87a, Litt89, Lapr90a,
Mili%0, Eckh91, Lapr92, Siew92, Lyu95al (and references therein)
which provide a detailed discussion of the more recent advances and
problems in practical software fault tolerance, hardware-software
interactions, and fault tolerance for distributed systems.

In this chapter, we first provide some background information,
including an overview of major industrial and academic efforts related
to fault-tolerant software. We then present the principles and termi-
nology, and give a general overview of the more common techniques for
tolerating software faults. This is followed by a discussion of more
advanced techniques, and then by some techniques which can be used
in modeling the behavior of fault-tolerant software. Finally, we discuss
issues such as independence of failures, and issues related to develop-
ment and cost of fault-tolerant software.

14.2 Present Status

Fault-tolerant software has been considered for use in a number of crit-
ical application areas. For example, in nuclear power plants [Gmei79,
Bish86], in railway systems [Hage87], and in aerospace systems
[Mart82, Will83, Bric84, IEEE84, Spec84, Madd84, Kapl85, Troy85,
Aviz87, Aviz88, Davi93]. Overviews of the use of software diversity in
computerized control systems can be found in [Vog87a, Lyu95al.

A number of systematic experimental studies of fault-tolerant soft-
ware issues have been conducted over the last 20 years by both aca-
demia and industry. For example, experiments related to the use of
fault-tolerant software were reported for nuclear industry applications
[Bish86, Bish88, Voge87c], aerospace applications [Knig86, Shima83,
Kell88, Aviz88, Bril90, Vouk90a, Eckh91, Lyu92a, Huda93], as well as
in other areas [Ande85, Lee93].

It would appear that the first industrial use of fault-tolerant soft-
ware, based on the software diversity principle, occurred in a railway
system [Voge87b, Ster78]. A number of organizations have used the
approach to either help develop, verify, or actually implement an oper-
ational railway application for deployment in Sweden, Denmark, Fin-
land, Switzerland, Turkey and Bulgaria [Hage87], Italy [Frul84],
Singapore [Davi84], and the United States [Turn87].

Use of fault-tolerant software in aerospace applications has received
a lot of attention over the years. It has been considered and imple-
mented in both military (e.g., [Mart82, Turn87]) and civilian (e.g,
[Hill83, Wrig86, Will83, Youn86, Swee95]) aircraft, and in the U.S. space
shuttle [Madd84, Spec84]. For example, the slat/flap control system for
the civilian Airbus A310 airliner consists of two functionally identical
computers with diverse hardware and software [Wrig86, Trav87]. Also,
fault tolerance is an essential part of the experimental flight technology
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such as that found in forward-swept wing, aerodynamically unstable
but very agile, aircraft [Kapl85, Davi93]; and fly-by-wire military air-
craft invariably incorporate fault tolerance, although not necessarily
fault-tolerant software. Another example is the NASA space shuttle.
The shuttle carries a configuration of four identical flight computers,
each loaded with the same software, to combat hardware failures, and a
fifth computer developed by a different manufacturer and running dis-
similar (but in part functionally equivalent) software, which is executed
only if the software in the other four processors cannot reach consensus
during critical phases of the flight [Spec84, Madd84]. Software diversity
was a salient issue in all developments mentioned above. We discuss
this concept in more detail below.

Practical experiences with fault-tolerant software appear to be mixed
but, in our opinion, they are more positive than negative, although a
number of issues remain unresolved. The general consensus appears to
be that fault-tolerant software has the capability of increasing the relia-
bility of a computer-based system. Open and controversial issues include
items such as how much fault-tolerant software actually increases sys-
tem reliability in practice [Butl93], whether fault-tolerant software
should be used in critical systems at all [IEEE94], and which fault-toler-
ance mechanism to use and how cost-effective it is [Lapr90a, Voge87b].

The primary reason for these doubts about redundancy-based software
methods is the potential for common-cause faults and correlated coinci-
dent failures among the software elements that provide the redundancy.
Unlike hardware failures, software faults are for the most part the result
of software specification and design errors, and thus simple replication of
software components does not provide reasonable protection. This dic-
tates the need to strive for designs and development methods that
encourage the use of diverse algorithms in redundant components and to
minimize the potential for common-cause faults. Many experiments with
fault-tolerant software have reported failure correlation among software
versions used to provide redundancy (e.g., [Scot84a, Scot84b, Vouk85,
Knig86, Vouk86a, Bish91, Eckh91, Gers91]), but the origins and the
extent of that correlation in practical systems is still not well understood.
It is conjectured, however, that failure correlation is a strong function of,
among other things, software process and methods employed in version
development [Lyu92b, Lyu93al]. Improving this development process
thus can effectively increase overall system reliability.

14.3 Principles and Terminology

A principal way of introducing fault-tolerant software into an applica-
tion is to provide a method to dynamically determine if the software is
producing correct output, that is, a self-checking or oracle capability
[Yau75]. This is often accomplished through a combination of different,
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but functionally equivalent, software alternates, components, versions,
or variants and run-time comparisons among their results. However,
other techniques, ranging from mathematical consistency checking to
coding, are also useful [Ande81, Lin83, Mili90, Lapr90a, Lapr92a,
Adam93] as are methods which use data diversity [Amma87, Chri94]
(see Probs. 14.1 and 14.2).

When software execution encounters a software fault or defect, very
often the system will make a transition into an erroneous (internal)
state, that is, an unexpected internal result will be created. If this erro-
neous result propagates and is eventually observed by the user of the
system, we say that we have observed a system failure [Aviz84]. Once
an erroneous state has been identified, error recovery can be initiated.
It may involve backward recovery, that is, system states are saved at
predetermined recovery points, and on detection of an erroneous state
the system is rolled back or restored to a previously saved recovery
point and then restarted from that state. An alternative approach is
forward recovery. Forward recovery may be implemented as a transi-
tion into a new system state in which the software can operate (often in
a degraded mode), or by error compensation based on an algorithm that
uses redundancy built into the system to derive the correct answer. A
special case of the latter is permanent fault masking where compensa-
tion takes place regardless of whether an error is detected or not (e.g.,
certain forms of voting) [Lapr90a]. Combinations of forward and back-
ward recovery are also used.

An important factor in determining how to detect and handle errors
is whether the erroneous state results from algorithmic or implemen-
tational memory, or not. An algorithm or a program is said to be “mem-
oryless” if it uses only the data received or generated after the last time
it has delivered a result. An example of a memoryless algorithm is pro-
cess monitoring where tasks begin based on current sensor data and do
not use data from previous processing [Lapr90al.

Important criteria for judging suitability of a fault-tolerance scheme
are the processing overhead required to implement fault tolerance,
nature of the error detection mechanism, whether correctness of the
result is determined in an absolute or relative manner (e.g., with
respect to specifications, or another version), whether the scheme is
sequential or parallel, whether error control involves suspension of the
service or not, whether results are presented within time constraints,
and how many errors can be tolerated and at what cost [Lapr90a].

14.3.1 Result verification

14.3.1.1 Acceptance testing. The most basic approach to self-checking
1s through an (internal) acceptance test. An acceptance test is a pro-
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grammer-provided, program-specific, error-detection mechanism, that
provides a check on the results of program execution. An acceptance
test might only consist of bounds or simple tests to determine accept-
ability. For instance, it is much easier to develop software that deter-
mines if a list is sorted than it is to develop software that performs the
sorting. However, in general an acceptance test can be complex and as
costly to develop as the full problem solution. An important character-
istic of an acceptance test is that it uses only the data that are also
available to the program at run time.

An interesting example is the following implicit specification of the
square root function [Fair85], SQRT, which can serve as an acceptance
test:

for(0<x<y) (ABS((SQRT(x)*SQRT(x)) —x) < E} (14.1)

where E is the permissible error range, and x and y are real numbers.
If E is computed for the actual code generated for the SQRT program,
and machine specifications are known to the program, then Eq. (14.1)
can serve as a full self-checking (acceptance) test. If £ is known only to
the programmer (or tester), and at run time the program does not have
access to machine specifications or the information about the allowable
error propagation within the program, then the test is either partial or
cannot be executed by the program at general run time at all.

Acceptance tests that are specifically tailored to an algorithm are
sometimes called algorithmic [Abra87, Huda93]. For example, provi-
sion of checksums for rows and columns of a matrix can facilitate
detection of problems and recovery [Huan84]. Similarly, use of redun-
dant links in linked lists can help combat partial loss of list items
[Tayl80].

14.3.1.2 External consistency. An external consistency check 1s an
extended error-detection mechanism. It may be used to judge the cor-
rectness of the results of program execution, but only with some out-
side intervention. It is a way of providing an oracle for off-line and
development testing of the software, as well as for run-time exception
handling. In situations where the exact answer is difficult to compute
beforehand, it may be the most cost-effective way of validating compo-
nents of a fault-tolerant system, or checking on run-time results.

A consistency check may use all information, including information
that may not be available to the program in operation, but which may
be available to an outside agent. Examples are watchdog processes
that monitor the execution of software-based systems and use infor-
mation that may not be available to software, such as timing, to detect
and resolve problems [Upad86, Huda93]. Another example is periodic
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entry (manual or automatic) of location coordinates to a navigation
system. Yet another example is an exception signal raised by the com-
puter hardware or operating system when floating-point or integer
overflow and divide-by-zero are detected.

The interrupt signal, or exception, that abnormal events occurring in
a computer system generate represents a particularly useful and
prevalent resource for external consistency checking. Often, these sig-
nals can be detected and trapped in software and the exceptions can be
handled to provide a form of failure tolerance. For example, many mod-
ern programming languages* allow trapping of floating-point excep-
tions, divide-by-zero exceptions, or IEEE arithmetic signals (such as
NANs") [IEEE85, IEEE87a], and invocation of appropriate exception
handlers that provide an alternative computation or other action, and
thus shield the users from this type of run-time error. A good example
of applied exception handling in FORTRAN is found in [Hull94].

Consistency checking may include comparisons against exact
results, but more often it involves use of knowledge about the exact
nature of the input data and conditions, combined with the knowledge
of the transformation (relationship) between the input data and the
output data. The consistency relationship must be sufficient to assert
correctness.

For example, suppose that navigational software of an aircraft sam-
ples accelerometer readings, and from that computes its estimate of
the aircraft acceleration [Eckh91]. Let an acceleration vector estimate,
X, be given by the least squares approximation

% = [CTC]''CTy (14.2)

The matrix C is the transformation matrix from the instrument frame
to the navigation frame of reference, CT is its transpose, —1 denotes
matrix inverse, and the sensor measurements are related to the true
acceleration vector x by

y=Cx+y (14.3)

where ¥ is the sensor inaccuracy caused by noise, misalignment, and
quantization. Then,

C'C(x -x)=C"y (14.4)

1s a criterion to assert correctness for acceleration estimates. Note that
x and y are not normally available to the navigation software. How-

* For example, UNIX signals can be trapped in C (e.g., see standard “man” pages for
“signal(3)” system calls).

' NAN is an acronym for not-a-number, used to describe arithmetic exception events
that do not result in numbers.
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ever, if we supply all information, including that pertaining to the envi-
ronment, we can control x and y and detect problems with algorithms
without having advance knowledge of the correct answer. This can pro-
vide oracle capabilities during the off-line testing when the environ-
ment is completely under control. Of course, such a test cannot be
employed during operational use of software unless an accurate envi-
ronment status is provided independently.

On the contrary, hardware and operating system exceptions, such as
overflow and underflow, can and should be handled at run time, and
appropriate exception handling algorithms should be part of any soft-
ware system that strives to provide a measure of failure tolerance.

14.3.1.3 Automatic verification of numerical results. A rather special set
of techniques for dynamic detection and control of numerical failures*
is automatic verification of numerical precision. This type of verifica-
tion treats errors resulting from algorithmic micromemory, that is,
error propagation within a numerical algorithm, and possibly numeri-
cal algorithm instability. The essence of the problem is that verification
of a numerical algorithm does not guarantee in any way its numerical
correctness unless its numerical properties are explicitly verified.

Floating-point arithmetic is a very fast and very commonly used
approach to scientific and engineering calculations. As a rule, individ-
ual floating-point operations made available in modern computers are
maximally accurate, and yet it is quite possible for the reliability of
numerical software to be abysmally poor because a series of consecu-
tive floating-point operations delivers completely wrong results due to
rounding errors and because large numbers swamp small ones. To
illustrate the issue we consider the following example from [Kuli93,
Adam93].

Let x and y be two vectors with six components, x = (10%, 1223, 10*,
10, 3, -10%1), and y = (10%, 2, —10%, 10?2, 2111, 10*°). The scalar prod-
uct of these two vectors is defined as

6

X‘Y=zxi i (14.5)
i=1

The correct answer is 8779. However, implementation of this expres-
sion on practically every platform available today will return zero unless
special precautions are taken. The reason is the rounding coupled with

* An example of a numerical software-associated life-critical failure is the tragic death
of a number of American service personnel during the 1991 Gulf War due to a failure of
a Patriot antimissile missile to destroy an incoming enemy surface-to-surface missile
because of a numerical error [GAO92].
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the large difference in the order of magnitude of the summands. This
happens despite the fact that each individual number can be quite com-
fortably represented within the floating-point format of all platforms.

It 1s possible to construct more subtle and more complex examples
which show that simple numerical algorithms, such as Newton’s
method, can become very unstable if ordinary floating-point arithmetic
1s used without explicit error propagation control [Kuli93]. The arith-
metic error propagation problem can become very acute in applications
such as simulation and mathematical modeling, and it is exacerbated
by modern high-speed computers.

A solution proposed in [Kuli81, Klat91, Klat92, Adam93, Kuli93]
relies on the computation of the optimal dot product using fixed-point
accumulation to guarantee maximal computational accuracy [Kuli81]
on interval arithmetic (which implies certain rounding rules) to com-
pute accurate upper and lower bounds on the result and on automatic
differentiation methods [Grie92, Adam93]. If the computed result can-
not be verified to be correct (for example, the computed bounds are too
large), the user can be given the option of providing alternatives to the
algorithms and methods, or the option of changing to higher-precision
arithmetic followed by reverification of results and a decision regard-
ing the acceptability of the results. This approach dynamically toler-
ates and controls this type of failure. Other solutions are available.
Anyone involved with design of critical systems that use numerical
software is strongly advised to consult relevant literature (e.g.,
[Cart83, Grie92, Adam93]).

14.3.2 Redundancy

The technique of using redundant software modules as a protection
against residual software faults was inherited from hardware. Hard-
ware faults are usually random (e.g., due to component aging). There-
fore using identical backup units, or redundant spare units, with
automatic replacement of failed components at run time, is a sensible
approach (e.g., [Triv82, Nels87, Siew92]). However, replication of a
software version to provide backup redundancy has limited effective-
ness since software faults are almost exclusively design- and imple-
mentation-related and therefore would also be replicated. The net
effect would be that excitation of a replicated fault would result in a
simultaneous failure of all versions and there would be no fault toler-
ance. This does not include timing or transient faults, which often occur
because of complex hardware/software/operating system interaction.
Such failures (called Heisenbugs in [Gray90]) can rarely be duplicated
or diagnosed. A common solution is to reexecute the software in the
hope that the transient disturbance is over.
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A solution proposed specifically for software was to have independent
manufacturers produce functionally equivalent software components*
— [Rand75, Aviz77]. It was conjectured that different manufacturers
would use different algorithms and implementation details, and that
the residual faults from one independent software manufacturer would
be different from those made by another; therefore when one version
failed, i1ts backup or spare would not fail for the same input data
and conditions and would become the primary module, or at least could
force a signal of the disagreement. The goal is to make the modules
as diverse as possible. The overall philosophy is to enhance the prob-
ability that the modules fail on disjoint subsets of the input space,
and thus have at any time at least one correctly functioning software
component.

Specifications used in this process may themselves be diverse as long
as final functional equivalency of the products is preserved. The speci-
fication indicates certain critical outputs which must be presented to
an adjudication program to determine if the system is operating cor-
rectly. Each developer creates a software module or version which
implements the specification and provides the outputs indicated by the
specification.

Redundancy requires the ability to judge acceptability of the outputs
of several modules either by direct evaluation or by comparison. The
algorithm that compares or evaluates outputs is called an adjudicator.
Such a program can be very simple or very complex depending on the
application, and therefore can also be a source of errors. An adjudication
program may use the outputs from redundant versions to determine
which, if any, are correct or safe to pass on to the next phase of the soft-
ware. The decision may be based on several different algorithms. There
are several adjudication techniques which have been proposed. This
includes voting, selection of the median value, and acceptance testing,
as well as more complex decision making. In all situations, of course,
problems arise if failures are coincidental, correlated, or similar.

14.3.3 Failures and faulits

We use the terms coincident, correlated, and dependent failures (faults)
as follows. When two or more functionally equivalent software compo-
nents fail on the same input case, we say that a coincident failure has
occurred. Failure of £ components raises a k-fold coincident failure.
When two or more versions give the same incorrect response (to a given
tolerance) we say that an identical-and-wrong (IAW) answer was

* We use the terms component(s), alternate(s), version(s), variant(s), and module(s)
interchangeably in this chapter.
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obtained. If the measured probability of the coincident failures is sig-
nificantly different from what would be expected by random chance,
usually based on the measured failure probabilities of the participat-
ing components, then we say that the observed coincident failures are
correlated. Note that two events can be correlated because they directly
depend on each other, or because they both depend on some other, but
same, event(s) (indirect dependence), or both.
Let P{ } denote probability. Then

P{ version(i) fails | version( ;) fails } # P { version(i) fails}  (14.6)

means that the conditional probability that version i fails given that
version j has failed is different from the probability that version i, con-
sidered on its own, fails on the same inputs. If this relationship is true,
we do not have failure independence [Triv82].

We shall say that several components contain the same or similar
fault or‘ common-cause fault if the fault’s nature, and the variables and
function(s) it affects, are the same for all the involved components. The
result (answer) of execution of common-cause faults may be identical
(IAW to within tolerance), or may be different. It is also possible that
different faults result in a coincident failure by chance, giving either
different answers or JAW answers.

Possible failure events are illustrated in Fig. 14.1. The Venn dia-
gram shown in the figure represents the overlaps in the failure space
of three functionally equivalent software units (or a 3-tuple of vari-
ants). Unshaded areas are regions where one of the three components
(programs p;, ps, p3) fails for an input. Lightly shaded areas show the
regions where two out of three components fail coincidentally, while
the darkly shaded area in the middle is the region where all three

[ Simplex failure
Doublet failure
B Triplet failure

Il |dentical-and-wrong

Figure 14.1 Illustration of failure space for three functionally
equivalent programs.
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components fail coincidentally. Of special interest are regions marked
in black, which represent events where components produce IAW
responses.

14.3.4 Adjudication by voting

A common adjudication algorithm is voting. There are many variants
of voting algorithms (e.g., [Lorc89, McAl90, Vouk90b, Gers91, Lyu95a]).
A voter compares results from two or more functionally equivalent
software components and decides which, if any, of the answers provided
by these components is correct.

14.3.4.1 Maijority voting. In an m-out-of-N fault-tolerant software sys-
tem, the number of versions is N (an N-tuple), and m is the agreement
number, or the number of matching outputs which the adjudication
algorithm (such as voting) requires for system success [Eckh85, Triv82,
Siew92]. The value of N is rarely larger than 3. In general, in majority
voting, m = (N + 1)/21, where [ |denotes the ceiling function.

14.3.4.2 Two-out-of-Nvoting. It is shown in [Scot87] that, if the output
space is large, and true statistical independence of variant failures can
be assumed, there is no need to choose m larger than 2, regardless of
the size of N. We use the term 2-out-of-N voting for the case where
agreement number is m = 2.

There is obviously a distinct difference between agreement and cor-
rectness. For example, a majority voter assumes that if a majority of the
module outputs agree, then the majority output must be the correct
output. This, however, can lead to fallacious results, particularly in the
extreme case when the number of possible module outputs is very
small. For example, suppose that the output of each module is a single
variable that assumes the values of either 0 or 1. This means that all
incorrect outputs automatically agree and it is very likely, if modules
have faults, that there may be a majority of IAW outputs.

In general, there will be multiple output variables, each one assum-
ing a number of values. The total number of allowed combinations of
output variables and their values defines the number p of program out-
put states, or the cardinality of the output space. If there are multiple
correct outputs, then a simple voter is useless. Hence, when voting, we
will assume that there is only one correct output for each input. From
this it follows that, given output cardinality of p, we have one correct
output state, and p — 1 error states.

In that context, mid-value selection (or simple median voting) is an
interesting and simple adjudication alternative where the median of all
output values is selected as the correct answer. The philosophy behind
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the approach is that, in addition to being fast, the algorithm can han-
dle multiple correct answers (and for small samples is less biased than
averaging, or mean value voting), and it is likely to pick a value that is
at least in the correct range. This technique has been applied success-
fully in aerospace applications.

14.3.4.3 Consensus voting. A generalization of majority voting is con-
sensus voting described in [McAl90]. In consensus voting the voter uses
the following algorithm to select the correct answer:

m If there is a majority agreement (m = [(V+ 1¥2] N > 1), then this
answer is chosen as the correct answer.

s Otherwise, if there is a unique maximum agreement, but this num-
ber of agreeing versions is less than [(V + 1)/2], then this answer is
chosen as the correct one.

s Otherwise, if there is a tie in the maximum agreement number from
several output groups, then

If consensus voting is used in N-version programming, one group
is chosen at random and the answer associated with this group is
chosen as the correct one.

Else if consensus voting is used in consensus recovery block, all
groups are subjected to an acceptance test, which is then used to
choose the correct output.

The consensus voting strategy is particularly effective in small out-
put spaces because it automatically adjusts the voting to the changes
in the effective output space cardinality. It can be shown that, for m >
2, majority voting provides an upper bound on the probability of failing
the system using consensus voting, and 2-out-of-N provides a lower
bound [McAl90]. When the output space cardinality is 2, the strategy is
equivalent to majority voting, and to 2-out-of-N voting when the output
space cardinality tends to infinity, provided the agreement number is
not less than 2. We provide experimental comparison of consensus and
majority voting strategies in Sec. 14.7.

14.3.5 Tolerance

Closely related to voting is the issue of tolerance to which comparisons
are made. Let TOL be the comparison tolerance, and consider an N-
tuple of versions. The following two mutually exclusive events do not
depend on whether the answers are correct.

m All N components agree on an answer. In this case we have an
AGREEMENT event.




/,_ Fault-Tolerant Software Reliability Engineering 579
m There is at least one disagreement among the C,¥ comparisons of
alternate outputs, where C,~ denotes the number of combinations of
N objects taken two at a time (2-tuples). We will call this case a CON-
FLICT event. All 2-tuples need to be evaluated because agreement
may not be transitive, that is, |a - b| £ TOL and |6 —¢| £ TOL
does not always imply that |a - ¢| < TOL (see Fig. 14.2).

It is very important to realize that use of an inappropriate tolerance
value, TOL, may either completely mask failure events (that is, too
large a tolerance will always return AGREEMENT events) or cause an
avalanche of CONFLICT events (the tolerance is too small and there-
fore many answer pairs fail the tolerance test). Assume that we have
an oracle, so that we can tell the correctness of an answer. Note an ora-
cle can take the form of an external consistency check (see Sec.
14.3.1.2). The following mutually exclusive events depend on the
knowledge of the correctness of the output, or agreement with the cor-
rect answer:

m All N components agree with the correct (call it golden) answer. Then
a NO_FAILURE event occurs.

m One or more of the versions disagree with the correct answer. Then a
FAILURE event occurs.

TOL

—t
c b goid a
ALl _CORRECT is NO_FAILURE with AGREEMENT

- >
I} L
1 ] 1

TOL
- —— il
1 } i i
c b gold a

FALSE_ALARM is NO_FAILURE with CONFLICT (la-cl>TOL)

-2 -
I | L 1
| } | | | |
golid c b a

UN_DETECTED_FAILURE (la-goidI>TOL) is FAILURE with AGREEMENT

- > - -
TOL TOL

- I

c b gold

N ke

DETECTED_FAILURE is FAILURE with CONFLICT (la-bl=TOL., la-cl>TOL)

Figure 14.2 Illustration of comparison events.
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Combinations of the above elementary events produce the following
mutually exclusive and collectively exhaustive multiversion compari-
son events:

a8 ALLL. CORRECT event. A NO FAILURE occurs with an AGREE-
MENT.

m FALSE _ALARM event. A NO_FAILURE occurs with a CONFLICT.
Comparison signals an error when one is not present, which may or
may not lead to a failure of the adjudication algorithm. Recall that
agreement is not transitive, so FALSE _ALARM events are not incon-
sistent.

s DETECTED_FAILURE event. A FAILURE occurs together with a
CONFLICT. Comparison correctly detects a failure (fault).

s UN_DETECTED_FAILURE event. A FAILURE event occurs
simultaneously with an AGREEMENT. This is the most significant
event. A potential failure exists but is not detected by comparison.

Consider again Fig. 14.1, which shows responses from a hypothetical
three-version system. A simplex failure occurs when only one of the
three versions fails (unshaded regions). A doublet failure (2-tuple)
occurs when two components fail coincidentally (light shading). A
triplet failure, or 3-tuple failure, occurs when all three components fail
coincidentally (dark shading). If the probability that any of the shaded
areas exceed or do not achieve the probability of overlap expected by

random chance, then the assumption of independence is violated
[Triv82]. That is,

Plp, fails and p; fails} # P{p, fails} P{p, fails} C=+p (14.7)

—
or

Plp, fails and p, fails and ps fails} # P{p, fails} P{p, fails} P{p; fails}
(14.8)

where p; is the ith software variant. The most undesirable state of the
system, UN_DETECTED_FAILURE, occurs when the responses from
three coincidentally failing versions are identical, in which case
mutual comparison of these answers does not signal that a failure has
occurred.

Figure 14.2 provides an illustration of the events that may result
from comparison to tolerance TOL of floating-point outputs a, b, and ¢,
from hypothetical programs p;, pe, and ps, respectively. Additional
examples are found in Prob. 14.5.
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It is important to remember that excessively small tolerances may
produce an excessive incidence of FALSE _ALARM events which may
increase testing costs [Vouk88], while in operation this may result in
degraded system operation or even a critical system failure.

14.4 Basic Techniques

Two common fault-tolerant software schemes are the N-version pro-
gramming [Aviz77, Aviz85] and the recovery block {Rand75]. Both
schemes are based on software component redundancy and the
assumption that coincident failures of components are rare, and when
they do occur responses are sufficiently dissimilar that the mechanism
for deciding answer correctness is not ambiguous.

Fault-tolerant software mechanisms based on redundancy are par-
ticularly well suited for parallel processing environments where con-
current execution of redundant components may drastically improve
sometimes prohibitive costs associated with their serial execution
[Vouk90b, Bell90, Lapr90a]. Some hybrid techniques, such as consen-
sus recovery block [Scot83, Scot87], checkpoints [Aviz77], community
error recovery [Tso86, Tso87], N-version programming variants
[Lapr90a, Tai93], and some partial fault-tolerance approaches are also
available [Hech79, Stri85, Mili90].

14.4.1 Recovery blocks

One of the earliest fault-tolerant software schemes that used the mul-
tiversion software approach is the recovery block (RB) [Rand75,
Deb86]. The adjudication module is an acceptance test (AT). The pro-
cess begins when the output of the first module is tested for accept-
ability. If the acceptance test determines that the output of the first
module is not acceptable, it restores, recovers, or “rolls back” the state
of the system before the first or primary module was executed. It then
allows the second module to execute and evaluates its output, etc. If all
modules execute and none produce acceptable outputs, then the system
fails. Figure 14.3 illustrates the technique.

One problem with this strategy in a uniprocessor environment is the
sequential nature of the execution of versions [Lapr90a, Bell9ll,—
although in a distributed environment the modules and the acceptance
tests can be executed in parallel. Distributed recovery block is dis-
cussed in detail in [Kim89, Lyu95al. Another potential problem is find-
ing a simple and highly reliable acceptance test which does not involve
the development of an additional software version.

The form of acceptance test depends on the application. As suggested
in Fig. 14.3, there may be a different acceptance test for each module,
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Figure 14.3 Recovery blocks.

but in practice only one is usually used. An extreme case of an accep-
tance test is another complete module, and the acceptance test would
then consist of a comparison of a given module output with the one
computed by the acceptance test. This would be equivalent to a staged
two-version programming scheme (see the following section) where one
of the outputs in each stage was always from the same version (the
acceptance test).

14.4.2 N-version programming

N-version programming (NVP) [Aviz77, Chen78, Aviz85] proposes par-
allel execution of N independently developed functionally equivalent
versions with adjudication of their outputs by a voter. N-version pro-
gramming or multiversion programming (MVP) is a software general-
ization of the N-modular-redundancy (NMR) approach used in
hardware fault tolerance [Nels87]. The N versions produce outputs to
the adjudicator, which in this case is a voter. The voter accepts all N
outputs as inputs and uses these to determine the correct, 6F best, out-
put if one exists. There is usually no need to interrupt the service while
the voting takes place. Figure 14.4 illustrates the technique. We note
that the approach can also be used to help during testing to debug the
versions. This method, called back-to-back testing, is discussed further
in Sec. 14.8.2,

Over the years simple majority-voting-based N-version fault-tolerant
software has been investigated by a number of researchers, both theo-
retically [Aviz77, Grna80, Eckh85, Scot87, Deb88, Litt89, Voge87a,
Kano93a, Lyu95a] and experimentally [Scot84a, Scot84b, Bish86,
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Figure 14.4 N-version programming.

Knig86, Shim88, Eckh91, Lyu93a, Duga93b, Vouk93al. A reasonable
alternative to majority voting could be to use consensus voting, de-
scribed earlier. Another simple variation is median voting.

There are variants of the above architecture for distributed systems,
some of which are further discussed in Chap. 15. One such variant is
the N self-checking programming (NSCP), discussed below.

14.5 Advanced Techniques

There are ways to combine the preceding simple techniques to create
hybrid techniques. Studies of more advanced models such as consensus
recovery block [Bell90, Scot87, Deb88, Scot84a], consensus voting
[McA190], or acceptance voting [Bell90, Atha89, Gant91, Gers91] are
less frequent and mostly theoretical in nature.

14.5.1 Consensus recovery block

In [Scot83] and [Scot87] a hybrid system called consensu%{ecovery
block (CRB) was suggested. It combines NVP and RB in that order. If
NVP fails the system reverts to RB using the same modules (the same
module results can be used, or modules may be rerun if a transient
failure is suspected). Only in the case that NVP and RB both fail does
the system fail. A system block diagram is given in Fig. 14.5 where the
block RB means that an acceptance test is applied to the outputs of
the variants in the NVP block. CRB was originally proposed to treat
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the case of multiple correct outputs, since appropriate acceptance test-
ing can avoid that issue.

14.5.2 Acceptance voting

The converse of the above CRB hybrid scheme, which we call accep-
tance voting (AV), was proposed by [Atha89, Gant91, Bell91]. As in
NVP, all modules can execute in parallel. The output of each module is
then presented to an acceptance test. If the acceptance test accepts the
output it is then passed to a voter. The system is shown in Fig. 14.6.
The voter sees only those outputs which have been passed by the
acceptance test. This implies that the voter may not process the same
number of outputs at each invocation and hence the voting algorithm
must be dynamic. The system fails if no outputs are submitted to the
voter. If only one output is submitted, the voter must assume it to be
correct, and therefore passes it to the next stage. Only if two or more
outputs agree can the voter be used to make a decision. We then apply
dynamic majority voting (DMV) or dynamic consensus voting (DCV).
The difference between DMV and MV is that even if a small-iumber of
results are passed to the voter, dynamic voting will try to find the
majority among them. The concept is similar for DCV and CV.

1453 N se!f-checking programming

A variant of the N-version programming with recovery, that is, N self-
checking programming, is used in the Airbus A310 system [Lapr90a,
Duga93b]. In NSCP, N modules are executed in pairs (for an even N)
[Lapr90a]. The outputs from the modules can be compared, or can be
assessed for correctness in some other manner. Let us assume that
comparison is psed. Then the outputs of each pair are tested and if
they do not agree with each other, the response of the pair is dis-
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carded. If the outputs of both pairs agree, then these outputs are com-
pared again. Failure occurs if both pairs disagree, or the pairs agree
but produce different outputs. The technique is shown in Fig. 14.7
for N=4.

If a comparison of the outputs of the first pair of modules, M, and M,,
1s successful, then the output is passed to the next phase of the compu-
tation and the system is successful. If these two outputs disagree, then
a comparison of the outputs of the second pair of modules, M; and M,,
1s made. If the outputs of the second pair agree, then the output is
passed to the next phase. Otherwise the system fails. There is no
attempt to compare the four outputs simultaneously. We leave an anal-
ysis of the reliability of the system as exercise.

e

14.6 Reliability Modeling

Although existing fault-tolerant software (FTS) techniques can achieve
a significant improvement over non-fault-tolerant software, they may
not be sufficient for ensuring adequate reliability of critical systems.
For example, experiments show that incidence of correlated failures of
FTS system components may not be negligible in the context of current
software development and testing techniques, and this may result in a
disaster [Scot84a, Vouk85, Eckh85, Knig86, Kell86, Kell88, Eckh91].
Obviously, it is important to detect and eliminate faults causing depen-
dent failures as early as possible in the FTS life cycle and to develop
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FTS mechanisms that can adequately cope with any remaining faults.
Modeling of different FT'S mechanisms gives insight into their behav-
ior and allows quantification of their relative merits.

14.6.1 Diversity and dependence of failures

Intuition suggests that the modules which are used to compose a mul-
tiversion fault-tolerant system should be as diverse as possible. Soft-
ware reliability cannot be improved by using similar versions In a
multiversion system. The issue is how to quantify diversity in versions
and which techniques can be used to encourage the diversity [Lyu94al.

We first distinguish between specific inputs and programs versus
randomly chosen inputs and programs. Hence, suppose a countable col-
lection of program versions PV = {p,, p., . . . e been independently
developed, and assume, for generality, that the probability of selecting
one of the programs from PV is governed by the random variable ]
with density function S. That is, S(p) is the probability that p is chosen
from PV or that [] = p. Also assume that the possible set of inputs is X
= {x1, X9, X3, X4, . . .} and that the probability that an arbitrarily chosen
input X = x is the value of the density function @, @(x). Let v be the
bivariate score function v defined by

v(p,x) =1 if program p; fails on input x; (14.9)

=0 otherwise
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The value v(p;,x;) is the probability that the specific program p; fails
on the specific input x;. Let us first calculate the probability that an
arbitrary program I fails on a given input x:

P(I1 fails on x} = > v(p,x)PI] = p}

PV

= > v(p,x)S(p) (14.10)
PV

= 06(x)

The function 0 is the intensity function defined in [Eckh85]. Similarly,
we can define the probability that a specific program p fails on an arbi-
trary input X [Litt89]:

PlpfailsonX}=> uv(p,x)P{X =x}

X

=> u(p,x)Qx) (14.11)
X

= 6(p)

Correspondingly, we can also define the probability that an arbitrary
program [] fails on an arbitrary input X. Because of the duality of the
previous two probabilities we can define the random variable 6(X) = 09,
or the random variable ¢(I]) = @ and take their expected values (E[])
over the appropriate domain:

P[] fails on X'} = E[G] = E[®]

=5 v(p,08PQx) (14.12)

PV X

We now wish to compute the probability that fwo randomly chosen

programs fail on a single randomly chosen input X. This probability
becomes

PAT1; fails on X and T[], fails on X}

S5 S vy, 0v(pa,x)S(p)S(p2)Q(x)
X

PV PV

=S (0(x)*Q(x) = E[?] (14.13)
X

= 0'@2 +E2[®]
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where 0,2 is the variance of the random variable ©. The variance is
zero if and only if 8(x) is equal to its expected value for all x, that is, 6
must be a constant for two random programs to fail independently on
a random input!

However, we are interested in specific programs failing on random
inputs. The probability that two specific programs, p, and p,, fail on an
arbitrary input X (i.e., the probability that p, and p, have coincident
failures) is

Pip, fails on X and p, fails on X} = Z v(p,)v(pe,x)@(x) (14.14)
X

If the failures were independent then this product should be equal to
P{p, fails on X}P{p; fails on X}. We leave it as an exercise to show that
the latter product can underestimate or overestimate joint failure
depending on the amount of overlap of the input failure sets of the two
programs p; and p,. As you would expect, in practice, we wish for the
failure input sets to be disjoint to minimize the probability of coinci-
dent failures. If this is the case, the independence assumption overes-
timates the probability of joint failure.

Scott and his colleagues [Scot84b] were first to show, using an
experiment, that programs may not fail independently, and they
developed models to treat this case. Their results were later corrobo-
rated by other experimenters. Unfortunately, the models developed to
treat the general case become quite complicated and intractable as the
number of versions increases, since joint failure probabilities must be
estimated. A set of experimental data related to failure correlation is
discussed later in this chapter. For a more general treatment of the
correlation issue, you should consult the works by [Scot84a, Eckh85,
Litt89].

Originally, the definition of reliability involved the behavior of hard<”
ware over time. We are also interested in software behavior over time
as faults are identified and repaired. In critical systems, however, we
are interested also in the behavior of redundant modules for each input
and we wish to know the probability that a software-fault-tolerant sys-
tem will produce the correct answer. This motivates the approach
called data-domain reliability modeling [Ande81]. We can then use this
and other information, as well as techniques such as Markov modeling
and Petri nets, to determine such standard parameters as mean time
to failure, etc. The latter is part of the time-domain analysis. Time-
domain analysis is concerned with the behavior of FTS systems over a
mission (or time period) within which reliability of individual compo-
nents may or may not change. It is discussed very briefly later in this
section and, for example, in [Kano93a].
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The reliability of a module is the probability it will produce the cor-
rect output (assuming the input is correct) where inputs are taken
from the operational input domain with density function @. Since @ is
rarely known, it is usually assumed to be uniformly distributed or ran-
dom. Normally, the reliability of a module is estimated from testing
and is a function of the number of test cases that have been presented.

Let f; denote the probability that module p; fails (on an arbitrary
input):

f; = Pimodule p; fails) = > v(p;,2)Q(x) (14.15)

An estimate of the failure probability, £, is the number of failures
observed in presenting random inputs to a module based on the opera-
tional input distribution. That is, if £ is the number of failures in n ran-
dom inputs, then

>

(14.16)

e

k
n

We leave it to the reader to estimate the variance of this estimate. We
will assume that we have a nonzero value for f; in the discussion below.
In the independent case, the reliability of module i, that is, the proba-
bility that it will not fail, is estimated as

7 =1— P{module i fails} =1 -/, (14.17)

14.6.2 Data-domain modeling

The following data-domain analysis examples are intended to illus-
trate two things: (1) how to construct models by first defining events of
interest and the associated probabilities, and then combining them
into a reliability estimate, and (2) provide insight into the relative mer-
its of different fault-tolerance strategies.

For tractability, the analyses are made using the assumption that
intervariant failure events are independent, i.e., the failures of specific
programs on random inputs are independent of each other. Although
this abstraction simplifies the modeling and provides insight into the
relative behavior of different FTS strategies, it does not always provide
a realistic result for real-life situations where common-cause faults
and correlated coincident failures are present. For analyses that incor-
porate different interversion failure correlation assumptions, the
reader is directed to works of [Eckh85, Litt89, Nico90, Tai93, Kano93a,
Tome93, Duga94c, Duga95, Lyu9ba].

We restrict our examples to N = 3, and we leave it as exercises to ana-
lyze the systems for other values of N. We also leave it to the reader to
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construct solutions for more complex mechanisms (e.g., AV and CRB,
see Probs. 14.18 and 14.19). In this context, let ry, 5, and 3 be the reli-
abilities of each version of a three-version fault-tolerant system. Let B
be the reliability of the acceptance test in RB; let Ry be the reliability
of the voter in NVP; and let S denote the system reliability.

Recovery block. In RB, to simplify analysis, we assume that the (con-
ditional) probability, B, of rejecting a correct answer is equal to the
probability of accepting an incorrect one, that is B = (1 - B). Then the
system success depends on at least one module producing correct out-
put and the acceptance test recognizing that it is correct. We can parti-
tion the event space by the number of the module which produces the
correct output that is also accepted by the AT. We will assume that the
state of the system is always recovered without error. Let the three-
version RB be denoted by RB3.

1. The first event is that the primary module is correct and the AT
accepts the output. The probability of this event is rB.

2. The second event is that the output of the first module is rejected
and the output of the second module is correct and accepted. This
event has two possible outcomes: the first module can be incorrect
and the AT appropriately rejects it, or the first module can be correct
but the output is rejected by the AT. Hence, the probability of the
second eventis (1—-r)BroB+r (1-B)r; B.

3. Similarly, for the third event, if the third module produces the cor-
rect output, then the output of modules 1 and 2 were rejected by the
AT. This can happen in one of four ways:

. Module 1 output is incorrect and the AT correctly rejects it, mod-
ule 2 output is incorrect and the AT correctly rejects it, and mod-
ule 3 is correct and the AT accepts it.

b. Module 1 output is correct but the AT rejects it, module 2 output
is incorrect and the AT correctly rejects it, and module 3 output is
correct and the AT correctly accepts it.

Cases ¢ and d are similar.

Rearranging and simplifying the sum of these probabilities yields a
system reliability of

Sgpa(ri, ey T3, B) = B(ry + rirg + rirary + roB — 2rir, B +
rirsB +roryB — 4ryryrs B +r3 B — (14.18)
Or,rs B — 2rors B + 4riryr; B
If we assume that all versions have the same reliability, , we have

Spes . B)=Br(1+B+B*+r+r®—4r’B—4rB*+ 4r?B? (14.19)
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If, in addition, we assume B = 1, that is, ideal operation of the accep-
tance testing algorithm, Eq. (14.19) reduces to

Seps( nn D=3r(1-r)+r? (14.20)

The surface plot of RB3 system reliability as a function of B and r is
shown in Fig. 14.8.

N-version programming. The reliability of a three-version NVP system
is the probability that at least two modules produce correct output and
that the voter is correct. The probability that at least two modules are
correct is the probability that modules 1 and 2 are correct and module
3 fails, or modules 1 and 3 are correct and module 2 fails, or modules 2
and 3 are correct and module 1 fails, or that all three are correct. Under
our assumptions, this probability is

rlrz(l—r3)“‘|“r1r3(1—rg)+f'2r3(1“r1)+r1r2r3 (1421)

Hence, if we assume voter failure is also independent of module failure,
the system reliability Sxvyes(ry, g, 73, Ry), of a three-version NVP fault-
tolerant system becomes

SNVPB(rly s, rg,Rv) =RV (rlrz + g+ rofg — 27‘17'27'3) (14.22)

In practice we would expect that all units that comprise an F'TS sys-
tem will have been tested to the point where there are no known resid-
ual faults. This may or may not mean that they have very similar
reliability, but it may be a reasonable assumption. Hence, an interest-
ing special case is the one where all functionally equivalent versions
are assumed to have equal, and very high, lower bounds on their relia-

Figure 14.8 Sggs as functions of r and B.
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bility. Individual version reliability estimates must be obtained inde-
pendently using, for example, appropriate reliability growth models.

Let all versions have the same estimated reliability ». Then the prob-
ability that an NVP system will operate successfully (assuming a per-
fect voter) under majority voting strategy is given by the following
expression (e.g., [Grna80, Triv82, Nels87]):

Snves(ri=re=...=r,=r1 Ry) =RVZ Ciril—nr)n (14.23)

i=m

where summation starts with the lower bound on required agreement
number.

Equation (14.23) can be used to show that majority voting
increases reliability over a single version only if the reliability of the
versions is larger than 0.5 and the voter is perfect. If the output space
has cardinality p, then N-version programming will result in a sys-
tem that is more reliable than a single component only if r > 1/p
[McAI90].* We call this value the boundary version reliability. It is
the generalization of the classical N-modular redundancy rule for a
binary output space where r > 0.5, and it applies in the case of con-
sensus voting. Note that, when a version fails and we let the proba-
bility of occurrence of any incorrect output be g, then, in the simplest
situation, g = (1 - r)/(p - 1).

In Fig. 14.9 we show the classical majority voting approach with a
binary output space (boundary version reliability of 1/p = 0.5). We see
that the version reliability must be larger than the boundary version
reliability in order to improve the performance of the system when
more versions are added.

Figure 14.10 shows the effect of version reliability and the number of
versions under consensus voting strategy. The minimal agreement num-
beris m =|L(n +p—1)pl=Ln+2)/3], where | ]| denotes the floor func-
tion. The average boundary reliability of the versions is 1/p = 1/3. All
versions are assumed to have the same reliability, and all failure states
(J = 2,3) the same probability (1 — g)/(1 — p) =(1 — ¢)/2 of being excited.

If all versions have the same reliability we have

Swves (1, 1, 1, Ry) = Ry(3r* - 2r°) (14.24)

We note that Syyps is bounded by Ry. Hence, if Ry <r, then one should
opt to invest software development time on a single version rather
than develop a three-version NVP system.

* Additional assumptions: all components fail independently; they have the same reli-
ability r; correct outputs are unique; and the voter is perfect.
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Figure 14.10 System reliability versus component reliability for
the consensus voting strategy. The number of voting components
is n, all are equally reliable, the agreement number is m, p=3,
and the boundary version reliability is 1/p = 0.3333.

It is interesting to compare an RB3 with perfect acceptance test to an
NVP3 system with perfect voter. This is done in Fig. 14.11. We see that
under the assumption of failure independence, the RB system is a better
solution than a majority-voting three-version system. However, note
that it may be far easier to ensure very high reliability of the voting soft-
ware than to devise and implement an acceptance test with no faults.




594 Emerging Techniques

1.0
0.9
08
0.7
0.6
0.5
04
0.3
0.2
0.1

0.0 | | | I ! I | |
00 01 02 03 04 05 06 07 08 09 10

Component reliability

Triplex RB
i > ™~ Simplex

T I I I

System reliability

. 3-Version
majority vote

Figure 14.11 Comparison of N-version and recovery block schemes for
n = 3. Both voter and acceptance test are assumed to be perfect.

This is confirmed by the work of Kanoun et al. [Kano93al]. They have
shown that the impact of independent faults is much higher in the case
of NVP than in the case of RB because the versions are run in parallel.
They also concluded that the impact of common-cause faults will likely
be higher in the case of RB than in the case of NVP because very reli-
able acceptance tests may be difficult to construct. The results shown in
Sec. 14.7 confirm this. We note the more substantial impact of faults on
NVP when reliability of individual components is low, and the better
performance of NVP when reliability of components is higher but RB
acceptance test is failure prone. In the case of RB, common-cause faults
include similar or related faults among RB alternates and the accep-
tance test, as well as independent faults in the acceptance test. In the
case of NVP, common-cause faults are similar or related faults among
components and the voter, as well as independent faults in the voter.

14.6.3 Time-domain modeling

Time-domain analysis is concerned with the behavior of system relia-
bility over time. For example, during software debugging and testing
we would expect the reliability of the components (e.g., [Musa87]) and
the system (e.g., [Kano93a]) to grow. On the other hand, during opera-
tion without repair, the reliability of a component remains constant. In
the time-domain, reliability can be defined as the probability that a
system will complete its mission, or operate through a certain period of
time, without failing.

The simplest time-dependent failure model assumes that failures
arrive randomly with interarrival times exponentially distributed with
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expected value A. Hence, the probability that a module will produce the
correct output decreases over time since it receives a larger number of
inputs, and we have

r{t)=e™ (14.25)

During operation it is often assumed that the failure or hazard rate
A is constant; however, during reliability growth or reliability decay
periods the failure rate is itself a function of time, and then the
expression that describes r becomes more complex (e.g., [Musa87,
Kano93a)).

Time-dependent behavior of components can have significant impact
on the operation of a fault-tolerant system. Therefore, it is important
that practical fault-tolerant systems are analyzed not only with
respect to their data-domain characteristics, but also with respect to
their time-domain characteristics (e.g., [Grna80, Triv82, Deb86, Deb88,
Arla90, Lapr90a, Siew92, Tai93, Kano93a)).

To illustrate, consider the following. Assuming that Eq. (14.25) holds,
that A is fixed, and that Ry =1, Eq. (14.24) can be modified to yield

Sxves (1, 1) = 3e2M — 234 (14.26)

This system has an interesting property. If we plot Sxves (1, 1, 1, 1,8)
and r(¢) against time, we find that the two curves cross when ¢ = ¢, =
In2/A = 0.7/A [Triv82, Siew92]. For t < ¢, the system is more reliable
than a single version, but during longer missions, ¢ > t,, NVP3 fault tol-
erance may actually degrade reliability.

Of course, the above is just an illustration of a very special case. Usu-
ally, the problem is far more complex, and a complete analysis, including
failure correlation effects and hardware issues, is essential (see Chap. 15
and [Grna80, Tome93, Kim89, Lyu95a, Duga95]). For example, Tomek
et al. have modeled RB with failure correlation and have analyzed
the time-dependent behavior of RB reliability in considerable detail
[Tome93]. Another example is the work of Kanoun et al. [Kano93a], who
have modeled reliability growth of individual components using the
hyperexponential model [Lapr90b], and have analyzed the impact this
has on reliability of NVP and RB models. As mentioned earlier, they
have found that NVP is far more sensitive to the removal of independent
faults than RB because of the parallel nature of the NVP execution and
decision making (voting).

On the other hand, if similar or related faults are present they are
likely to have a larger impact on RB performance because acceptance
tests tend to be more complex and more correlated to the actual appli-
cation-specific nature of the components than simple voting compar-
isons. Hence, removal of similar or related faults and faults in decision
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nodes will probably produce more substantial reliability gains in the
case of RB than in the case of NVP.

14.7 Reliability in the Presence of
Interversion Failure Correlation

Experiments have shown that interversion failure dependence among
independently developed functionally equivalent versions may not be
negligible in the context of current software development and testing
strategies [Scot84a, Scot84b, Vouk85, Knig86, Eckh91, Gers91]. There
are theoretical models of FTS reliability which incorporate interversion
failure dependence in different ways (e.g., [Eckh85, Litt89, Nico90,
Tai93, Duga94c]). Coincident failures can be treated as resulting from
statistically correlated faults (e.g., [Eckh85, Nico90]) or as deriving from
related or similar faults that cause IJAW results, and from unrelated or
independent software faults that cause dissimilar but wrong results
(e.g., [Lapr90a, Duga94c]). Furthermore, the related and unrelated soft-
ware faults can be assumed to behave in a statistically independent
[Duga94c}, mutually exclusive [Lapr90a], or some other manner. How-
ever, many models assume interversion failure independence as well as
failure independence of acceptance tests and voters with respect to ver-
sions and each other.

In this section we illustrate the effects that can be observed in an
FTS systems under severe failure correlation conditions. We compare
several experimental implementations of consensus recovery block and
consensus voting with more traditional schemes, such as N-version
programming with majority voting. The data derived from the experi-
mental study is described in [Vouk93al].

14.7.1 An experiment

Experimental results based on a pool of functionally equivalent pro-
grams developed in a large-scale multiversion software experiment are
described in several papers [Kell88, Vouk90a, Eckh9l, Vouk93al.
Twenty versions of an avionics application were developed by 20 two-
member development teams working independently at four universi-
ties. The versions were written in Pascal and ranged in size between
2000 and 5000 lines of code.

The results discussed here are for the program versions in the state
they were in immediately after the unit development phase, but before
they underwent an independent validation phase (in real situations,
versions would be rigorously validated before operation). This was
done (1) to keep the failure probabilities of individual versions rela-
tively high and easier to observe and (2) to retain a considerable num-
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ber of faults that exhibit mutual failure correlation in order to high-
light correlation-based effects. The nature of the faults found in the
versions is discussed in detail in two papers [Vouk90a, Eckh91].

Two subsets of N programs (called N-tuples) were generated: those
with similar average* N-tuple reliability and those that have reliabil-
ity within a particular range. The average N-tuple reliability is used to
focus on the behavior of a particular N-tuple instead of the population
(pool) from which it was drawn.

In the experiment a number of input profiles, different combinations
of versions, and different output variables were considered. Failure
probability estimates, based on the three most critical output variables
(out of 63 monitored), are shown in Table 14.1. The variables are of type
real, and each has a very large output space.

Two test suites, each containing 500 uniform random-input test
cases, were used in all estimates. The sample size is sufficient for the
version and N-tuple reliability ranges reported here. One suite, called
Estimate I, was used to (1) estimate individual version failure proba-
bilities, (2) N-tuple reliability, (3) select acceptance test versions, (4)
select sample N-tuple combinations, and (5) compute expected inde-
pendent model response. The other test suite, Estimate II, was used to
investigate the actual behavior of N-tuple systems, based on different
voting and fault-tolerance strategies.

For recovery block and consensus recovery block, one version was
used as an acceptance test. This provided correlation not only among
versions, but also between the acceptance test and the versions. Accep-
tance test versions were selected first, then N-tuples were drawn from
the subpool of remaining versions. The voter (comparator) was
assumed to be perfect.

The fault-tolerant algorithms of interest were invoked for each test
case. The outcome was compared with the correct answer obtained

* Average N-tuple reliability estimate is defined as
N
SN P
P _i§1 N

and the corresponding estimate of the standard deviation of the sample as

5o /% (p - p)?
i=1 N-

k

“ Si(j)
P2 %

j=1

where

is estimated reliability of version i over the test suite composed of & test cases, s;(j) is a
score function equal to 1 when version i succeeds and 0 when it fails on test case j, and
1 - p, is the estimated version failure probability.
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TABLE 14.1 Estimated Version Failure
Probabilities (f))

Failure rate*

Version Estimate I Estimate II
1 0.58 0.59
2 0.07 0.07
3 0.13 0.11
4 0.07 0.06
5 0.11 0.10
6 0.63 0.64
7 0.07 0.06
8 0.35 0.36
9 0.40 0.39

10 0.004 0.000
11 0.09 0.10
12 0.58 0.59
13 0.12 0.12
14 0.37 0.38
15 0.58 0.59
16 0.58 0.59
17 0.10 0.09
18 0.004 0.006
19 0.58 0.59
20 0.34 0.33

* Based on three most important output variables.
Each column was obtained on the basis of a separate
set of 500 random test cases.

from a “golden” program [Aviz77, Vouk90al, and the frequency of suc-
cesses and failures for each strategy was recorded.

14.7.2 Failure correlation

The failure correlation properties of the versions can be deduced from
their joint coincident failure profiles, and from the corresponding iden-
tical-and-wrong response profiles. For example, Tables 14.2 and 14.3
show the profiles for a 17-version subset (three versions selected to act
as acceptance tests are not in the set). In Table 14.2 we show the num-
ber of versions that fail coincidentally, and the corresponding number
of occurrences of the event over the 500 samples. Also shown is the
expected number of occurrences for the model based on independent
failures, or the binomial model [Triv82].

For instance, inspection of Table 14.2 shows that the number of
occurrences of the event where nine versions fail coincidentally is
expected to be about 8. In reality, we observed about 100 such events.
Table 14.3 summarizes the corresponding occurrences of identical-and-
wrong coincident responses. For example, in 500 tries there were 15
events where eight versions coincidentally returned an answer which
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TABLE 14.2 Frequency Data for a 17-Version Set

No. of
versions
that failed
together o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Frequency 168 13 28 0 O 0 75 31 14 105 15 17 o0 18 15 1 0 O
Model 0 4 18 52 96 121 106 65 28 8 2 0 0 0o O 0 0 O

TABLE 14.3 Frequency of Empirical IAW Events Over 500 Test Cases for a 17-Version Set

No. of
versions that
coincidentally
returned an
IAW answer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17

Frequency 2049 164 1 16 1 1 2 15 0 O © G O O 0 O

was wrong yet identical within the tolerance used to compare the three
most critical (real) variables. These results are strong indicators of a
high degree of interversion failure dependence in this version set.

14.7.3 Consensus voting

Figures 14.12 and 14.13 illustrate the observed relationship between
N-version programming with consensus voting and with majority vot-
ing. The figures show success frequency for three-version and seven-
version systems over a range of average N-tuple reliability assuming
perfect voting. The ragged look of the experimental traces is partly due
to the small sample (500 test cases), and partly due to the presence of
very highly correlated failures. The experimental behavior is in good
agreement with the trends indicated by the theoretical consensus vot-
ing model based on failure independence [McAI90, Vouk93al.

For instarnce, we see that for N = 3 and low average N-tuple rehabﬂ-
ity, N-version programming has difficulty competing with the best ver-
sion. Note that the best version was not preselected based on Estimate
I data. Instead, it is the N-tuple version which exhibits the smallest
number of failures during the actual evaluation run (Estimate II). The
reason N-version programming has difficulty competing with the best
version is that the selected N-tuples of low average reliability are com-
posed of versions which are not balanced, that is, their reliability is
very different, and therefore variance of the average N-tuple reliability
is large. As average N-tuple reliability increases, N-version program-
ming performance approaches or exceeds that of the best version. In
part, this is because N- tuples become more balanced, since the number
of higher-reliability versions in the subpool from which versions are
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selected is limited. We also see that N > 3 improves performance of con-
sensus voting more than it does that of majority voting. This is to a
large extent because, for N > 3, plurality decisions become possible,
that is, in situations where there is a unique maximum of identical out-
puts, the output corresponding to this maximum is selected as the cor-
rect answer even though it is not in the majority.

The advantage of consensus voting is that it is more stable than
majority voting. It always offers reliability at least equivalent to major-
ity voting, and it performs better than majority voting when average
N-tuple reliability is low, or the average decision space in which voters
work is not binary. A practical disadvantage of consensus voting may
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be the added complexity of the voting algorithm, since the strategy
requires multiple comparisons and random number generation.

14.7.4 Consensus recovery block

In the case of version failure independence and zero probability for
identical-and-wrong responses, consensus recovery block is always
superior to N-version programming (given the same version reliability
and the same voting strategy), or to recovery block (given the same ver-
sion and acceptance test reliability) [Scot87, Bell90]. However, given
the same voting strategy, and very high interversion failure correla-
tion, we would expect consensus recovery block to do better than N-
version programming only in situations where coincidentally failing
versions return different results. We would not expect the consensus
recovery block to be superior to N-version programming in situations
where the probability of identical-and-wrong answers is very high,
since then many decisions are made in a very small voting space, and
the consensus recovery block acceptance test is invoked very infre-
quently.

Figures 14.14 and 14.15 show the number of times the result pro-
vided by a fault-tolerance strategy was correct, plotted against the
average N-tuple reliability. The same acceptance test version was used
by consensus recovery block and recovery block. From Fig. 14.14 we see
that for N = 3, consensus recovery block with majority voting provided
reliability always equal to or better than the reliability by N-version
programming with majority voting (using the same versions). The
behavior of a five-version system using consensus voting, instead of
majority voting, is shown in Fig. 14.15. From the figure we see that, at
lower N-tuple reliability, N-version programming with consensus vot-
ing becomes almost as good as consensus recovery block. Consensus
recovery block with consensus voting is quite successful in competing
with the best version. However, it must be noted that, given a suffi-
ciently reliable acceptance test, or binary output space, or very high
interversion failure correlation, all schemes that vote may have diffi-
culty competing with recovery block.

Consensus recovery block with consensus voting is a more advanced
strategy than N-version programming with consensus voting, and
most of the time it is more reliable than N-version programming with
consensus voting. However, there are situations where the reverse is
true. Consensus recovery block with consensus voting employs the
acceptance test to resolve situations where there is no plurality. N-
version programming with consensus voting uses random tie-breaking.
N-version programming with consensus voting may be marginally
more reliable than consensus recovery block with consensus voting
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Figure 14.15 Consensus recovery block with consensus voting com-
pared with N-version programming with consensus voting and
recovery block,

when the acceptance test reliability is low, or when acceptance test and
program failures are identical and wrong.

Similarly, consensus recovery block with consensus voting is usually
more reliable than consensus recovery block with majority voting.
However, if the number of agreeing versions is less than the majority,
the reverse may be true. For instance, if there is no majority, then
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majority voting will fail and the decision will pass to the acceptance
test (which may succeed), while consensus voting will vote, and, if the
plurality is incorrect because of identical-and-wrong answers, consen-
sus voting may return an incorrect answer.

Both events described in the previous two paragraphs have been
observed [Vouk93a]. In our experience, neither event is very frequent.
A more general conclusion is that the consensus recovery block strat-
egy appears to be quite robust in the presence of high interversion cor-
relation, and that the behavior is in good agreement with analytical
considerations based on models that make the assumption of failure
independence. Of course, the exact behavior of a particular system is
more difficult to predict, since correlation effects are not part of the
models.

An advantage of consensus recovery block with majority voting is
that the algorithm is far more stable, and is at least as reliable as
N-version programming with majority voting. However, the advantage
of using a more sophisticated voting strategy such as consensus voting
may be marginal in high-correlation situations where the acceptance
test is of poor quality. In addition, consensus recovery block will per-
form poorly in all situations where the voter is likely to select a set of
identical-and-wrong responses as the correct answer (e.g., a binary out-
put space). Instead, we could either use a different mechanism, such as
the acceptance voting algorithm discussed below, or an even more
complex hybrid mechanism that would run consensus recovery block
and acceptance voting in parallel, and adjudicate series-averaged
responses from the two [BeldJ90, Atha89]. A general disadvantage of all
hybrid strategies is an increased complexity of the fault-tolerance
mechanism, although this does not necessarily imply an increase in
costs [McAl91].

14.7.5 Acceptance voting

Acceptance voting is very dependent on the reliability of the accep-
tance test (AT). In some situations AV performs better than CRB, or
any other voting-based approach. For example, AV reliability perfor-
mance can be superior when there is a large probability that the CRB
voter would return a wrong answer, and at the same time the AT is
sufficiently reliable so that it can eliminate most of the incorrect
responses before the voting. This may happen when effective output
space is small (that is, voter decision space is small; see Prob. 14.6b). If
AT is sufficiently reliable, AV can perform better than RB. In general,
however, AV systems will be less reliable than CRB systems. Figure
14.16 illustrates experimental results for N = 3.
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14.8 Development and Testing
of Multiversion Fault-Tolerant Software

As we have seen, fault-tolerant software mechanisms often rely on the
functional redundancy of components. This means that significant
intercomponent dependence of failures may seriously endanger the
effectiveness of these mechanisms. Hence, it is important to detect and
eliminate faults that can cause correlated failures as early as possible.
Unfortunately, current software production approaches are generally
not geared toward early detection and classification of faults that can
cause coincident and correlated software failures; neither is there a
clear understanding of how this class of errors is generated. The FTS
development issues are discussed in some detail in, for example,
[Cris85, Kell86, Vouk86b, Voge87a, Kell88, Vouk88, Lapr90a, Lyu92b,
Lyu93al.

Appropriate specification, design, coding, and testing approaches are
essential, and in this context of special interest is practical use of for-
mal methods, prototyping, reliability growth modeling, and methods
for early detection of coincident failures.

A successful FTS development strategy for multiversion software
should ensure the following:

s A small probability that the components participating in failure
detection and correction decisions fail coincidentally. This includes
independent as well as correlated coincident failures.

» High individual component reliability.

» High reliability of adjudication algorithms and their implementa-
tions, if adjudication is used, as well as low probability that the adju-
dication algorithm failures are related to those of the components.
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a High accuracy and reliability of acceptance tests, if acceptance test-
ing is used, as well as low probability that the acceptance test fail-
ures are related to those of the components.

14.8.1 Requirements and design

Two areas where FTS development must differ from single-component
development, and where special attention should be focused, are soft-
ware requirements and design. These phases are the potential source
of a large number of correlated errors [Vouk90a).

Of course, we should use independent and isolated teams for develop-
ment of multiple software versions or variants. But equally important is
that the requirements are specified and analyzed using formal methods
suitable for the problem being considered [IEEE94]. Risk analysis
should be part of the approach (e.g., [Boeh86, Fran88)). Specification doc-
uments must be debugged and stabilized prior to being used for the
development of the components. This can be achieved by developing pro-
totypes (pilot code) of the final code. However, one must be wary of exces-
sive coupling of the detailed prototype solutions with the specifications.
This could eliminate beneficial fault-randomizing diversity usually pro-
vided by the detailed software design and implementation solutions.

Two decisions need to be made relatively early in the process: how
many versions will be developed and which fault-tolerance strategy to
use. Apart from economic considerations (see Sec. 14.8.3) the key ques-
tions in both cases are (1) how many faults need to be tolerated and (2)
what level of fault-tolerance is expected.

In general, the larger the number of versions, the more faults can be
tolerated. For example, two coinponents are usually not capable of cor-
recting for a failure of one of them. On the other hand, three versions
tolerate one fault, four versions can tolerate up to two faults, etc. The
real problem is whether or not an increase in the number of versions
affects the number of correlated faults and its impact on the effective-
ness of the selected fault-tolerance algorithm [Lapr90a].

The size of components is also an issue. A decomposition of a soft-
ware problem into smaller components helps in making more precise
decisions and effects better error control, but it adds processing over-
head and also reduces diversity through a larger number of decision
points, which require at least some amount of execution synchroniza-
tion [Lapr90a, Vouk90b]. The choice of the fault-tolerance technique
will be driven by trade-off analysis (modeling) of (1) the reliability
gains, (2) performance requirements, and (3) cost, resource, and sched-
ule constraints [Lapr90a].

During all phases of the development of multiversion software, it is
necessary to follow a carefully designed and enforced protocol for prob-
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lem reporting and resolution. Such a protocol must have provisions for
ensuring independence of the development efforts and avoidance of
more common sources of correlated faults—for example, communica-
tion errors and common knowledge gaps [Vouk90a] or casual ex-
changes of information among development teams [Lyu93].

14.8.2 Verification, validation, and testing

Verification, validation, and testing should be formalized and should
strive to provide evidence of diversity, as well as evidence that individ-
ual components have high reliability and that there are no correlated
failures either among the components or between the components and
the decision algorithms (e.g., voting, acceptance test). With a process
that includes careful inspection and testing of specifications, designs,
and code, fault-tolerant software becomes a viable option for increasing
reliability of a software-based system [Thev91].

A testing technique that, under the right conditions, may provide
some help is back-to-back testing [Sagl86, Vouk90c¢, Lapr90a]. Back-to-
back testing technique involves pairwise comparison of the responses
from all functionally equivalent components developed for the FTS sys-
tem. Whenever a difference is observed among responses, the problem
is thoroughly investigated for all test cases where even one component
answer differs. Of course, IAW responses are still a problem and need
to be addressed separately through inspections and testing [Vouk90al.
However, excessive reliance on back-to-back testing can be counterpro-
ductive and can result in an overestimation of the component and sys-
tem reliability [Bril87, Vouk90c].

As an illustration of the error-detecting power of back-to-back testing,
consider an approximate bound on the effectiveness of this testing strat-
egy assuming negligible intercomponent failure correlation. It is reason-
able to assume that in practice an attempt will be made not to release
software versions with any known faults, and that the versions will be
tested to approximately the same level of reliability. Therefore we shall
assume that all components have failure probability equal to £ The prob-
ability that n independent versions fail simultaneously on a test case is
f". If the output space is binary, back-to-back testing will not detect a
failure when all components fail, i.e., all answers are identical and
wrong.

Hence, the probability that a failure will be detected is

Plfailure is detected by back-to-back testing} > 1-f"-(1-f)"
(14.27)
If we measure the efficiency of the processes through the probability

that a failure is detected by a test case, we see that it depends on the
program failure probability f and the number of versions involved.
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The process of adding more components in order to increase failure-
detection efficiency is one of diminishing returns under the assumption
of independent failures. Let us assume that the probability of TAW
responses is zero. Then, ideally, the fractional gain in failures detected
by increasing n-tuple size from n — 1 to n is

1-(1-/)"
1_(1_}(‘)11—1

It can be shown that for small f this fraction reduces to F(N) =
N/(N - 1), that is, to the series 2/1, 3/2,4/3, . . . ,1. This is illustrated in
Fig. 14.17.

The fraction is plotted against the size of the larger tuple. Each point
compares the efficiency of a k-tuple with that of the tuple one compo-
nent smaller. We see that the incremental contribution to the efficiency
of failure detection is considerably reduced for N-tuple sizes larger
than 4 or 5. The line marked with f = 0.113 shows experimental data
obtained from a large multiversion experiment [Kell88, Vouk90c]. Note
that the theoretical calculations are based on an interaction model that
assumes failure independence, while in the experiment the interver-
sion failure correlation was in excess of what would be expected if the
failures were independent,

F(n) = (14.28)

14.8.3 Cost of fauit-tolerant software

Cost-effectiveness of fault-tolerant software is an open issue, although
there is evidence that in some cases the approach is cost-effective.

For example, the experience of the Ericsson company is that diver-
sity is cost-effective [Hage87]. Ericsson found that the costs of develop-

Theory (small p limit)
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2 3 4 5 6 7
k-tuple size

Figure 14.17 Illustration of the diminishing returns from succes-
sively larger k-tuples. The theoretical calculations are based on a
failure model that assumes failure independence. Experimental
data exhibited some positive failure correlation.
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ing two functionally equivalent software versions is not double the cost
of a single one for at least two reasons. First, not all parts of the system
are critical, and therefore only the critical parts require additional
work. Second, while the cost of program specification (design), coding,
and testing is doubled, the cost of requirement specification, system
specification, test specification, and system test execution is not dou-
bled. There is also evidence that back-to-back testing is effective in dis-
covering faults not detected by other testing techniques, and that it
improves the quality of testing. There are other examples.

Panzl [Panz81] has found that dual-program development (with back-
to-back testing) increased the initial development cost by 77 percent (not
factor 2), but reduced the number of residual errors from 69 to 2.

[Voge87c] described several experiments related to the use of diverse
programming and comparison testing. In one experiment 14 percent of
the total number of detected faults were detected by back-to-back test-
ing of three code versions after extensive individual testing of the ver-
sions was completed. It is also noted that dual programming was good
not only for detection of implementation faults, but for detection of
specification faults.

In the PODS experiment [Bish86, Bish88], again after extensive
application of more traditional techniques, nine faults were detected by
back-to-back testing, three of which were classified by the authors as
“fail-danger” or critical faults. The cost of traditional testing was about
0.4 person-hours per test case, while the cost of back-to-back testing
was about 0.4 person-hours per 250 test cases. It is also found that the
cost of single-version development compared with threefold diversity
(without back-to-back testing costs) was about 997 versus 2258 person-
hours, i.e., an increase of about 126 percent, not a factor of 3.

Similarly, in [Shim88] authors report that 107 faults discovered by
back-to-back testing were not detected by any other testing technique
they used. However, they also note that the other testing found about
150 faults not detected by back-to-back testing they applied after the
conventional testing.

Laprie et al. [Lapr90a] have analyzed the cost of a number of FTS
approaches. They consider a number of sources of increased costs, such
as the overhead due to decision-point synchronization, failure detec-
tion, and adjudication. They also consider a number of factors that
reduce the cost per version, such as back-to-back testing, common test-
harness development, and common test suites. Their findings are that
in a multiversion setting a typical component cost is about 75 to 80
percent of single-version costs. This supports empirical results men-
tioned in the previous paragraphs. |

The cost of FTS has been modeled by a number of researchers. The
cost models are closely tied to reliability modeling and the underlying
assumptions. The actual models are beyond the scope of this book, and
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the interested reader is directed to [Bhar81, McAl85, Sagl86, Vouk90c,
Lapr90a, McAl91, Lyu95a] and references therein.

14.9 Summary

A way of handling unknown and unpredictable software failures
(faults) is through fault tolerance. In this chapter we introduced some
techniques that can be used to develop fault-tolerant software. We
focused our attention on methods that are based on redundancy
through functionally equivalent software components.

The basic idea is that the required functionality is provided through
a set of functionally equivalent software modules developed by diverse
and independent production teams. In operation, all modules are given
the same inputs. If one module fails, another can provide the correct
answer. The underlying assumption is that it is possible to distinguish
between incorrect and correct answers and continue system operation
using the correct output. The basic problem is that it is conceivable
that all modules will harbor the same fault. In operation, this may pre-
vent distinction between incorrect and correct responses and a critical
system failure may occur. The frequency of occurrence of such events in
real-life software is still an open issue.

We have described some common and some advanced FTS tech-
niques. For example, consensus voting is a generalization of N-version
programming with majority voting. It provides adaptation of the voting
strategy to varying component reliability, failure correlation, and out-
put space characteristics. Since failure correlation among versions
effectively changes the cardinality of the space in which voters make
decisions, consensus voting is usually preferable to simple majority
voting in any fault-tolerant system since it may provide some degree of
protection from correlated failures.

Consensus recovery block is a hybrid technique that usually outper-
forms N-version programming. It also competes very successfully with
recovery block in situations where the acceptance test is not of the
highest quality. Consensus recovery block is surprisingly robust even
in the presence of failure correlation. Acceptance voting is, under spe-
cial circumstances, more reliable than both consensus recovery block
and recovery block. However, in general, acceptance voting offers lower
reliability than the other techniques.

We briefly discussed time-dependent issues and the need for such
modeling, and FTS development and cost issues.

Problems

14.1 «. What is forward recovery and what is backward recovery? Give an
example of each approach.
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b. Using papers and books mentioned in Sec. 14.3, write a two- to three-
page paper describing how error coding {(e.g., convolutional coding)
can provide information for fault tolerance (give at least one explicit
example).

14.2 a. What is the difference between an acceptance test and an external
consistency check? Construct a valid acceptance test for an algorithm
that inverts matrices (include a list of assumptions and limitations).

b. Using papers and books mentioned in Sec. 14.3, write a two- to three-
page paper describing how mathematical consistency checking and
automatic verification of numerical computations can provide fault
tolerance (give at least one explicit example).

c. Using papers and books mentioned in Sec. 14.3, write a two- to three-
page paper describing how data diversity can provide fault tolerance
(give at least one explicit example).

14.3 a. Use your calculator to compute the expression given in Eq. (14.5), and
then repeat the calculation by hand. Explain, step by step, how the
accuracy loss occurs.

b. Consider a floating-point system with base 10 and 5-digit arithmetic
(that is, 2 mantissa of length 5 digits), the usual double-precision
multiplication (10-digit arithmetic in this case), and rounding after
every floating-point operation. You are given the following two num-
bers:

x = 0.10005 x 10° and y = 0.99973 x 10*

Compute by hand the difference x —y.
c. Now assume that x and y are, in fact, the result of two previous mul-
tiplications and that the unrounded products that yield x and y are

x =x1 x x2 = 0.1000548241 x 10°
y =yl xy2=0.9997342213 x 10*

Normalize and round to five places and then compute x1 x x2 — y1 x
y2. The result should be 0.81402 x 10%. It differs in every digit from
the result obtained in item &.

Which is the correct result? Explain the anomaly.

14.4 You are given a recovery block system composed of N (diverse) versions
of equal reliability and a perfect acceptance test. Derive the equation that
describes its reliability.

14.5 Read Sec. 14.3.5 and consider the following. The following table shows
responses of three programs to TOL = 0.1. The correct or “golden” value is 3.5 +
0.1. The first column identifies the comparison event, the second one the actual
event, and the last one the multiversion event. Although the numbers given in
this table are hypothetical, all events have been observed in multiversion
experiments described in [Kell88, Vouk90al.
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Events (TOL = 0.1, correct response = 3.5 + 0.1)

P1 P2 D3 Comparison Actual Multiversion

3.4 35 34 Agreement NO_FAILURE ALL_CORRECT

3.6 35 35 Agreement NO_FAILURE ALL_CORRECT

3.4 3.5 3.6 Conflict NO_FAILURE FALSE_ALARM

3.4 3.5 3.7 Conflict 1_FAILURE DETECTED_FAILURE

3.3 3337 Conflict 3_FAILURE DETECTED_FAILURE

3.3 3.3 3.3 Agreement 3_FAILURE UN_DETECTED_FAILURE
3.3 3.3 3.2 Agreement 3 FAILURE UN_DETECTED_FAILURE
33 34 34 Agreement 1_FAILURE UN_DETECTED_FAILURE

An increase in the tolerance from 0.1 to 0.4 yields AGREEMENT for all com-
parisons. This eliminates the FALSE_ALARM event shown in the table, but
also produces two new UN_DETECTED_FAILURE events. On the other hand,
had the tolerance been made very small, most comparisons would have
resulted in a CONFLICT increasing the incidence of FALSE_ALARM events,
but also eliminating all but one UN_DETECTED_FAILURE event.
a. What is the difference between AGREEMENT and NO_FAILURE
comparison events?
b. Construct a table comparable to the above given that in addition to
version pj, Ps, and p; we have version p, column with values as follows
(3.4, 3.3,3.5,3.5,3.5,3.5,3.3,3.3).
c. Add majority voter and consensus voter columns (assuming perfect
voters) to your table, and put in results of the decisions by these vot-
ers (use ACCEPT and REJECT as the two alternatives).

14.6 a. What is the minimum number of versions, and what is the smallest
output space cardinality (assuming unique correct state) for which
consensus voting makes sense (give an example).

b. Average conditional voter decision space (CD space) is defined as the
average size of the space (i.e.,, the number of available unique
answers) in which the voter makes decisions given that at least one
of the versions has failed. We use CD space to focus on the behavior of
the voters when failures are present. Of course, the maximum voter
decision space for a single test case is V.

Add a column to the table generated in Prob. 14.556 that you will call
“Decision space.” The column should contain the number of actual
answer categories (determined by tolerance) which are presented in
each case to CV to make a decision.

14.7 Assume that version p, acts as an acceptance test, and that p,, p,, and p;
form a voting 3-tuple. Repeat Prob. 14.5 using CRB3 and AV3 strategies.

14.8 . Find the variance in the estimate for £ (Eq. (14.16)).
b. What is the variance for the estimate for r,?
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14.9 Let all versions in an NVP system have the same reliability. Let the
voter be perfect. Then NVP with majority voting increases reliability over a
single version only if the reliability of the versions is larger than 0.5.

a. Prove the above statement for N = 3.

b. Prove the above statement for any V.

14.10 Suppose N modules fail independently and have the same probability
of failure £ Find the probability that exactly M modules of the N fail on a ran-
dom input.

14.11 Compare the reliabilities of each of the redundant fault-tolerant tech-
niques of Secs. 14.4 and 14.5 for two version systems. Assume that voting fails
if the two versions do not agree. Assume the failure probabilities are identical
for all components and that failures are independent.

14.12 Show that two randomly chosen programs p; and p, fail independently
on a given input x with probability 6(x)>. What can you say about a specific pro-
gram p failing on two randomly chosen inputs X, and X,?

14.13 Construct an example of the function v(p,x) over five programs and five
inputs. Assume that the probability of selection of a program or an input is the
same (1/5). Compute the functions 0(x) and ¢( p). Find the probability that two
randomly chosen programs will fail on a randomly chosen input.

14.14 Show that it is possible that random programs can fail on the same
inputs yet still fail independently. Show that it is possible for random programs
to fail on disjoint subsets of the input space yet fail independently.

14.15 Suppose we have independently developed N programs to solve a given
problem. Exhaustive testing is impossible so we test the programs on a proper
subset of the input space, repair them, and retest until they have no known
errors. Is it possible that the corrected programs fail independently? Are the
resulting programs randomly selected from the set of all programs?

14.16 Assume independence of module failures and analyze the reliability of
the Airbus A310 system described in Sec. 14.5. Then assume equal module reli-
abilities and plot the system reliability as a function of module reliability.

14.17 Assume that specific software modules p; and p; have the same proba-
bility of failure. What can you say about the maximum difference {Plp; fails, p»
fails] — Plp, fails] Plp; fails]}?

14.18 a. Derive the reliability polynomials for RB, CRB, and AV for the case
that r, =ry =75 = V=B =r in [0,1] and the faults are independent (do
the derivation from first principles). Graph and compare reliability
for each of the systems. Show that AV is inferior to all of the other sys-
tems in this case.

b. Perform sensitivity analysis for all three systems to independent
faults in the decision nodes, that is, in the voter and acceptance tests.
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14.19 a.

14.20 a.
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For example, perform the analysis for the situation where the voter
and acceptance test are perfect, where both have reliability of 0.99,
0.9,0.85,0.8, 0.7, etc.

Obtain and read reference [Kano93]. How do the results you obtained
in item & compare with those obtained by Kanoun et al.? Explain.

Derive Eq. (14.23).

Use the Estimate II data in Table 14.1 to construct an independent-
failures model. Give detail and explain your modeling work. Tabulate
results.

The frequencies shown in Table 14.3 sum up to 500. Why is it that the
sum of frequencies shown in Table 14.2 does not? Explain, using
examples.

Compare the model in item & with experimental data given in Table
14.3 using the chi-squared test to comment on whether there is
enough evidence to claim statistically significant departures between
your model and the actual data for

Three or more failures
Majority
Twelve or more failures

Repeat the chi-squared test using Estimate I and Table 14.3 data. Are
the test results different from those obtained in item ¢? Explain.

Write a two- to three-page paper discussing and justifying advantages
and disadvantages of the following: (1) the desirable feature of a fault-
tolerant software is failure independence among software variants
and between software variants and adjudication algorithms; (2) the
desirable feature of a fault-tolerant software is that software varjants
and adjudication algorithms have disjoint failure sets. Is either of the
statements realistic? '
Show mathematically that the assumption of module failure inde-
pendence can be an overestimate or an underestimate of the proha-
bility of joint failure of two specific programs. What about two
arbitrary programs?

14.21 Given three arbitrary functionally equivalent programs, the corre-
sponding score functions, and density functions S and @,

a.

b.

Derive an expression that states that at least two of the programs fail
on an arbitrary input X.

Repeat item a but assume that the three programs are specific pro-
grams on an arbitrary input X

How do the above expressions simplify if we assume the input space
is finite and @ is a constant?

14.22 Suppose we are given a population of seven programs and three possi-
ble inputs. A table of the score functions for each program is given below:
Assume that S and @ are constant.
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v X1 Xo X3

P1 1 0 0

P: 0 1 0

Ps 0 0 1

P4 0 1 1

Ps 1 0 1

Ps 1 1 0

pr 1 1 1
a. Find 8(x;) for each j.
b. Find o(p;) for each i.
c. Find E(©) and E(©?) and variance squared of ©.
d. Determine if two randomly chosen programs fail independently.
e. Compute the probability that p; and p; fail jointly.

14.23 Construct a table that has the following columns: Method (the name of
the FTS method, e.g., RB, NSCP, NVP), Failure detection mechanism (e.g., by
acceptance test, by comparison), Failure tolerance mechanism (e.g., rollback,
reexecution, majority vote), Number of functionally equivalent versions
required to tolerate X independent failures (e.g., X + 1 for RB).

a. Put into the table entries for RB, NVP-MV, NVP-CV, NSCP-MV, and

NSCP-CV (MV—majority vote, CV-—consensus vote).
b. Put into the table entries for CRB-MV, CRB-CV, AV-MV, and AV-CV.

14.24 Consider material in Sec. 14.8.2

a. Compare Eq. (14.27) with the RB reliability given in Eq. (14.20), and
with NVP reliability given in Eqs. (14.23) and (14.24). What is the
implication of Eq. (14.27), if any, on operational fault tolerance of
these strategies? Is there an inconsistency? Explain.

b. Derive Eq. (14.28).

c. What is the implication of Eq. (14.28), if any, on the number of ver-
sions one chooses for a fault-tolerant system? '

14.25 Show that if two programs fail independently on an input space of car-
dinality 2, then one program must always fail or never fail. Is this the case for
an input space of cardinality 37

14.26 o. What is back-to-back testing?

b. Read [Bril87, Vouk90c, Thev91] and write a two- to three-page dis-
cussion about the advantages and disadvantages of back-to-back
testing as an aid in developing fault-tolerant software (include a dis-
cussion on why some authors believe that extended back-to-back
testing may compromise N-version programming principles, and
suggest some alternatives).




