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satisfies the properties of a Lyaponov function; it is bounded from
below and always decreases with time when using the dynamics
specified by Equation 23. This can be seen by observing that
dEldt = —Z(AlzJ7)(8E/dz;)* and recalling that the zs are con-
strained to be positive by definition. Hence the system converges
to a minimum of E.

To understand the global convergence of the system, we examine
the Hessian of E, the matrix with components H;, = aZE/(aziaz,-).
We see that on the diagonal we have H; = 1/(A;z;) and off the
diagonal Hj, = H,.,éj_kz,v. From Equation 21 we see that the x; are
always positive, and so the z; lie in the range [0, 1]. Thus the
diagonal elements are all greater than 1/(41,,,,) and the off-diagonal
elements are all less than 1. By making A = (N — 1)/1,,,, we can
ensure that the Hessian is positive definite; hence E is convex, and
so there is a single solution that the system converges to. It was
shown, in the large A limit, that this corresponds to the winner-
take-all solution (Yuille and Grzywacz, 1989).

Discussion

Winner-take-all is a special case of softmax. Both problems can be
formulated in terms of energy minimization, and both can be solved
by a number of continuous-time and discrete-time dynamical sys-
tems. Some of these systems can be implemented by VLSI circuits
or by biologically plausible mechanisms.

These systems can be generalized in a straightforward way to
systems of competitive memories or optimization problems. In
these cases only convergence to locally optimal solutions is
guaranteed.

Finally, recent results on the large computational power of
winner-take-all networks, and their need for only positive weights,
are very exciting. They ensure that winner-take-all networks will

continue to be a major research topic for computation, biology, and
VLSIL

Road Map: Dynamic Systems

Background: Computing with Attractors

Related Reading: Modular and Hierarchical Learning Systems; Optimi-
zation, Neural

Ying-Yang Learning

Lei Xu

Introduction

This article addresses the issue of simultaneously building (1) a
bottom-up pathway for encoding a pattern in the observation space
into its representation in a representation space and (2) a top-down
pathway for decoding or reconstructing a pattern from an inner
representation back to a pattern in the observation space. This ap-
proach has been widely adopted in the literature of modeling a
perception system for decades. A typical example is the ADAPTIVE
RESONANCE THEORY (q.v.), developed by Grossberg and Carpenter
starting in the 1970s. In the past decade, this approach has been
widely adopted in various studies of brain theory and neural net-
works. Typical examples include Mumford’s integrated theory for
the corticothalamic and the corticocortical feedback (see THALA-
mus), Kawato's theory on the CEREBELLUM AND MOTOR CONTROL
(g.v.), and Hinton and colleagues’ HELMHOLTZ MACHINES AND
SLEEP-WAKE LEARNING (q.v.). Moreover, the LMSER self-
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organizing rule proposed by Xu in 1991 (reference in Xu, 2001a)
also uses a bidirectional architecture for statistical unsupervised
learning.

The basic spirit of LMSER self-organizing was further devel-
oped into the Bayesian ying-yang (BYY) harmony learning in the
mid-1990s. BYY harmony learning formulates the two pathways
in a general statistical framework. First, a so-called BYY system
is proposed for modeling the two pathways in a coordinated fashion
via two complementary Bayesian representations of the joint dis-
tribution on the observation space and representation space. As a
result, a number of existing major learning problems and learning
methods are revisited as special cases from a unified perspective.
Second, after further developments in the past several years, a har-
mony learning theory has been developed from which not only new
regularization techniques (see GENERALIZATION AND REGULARI-
ZATION IN NONLINEAR LEARNING SYSTEMS) are obtained from a
systematic perspective, but also using this theory on the BYY sys-
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tem results in an easily implemented approach for model selection
that is made either automatically during parameter learning or se-
quentially after parameter learning via a new class of criteria. Third,
application of the first two achievements to various specific BY'Y
systems with typical structures led to three major learning para-
digms, namely unsupervised learning, supervised learning, and
temporal modeling, with new insights and a number of new results.

This article provides an introduction to the fundamentals of BY'Y
harmony learning and outlines the major results. Further details are
given in Xu (2001a, 2001b, 2002a, 2002b). Moreover, the ability
of BYY harmony learning for regularization and model selection
is explained from an information-theoretic perspective. A compar-
ative discussion is made to clarify how it differs not only from the
minimum message length (MML) and minimum description length
(MDL) (Wallace and Dowe, 1999; Rissanen, 1999; also see MIN-
IMUM DESCRIPTION LENGTH ANALYSIS), as well as Bayesian ap-
proach (Mackey, 1992), but also from information geometry theory
(Csiszar and Tusnady, 1984; see NEUROMANIFOLDS AND INFOR-
MATION GEOMETRY) and from HELMHOLTZ MACHINES AND SLEEP-
WAKE LEARNING (q.v.).

The Bayesian Ying-Yang System

We consider a world X with each object in an observation repre-
sented by an x € X. Corresponding to each X, there is an inner
representation y € Y in the representation domain Y of a learning
system. We consider the joint distribution of x, y, which can be
understood from two complementary perspectives.

On the one hand, we can interpret each x as generated from an
invisible inner representation y via a backward path distribution
q(xly), called a generative model q(x) = [q(xly)q(y)dy, that maps
from an inner distribution g(y). On the other hand, we can interpret
each x as being mapped into an invisible inner representation y via
a forward path distribution p(ylx), called a representative model
p(y) = [p(yix)p(x)dx, that matches the inner density g(y).

The two perspectives reflect the two types of Bayesian decom-
position of the joint density g(xly)q(y) = q(x, y) = p(x,y) =
px)p(ylx) on X X Y. Without any constraints, the two decom-
positions should be theoretically identical. However, in a real con-
sideration, the four components p(yix), p(x), g(xly), g(y) should all
be subject to certain structural constraints according to the nature
of the learning task. Thus, we usually have two different but com-
plementary Bayesian representations:

px, y) = p(ylX)p(x), g(x, ¥) = q(xly)q(y) ()

where (with compliments to the ancient Chinese ying-yang philos-
ophy) p(x, y) is called the yang machine, which consists of the
observation space (yang space) p(x) and the forward pathway (yang
pathway) p(ylx); and g(x, y) is called the ying machine, which
consists of the invisible state space (ying space) g(y) and the ying
(or backward) pathway g(xly). Such a pair of ying-yang models is
called a Bayesian ying-yang (BYY) system.

From a set y of samples from the observed world X, the distri-
bution p(x) is given either by an empirical density p(xly) or a non-
parametric estimate p(xly, %) with a unknown smoothing param-
eter A, as will be further specified later by Equations 8 and 11. The
task of learning on a BYY system consists of specifying all the
aspects of p(ylx), g(xly), g(y) as well as A (if any).

First, we need to design the structure of g(y), which depends on
learning tasks that are closely related to the complexity of the world
X that we observe. One typical example is a world X = (X, L}
that consists of a number of individual objects to observe, with L
denoting a set of labels and each € € L denoting an object. In this
case, each x = {x, £} contains a feature vector x = [x!, ,
YT observed from the object £, subject to a joint underlying dis-

tribution p(x) = p(x, £). Correspondingly, we consider a represen.
tation domain Y = {Y, L}, subject to a parametric structure of ¢(y)

q(y, ¢) that describes the vector y and the label ¢ jointly. This
q(y) is specified by three ingredients. The first consists of a set k
= (k, {m,}}, with k denoting the number of labels in L and m,
being the dimension of either a binary or a real vector y that cor-
responds to £ € L. We call both k, m, the scales of the represen-
tation domain Y. The second ingredient is the functional form of
q(y), which is usually prespecified according to the nature of learn-
ing task. The third consists of a set 6, of parameters in this given
function form.

Second, we need to design the structures of p(ylx), g(xly) that
specify the mapping capacity of x — y and y — x, respectively. Each
of the two can be either parametric or structure free. We say p(ulv)
is structure free if p(ulv) can be any function that satisfies [p(ulv)
= 1, p(ulv) = 0. A structure-free distribution is actually specified
in learning. Given its functional form, a parametric p(ulv, 6,,.) is
structured by a set 6, of unknown parameters.

Putting this all together, the nature of a BYY system depends
on the structure of g(y) for describing the representation domain
Y, and the architecture of a BYY system is featured by a combi-
nation of the specific structures of p(ylx), g(xly). Discarding a use-
less architecture where both p(ylx), q(xly) are structure free, there
remain three choices for a meaningful BY'Y architecture:

» Backward architecture (B-architecture):
and g(xly) is parametric.

o Forward architecture (F-architecture):
and p(yix) is parametric.

e Bidirectional architecture (Bl-architecture):
q(xly) are parametric.

p(ylx) is structure-free
q(xly) is structure-free

Both p(ylx),

Generally speaking, a learning task includes two subtasks. One
is called parameter learning and is for determining a value of the
set @ that consists of all the unknown parameters in p(ylx), g(xly),
q(y) as well as A (if any). The other subtask is called model selection
and is for selecting the scales of representation, since a collection
of specific BY'Y systems with different scales in k corresponds to
a family of specific models that share the same system configura-
tion but with different scales.

Harmony Learning

We consider learning in a broad sense that starts from two p(u).
q(u), with each of them having certain unknown parts, in either or
both scales and parameters. The task of learning is to specify all
the unknowns from the known parts. Our fundamental learning

principle is to make p(u), g(u) have the best harmony in a twofold
sense:

+ The difference between the resulting p(w), g(u) should be
minimized.
* The resulting p(u), g(u) should be of the least complexity.

Mathematically, we use a functional H(pllq) to measure the de-
gree of harmony between p(u) and q(u). When both p(u), g(u) are
discrete densities in the following form:

N N
q(u) = El Qré(u - u,), 21 q: = 1 (2)

with &(u) being a -function, we can simply use the following cross
entropy

N
H(pllg) = 2} p.In g, )
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as a typical example of such a measure. The maximization of
H(plig) has two interesting natures:

* Matching nature: With p fixed, max H(pllq) pushes g toward
q, = p,, for all ¢ @

* Least complexity nature: max,H(pllq) with g fixed pushes p to-
ward its simplest form

pu) = 6(u — u,), with T = arg max g, 5)

or equivalently p, = 1, and p, = O for other ¢, which is of least
complexity from the statistical perspective (Xu, 2001a).

Thus, the maximization of this functional indeed implements the
above harmony purpose mathematically. As shown by Xu (2001a),
we can further represent either a discrete or continuous density gq(u)
in the form of Equation 2 by considering its sample points
{u,}™. | via the following normalization:

N

G = qWlzg 7, = 2 qlu) ©)
t=1
Putting this into Equation 3, we can get a general form of the
harmony measure:

H(pllg) = JP(“) In g(u)du — In z, )

which reduces to Equation 3 when g(u), p(u) are discrete (as in
Equation 2), with u enumerated from u,, . . ., u, deterministically.

Moreover, when p(u) is given by its empirical density (Devroye
et al., 1996),

1 N
Polt) = > o — u) ®)
1=

a crude approximation z, = 1 will make H(pllg) in Equation 7
become the likelihood

N
L®) = 2 In qu) ©)

=1

Thus, finding max H(pllg) becomes equivalent to conventional
maximum likelihood (ML) learning.

Generally, the term In z, imposes a regularization on ML learn-
ing. Two typical examples are given as follows:

1. Normalization learning: With p(u) given by Equation 8, we ap-
proximate either a discrete or continuous g(u) by Equation 6
and get Equation 7 in the form

N
H(pllg) = L) - Inz, z, = 2] q(u,) (10)

with In z, imposing a de-learning on the ML leaming, which
avoids g(u) overfitting a finite size data set (Xu, 2001a).

2. Data smoothing learning: Consider p(u) given by a Parzen win-
dow estimate (Devroye et al., 1996)

e .
1 > Glulu, h) (11
N =1

where, as hereafter in this article, G(ulu, =) denotes a Gaussian
density with mean vector 1 and covariance matrix =. Under a
weak constraint =Y., p(u,) ~ 2 q(u) = 24, We can approx-
imately get (Xu, 2001a)

e Z{Iv(h‘ k) Zzi(h, k) = EN: % e—O.S(Hu,-u,Ilzlhz) (12)

N(Enhz)m’ =1 r=1

p(u) = pyu) =

where £ is the dimension of 4. Thus, Equation 7 becomes
H(pliq)

= J'p,,(u) In g(u)du + 0.5k In 27h%) + In N — In Z(h, k)
(13)

The first term regularizes ML learning by smoothing each likeli-
hood In ¢(u,) in the near-neighborhood of u,, and thus is referred
to as data smoothing. The role of h? is equivalent to the hyperpar-
ameter in Tikhonov-type regularization (Bishop, 1995), but with a
new feature that the other terms balance the first term such that an
appropriate / is learned together with 8 (Xu, 2001a).

BYY Harmony Learning

The fact that max,fpo(u) In g(ulf)du leads to ML learning is well
known in the literature. Moreover, maxyfp*(u) In q(ulf)du, with
p*(u) being the true distribution of samples, has also been studied
in developing the Akaike information criterion (AIC) for model
selection (Akaike, 1974). However, the least complexity nature of
Equation 5 has rarely been studied because it is regarded as useless
in a conventional sense. In contrast, least complexity plays an es-
sential role that enables the harmony learning on a BYY system to
implement model selection.

To be specific, we put p(u) = p(x, y) = p(ylx)p(x), gu) = g(x,
y) = q(xly)q(y) into Equation 7, and get

H(pllg) = f p(yX)p(x) In [g(xly)g()]dxdy — Inz, (14)

Again, the term —In z, imposes regularization on learning either
by normalization similar to Equation 10 or by data smoothing simi-
lar to Equation 12. This regularization may be simply ignored by
setting z, = 1. The details are given in Xu (2000, 2001a). For
example, similar to Equation 10, we can simply get

N
Z = 21 axly)q(y,) (15)

on a set of samples y = {x,}/.,, where y, is estimated during
learning as an inner representation of x,.
Mathematically, harmony learning is implemented by

max H(6, k), where H(8, k) = H(plg) (16)
6k

Unlike the case of Equation 7, the least complexity nature of a
BYY system makes selecting k possible, because now only p(x) is
fixed as a nonparametric estimate, while p(ylx) is not fixed but able
to be pushed into its least complexity form during learning. In a
B-architecture, p(ylx) is free and thus will be determined by
maX,wH(plig), resulting in

piylx) = 8y — 9), § = arg max [g(xly)g(y)]  (17)
y

In turn, the matching nature of harmony learning will further push
q(xly) and g(y) toward their corresponding least complexity forms.
In a Bl-architecture, the learning will similarly push p(ylx) into its
least complexity form, e.g., p(ylx) = d(y — f(x, W,;,)) (Xu, 2001a).

As for g(y) = q(y, £) = g(y€)q(£), it is not difficult to observe
that letting p(£) be zero is equivalent to reducing k by one, and that
letting the variance of every g(y'/I¢), for all £ € L, be zero is
equivalent to removing the jth dimension (i.e., reducing the di-
mension m by one). In other words, making 8 take a specific value
is equivalent to forcing k, m, to be reduced effectively to appro-
priate scales. So, model selection may come into effect either in
parallel with parameter learning or sequentially after making pa-
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rameter learning via enumerating k on an appropriate range. That
is, we have the following two types of learming implementation:

* Parameter learning with automated model selection: We set k,

{m.} in k large enough and then implement harmony learning
by

m;\x H(8), H@) = H(, k) (18)
The least complexity nature Equation 5 will let 8 take a specific
value such that k = {k, {m,}} are effectively reduced to appro-
priate scales, i.e., model selection is made automatically in par-
allel with parameter learning.

Parameter learning followed by model selection: Alternatively,
we can make parameter learning and model selection sequentially
in two steps. In the first step, we enumerate k, m, from small
values incrementally, and at each specific k, m, we perform pa-
rameter learning Equation 18, to get the best parameter value 6*.
Moreover, to simplify the implementation, we can even assume
q(€) = Uk and g(yl€) comes from a family that satisfies certain
constraint (Xu, 2002a). Then in the second step, we select a best
k* m¥ by

min J(k, m,), where J(k, m,) =

k.m

— H(8*, k) 19

If there is more than one solution for which J(k, m,) gets the
same minimum, we take one with the smallest values on k, {m,}.

This, two-step implementation can be modified with the first step
replaced by alternatives. One is to replace Equation 18 by mini-

mizing the Kullback divergence (see LEARNING AND STATISTICAL
INFERENCE)

. (yIx)p(x)
min KL(§ =f bopx) In X220 ey (20
; (6) p(yx)p(x) In 2y P (20)
as in the initial work of the BYY learning made in 1995 (reference
in Xu, 2002a) and other early studies. In this situation, the first step
leads us to a number of existing learning models that are based on
the maximum likelihood principle or its equivalents. Another al-
ternative is to replace H(6) in Equation 18 by H() — AKL(8) with
4 > 0 gradually reducing toward zero from a given value. Both
alternatives can reduce the local minimum effect caused by the
winner-take-all mechanism of Equation 17, but at the cost of
greater difficulty in handling the integral of y in Equation 20.

Information-Theoretic Perspective, MML/MDL,
and the Bayesian Approach

Alternatively, we can understand harmony learning from an
information-theoretic perspective. We consider the transfer of the
information in x from a sender via a communication line to a re-
ceiver. Instead of directly encoding x for transmission, x is mapped
to its inner representation y, and then y is encoded and sent to the
receiver. The receiver then decodes y to reconstruct x.

Without losing generality, we consider the BYY system with
POy = p(ylx, By.,), g(xly) = p(xly, B,,), and q(y) = q(¥16,), as
shown in Figure 1. On the sender side, x is mapped into its code y
via the yang passage p(ylx) = p(ylx, 6,,,) and then y is encoded
and sent to the receiver side. On the receiver side, a parametric
regression function £ = g(, ) is used to construct x with an error
¢ = x — X. Assuming the functional form of g(y, ‘) is known at
the receiver end, in order to get the original x we need to know not
only y but also ¢ and §,, which should be decided at the sender end
and then transferred via the communication line, too.

For this purpose, the reconstruction process at the receiver end
is simulated by the ying machine at the sender end. First, the yang

————— s — P )
Y is transmitted for each sample x,

N
b= b
5 =] p(y]%,0,,)1n p(y16, Xy

3% b, for encoding 6,

b; for encoding 6,,, 8(»16,)=

9‘ , G,h transmitted only once I (x| 3,0, Mdx
h=2¢+%
b = —I p(y|x.0,)Inq(e, |6, )dy

© —— -

——-—-——-’
€=x—g(y|6,)is transmitted *

for each sample X,
x=g(y|6,)+¢

Figure 1. Bayesian ying-yang harmony learning from an information-
theoretic perspective.

passage p(ylx, 8,,,) is assumed to come from a known parametric
family but with an unknown set of parameters 6,,,. Second, the
mapped y is assumed to be exactly described by a distribution of
a known parametric family ¢(yl6,) but with an unknown set of
parameters 6,. Third, we attempt to reconstruct x by the regression
g(y, 8,) with the residual ¢ = x — g(y, 0 ;) that comes from a
known parametric family g(eld,) but with an unknown set of pa-
rameters 0,. That is, we have p(xly, le) = g(x — g(M6,)i6,) with
By = { 03. 6.} and g(y10,) = [xp(xly, 0,,,)dx.

We consider the bulldmcr of the above BYY system from the
perspective that the transmission of y, ¢, and 6, is made most ef-
ficiently, comparing this approach with the minimum message
length (MML) and minimum description length (MDL) approachcd
(Wallace and Dowe, 1999; Rissanen, 1986, 1999), which can be
regarded as specific implementations of the more general algorith-
mic complexity exemplified by the celebrated Kolmogorov com-
plexity (Gammerman and Vovk, 1999).

If we know the true distribution g(yif¥) with an exact value of
0%, it follows that the number of bits for encoding y is by =
S b}, with b, being the bits that are needed to encode y for each
sample X, Since the probability of using a particular y as a code of
x, is p(ylx,, G‘.u)dy, this b} should be the expected number of bits
to be used atx, i.e., by = = [p(ylx, 6,,) In g(116%)dy — c,, where

= 0 when q(ylf)*) is a discrete probability dlstnbunon and ¢,

ln 4, when g( yl9*) is a continuous densny, with §, being a

quantization resolution. Usually ¢, is omitted in the MML/MDL
literature, since it is regarded as a constant.

However, on a set of finite samples {x,}Y. ,, instead of getting
exactly 8} we can obtain only an estimate 6, that is itself a random
variable. Thus the bits for encoding y consist of the above b plus
b ie,b, = bj + b’\’, where b? is the number of bits for encoding
an estlmate 9\, whlch does not depcnd on each individual sample
but on the entire data set {x,}".,, or equivalently the distribution
of 8,.

Slmllarly, the number of bits for encoding ¢ also consist of two
parts b, = 2. b, + b7, where b, = — [p(ylx, 6,) In q(alH,)d\
= - f p(ylx,, 8,,) In g(xly, 8,,,)dy for each sample x,, and b for
encoding #,. Moreover, we use b, to count the bits for encoding
6., and then use bx,‘ b% + b, to denote the total bits for en-
coding 6, = {6, 0,}, which agam does not depend on each in-
dividual sample but on the entire batch of data.
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Summing up, the total description length is Ly = Nb, + b, with
b, = (I/N)E (b, + b)) being the average number of bits that is
needed for each sample x,and by = b% + bY, = b5 + b2 +
b, being the total number of bits for encoding 6, 6,. Thus, the
average unit length for each sample x,is Ly = b, + (bo/N) Since
by does not depend on the size N, (b,/N) decreases toward zero as
N increases.

It further follows that b) + b =

! =Ip(ylx, 6,0 In [gxly,
B.45)q(16,))dy and thus that

b, —f p(Yx 0,,9po(x) In [q(xly, 8,,)q(»10,))dxdy

il

1 & ‘
Pol0) = 2. 5x = x) Qe

Comparing this with Equation 14, we have exactly H(pllq) =
=b,—Inz; !, where the second term depends on the specific value
of parameters 6, 8, and the complexity of v, but does not depend
on each individual sample x,. Also, it tends to zero as N = o, which
is consistent with the role of b,/N that tends to zero as N = . So,
BYY harmony learning relates closely to the MML/MDL spirit in
that both have in common minimizing b,, i.e., the part of the de-
scription length for each sample. For this reason, as well as shown
experimentally (Xu, 2001a), BY'Y harmony learning has model se-
lection ability qualitatively similar to that of MML/MDL. This abil-
ity can be understood from the interaction between the two parts
in b, + b;. As the representation scale increases, b, increases
WhllC b decreases. The minimization of the two parts trades off an
appropriate scale for representing y.

However, BYY harmony learning differs from MML/MDL on
the specific form for encoding 8. One obvious advantage of BY'Y
harmony learning is that using In z; ~! instead of by/N is easy in
implementation. Usually, by is difficult to compute and has to be
replaced by some rough approximation or bound, with consequent
poor actual performance. Further studies are warranted to explore
the quantitative relation between In z; 7! and by/N to see whether
the features of the two can be combmed

In the literature on neural networks learning, it has been widely
regarded that the Bayesian approach is equivalent to the MDL ap-
proach. However, the situation is not so simple, but depends on
how the MDL and the Bayesian approaches are implemented.

One typical Bayesian implementation is for parameter regulari-
zation, i.e., a priori density on parameters is assumed such that
parameters are determined based on the joint distribution of the
parameters and the observed sample data. When MDL was first
proposed (Rissanen, 1986), it was implemented basically in equiv-
alence to the MML approach (Wallace and Dowe, 1999), which
shares the same spirit of Bayesian regularization in that its first part
encodes the fitting residuals and its second part corresponds to the
a priori density on parameters. According to the original authors
of MML, however, MML actually uses an improper prior density
if we insist on relating it to the Bayesian perspective.

Another typical Bayesian implementation is the so-called
evidence-based Bayesian approach (Mackey, 1992; see also
BAYESIAN METHODS AND NEURAL NETWORKS) using what is
called the BIC model selection criterion in the literature of statis-
tics. This one has in principle the closet agreement with the MDL
principle that considers an average of all the MML code lengths
for all distributions in a family instead of a single MML code length
(Rissanen, 1999). In various actual implementations, however, it
usually degenerates to be identical to MML after selecting a non-
informative uniform prior and approximating the integral of the
marginal density via considerable simplification. Interestingly, the
latest implementation of MDL uses a so-called normalized maxi-
mum likelihood model as the universal model (Rissanen, 1999),

which leads to improved code length and becomes different from
both MML and the evidence-based Bayesian approach.

BYY harmony learning shares the common spirit of MML as
well as Bayesian regularization in the general sense that z, ! can
be regarded as another type of improper prior density on parameters
in the BYY system such that the term —In z,,“ imposes further
regularization on parameter learning, while the interaction between
the two parts b, + b} in b, makes model selection implemented
either automatxcally dunna parameter learning or subsequently af-
ter parameter learning via a new class of model selection criteria.
It is also possible to funher extend BYY harmony learning to share
the sprit of MDL and the evidence-based Bayesian approach by
normalizing z7 " into an a priori density p(6) and then maximizing
an average harmony measure [H(0)p(0)df. However, this has as
extra cost the difficulty in implementing the integral.

Examples of Applications

Applying Equations 18 and 19 to specific BYY systems for various
learning tasks, we have obtained not only new insights but also a
number of new results. The details are given in Xu (2001a, 2001b,
2002a, 2002b). In the following, we briefly introduce several ex-
amples of unsupervised learning.

» The MSE clustering, number of clusters, and RPCL learning:
Considering a simple B-architecture with p(y) = p(y, £) =
8y — pelkand p(xly) = p(xly, €) = G(xly, ¢°1), it follows that
Equation 18 with the term —1In z; " ignored (i.e., with z, = 1)
becomes equivalent to

N
¢ = arg min i, - wdfs min E;, E; = 2llx - ud?r @2
4 all ¢ t=1

This is exactly conventional least square clustering or vector
quantization, which leads to the well-known k-means algorithm
and classical COMPETITIVE LEARNING (q.v.). Moreover, we can
get several new results. First obtained by Xu in 1997 (reference
in Xu, 2002a), it follows that Equation 19 becomes the following
criterion for the best number of clusters

k* = arg min J(k), with J(k) = 05d In E, + Ink (23)
&

Second, with z, given by the normalization Equation 15 and p(y)
= p(y, €) = 6(y — m)p(£), not only can we get a modified
version of Equation 23 from Equation 19, but it also follows that
Equation 18 in parallel implementation becomes equivalent to
rival penalized competitive learning (RPCL), proposed by Xu,
Krzyzak, and Oja in 1993 (reference in Xu, 2002a), that is able
to find the correct number of clusters automatically during learn-
ing. Third, these results can also be extended to regularized ver-
sions (Xu, 2001b).

PCA and Gaussian factor analysis (FA): For a B-architecture
with p(y) = G(¥I0, I) and p(xly) = G(xlAy, ¢*I), it follows that
Equation 18 with z, = 1 becomes equivalent to PRINCIPAL COM-
PONENT ANALYSIS (PCA) (g.v.) and Equation 19 becomes

m*

arg min J(m),
m

Jim) = 0.5d In ¢*> + 0.5m(In 27 + 1) (24)

for the principal subspace dimension m. Moreover, Equation 18
with z, = 1 becomes equivalent to Gaussian FA when p(xly) =
G(xlAy, Z), with an adaptive EM algorithm developed for its
implementation. Also, Equation 18 with z, given by the normal-
ization Equation 15 will lead to RPCL-type learning that is able
to automatically determine the dimension m.

Elliptic RPCL, Gaussian mixture, and local PCA: For a B-
architecture with p(y) = p(€) G(ylu,, I) and p(xly) = G(xlA,y,
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a>1), from Equation 18 we can obtain (1) both the batch and
adaptive EM-type algorithms for either elliptic clustering or ML
learning on Gaussian mixtures, (2) an elliptic RPCL algorithm
with automated selection on cluster number during learning, (3)
extensions to local PCA, and (4) other extensions. Moreover, we
can use Equation 19 for selecting both k and the dimensions {m,}
of local subspaces, which simplifies to

[k*, {(im¥}] = arg min J(k, {m})
kdmq)

k
Ik, {m})) = 05 > p®)n I,
(=] L
+ m(n 2t + D] = 2 p() In p(0),
=1
3. = AAT + ol (25)

Binary FA, non-Gaussian FA, and local extensions: For a B-
architecture with p(y) = IT}5, p(y;) where each p(y)) is a scalar
finite mixture (e.g., Gaussian mixture) and p(xly) = G(xlAy, 6°I),
from Equation 18 we have obtained both the adaptive EM-type
and RPCL-type algorithms for implementing either binary FA
when each y; is binary or non-Gaussian real FA when each y; is
real which was previously studied under the name of Bayesian
Ying Yang Kullback dependence reduction in 1998 (reference in
Xu, 2000) and further developed with the name changed into the
current one. Moreover, from Equation 19 we get criteria for se-
lecting the number m of factors. Furthermore, these results can
also be extended to localized versions by considering p(y) =
PO, p(y) and p(xly) = G(xlA,y, oil).

ICA and competitive ICA: For an F-architecture with p(y) =
IT}%  p(y;) as above and p(ylx) = 6(y — Wy), from Equation 18
we can revisit (1) the learned parametric mixture—based ICA
algorithm, first proposed by Xu, Yang, and Amari in 1996 (ref-
erence in Xu, 2001a), that works not only on cases where some
components of y are super-Gaussian and others are sub-Gaussian,
but also on cases where W is not invertible but IWW?| s 0. More-
over, it has been further extended to a localized version via com-
petition by considering p(y) = p(f) ITjx,p(y,) and p(ylx) =
plx)(y — W,x) (Xu, 2002a).

LMSER learning, principal ICA, and local extensions: For a BI-
architecture with p(y) = II7., p(y), p(xly) = G(xlAy, ¢°I), and
p(ylx) = &(y — s(Wx)), Equation 18 leads us not only to revisit
LMSER leamning that was first proposed by Xu in 1991 and then
directly adopted by Karhunen and Joutsensalo (1994) to imple-
ment ICA under the name of nonlinear PCA, but also various
extensions, including a so-called principal ICA that corresponds
to the direct extension of PCA to ICA. Moreover, from Equation
19 we get criteria for selecting the dimension m. Furthermore,
these results have also been extended to localized versions (Xu,
2001b, 2002a).

A number of new results have also obtained on supervised learning
and temporal modeling.

For supervised learning, new understandings are obtained on
three-layer feedforward nets with backpropagation learning, on the
popular mixture-of-experts (ME) model with the corresponding
EM algorithm (see MODULAR AND HIERARCHICAL LEARNING SYS-
TEMS), and on the alternative ME model (Xu, Jordan, and Hinton
in Xu, 2002a) as well as the normalized radial basis function
(NRBF) network and its extensions. Moreover, various adaptive
EM-type learning algorithms are developed from both Equation 18
and Equation 20 since 1998. New criteria have been derived from
Equation 19 for deciding the number of hidden units, the number
of experts, and the number of basis functions. Also, we get an
alternative approach for deciding the set of supporting vectors in

SuPPORT VECTOR MACHINES (q.v.). For further details see (Xy,
2001b, 2002b).

Temporal BYY harmony learning has been developed as a gen-
eral state space approach for modeling data that has temporal re-
lationship among samples, and provides not only a unified point of
view on Kalman filter (see KALMAN FILTERING: NEURAL IMpL ;-
CATIONS) and HIDDEN MARKOV MODELS (q.v.), but also severa|
new results, such as higher-order HMMs, independent HMMs,
temporal ICA, temporal factor analysis, temporal extension of com-
petitive ICA and LMSER learning, and more, with adaptive algo-
rithms for implementation and criteria for selecting the number of
states or sources. Further details are supplied in (Xu, 2000, 2001a).

Discussion

Conventional ML learning, as in maximizing L(#) in Equation 9,
is widely used for estimating 8 for a parametric density g(u6) di-
rectly on a set {u,}"., of samples. For many practical problems,
such as perception, u consists of two parts, u = (x, y), with y
invisible. What can be observed is a sample set {x,}".,. and thus
ML learning is not directly applicable to g(u|6). In such cases, ML
learning is usually implemented on the marginal density

awt) = [ qw)dy = [ atsiy, Gupaitpas  9)

which is usually called the factor model or latent variable model
or generative model in the literature.

However, a direct implementation of ML learning on ¢(x16) is
usually not computationally effective. The problem is solved by
two closely related approaches. One is the popular EM algorithm,
developed under incomplete data theory (IDT) (Dempster, Laird,
and Rubin, 1977). The other is the well-known alternative mini-
mization (Csiszar and Tusnady, 1984), also called the em algo-
rithm, developed under information geometry theory (IGT) (see
NEUROMANIFOLDS AND INFORMATION GEOMETRY). The ap-
proaches work on a class of problems where y takes finite discrete
values such that either Equation 26 is a finite mixture or the integral
in Equation 26 can be analytically solved. However, in the imple-
mentation, we have to compute

P( ylx) = q('Xl Vs exl)')q( \"0\)

, and max Q(8) with
0
f g(xly, 84,)9(¥16,)dy

I

[0]()) I p(Opa(x) In [g(xly. 0,4,)q(¥16,))dxdy (27)
When y is a binary vector of many bits or a non-Gaussian real
vector, Equation 27 must be computed either by an exhaustive enu-
meration or by Monte Carlo approximation, and both those are
computationally very expensive. The well-known Helmholtz ma-
chine tackles this problem by using a parametric p(ylx, 8,,,) in
Equation 20 to avoid the computation on p(ylx), and then mini-
mizes the Helmholtz energy in place of maximizing Q(6).

As discussed in the initial work by Xu in 1995 (reference in Xu,
2002a), the BYY system together with implementing Equation 20
provides a unified perspective on understanding not only the above
ML learning-related approaches but also a class of information-
theoretic approaches. First, min,,,KL(f) in Equation 20 with a
free Yang pathway p(ylx) and the empirical density po(x) will lead
to Equation 27, as well as the equivalence of Equation 20 to ML
learning on Equation 26. In other words, the above IDT-and IGT-
based approaches are revisited from this new perspective. Second,
given a parametric p(ylx, 8,,,). Equation 20 becomes equivalent t0
minimizing the Helmholtz energy, and a specific design of p(ylx,
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Bux)s g(xly, 84,), g(y10,) will lead us to revisit Helmholtz machine
learning. Third, given a parametric p(vix, 6..) but with g(xly, 8,, y)
free, Equation 20 becomes equivalent to minimizing

KL, 6,)

]

p(yleylx)
j p(¥6,) In m dy

f PO, 8,)polo)dx 28)

(6,0

which consists of a class of information-theoretic approaches, in-
cluding both the minimum mutual information approach and the

INFOMAX approach for INDEPENDENT COMPONENT ANALYSIS

(q.v.).

Moreover, BYY harmony learning goes beyond the approaches
discussed above. First, in addition to using Equation 20 for param-
eter learning, the second step in the two-step implementation of
BYY harmony learning provides model selection via a new class
of criteria given by Equation 19, sharing a feature similar to the
MML/MDL/AC and Bayeisian approaches. Second, the parallel
implementation of BY'Y harmony learning as discussed for Equa-
tion 18 provides an easily implementable approach for model se-
lection that is made automatically during parameter learning. Third,
the architecture of the BYY system and the term —In 7y "in the
harmony function provide new regularization techniques from a
systematic perspective. In contrast, learning parameters via mini-
mizing the Kullback divergence is the sole target of the approaches
discussed above, while the issues of regularization and model se-
lection are outside the scope of their studies. Even focusing on
parameter leamning via minimizing Kullback divergence alone, the
studies are made from different perspectives with different
purposes.

Road Map: Learning in Artificial Networks

Background: Bayesian Methods and Neural Networks; Helmholtz Ma-
chines and Sleep-Wake Learning

Related Reading: Adaptive Resonance Theory; Generalization and Reg-
ularization in Nonlinear Learning Systems; Learning and Statistical In-
ference; Model Validation
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