
903

IIndependent Subspaces
Lei Xu
Chinese University of Hong Kong, Hong Kong, & Peking University, Beijing, China

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Several unsupervised learning topics have been ex-
tensively studied with wide applications for decades 
in the literatures of statistics, signal processing, and  
machine learning. The topics are mutually related and 
certain connections have been discussed partly, but 
still in need of a systematical overview. The article 
provides a unified perspective via a general frame-
work of independent subspaces, with different topics 
featured by differences in choosing and combining 
three ingredients. Moreover, an overview is made via 
three streams of studies. One consists of  those on the 
widely studied principal component analysis (PCA) and 
factor analysis (FA),  featured by the second order inde-
pendence. The second consists of  studies on a higher 
order independence featured independent component 
analysis (ICA), binary FA, and nonGaussian FA. The 
third is called mixture based learning that combines 
individual jobs  to fulfill a complicated task. Extensive 
literatures make it impossible to provide a complete 
review. Instead,  we aim at sketching a roadmap for 
each stream with attentions on those  topics missing 
in the existing surveys and textbooks, and limited to  
the authors’ knowledge.

A GENERAL FRAMEWORK OF 
INDEPENDENT SUBSPACES

A number of unsupervised learning topics are featured 
by its handling on a fundamental task. As shown in 
Fig.1(b), every sample x is projected into x̂  on a  mani-
fold  and the error xxe ˆ−=  of using x̂  to represent 
x  is minimized collectively on a set of samples.  One  
widely studied situation is that a manifold is a subspace 
represented by linear coordinates, e.g., spanned by three 
linear independent basis vectors 321 ,, aaa  as shown in 
Fig.1(a). So, x̂  can be represented by its projection 

)( jy  on each basis vector, i.e., 

jj
ayx ∑= 3 )1(ˆ  

or    

(1) (2) (3)ˆ ,  [ , , ]Tx x e Ay e y y y y= + = + = .  (1)

Typically,  the error xxe ˆ−=   is measured by the 
square norm, which is minimized  when e  is orthogonal 
to x̂ . Collectively, the minimization of the average error 

2e on a set of samples or its expectation 2eE  is featured 
by those natures given at the bottom of Fig.1(a).  

Generally, the task consists of  three ingredients,  as 
shown in Fig.2.  First, how the error xxe ˆ−=   is meas-
ured. Different measures define different projections.  
The square norm  2ed =  applies to a homogeneous 
medium between x  and x̂ . Other measures are needed 
for inhomogeneous mediums. In Fig.1(c),  a non-or-
thogonal but still linear projection is considered via 

eeed e
T

B
12 −Σ==  with BBT

e =Σ−1 , as if e is first mapped 
to a homogeneous medium by a linear mapping e and 
then measured by the square norm. Shown at the bot-
tom of Fig.1(c) are the natures of this 2

B
eMin . Being 

considerably different from those of 2eMin ,  more 
assumptions have to be  imposed externally.

The second ingredient is a coordinate system,  via 
either linear vectors in Fig.1(a)&(c) or a set of curves 
on a nonlinear manifold in Fig.1(b).  Moreover, there 
is  the third ingredient that imposes certain structure 
to further constrict  how y is distributed within the 
coordinates, e.g., by the nature d).

The differences in choosing and combining the 
three ingredients lead to different approaches. We use 
the name “independent subspaces” to denote those 
structures with the components of y  being mutually 
independent, and get a general framework for accom-
modating several unsupervised learning topics.  

 Subsequently,  we  summarize them via three 
streams of studies by considering 

•  eeed e
T

B
12 −Σ==  and  two special cases, 

•  three types of independence structure, and  wheth-
er there is temporal structure among samples,  

• varying  from one linear coordinate system to 
multiple linear coordinate systems at different 
locations, as shown in Fig.2.  
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I
STUDIES FEATURED BY SECOND 
ORDER INDEPENDENCE
 
We start at considering samples of independently and 
identically distributed (i.i.d.) by linear coordinates and 
an independent structure of a Gaussian  )ì|p(y (j)(j)

t ,  with 
the projection measure varying as illustrated within the 
first column of  the table in  Fig.2.  We encounter factor 
analysis (FA) in the general case 2 T T

B
d e e B Be= = . At 

the special case eB Iσ= , the linear coordinates span 
a principal subspace of data. Further imposing ATA = 
I and requiring the columns of A given by the first m 
principal components (PCs), i.e., eigenvectors  that 
correspond the largest eigenvalues of 1)( −=Σ BBT .  
It becomes equivalent to PCA.   Moreover, at the de-
generated case e = 0, y = xW de-correlates components 
of y, e.g., performing a pre-whitening as encountered  
in signal processing. 

    We summarize studies on the Roadmap A. The first 
stream originated from 100 years ago. The first adaptive 
learning one is Oja rule that finds the 1st-PC (i.e., the 
eigenvector  that corresponds the largest eigenvalue 
of  Σ ),  without explicitly estimating Σ . Extended 
to find multi-PCs,  one way is featured by either an 
asymmetrical or a sequential implementation of the 
1st-PC rule, but suffering error-accumulation. Details 
are referred to Refs.5,6,67,76,96  in (Xu, 2007a). The 
other way is finding multi-PCs symmetrically, e.g., Oja 
subspace rule. Further studies are summarized into the 
following branches:

MCA, Dual Subspace, and TLS Fitting

In (Xu, Krzyzak&Oja, 1991),  a dual pattern recognition 
is suggested by considering both the principal subspace 
and  its complementary subspace, as well as both the 
multiple PCs and its complementary counterparts--the 
components that correspond the smallest eigenvalues 
of Σ  (i.e., the row vectors of U in Fig.2). Moreover,  
the first adaptive rule is proposed by eqn.(11a) in (Xu, 
Krzyzak&Oja, 1991) to get the component that corre-
sponds the smallest eigenvalue of Σ , under the name 
Minor component analysis (MCA) firstly coined by Xu, 
Oja&Suen (1992), and it is also used for implementing a 
total least square (TLS) curve fitting.  Subsequently, this 
topic has been brought to the signal processing literature 
by Gao, Ahmad & Swamy (1992)  that was motivated 
by a visit of Gao to Xu’s office where Xu introduced 
him the result of Xu,Oja&Suen (1992). Thereafter, adap-

tive MCA learning for TLS filtering becomes a popular 
topic of signal processing,  see (Feng,Bao&Jiao,1998) 
and Refs.24,30,58,60 in (Xu,2007a).  

It was also suggested in (Xu,Krzyzak&Oja,1992) 
that an implementation of PCA or MCA is made by 
switching the updating sign in the above eqn.(11a). Ef-
forts were subsequently made to examine the existing 
PCA rules on whether they remain stable after such 
a sign switching. These jobs usually  need tedious 
mathematical analyses of ODE stability, e.g., Chen & 
Amari (2001). An alternative way is turning an opti-
mization of a PCA cost into a stable optimization of an 
induced cost for MCA, e.g., the LMSER cost is turned 
into one for  subspace spanned by multiple MCs (Xu, 
1994, see Ref.111, Xu2007a).  A general method  is 
further given by eqns(24-26) in (Xu, 2003) and then 
discussed in (Xu, 2007a).

LMSER Learning and Subspace Tracking

A new adaptive PCA rule is derived from the gradient 
)(2 WE∇  for a least mean square error reconstruction  

(LMSER) (Xu,1991),  with the first proof proposed 
on global convergence of Oja subspace rule--a task 
that  was previously regarded as difficult. It was 
shown mathematically and experimentally that LM-
SER improves Oja rule by further comparative stud-
ies, e.g, see  (Karhunen,Pajunen&Oja,1998)  and see 
(Refs14,15,48,54,71,72, Xu2007a).  Two years after 
(Xu,1991), this E2(W) is used for signal subspace track-
ing via a recursive least square technique (Yang,1993), 
then followed by others in the signal processing litera-
ture (Refs.33&55, Xu2007a).  Also, PCA and subspace 
analysis can be performed by other theories or costs 
(Xu, 1994a&b). The algebraic and geometric properties 
were further analyzed on one of them,  namely relative 
uncertainty theory (RUT), by  Fiori (2000&04, see 
Refs.25,29, Xu2007a).  Moreover, the NIC criterion 
for subspace tracking is actually a special case of this 
RUT, which can be observed by comparing eqn.(20) 
in (Miao& Hua,1998 ) with the equation of eρ  at the 
end of Sec.III.B in (Xu,1994a).   

Principal Subspace vs. Multi-PCs  

Oja subspace rule does not truly find the multi-PCs 
due to a rotation indeterminacy. Interestingly,  it is 
demonstrated experimentally that adding a sigmoid 
function makes LMSER approximate the multi-PCs 
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well (Xu,1991). Working at Harvard in the late sum-
mer 1991,  Xu got aware of Brockett (1991) and thus 
extended the Brockett flow of nn×  orthogonal matrices 
to that of  1nn×  orthogonal matrices with 1nn > , from 
which two learning rules for truly the multi-PCs are 
obtained through modifying the LMSER rule and Oja 
subspace rule. The two rules were included as eqns 
(13)&(14) in Xu (1993)  that was submitted in 1991,  
which are independent and also different from Oja 
(1992). Recently, Tanaka (2005) unifies these rules into 
one  expression controlled by one parameter,  and a 
comparative study was  made to show that  eqn(14) in 
(Xu,1993) turned out to be the most promising one.

Adaptive Robust PCA  

In the statistics literature,  robust PCA was proposed to 
resist outliers via a robust estimator on Σ .  Xu&Yuille 
(1992&95) generalized the rules of Oja, LMSER, and 
MCA into robust adaptive learning by statistical physics, 
related to the Huber M-estimators. Also, the PCA costs 
in (Xu,1994b) are extended to robust versions in Tab.2 
of (Xu, 1994a). Thereafter,  efforts have been further 
made, including its use in computer vision, e.g.,  see 
(Refs9,21,45,52, Xu2007a).

On Roadmap A,  another branch consists of ad-
vances on FA, which  includes PCA as its special case 
at 2

e e IσΣ = .  In the past decade, there is a renewed 
interest on FA, not only  the EM algorithm for FA is 
brought to implementing PCA, but also adaptive EM 
algorithm and other advances are developed in help of 
the Bayesian Ying Yang (BYY)  harmony learning.

SUBSPACES OF HIGHER ORDER 
INDEPENDENCE

Noticing the table in  Fig.2,  we proceed as  (j) (j)
tp(y |  

becomes nonGaussian ones in the last two columns. 
Shown at the left-upper corner on Roadmap B, the de-
generated case e = 0 leads to the problem of solving x = 
Ay from samples of x and an independence constraint 

∏
=

=
m

j

jypyp
1

)( )()( 
. 

One way  is solving induced nonlinear algebraic 
equations. Another way is called  independent com-

ponent analysis (ICA),   tackled in the following four 
branches:

• Seeking extremes of the higher order cumulants 
of y. 

• Using nonlinear Hebbian learning for removing 
higher order dependences among components of 
y, actually from which ICA studies originate. 

• Optimizing a cost that bases on

 
∏
=

=
m

j

jypyp
1

)( )()( 
 

 directly.  As shown on Roadmap B,  a same up-
dating equation is reached from several aspects, 
with actual differences coming from pre-specify-
ing the nonlinearity of )( )( jyφ . One works when 
the source components of y* are all subgaussians 
while the other works when the components of 
y*are all supergaussians. This problem is solved 
by learning jointly W and )( )( jyφ  via a parametric 
model. It is further found that a rough estimate of 
each source is already enough, which motivates 
the so called one-bit-matching conjecture that is 
recently proved to be true mathematically (Xu, 
2007b).

• Implementing nonlinear LMSER (Xu, 1991&93). 
Details are referred to Roadmap B. Here, we 
add clarifications on two previous confusions. 
One relates to an omission of the origin of non-
linear LMSER. This has already been clarified 
in (Karhunen,Pajunen, &Oja,1998; Hyvarinen, 
Karhunen, & Oja, 2001;Plumbley &Oja,2004),  
clearly spelling out that the nonlinear E2(W) and 
its adaptive gradient rule were both proposed 
firstly in (Xu, 1991&93). The second confusion 
is about that ICA is usually regarded as a coun-
terpart of PCA. As stated in (Xu,2001b&03) 
and observed from the Table in Fig.2, ICA by y 
= xW is actually an extension of de-correlation 
analysis, in any combinations of PCs and MCs. 
The counterpart of MCA is minor ICA (M-ICA) 
while the counterpart of PCA is principal ICA 
(P-ICA). 

 
In fact, the concept `principal’  emerges from  et = 

xt – Ay ≠ 0. As shown within the table in Fig.2 and on 
the rightmost column on Roadmap B, as  (j) (j)

tp(y |  
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becomes nonGaussian ones, FA is extended to a binary 
FA (BFA) if y is binary, and a nonGaussian FA (NFA) 
if y is real but nonGaussian. Similar to FA perform-
ing PCA at 2

e e IσΣ =  ,  both BFA and NFA become to 
perform a P-ICA at 2

e e IσΣ =  . 
Observing the first box in this column,  for et = xt 

– Ay ≠ 0 we need to seek an appropriate nonlinear map 
y = f(x). It usually has no analytical solution but needs 
an expensive computation to approximate. As discussed 
in (Xu, 2003), nonlinear LMSER uses a sigmoid non-
linearity Wxzzsy j

t
j

t == ),( )()( ), z = xW to avoid computing costs 
and  approximately implements a BFA for a Bernoulli 

)( )( jyp  with a  probability )(
1

)(1 ∑ =
=

N

t
j

tNj zsp  and a NFA for 
)( )( jyp  with a pseudo uniform distribution on (–∞, +∞), 

as well as  a nonnegative ICA (Plumbley&Oja,2004) 
when )( )( jyp  is on [0, +∞). However,  further quantita-
tive analysis is needed for this  approximation.  

Without approximation, the EM algorithm is de-
veloped  for maximum likelihood learning since 1997, 
still suffering expensive computing costs. Favorably, 
further improvements have also been achieved by the 
BYY harmony learning. Details are referred to the 
rightmost column on Roadmap B.  

  

TEMPORAL AND LOCALIZED 
EXTENSIONS 

We further consider temporal samples shown at the 
bottom of the rightmost column on both Roadmap A 
and Roadmap B,  via embedding a temporal structure 
in t  (j) (j)

tp(y | . A typical one is using 

{ },  φ − =
= =

(j)q(j) (j) (j) (j) (j)
t t j t t ,  

e.g., a linear regression 

( )
( )

1

jq j
ττ

β −=
=∑(j) (j)

t t , 

to turn a model (e.g., one in the table of  Fig.2)  into 
temporal extensions. Information is carried over time 
in two ways. One is computing  (j)

t  by the regres-
sion, with learning on  (j)

t  made through the gradient 
with respect  to jϕ  by a chain rule. The second is 
computing ∫ (j) (j) (j) (j)

t t t tp(y |  and getting the 
gradient with respect to jϕ . Details are referred to Xu 
(2000&01a&03). 

Next, we move to multiple subspaces at different 
locations as shown in Fig.2. Studies are summarized on 
Roadmap C, categorized according to one key point, i.e., 
a scheme t,p  that allocates a sample tx  to different 
subspaces. This  t,p  bases on two issues. 

One is a local measure on how the  -th  subspace is 
suitable for representing tx . The other is a mechanism 
that summarizes the local measures of subspaces to 
yield  t,p . One typical mechanism is that emerges 
in the EM algorithm for the maximum likelihood or 
Bayesian learning, where tx is fractionally allocated 
among subspaces proportional to their local measures. 
Another typical mechanism is that tx is nonlinearly 
located to one or more winners via a competition based 
on the local measures, e.g,, as in the classic competitive 
learning and the rival penalized competitive learning 
(RPCL).  

Also, a scheme t,p  may come from blending both 
types of mechanisms, as that from the BYY harmony 
learning.  Details are referred to (Xu,2007c) and its 
two http-sites. 

FUTURE TRENDS

Another important task is how to determine the number 
k of subspaces and the dimension m of each subspace. 
It is called  model selection, usually implemented in 
two phases.  First, a set of candidates are considered 
by enumerating k  and m , with  unknown parameters 
estimated by the maximum likelihood learning. Second,  
the best among the candidates is selected by one of 
criteria, such as AIC, CAIC, SIC/BIC/MDL,  Cross 
Validation, etc. However, this two-phase implemen-
tation is computationally very extensive. Moreover, 
the performance will degenerate considerably when 
the sample size is finite while  k  and m  are not too 
small.

One trend  is letting model selection to be made 
automatically during learning, i.e., on a candidate 
with k  and m  initially being large enough, learn-
ing not only determines unknown parameters but also 
automatically shrinks k  and m  to appropriate ones. 
Two such efforts are  RPCL and the BYY harmony 
learning.  Details are referred to (Xu,2007c) and its 
two http-sites. 

Also, there are open issues on x = Ay + e, e ≠ 0, 
with components of y mutually independent in higher 
order statistics. Some are listed below:
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• Which part of unknown parameters in x = Ay + e 
can be determined uniquely ? 

• Under which conditions, the independence

 
∏
=

=
m

j

jypyp
1

)( )()( 
 

 can be ensured in concept? Can  it be further 
achieved by a learning algorithm?

• In what a sense, both ensuring 

 
∏
=

=
m

j

jypyp
1

)( )()( 
 

 and the best reconstruction of x by Ayx =ˆ  = Ay can be 
achieved simultaneously? If not, what is the best 
nonlinear y = f(x) in term of both

 
∏
=

=
m

j

jypyp
1

)( )()( 
 

 and e ≠ 0? 
• Can such a best be obtained analytically or via 

an effective computing?

CONCLUSION 

Studies of three closely related unsupervised learning 
streams have been overviewed in an extensive scope 
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and  from a systematic perspective. A general frame-
work of independent subspaces is presented, from 
which a number of learning topics are summarized 
via different  features of choosing and combining the 
three basic ingredients.   
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KEY TERMS

BYY Harmony Learning:  It is a statistical learning 
theory for a two pathway featured  intelligent system 
via two complementary Bayesian representations of 
the joint distribution on the external observation  and 
its inner representation, with both parameter learning 
and model selection determined by a principle that 
two Bayesian representations become best  harmony.         
See  http://www.scholarpedia.org/article/Bayes-
ian_Ying_Yang_Learning.  

Factor Analysis: A set of samples { }
=

N

t t 1
x   is de-

scribed by a linear model x = Ay + µ + e, where µ is a 
constant, y and e are both from Gaussian and mutually 
uncorrelated, and components of y are called factors 
and mutually uncorrelated. Typically, the model is 
estimated by the maximum likelihood principle. 

Independence Subspaces: It refers to a family of 
models, each of which consists of  one or several sub-
spaces. Each subspace is spanned by linear independent 

basis vectors  and  the corresponding coordinates  are 
mutually independent.  

Least Mean Square Error Reconstruction (LM-
SER):  For an orthogonal projection xt onto a subspace 
spanned by the column vectors of a matrix W, maximiz-
ing ∑ =

N

1t
2

tN
1 )x(w T  subject to IWW =

t  is equivalent to 
minimizing the mean square error ∑ =

−
N

1tN
1 2ˆ tt xx  by 

using the projection ˆ = T
t tx WW x   as reconstruction of 

xt, which is reached when W spans the  same subspace 
spanned by the PCs. 

Minor Component (MC): Being orthogo-
nal complementary to the PC, the solution of 

= =
= =∑t

N r 2 T1
tN(w w 1} t 1

min J(w) (w x ) w  is the MC, 
while the m-MCs are referred to the columns of W  
that  minimizes || || [ ]W W Tr W W

=
= =∑N r 2 T1

tN t 1
J( ) x   

subject to IWW =
t .

Principal Component (PC): For samples { }
=

N

t t 1
x   

with a zero mean, its PC is a unit vector w originated 
at zero with a direction along which the average of  the 
orthogonal projection by every sample is maximized, 
i.e., T

= =
= =∑t

N 2 T1
tN(w w 1} t 1

max J(w) (w x ) w , the 
solution is the eigenvector of the sample covariance 
matrix 

=
= ∑N T1

t tN t 1
, corresponding to the largest 

eigen-value.  Generally,  the m-PCs are referred to 
the m orthonormal vectors as the columns of W that 
maximizes || || [ ]W W Tr W W

=
= =∑N r 2 T1

tN t 1
J( ) x  .

Rival Penalized Competitive Learning: It is a 
development of competitive learning in help of an 
appropriate balance between participating and leav-
ing mechanisms, such that an appropriate number of 
agents or learners will be allocated to learn multiple 
structures underlying observations. See  http://www.
scholarpedia.org/article/Rival_Penalized_Competi-
tive_Learning. 

Total Least Square (TLS) Fitting:  Given samples 
{ }=

=N T T
t t t tt 1z ,  z [y ,x ] ,  instead of   finding a vector w 

to minimize the error ∑ =
−

N

1tN
1 2

t
T

t xwy , the TLS 
fitting is finding an augmented vector TT cww ],[~ =  such 
that the error ∑ =

N

1tN
1

2~
t

T zw  is minimized subject 
to 1~~ =wwT ,  the solution is the MC of  { }N

1ttz = . 




