
An Extended Path Following Algorithm
for Graph-Matching Problem

Zhi-Yong Liu, Hong Qiao, Senior Member, IEEE,
and Lei Xu, Fellow, IEEE

Abstract—The path following algorithm was proposed recently to approximately

solve the matching problems on undirected graph models and exhibited a state-of-

the-art performance on matching accuracy. In this paper, we extend the path

following algorithm to the matching problems on directed graph models by

proposing a concave relaxation for the problem. Based on the concave and

convex relaxations, a series of objective functions are constructed, and the Frank-

Wolfe algorithm is then utilized to minimize them. Several experiments on

synthetic and real data witness the validity of the extended path following

algorithm.

Index Terms—Graph matching, convex relaxation, concave relaxation, directed

graph, PATH following algorithm.

Ç

1 INTRODUCTION

GRAPH matching plays a central role in many graph-based
techniques, such as classification in structural pattern recognition,
where patterns are represented by graph models [1], and
identification of pairs of homologous proteins, where proteins of
each species are organized by a graph [2]. Given two graphs GD ¼
ðVD;EDÞ and GM ¼ ðVM;EMÞ, where V and E, respectively, denote
the sets of vertices and edges, matching between them is to find a
one-to-one mapping f : VD ! VM such that some fitness function is
minimized. The fitness function can be defined in different ways,
such as on the edit distance [3] and Frobenius norm of the
difference between adjacency matrices [4]. The problem is, in
nature, an NP-hard combinatorial optimization problem with
factorial complexity, except for some graph models with special
structure, of which a typical example is the planar graphs, which
have been shown to be of polynomial complexity [5].

To make the problem computationally tractable, many approx-

imate approaches have been proposed in the last three decades,

trying to seek an acceptable tradeoff between the complexity and

matching accuracy. The approximate approaches can be categor-

ized from different perspectives, for which an extensive review is

referred to [6], for instance. In this paper, we focus on one group of

approximate techniques that works directly on the adjacency

matrix of the graphs to be matched and involves a relaxation of the

combinatory optimization to be a continuous one [7], [8], [4]. With

the help of the adjacency matrix, the matching problem can be

formulated as identifying a permutation matrix that minimizes

some cost function as follows:

P ¼ arg min
P2P

f
�
AD;AP ðMÞ

�
; AP ðMÞ ¼ PAMP

T ; ð1Þ

where P denotes the set of permutation matrices, A the adjacency
matrix, and AP ðMÞ the permuted adjacency matrix of AM by P . To
avoid the combinatory nature of the problem, one typical approach
is to relax the domain of the problem from P to its convex hull, i.e.,
the set of doubly stochastic matrices denoted by D. However,
optimization of the relaxed problem generally results in a doubly
stochastic matrix instead of a permutation one. To finally solve the
matching problem, a further step is usually needed to project the
doubly stochastic matrix P back to a permutation matrix X. An
intuitive approach may resort to solving the following maximal
linear assignment problem:

X ¼ arg max
X2P
hX;P i; ð2Þ

typically with the help of the Hungarian algorithm [9]. Such a
hard-cut type of assignment may, however, introduce a significant
additional error. By contrast, starting from some appropriate
P 2 D, the graduated assignment [8] and PATH following [4]
algorithms can converge to a permutation matrix in a smooth way.
The graduated assignment algorithm approaches a permutation
matrix by increasing a parameter which controls the nonconvexity
of the problem, and as the parameter is increased to be large
enough, the algorithm finally gets a permutation matrix. On the
other hand, a concave relaxation of the original graph-matching
problem was introduced by the PATH following algorithm, and by
linearly combining the concave and convex relaxations, the PATH
following algorithm provides a gradual nonconvexity-like algo-
rithm to minimize the concave relaxation which holds the same
minima as the original matching problem. For matching problems
on undirected graphs, the PATH following algorithm exhibited an
excellent performance on matching accuracy.

However, the PATH following algorithm cannot be used to
solve the matching problem on directed graph models since the
concave relaxation proposed in [4] can no longer be guaranteed to
be concave. In this paper, we propose a concave relaxation for the
directed graph model, and thus extend the PATH following
algorithm to cover such a type of graphs. A brief review of the
PATH following algorithm is given in Section 2. The proposed
method is described in detail in Section 3, followed by some
experimental demonstrations given in Section 4. Section 5 finally
concludes the paper.

2 A BRIEF REVIEW OF PATH FOLLOWING ALGORITHM

The PATH following algorithm adopts the Frobenius matrix norm
as the cost, and the graph-matching problem is formulated as
follows:

P ¼ arg min
P2P

fðP Þ;

fðP Þ ¼ k AD � PAMP
T k2

F ¼ k ADP � PAM k2
F

¼ vecðP ÞTQvecðP Þ;

ð3Þ

where vecðP Þ is the columnwise vector representation of P , and

Q ¼
�
I �AD � AT

M � I
�T �

I �AD �AT
M � I

�
2 IRN2�N2 ð4Þ

is a symmetric positive definite matrix, except for the case of graph
isomorphism, which makes Q positive semidefinite. Actually, in
the algorithm it is unnecessary to utilize the large-size matrix Q in
an explicit way.

By relaxing the domain of the problem from P to D, a convex
relaxation of the original objective function is given by

FvexðP Þ ¼ vecðP ÞTQvecðP Þ; P 2 D: ð5Þ

Once the global minimum of (5) has been found, which is generally
a doubly stochastic matrix, a permutation matrix can be gotten by

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012 1451

. Z.-Y. Liu and H. Qiao are with the State Key Laboratory of Management
and Control for Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China.
E-mail: {zhiyong.liu, hong.qiao}@ia.ac.cn.

. L. Xu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
E-mail: lxu@cse.cuhk.edu.hk.

Manuscript received 10 Aug. 2011; revised 19 Dec. 2011; accepted 18 Jan.
2012; published online 30 Jan. 2010.
Recommended for acceptance by D. Weinshall.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-08-0539.
Digital Object Identifier no. 10.1109/TPAMI.2012.45.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

(2) to solve the matching problem. Such a graph-matching
algorithm is referred to as QCV (convex optimization).

Meanwhile, a concave relaxation is figured out on undirected
graphs without self-loops as

FucavðP Þ ¼ �trð4P Þ � 2vecðP ÞT
�
LTM � LTD

�
vecðP Þ; P 2 D; ð6Þ

where 4ij ¼ ðRMii �RDjjÞ2,1 with R and L denoting the degree
and Laplacian matrices of the graph, respectively. The concave
relaxation holds the same minima as the original matching
problem, i.e.,

min
P2P

FucavðP Þ ¼ min
P2P

F0ðP Þ: ð7Þ

Finally, a series of objective functions is constructed as follows
to form the PATH following algorithm:

F�ðP Þ ¼ ð1� �ÞFvexðP Þ þ �FucavðP Þ; P 2 D; ð8Þ

where � 2 ½0; 1�. The algorithm starts by setting � ¼ 0, which makes
the objective functions degenerate to the convex relaxation. By
gradually increasing �, the objective becomes generally neither
concave nor convex, and the PATH algorithm is to find a local
minimum of F�þd� initialized from the local minimum found by
minimizing F� , by the Frank-Wolfe algorithm. As � becomes large
enough (may not be necessary to be one) to make F� a concave
function, minimization of F� will finally push P to a permutation
matrix.

It was shown in [4] that, for the matching problems between
two undirected graphs, the PATH following algorithm exhibited a
state-of-the-art performance on matching accuracy. It is also noted
that though the global minimium of the concave relaxation is the
same as the original matching problem, the final result obtained by
the PATH following algorithm can be far away from the ground
truth solution, due to the large number of local minimums (up to
N !) and its local search nature. On the other hand, though (6) is still
a relaxation for directed graphs without self-loops, it can no longer
be guaranteed to be concave. Below, we will propose a concave
relaxation for directed graphs without self-loops, and thus extend
the path following algorithm to cover such a type of graph model.

3 PROPOSED METHOD

3.1 A Concave Relaxation for Directed Graphs without
Self-Loops

For directed graphs without self-loops, FucavðP Þ given by (6) still
remains a relaxation of the original objective function (3) since the
difference between them is a constant with respect to P 2 P [4].
However, (6) cannot guarantee to be a concave function because
the term ðLTM � LTDÞ is not necessarily positive semidefinite for
asymmetric LTM and LTD even if both of them are positive
semidefinite [10]. Here, we propose a concave relaxation for
directed graphs without self-loops as follows:

FdcavðP Þ ¼ �trð4P Þ � vecðP ÞT�vecðP Þ;
� ¼ LTM � LTD þ LM � LD þ �I; P 2 D;

ð9Þ

where � ¼ c� & with c being a small positive constant, and &,
typically a negative number, the smallest eigenvalue of the
symmetric matrix

L ¼ LTM � LTD þ LM � LD: ð10Þ

To justify the validity of the concave relaxation, it is necessary to
check, first, its concavity and, second, whether FdcavðP Þ satisfies (7).
The fact that all of the eigenvalues of the real symmetric matrix �

are positive implies that � is a positive definite matrix, which

guarantees that (9) is a concave function. Then, we justify the

second point as follows:

min
P2P

FdcavðP Þ

¼ min
P2P

�
�trð4P Þ � vecðP ÞT

�
LTM � LTD þ LM � LD þ �I

�
vecðP Þ

�
¼ min

P2P

�
�trð4P Þ � 2vecðP ÞT

�
LTM � LTD

�
vecðP Þ

�
� �N

¼ min
P2P

FucavðP Þ ¼ min
P2P

F0ðP Þ;

ð11Þ

thanks to the fact that

vecðP ÞT
�
LTM � LTD

�
vecðP Þ ¼ vecðP ÞT ðLM � LDÞvecðP Þ:

Therefore, FdcavðP Þ is a concave relaxation of the original matching

problem.
Finally, based on the concave relaxation given by (9) and the

convex relaxation given by (5), a series of objective functions for

the matching problem on directed graphs without self-loops is

given as follows:

F�ðP Þ ¼ ð1� �ÞFvexðP Þ þ �FdcavðP Þ; P 2 D: ð12Þ

In practice, to prevent the concave term from increasing too

quickly as � increases, we may choose a normalized concave

relaxation to construct the objective function as

F�ðP Þ ¼ ð1� �ÞFvexðP Þ þ �FdcavðP Þ=�; P 2 D ð13Þ

because � in FdcavðP Þ may be quite large, especially for large-size

graph models.
A simple illustration of the changes of F�ðP Þ with respect to �

and P is shown by Fig. 1, which witnesses how the objective

function changes smoothly from a convex function to a concave

one as � increases from 0 to 1.
Though the concave relaxation is proposed for the directed

graphs without self-loops, it can be extended to the graphs with

self-loops by adding just a linear term. Specifically, a symmetric

score matrix C 2 IRN�N is first constructed as follows:

Cij ¼ ðADii �AMjjÞ2: ð14Þ

Then, the matching cost between the edges belonging to self-loops

can be figured out as

FsðP Þ ¼ trðPCÞ; P 2 P: ð15Þ

1452 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012

1. The index i and j should be exchanged in [4].

Fig. 1. Changes of the objective function F�ðP Þ with respect to � and p
with P given by P ¼ ½p; 1� p; 1� p; p�, where AD ¼ ½0; 0:1453; 0:3920; 0� and

AM ¼ ½0; 0:7561; 0:4454; 0�.

Thus, similarly to the labeled graph-matching problem discussed

in [4], the objective functions for the directed graphs with self-

loops can be constructed as follows:

F�ðP Þ ¼ trðPCÞ þ ð1� �ÞFvexðP Þ þ �FdcavðP Þ=�; P 2 D: ð16Þ

Consequently, with the two concave relaxations given by (6) and

(9), we can actually tackle the matching problems between any

types of graph models as long as they can be represented by a real

adjacency matrix.

3.2 Estimation of �

The parameter � ¼ c� & in (9) needs to be specified. It is usually

computationally heavy to figure out the smallest eigenvalue (&) of

the large-size (N2 �N2) matrix L. Fortunately, to make (9) a

concave relaxation, it is unnecessary to get the exact value of &, but

we just need to estimate one of its lower bounds. A lower bound of

the smallest eigenvalue �min of a real symmetric matrix M whose

entries are within the interval ½a; b� is given as follows [11]:

�minðMÞ �
nða� bÞ=2 if n is even;�
na�

ffi
a2 þ ðn2 � 1Þb2

p ��
2 otherwise;

(
if jaj < b;

na otherwise;

8><
>:

ð17Þ

where n denotes the size of matrix M and a; b the smallest and

largest element of M. It is still computationally demanding (OðN4Þ)
to find the smallest and largest element of the matrix L. To

alleviate the computational load, we further relax the value

interval ½a; b� to be a looser one as follows:

a ¼ 2�min element offLM � LDg;
b ¼ 2�max element offLM � LDg;

ð18Þ

where the operators min element off�g and max element off�g
denote finding the minimal and maximal element of the matrix,
respectively. Then, to calculate a and b, we just need to find the
smallest and largest element of LM and LD. Specifically, denoting
the smallest and largest elements of LM and LD as �M; �M and
�D; �D respectively, where � and � should be negative and positive,
respectively, as the weights of the graph edge are usually set as
real positive numbers (if not (19) should be modified accordingly),
a and b are given by

a ¼ 2�minf�M�D; �M�Dg; b ¼ 2�maxf�M�D; �M�Dg: ð19Þ

Though any lower bound of & can certainly give a concave

relaxation by (9), it is still interesting to analyze how the lower

bound will affect the performance of the algorithm. Intuitively, a

tighter bound might be preferred since a too large � makes L

relatively trivial in the function. An extreme case is as �!1,

which makes the concave relaxation Fdcav=�! vecðP ÞTvecðP Þ.
Actually, based on the lower bound provided by (17), we can

get a tighter bound for & by constructing a series of positive definite

matrices. Specifically, by partitioning the positive definite matrix

�n ¼ Lþ �I ¼
�n�1 d
dT b

� 	
;

where � ¼ c� & with & given by (17), the lower bound of the

smallest eigenvalue of �n is given by [12]

ln ¼
1

2
bþ ln�1 �

ffi
ðb� ln�1Þ2 þ 4dT d

q
 �
� �minð�nÞ; ð20Þ

where ln�1 denotes the lower bound of �n�1. It is not difficult to

check that all of �n�1 � � ��1 are symmetric positive definite

matrices thanks to the rather general lower bound given by (17).

Thus, we can iteratively find ln starting from l1. Based on ln, we can
get a tighter lower bound of & by & � ln � �.

The process involves iterating N2 � 1 times of (20), which
involves, on average, a OððN2 þ 1Þ=2Þ complexity. Thus, the total
computational complexity is OðN4Þ, and meanwhile, it in general
requires a large storage (OðN4Þ). Moreover, as will be shown by the
experimental results later, the tighter bound just outperforms the
loose one very slightly (< 1 percent on average). Thus, in practice
we may still prefer to use (17) as the estimation to avoid a heavy
computational load, especially on large-size problems.

3.3 Implementation Algorithm

For each fixed �, the objective function given by (8) is a constrained
quadratic program which is generally neither convex nor concave.
Just following the path following algorithm, we utilize the Frank-
Wolfe algorithm to solve it. Specifically, to minimize F�ðP Þ based
on the currently estimated P 	, the Frank-Wolfe algorithm is
comprised of the following four steps:

. Step 1: Initialize P 0 ¼ P 	 and let t ¼ 0.

. Step 2: Find an extreme point Xt (a permutation matrix) of
D by solving the linear program

minhrF�ðPtÞ; Xti; s:t:Xt 2 D; ð21Þ

where rF�ðP Þ is given by

rF�ðP Þ ¼ ð1� �ÞrF0ðP Þ þ �rFdcavðP Þ=�;
rF0ðP Þ ¼ 2

�
AT
DADP �AT

DPAM � ADPA
T
M þ PAMA

T
M

�
;

rFdcavðP Þ ¼ �4T � 2LTDPLM � 2LDPL
T
M � 2�P:

ð22Þ

. Step 3: Find a step size � 2 ½0; 1� to minimize
F�ðPt þ �ðXt � PtÞÞ, and update Ptþ1 ¼ Pt þ �ðXt � PtÞ.

. S t e p 4 : I f hrF�ðPtþ1Þ; P tþ1 �Xti < "jF�ðPtþ1Þ þ
hrF�ðPtþ1Þ; Xt � Ptþ1ij, where " is a small positive
constant, return Ptþ1. Otherwise, let t ¼ tþ 1 and go back
to step 2.

In the algorithm, the linear program in step 2 can be solved by the
Hungarian algorithm with a complexity OðN3Þ, and the line search
can be implemented by for instance the backtracking algorithm [13].

Then, the graph-matching algorithm is summarized by
Algorithm 3.1.

Algorithm 3.1. GRAPHMATCHING ðAD; AMÞ
Pn 1N�N=N; n 0; � 0

while � � 1&Pn 62 P
do Pnþ1 FW ðPn; �Þ; � � þ ��; n nþ 1

return ðPnÞ
We adopt the schema used by the path following algorithm [4]

to determine ��, that is, to double or divide �� by 2 to keep the
difference of the objective functions between two successive
iterations just below a predefined small const. In the algorithm,
once P has become a permutation matrix, which implies that the
current objective function becomes actually a concave one, the
algorithm is terminated, even if � has not reached 1.

Storage complexity of the algorithm is OðN2Þ and the
computational complexity of the algorithm is roughly OðN3Þ since
the complexities of the Hungarian algorithm and matrix multi-
plication involved in the algorithm are both OðN3Þ.

4 EXPERIMENTAL DEMONSTRATIONS

Four algorithms, Umeyama’s spectral algorithm (U for short) [14],
graduated assignment [8] (GA for short), QCV algorithm in (5),

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012 1453

and the extended PATH following algorithm (EPATH for short)
are experimentally compared to evaluate their performances on
both accuracy and complexity. For the GA algorithm, the measure
of compatibility between the edges of the two graphs is given as

Caibj ¼
0 if either GDab or GMij is null;

1� ðGDab �GMijÞ2 otherwise;

�

and the parameters are set the same as those in [8]. For the EPATH
algorithm, " is set as 0.001 and the initialization of all of the
algorithms except for U is P 0 ¼ 1N�N=N . All of the algorithms
were implemented by Matlab 2009b, with a MEX function to
implement the Hungarian algorithm.

4.1 On Synthetic Data

Two types of graph models are synthetically generated for the
comparison, the uniform graphs and scale free graphs. A uniform
graph model is generated as follows: Given a sparsity s, for each
off-diagonal entry generate a random number r which is uniformly
distributed within ½0; 1�; if r > s, randomly generate its weight
Aij ¼ w 2 ½0; 1�, or otherwise Aij ¼ 0. The scale free graph whose
degree distribution follows a power law pðkÞ / k�� is generated in
the same manner as that used in [4], with appropriate modifica-
tions specific for directed graph models. Each edge of the scale free
graph is assigned a unit weight, that is, its adjacency matrix
consists of only 0 and 1.

The first experiment is to compare the four algorithms on the
two types of graphs, and for each type, 100 8-node graph pairs are
randomly generated. For the uniform graph, the sparsity is set as

0.5, meaning that about half of the off-diagonal entries of the

adjacency matrix are zero, and for the scale free graphs, the

parameter � is set as 2.5. Also, in the experiment we empirically

test three types of � in the concave relaxation Fdcav, i.e., the one

gotten by (17) (EPATH1), by (20) (EAPTH2), and the ground true

smallest eigenvalue (EPATH3).
The experimental results are listed in Table 1, where OPT denotes

the globally minimal matching error found by an exhaustive search.

From the experimental results, we can observe two points. First, the

EPATH algorithm with any one of the three estimations of �

significantly outperforms the other three algorithms on matching

accuracy. Second, although EPATH3 (with the exact smallest

eigenvalue) outperforms EPATH2 (with a tight lower bound), and

EPATH2 outperforms EPATH3 (with a loose lower bound), the

three types of EPATH algorithms exhibit comparable performance

as the best one (EPATH3) outperforms the worst one (EPATH1) by

less than 1 percent. Considering the computational complexity, we

adopt EPATH1 in the subsequent experiments. It is also interesting

to observe that the EPATH algorithm and QCV got a better result on

scale free graphs than on uniform graphs. For instance, on scale free

graphs, the average matching error of EPATH1 has a smaller

deviation ðð9:38� 8:71Þ=8:71 ¼ 7:69%Þ from the minimal error than

the one (15.62 percent) on uniform graphs. But, this point is not

obvious for U or GA.
We proceed to compare the four algorithms by graph pairs with

the second one generated based on the first one by adding some

noises. Specifically, for uniform graphs, given a noise level 	 2

1454 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012

TABLE 1
Comparative Experimental Results on 100 Graph Pairs with N ¼ 8

Fig. 2. Changes of the mean and standard deviation of the matching errors with respect to the noise level on the two types of graphs.

½0; 1� and a randomly generated adjacency matrix AD, AM is
generated by the following steps:

1. Set AM AD, and for each ðAMÞij; i 6¼ j, generate two
uniformly distributed random numbers r1 and r2 2 ½0; 1�.

2. If ðAMÞij > 0: if r1 < 	, ðAMÞij 0; or otherwise,
ðAMÞij ðAMÞij þ 	r2.

3. If ðAMÞij ¼ 0: if r1 < 	, ðAMÞij r2.
4. Generate a random permutation matrix P , and set

AM PAMP
T .

For the scale free graphs, the noise is added by randomly adding
	ND edges into GD to get GM , where we denote by ND the number
of edges of GD.

In the experiment, the noise level 	 increases gradually from 0
to 1 by a step size 0.1. At each noise level, 100 graph pairs with size
N ¼ 8 are randomly generated according to the above process. The
experimental results are shown in Fig. 2, from which we can
summarize some points as follows:

. All four algorithms succeeded in getting the optimal
matching in the case of graph isomorphism, i.e., null
noise. In such a case, the global minimum of the convex
relaxation of QCV and EPATH is exactly the solution of the
matching problem.

. The performance of U becomes significantly worse if one
of the two graphs to be matched is a little deviated from
isomorphic, a 0.1 noise level for instance. This implies that
the eigenvalue distance adopted by U is inconsistent with
the elementwise distance between the adjacency matrices.

. As the noise level becomes heavier, the performance of GA
declines in a quicker way than the QCV and EPATH
algorithms.

. EPATH significantly outperforms the other three algo-
rithms when the two graphs to be matched are not
isomorphic, especially on a high noise level.

The third experiment is to evaluate the scalability of the four
algorithms on both accuracy and complexity. The size of the

graphs is increased from 5 to 100 by a step size 5, and on each size
50 graph pairs are generated in the same way as the second
experiment with a fixed noise level 0.3 and a sparsity 0.2. The
experimental results on accuracy and time cost are shown in Figs. 3
and 4, respectively. It is once again observed that on all scales the
performance of EPATH is significantly better than the other three
algorithms in terms of matching accuracy. On the scale free graphs,
the QCV algorithm also exhibits a promising performance.

The slopes of the log curves shown in Fig. 4 reflect the
computational complexity of the algorithms with respective to
graph size. The slopes corresponding to U, QCV, GA, and EPATH
are roughly 2:33
 0:05, 3:07
 0:08, 3:77
 0:3, and 2:97
 0:09,
respectively, which implies that GA has the worst scalability to
matching large graphs. It is somewhat strange to observe that U
has an unexpected low complexity OðN2:33Þ. This may be due to
the fact that the Hungarian algorithm is implemented by a MEX
file, which runs significantly faster than its M file counterpart.

4.2 On Quadratic Assignment Problem (QAP) Data

We then evaluate the algorithms on some asymmetric data of the

quadratic assignment problem benchmark data set (QABLib) [15].

Actually, minimization of the objective function in (3) is equivalent

to maximization of the following objective function:

max
P2P

tr
�
PTADPA

T
M

�
; ð23Þ

while QAP is to minimize (23). We then use the EPATH algorithm

to solve the QAP on asymmetric data by introducing AD ¼ �A1,

and AM ¼ A2, where A1; A2 denote the QAP data, with the results

listed in Table 2,
It is observed that EPATH outperforms the other three

algorithms, except for only one data set. It is also somewhat

surprising to notice that on the type b data set, the GA and EPATH

algorithms can almost always find the optimal solution.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012 1455

Fig. 3. Matching error of the four algorithms with respect to the graph size.

Fig. 4. Time cost of the four algorithms with respect to the graph size.

TABLE 2
Comparative Experimental Results on the QAP Benchmark Data Set

5 CONCLUSIONS

The PATH following algorithm was recently proposed to solve the
matching problem on undirected graphs and exhibited excellent
performance on matching accuracy. In this paper, we extend the
algorithm to cover the directed graph models by proposing a
concave relaxation for the directed graphs without self-loops.
Some experimental comparisons on synthetic and real data witness
the validity the proposed method.

ACKNOWLEDGMENTS

The authors thanks the anonymous reviewers whose comments
greatly improved the manuscript, and Zhi-Yong Liu thanks
Dr. Zaslavskiy for some helpful discussions on the QAP. This
work was supported by the National Science Foundation of China
(NSFC) (grants 60975002, 61033011), and the National Basic
Research Program of China (973 Program) (grant 2009CB825404).

REFERENCES

[1] M.A. Eshera and K.S. Fu, “An Image Understanding System Using
Attributed Symbolic Representation and Inexact Graph-Matching,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 5, pp. 604-618,
Sept. 1986.

[2] R. Singh, J.B. Xu, and B. Berger, “Global Alignment of Multiple Protein
Interaction Networks with Application to Functional Orthology Detection,”
Proc. Nat’l Academy of Sciences USA, vol. 105, no. 35, pp. 12763-12768, 2008.

[3] R. Myer, R.C. Wilson, and E.R. Hancock, “Bayesian Graph Edit Distance,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 6, pp. 628-
635, June 2000.

[4] M. Zaslavskiy, F. Bach, and J.P. Vert, “A Path Following Algorithm for the
Graph Matching Problem,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, pp. 2227-2242, Dec. 2009.

[5] J.E. Hopcroft and J.K. Wong, “Linear Time Algorithm for Isomorphism of
Planar Graphs (Preliminary Report),” Proc. Sixth Ann. ACM Symp. Theory of
Computing, pp. 172-184, 1974.

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty Years of Graph
Matching in Pattern Recognition,” Int’l J. Pattern Recognition and Artificial
Intelligence, vol. 18, no. 3, pp. 265-298, 2004.

[7] H. Almohamad and S. Duffuaa, “A Linear Programming Approach for the
Weighted Graph Matching Problem,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 15, no. 5, pp. 522-525, May 1993.

[8] S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm for
Graph Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 18, no. 4, pp. 377-388, Apr. 1996.

[9] H.W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval
Research Logistics Quarterly, vol. 2, nos. 1/2, pp. 83-97, 1955.

[10] J.S. Li, “Kronecker Products of Positive Semidefinite Matrices,” J. Math.
Research and Exposition, vol. 17, no. 3, pp. 327-334, 1997.

[11] X.Z. Zhan, “Extremal Eigenvalues of Real Symmetric Matrices with Entries
in an Interval,” SIAM J. Matrix Analysis and Applications, vol. 27, no. 3,
pp. 851-860, 2006.

[12] A. Dembo, “Bounds on the Extreme Eigenvalues of Positive-Definite
Toeplitz Matrices,” IEEE Trans. Information Theory, vol. 34, no. 2, pp. 352-
355, Mar. 1988.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press,
2004.

[14] S. Umeyama, “An Eigendecomposition Approach to Weighted Graph
Matching Problems,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 10, no. 5, pp. 695-703, Sept. 1988.

[15] R.E. Burkard, S.E. Karisch, and F. Rendl, “Qaplib—A Quadratic Assign-
ment Problem Library,” J. Global Optimization, vol. 10, no. 4, pp. 391-403,
1997.

[16] L. Xu and E. Oja, “Improved Simulated Annealing, Boltzmann Machine
and Attributed Graph Matching,” Proc. EURASIP Workshop 1990 Neural
Networks, G. Goos and J.Hartmanis, eds., pp. 151-160, 1989.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1456 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

