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The one-bit-matching conjecture for independent component analysis
(ICA) has been widely believed in the ICA community. Theoretically,
it has been proved that under the assumption of zero skewness for the
model probability density functions, the global maximum of a cost func-
tion derived from the typical objective function on the ICA problem with
the one-bit-matching condition corresponds to a feasible solution of the
ICA problem. In this note, we further prove that all the local maximums
of the cost function correspond to the feasible solutions of the ICA prob-
lem in the two-source case under the same assumption. That is, as long
as the one-bit-matching condition is satisfied, the two-source ICA prob-
lem can be successfully solved using any local descent algorithm of the
typical objective function with the assumption of zero skewness for all
the model probability density functions.

The so-called one-bit-matching conjecture, which states that “all the sources
can be separated as long as there is a one-to-one same-sign-correspondence
between the kurtosis signs of all source probability density functions and
the kurtosis signs of all model probability density functions,” was summa-
rized in Xu, Cheung, and Amari (1998) and formally proved in Liu, Chiu,
and Xu (2004) recently under the assumption of zero skewness for the model
probability density functions. The one-bit-matching condition guarantees a
successful solution of the ICA problem by globally maximizing the follow-
ing cost function:

J(R) =
n∑

i=1

n∑
j=1
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where the orthonormal matrix R = (rij)n×n = WA is to be estimated instead
of W since A, i. e., the mixing matrix, is a constant one,1 νs

j is the kurtosis
of the source sj, and km

i is a constant with the same sign as the kurtosis
νm

i of the model probability density pi(yi). As proved by Liu et al. (2004),
under the assumption of zero skewness for the model probability density
functions, this cost function is equivalent to the typical objective function
of the ICA problem used by several researchers, such as Bell and Sejnowski
(1995), Amari, Cichocki, and Yang (1996), and Cardoso (1999).

However, in practice, typical gradient algorithms (e.g., Amari et al., 1996;
Welling & Weber, 2001) cannot guarantee global optimization. Here we fur-
ther analyze the local maxima of the cost function J(R) in the case of two
sources. For convenience, J(R) can be rewritten as

∑n
i=1

∑n
j=1 r4

ijkij, where
kij = νs

j km
i is the element of matrix K = (kij)n×n.

Theorem. Assume that the one-bit-matching condition is satisfied for n = 2,
the local maxima of J(R) are only the permutation matrices up to sign indeter-
minacy.

Proof. For the second-order orthonormal matrix R, there exist two disjoint
fields of R that can be expressed by

R1 =
(

cos θ − sin θ

sin θ cos θ

)
,

and

R2 =
(

cos θ sin θ

sin θ − cos θ

)
,

respectively, with one variable θ ∈ [0, 2π). Actually, each R1 denotes a rota-
tion transformation in R

2 (i.e., the two-dimensional real Euclidean space),
while each R2 denotes a reflection transformation in R

2.
Since J(R1) = J(R2), for simplicity we consider just R1. By differentiating

J(R1) with respect to θ , we have

dJ(R1)

dθ
= 4 cos θ sin θ [−(k11 + k22) cos2 θ + (k12 + k21) sin2 θ ], (2)

d2J(R1)

d2θ
= 4(k11 + k22)(3 sin2 θ cos2 θ − cos4 θ) + 4(k12 + k21)

× (3 sin2 θ cos2 θ − sin4 θ). (3)

1 Note that here, we additionally assume that A is square and invertible.
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Assume that the one-bit-matching condition is satisfied for n = 2 and
νs

1 > νs
2 and km

1 > km
2 ; we have the two following possibilities for the matrix

K.

Case I. All kij > 0, that is, both sources are subgaussians or supergaussians.
The necessary condition for local maxima is obtained by setting equation 2
= 0, and we have

sin θ cos θ = 0 (4)

tan2 θ = k11 + k22

k12 + k21
. (5)

The roots for equation 5 correspond to local minima. Solving equation 4, we
have θ̂ = 0, π

2 , π, 3π
2 which are local maxima as equation 3 < 0 at θ = θ̂ . It

can be readily verified that each local maximum θ̂ leads R1 to a permutation
matrix up to sign indeterminacy in this case.

Case II. k11, k22 > 0 while k12, k21 < 0, that is, a mixture that consists of
one subgaussian and one supergaussian source. In this case, no real roots
exist for equation 5. Among the roots θ̂ = 0, π

2 , π, 3π
2 , only 0 and π are local

maxima as equation 3 < 0 there. The remaining two roots correspond to
local minima. Similarly, it can be readily verified that each local maximum
leads R1 to a permutation matrix up to sign indeterminacy in this case.

Summing the results of cases I and II, the proof is completed.

According to this theorem, when the skewness of each model probability
density function is set to be zero, the two-source ICA problem can be suc-
cessfully solved using any local descent algorithm of the typical objective
function as long as the one-bit-matching condition is satisfied.
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