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Abstract Firstly proposed in 1995 and systemati-
cally developed in the past decade, Bayesian Ying-
Yang learning1) is a statistical approach for a two path-
way featured intelligent system via two complemen-
tary Bayesian representations of a joint distribution
on the external observation X and its inner represen-
tation R, which can be understood from a perspec-
tive of the ancient Ying-Yang philosophy. We have
q(X,R) = q(X |R)q(R) as Ying that is primary, with
its structure designed according to tasks of the system,
and p(X,R) = p(R|X)p(X) as Yang that is secondary,
with p(X) given by samples of X while the structure
of p(R|X) designed from Ying according to a Ying-Yang
variety preservation principle, i.e., p(R|X) is designed as
a functional with q(X |R), q(R) as its arguments. We call
this pair Bayesian Ying-Yang (BYY) system. A Ying-
Yang best harmony principle is proposed for learning all
the unknowns in the system, in help of an implementa-
tion featured by a five action circling under the name
of A5 paradigm. Interestingly, it coincides with the fa-
mous ancient WuXing theory that provides a general
guide to keep the A5 circling well balanced towards a
Ying-Yang best harmony. This BYY learning provides
not only a general framework that accommodates typ-
ical learning approaches from a unified perspective but
also a new road that leads to improved model selection
criteria, Ying-Yang alternative learning with automatic
model selection, as well as coordinated implementation
of Ying based model selection and Yang based learning
regularization.

This paper aims at an introduction of BYY learn-
ing in a twofold purpose. On one hand, we introduce
fundamentals of BYY learning, including system design
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principles of least redundancy versus variety preserva-
tion, global learning principles of Ying-Yang harmony
versus Ying-Yang matching, and local updating mech-
anisms of rival penalized competitive learning (RPCL)
versus maximum a posteriori (MAP) competitive learn-
ing, as well as learning regularization by data smoothing
and induced bias cancelation (IBC) priori. Also, we in-
troduce basic implementing techniques, including apex
approximation, primal gradient flow, Ying-Yang alter-
nation, and Sheng-Ke-Cheng-Hui law. On the other
hand, we provide a tutorial on learning algorithms for
a number of typical learning tasks, including Gaussian
mixture, factor analysis (FA) with independent Gaus-
sian, binary, and non-Gaussian factors, local FA, tem-
poral FA (TFA), hidden Markov model (HMM), hier-
archical BYY, three layer networks, mixture of experts,
radial basis functions (RBFs), subspace based functions
(SBFs). This tutorial aims at introducing BYY learning
algorithms in a comparison with typical algorithms, par-
ticularly with a benchmark of the expectation maximiza-
tion (EM) algorithm for the maximum likelihood. These
algorithms are summarized in a unified Ying-Yang alter-
nation procedure with major parts in a same expression
while differences simply characterized by few options in
some subroutines. Additionally, a new insight is pro-
vided on the ancient Chinese philosophy of Yin-Yang
and WuXing from a perspective of information science
and intelligent system.

Keywords Bayesian Ying-Yang (BYY) system, Yin-
Yang philosophy, best harmony, WuXing, A5 paradigm,
randomized Hough transform (RHT), rival penalized
competitive learning (RPCL), maximum a posteriori
(MAP), semi-supervised learning, automatic model se-
lection, Gaussian mixture, factor analysis (FA), binary
FA, non-Gaussian FA, local FA, temporal FA, three
layer networks, mixture of experts, radial basis function
(RBF) networks, subspace based function (SBF), state

1) “Ying” is spelled “Yin” in Chinese Pin Yin. To keep its original harmony with Yang, we deliberately adopted the term “Ying-
Yang” since 1995.
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space modeling, hidden Markov model (HMM), hierar-
chical BYY, apex approximation, Ying-Yang alternation

1 Introduction

1.1 Two types of abilities and three inverse problems

An intelligent system, which could be an individual or a
collection of natural and artificial intelligent bodies, sur-
vives in its world with needs of two types of intelligent
abilities. As illustrated in Fig. 1(a), the right path de-
notes that Type I consists of abilities of knowing “what it
is” or modeling regularities or structures among data as
its knowledge about the world. The left path in Fig. 1(a)
denotes Type II that consists of skills of problem solv-
ing, i.e., skills of appropriately responding upon what
are currently encountering. The action can be either
just perceiving (e.g., identify, recognize, etc.) or also
reacting (e.g., reasoning, integrate, decide, etc.). Corre-
spondingly, two types of intelligent abilities are obtained
by Type I, Type II of learning, respectively, from pieces
of uncertain evidences (or called samples).

In a general sense, the tasks of Type II can be re-
garded as the inverse problems of Type I. We get in-
sights from two typical examples shown in Fig. 1(b) and
Fig. 1(c). The first is a widely used example of getting
an optimal classifier p(j|x) from Type I knowledge and
then classifying all the samples into clusters by finding
the boundaries of dissimilarity [1], while Type I knowl-
edge describes each cluster of samples by a Gaussian
G(x|μj ,Σj) with a mean vector μj and a covariance ma-
trix Σj as well as its proportion αj . Roughly, Type I
describes how a sample is generated from one of the
k Gaussian components, while Type II inversely maps
each sample to one of the labels that correspond to the
k Gaussian components. Shown in Fig. 1(c) is another

example, Type I knowledge is that samples of x are gen-
erated through a linear system from y of uncorrelated
Gaussian factors subject to an additive noise of Gaus-
sian. The problem solving task of Type II is inversely
solving y from x by maximizing the posteriori, which is
achieved by an inverted linear mapping.

Both the examples are actually special cases of the
first one of three levels of inverse problems [2,3]. As
shown in Fig. 2(a), the observed samples come from a
mapping y → x, subject to certain many-to-one and
probabilistic uncertainties. In the framework of proba-
bility theory, these uncertainties are described by distri-
butions with q(x|y) for a probabilistic mapping y → x

and p(y|x) for a probabilistic inverse map x → y.
The Type II task is estimating p(y|x) from a given
q(x|y), usually in help of choosing q(y) for regulariz-
ing each y on its chance to be a cause or inner repre-
sentation. Far beyond the examples of Figs. 1(b) and
1(c), this task is widely encountered in real applica-
tions, e.g., geophysics, medical imaging (such as com-
puted axial tomography, electroencephalography/event-
related-potentials), remote sensing, ocean acoustic to-
mography, nondestructive testing, and astronomy [4], as
well as controlling systems and signal processing [5,6].

Moreover, this inverse problem is a subtask of the
second level of inverse problems. For the example in
Fig. 1(b), the task of getting an optimal classifier
p(j|x) is a subtask of estimating the parameters Θj =
{μj,Σj , αj} if they are unknown too, which is usually
referred as parameter learning [7,8]. For the example
in Fig. 1(c), the task of getting p(y|x) is a subtask of
estimating the unknown parameters Θ = {A, μ,Σ,Λ, v},
which is usually referred under the name of factor analy-
sis [9,10]. Generally as shown in Fig. 2(b), provided that
q(x|y, θx|y) and q(y|θy) come from two parametric fam-
ilies with their function structures pre-specified but two
sets θx|y, θy of unknown parameters, the task is getting

Fig. 1 Two types of intelligent abilities and learning tasks, with two typical examples. (a) Two types of learning;
(b) Gaussian mixture; (c) factor analysis
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Fig. 2 Three levels of inverse problems and two learning perspectives. (a) Level 1 for problem solving; (b) level 2 for
parameter learning; (c) level 3 for model selection; (d) two learning perspectives

an inverse mapping XN → Θ from a set of samples
XN = {xt} under a priori q(Θ). Moreover, the map-
ping XN → Θ includes the task of getting p(y|x) or
x → y for every sample of x. That is, a second level of
inverse problem is nested with a series of the first level
of inverse problems.

Furthermore, we have another level of inverse prob-
lems. The task of estimating the parameters Θ is further
a subtask of determining an appropriate number k for
the example in Fig. 1(b), and a subtask of determining
an appropriate dimension [11] of y for the example in
Fig. 1(c). In general, we know neither θx|y, θy nor the
function structures of q(x|y, θx|y) and q(y|θy). Instead,
we consider a family of infinite many structures {Sk}
via individual simple structures in a simple combination,
e.g., each Gaussian in Fig. 1(b) and each dimension of y
in Fig. 1(c). That is, each Sk shares a same configuration
S but in a different scale denoted by a scale parameter
k that consists of one integer or a set of integers, e.g.,
the number of Gaussians in Fig. 1(b), and the dimension
of y in Fig. 1(c). The configuration S depends on the
forms of simple structures and their combination, which
is designed according to task-dependent knowledge.

Provided with a given configuration S, as shown in
Fig. 2(c), the third level of inverse problem is getting
an inverse mapping XN → k,Ξ. When q(Θ|Ξ) is pre-
specified by a priori knowledge with Ξ being given hyper-
parameters, the task becomes simply XN → k, which
is usually referred as model selection [12] since we se-
lect among a set of candidate models from enumerat-
ing a series values of k and solving XN → Θ for every
value of k. On the other hand, if k is pre-specified and
the structure of q(Θ|Ξ) is given but with one or more
hyper-parameters Ξ unknown, the task becomes simply
XN → Ξ, e.g., determining the strength in learning reg-
ularization [13,14]. In general, a third level of inverse
problem XN → k,Ξ covers both the cases, nested with
a series of the second level of inverse problems.

As a whole, all the three levels of inverse problems can
be summarized into a unified expression shown in Fig.

2(d), with y,Θ,k,Ξ all included in R. Readers are re-
ferred to Refs. [2,3] for further details on the three levels
of inverse problems. These problems are tackled by vari-
ous efforts, which can be summarized from the following
two perspectives.

1.2 Two learning perspectives and Bayesian Ying-Yang

(BYY) learning

One is named as a principle of best inner encoding, as
shown in Fig. 2(d). From the bottom-up perspective, we
get p(R|X) for a Type II task of encoding XN into the
best inner representations. Typical studies may be sum-
marized into two streams. One stream solves a bottom-
up pathway as the inverse of a given top-down path-
way. The other stream focuses on merely a bottom-up
pathway that maps XN into inner representations that
become least redundant. One typical instance of the
latter is the minimum mutual information (MMI) [15]
among components of inner encoding, e.g., the elements
of y in Fig. 1(c) become mutually independent. Specifi-
cally, its one limit case is that the maximum information
(INFOR-MAX) [16] is transferred to the inner represen-
tation. Both MMI and INFOR-MAX have been widely
adopted in the studies on independent component analy-
sis (ICA), especially those via a linear mapping y = Wx

[17,18]. Though the second stream do not directly in-
volve a top-down pathway, one can still conceptually
regard that XN are generated from inner representa-
tions of least redundant and thus a bottom-up pathway
is sought as its inverse.

The other principle is best data matching [17,19] that
is implemented from a top-down perspective shown in
Fig. 2(d), which seeks a best interpretation of data XN

by Type I knowledge or a best matching of XN by
q(XN ) =

∫
q(XN |R)q(R)dR. One widely studied ex-

ample is the principle of maximizing the probability or
density defined by a given model q(XN ). One type of in-
stances includes the maximum likelihood (ML) learning
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maxΘ ln q(X |Θ) with q(X |Θ) =
∫
q(X |Y )q(Y )dY in

help with an expectation maximization (EM) iteration
[7,20–22], during which an induced bottom-up inverse
p(Y |X) is given by the Bayesian posteriori of q(X |Y )
and q(Y ), that is, the task of Fig. 2(a) is included as
a part of job here. Also, Y could be in a much ad-
vanced representation, e.g., a vocabulary of shapes and
patterns in those studies under the name of pattern the-
ory [23], the forward-backward projections in the brain
[24,25], and analysis by synthesis [26]. Moreover, ef-
forts in recent decades have been made on the general
form q(XN ) =

∫
q(XN |R)q(R)dR under the name of the

marginal likelihood or marginal Bayesian approach [20–
22], including Bayesian inference criterion (BIC) [27] and
minimum description length (MDL) [28,29], as well as
Bayesian studies [30–32] and minimum message length
(MML) [33,34].

Beyond that a bottom-up pathway is given by the
Bayesian posteriori as above, efforts have also been made
on estimating both the two pathways, mainly in three
streams. One consists of those studies motivated from
various aspects, e.g., best reconstruction based data di-
mension reduction [35,36] and least mean squared error
reconstruction (LMSER) self-organization [19], as well
as cognitive science motivated efforts such as adaptive
resonance theory [37,38] and forward-inverse models for
motor control [39–41]. The other two streams are within
the probabilistic theoretic framework shown in Fig. 2.
One is referred under the Helmholtz machine, varia-
tional Bayes, and variational approaches [42–46], tar-
geting at an approximate implementation of Bayesian
inference. To avoid tackling an intractable sum or in-
tegral for q(X) =

∫
q(X |Y )q(Y )dY , instead of exactly

getting a Bayesian inverse p(Y |X) = q(X |Y )q(Y )/q(X),
efforts aim at estimating unknown parameters of p(Y |X)
in an easy computing structure such that unknowns in
q(X |Y )q(Y ) are estimated in an approximate maximiza-
tion of q(X) =

∫
q(X |Y )q(Y )dY , e.g., the Helmholtz

machine is featured by a typical example of the prob-
lem shown in Fig. 2(a) with q(x|y, θx|y) for a multi-layer
networks and p(y|x, θy|x) for a conditional independent
product also by a multi-layer networks [42,43]. More-
over, further extensions proceeds to handle the problem
type shown in Fig. 2(b) under the name of variational
Bayes for model selection [46], by replacing Laplace ap-
proximation with variational approximation.

Firstly proposed in 1995 [47] and systematically devel-
oped over a decade [3,48,49], efforts of the third stream
have been made under the name of Bayesian Ying-Yang
harmony learning. From a modern science perspective
that regards the famous ancient Yin-Yang philosophy as
a meta theory of system sciences and intelligent systems
(details are referred to Appendix B), we consider jointly
a mapping R → X and an inverse X → R as shown in
Fig. 2(d) via the joint distribution of X,R in two types

of Bayesian decompositions:

Ying : q (X,R) = q (X |R) q(R),
(1)

Yang : p (X,R) = p (R|X) p(X).

The decomposition of p(X,R) coincides the Yang con-
cept with a visible domain p(X) for a Yang space and a
forward pathway by p(R|X) as a Yang pathway. Thus,
p(X,R) is called Yang machine. Similarly, q(X,R) is
called Ying machine with an invisible domain q(R) for
a Ying space and a backward pathway by q(X |R) as a
Ying pathway. Such a Ying-Yang pair is called Bayesian
Ying-Yang (BYY) system. Based on a Ying-Yang vari-
ety preservation principle, Ying is primary and its struc-
ture is designed according to tasks of the system, while
Yang is secondary with p(X) given by samples of X as
inputs to the system while p(R|X) designed as a func-
tional that varies with Ying q(X |R)q(R).

All the unknowns in the system is learned by following
a principle of best harmony between Yang and Ying ma-
chines, in a sense that Ying and Yang match each other
in a most compact way. This principle is mathemati-
cally implemented by maximizing the following harmony
functional:

H (p‖ q) =
∫
p (R|X) p (X) ln [q (X |R) q (R)] dRdX,

(2)
such that three levels of inverse problems, especially pa-
rameter learning and model selection, are tackled jointly.
The general framework not only accommodates typical
learning theories and approaches under a unified per-
spective but also provides a new road that leads to im-
proved model selection criteria, Ying-Yang alternating
learning algorithms with automatic model selection, and
a coordinated implementation of Ying based model se-
lection and Yang based learning regularization.

1.3 Scope of this paper

This paper aims at an introduction of BYY learning in a
twofold purpose. On one hand, we introduce the funda-
mentals of BYY learning and basic implementing tech-
niques, and provide a roadmap to illustrate the relations
to other typical learning approaches. On the other hand,
we provide a tutorial on learning algorithms for a num-
ber of typical learning tasks, as illustrated in Fig. 3.

Section 2 begins with the well known small sample
size challenge of statistical learning, and further intro-
duces typical efforts towards this challenge, especially a
trend from two-stage based model selection to automatic
model selection and further to a coordinated implemen-
tation of making automatic model selection based on
Ying machine and learning regularization based on Yang
machine [2,3,50,51]. Moreover, taking random Hough
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Fig. 3 A roadmap of several typical learning tasks

transform (RHT) [52] as an example, a general problem
solving paradigm A5 is introduced and shown to be ap-
plicable to the two tasks in Figs. 1(b) and 1(c) as well as
the general tasks for three levels of inverse problems in
Fig. 2. Even interestingly, it coincides with the famous
ancient Chinese WuXing theory [53]. This A5 paradigm
and WuXing theory will provide us a guide to improve
existing algorithms and develop new algorithms.

Section 3 starts to introduce BYY harmony learning
algorithms on Gaussian mixture (GM) and factor anal-
ysis (FA) with independent Gaussian, binary, and non-
Gaussian factors in Fig. 2 as well as local factor analysis
(LFA) that is a combined generalization of GM and FA,
and these algorithms are summarized in a unified Ying-
Yang alternation procedure with major parts in a same
expression while differences simply characterized by few
options in a subroutine, in a benchmark of the standard
EM algorithm.

Section 4 introduces the fundamentals of BYY learn-
ing, including not only learning principles of Ying-Yang
harmony versus Ying-Yang matching, several favorable
features, and relations to rival penalized competitive
learning (RPCL), but also system design principles of
least redundancy and variety preservation, as well as ba-
sic implementing techniques, including apex approxima-
tion, primal gradient flow, and Ying-Yang alternation.
Moreover, it is further introduced that these studies ac-
tually provide a general framework that algorithms ob-

tained for unsupervised learning can be directly used for
semi-supervised and supervised learning, e.g., learning
algorithms for Gaussian mixture, factor analysis (FA)
with independent Gaussian, binary, and non-Gaussian
factors, and local FA can be easily used for learning three
layer networks, mixture of experts, radial basis functions
(RBFs), subspace based functions (SBFs), etc. In addi-
tion, we provide a roadmap in Appendix A to illustrate
a systematic relation to several existing typical learning
approaches.

Section 5 proceeds to hierarchical and temporal BYY
harmony learning, including a hierarchical mixture of
Gaussians, temporal factor analysis, hidden Markov
models (HMMs), and discriminative learning of multi-
ple HMM models with each state emitting a mixture of
Gaussians or LFAs.

Finally, Sect. 6 provides a comprehensive summary
and a number of future topics.

2 Towards small sample size challenge

2.1 Learning regularization, sparse learning, and model
selection

As addressed in Sect. 1.1, parameter learning for de-
termining Θ and model selection for choosing k are two
major tasks for handling three types of inverse problems.
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The principle of best data matching in Sect. 1.2 provides
a guide to determine Θk based on XN of training sam-
ples. One most popular instance is maxΘ ln q(XN |Θ) or
minimizing a fitting or empirical error –ln q(XN |Θ). For
an illustration, shown in Fig. 4(a) is a case that k con-
sists of one integer (otherwise, it is a multi-dimensional
plot with all the integers in k enumerated in certain or-
der). For a sample size N that is not large enough, this
fitting error decreases monotonically as k grows up, until
the error reaches zero at k = kN , a value that relates to
N but is usually much bigger than an appropriate k∗.
It means this learning is under-selective on k such that
extra resource of structures is wasted. Even worse, the
wasted resource has actually been used to learn noises or
outliers as if some regularity underlyingXN , which dete-
riorates the generalization performance. This is usually
called over-fitting problem.

Shown in Fig. 4(b) is an insight about the reason of
this problem. maxΘ ln q(XN |Θ) only takes in consid-
eration the relation Θk → XN while no consideration
is made on the upper layer relation k → Θ to provide
an appropriate constraint on determining k. A direc-
tion to tackle this problem is adding more constraints to
maxΘ ln q(XN |Θ) by a correcting term Δ(XN,k). One
way to get this term is directly adding certain constraint
on k→ XN , e.g., Vapnik-Chervonenkis (VC) dimension
based generalization error bound [54], cross validation
(CV) based criteria [55,56], Akaike information criterion
(AIC) and extensions [57–59]. The other way provides a
constraint on k → Θ through a priori q(Θ|k) as shown
in Figs. 4(c) and 4(d). There are two choices for using
this q(Θ|k). One is maximizing ln[q(XN |Θ)q(Θ|k)] [1],
as shown in Fig. 4(c), which has been widely studied
under the name of the maximum a posteriori (MAP)
estimate and the name of the two part shortest coding
length (e.g., MML [33,34] and the early MDL [28]). It
directly affects the estimation of Θ and thus the per-
formance is sensitive to whether an appropriate priori

q(Θ|k) is available. Also it indirectly affects the selec-
tion of k, highly depending on estimating Θ. The other
is maxk ln q(XN |k) as shown in Fig. 4(d), which consid-
ers a direct relation k→ XN , such as BIC [27], the nor-
malized maximum likelihood (NML) based MDL [29],
and variational Bayes [42–46]. Computationally, han-
dling the integral over Θ involves certain approximation.

Considering a model with a big enough scale k to ac-
commodate XN , the effect of maxΘ ln[q(XN |Θ)q(Θ|k)]
can be further classified into two types, depending on
choices of q(Θ|k). One is called learning regularization
[13,14] that imposes certain isotropic constraint on ei-
ther or both of Θ and strcture in order to effectively
reduce model complexity, without necessarily discarding
extra parameters. For an example, if we use a poly-
nomial of a degree k > 2 to fit a set of samples from
y = x2 + 3x + 2, a model selection purpose desires to
force all the terms aix

i, i > 2, to be zero, but minimiz-
ing a2

1+a
2
2+···+a2

k fails to treat the parameters ai, i > 2,
differently from a0, a1, and a2. Such a regularization ac-
tually disturbs the purpose of model selection. That is,
there is a trade-off between making model selection and
learning regularization. The other is called sparse learn-
ing or Lasso shrinkage that prunes away extra weights
by a Laplace prior q(Θ), which is usually workable for
a regression or interpolation task [60–62]. To be further
addressed at the end of Sect. 4.2, a generic priori q(Θ)
comes from not only a priori q(Θ|Ξ) for adding certain
information about Θ but also one q(Θ) that actually in-
tends to cancel out certain bias implicitly resulted from
using a model q(XN |Θ) on a small size of samples.

A further task is to getting an appropriate k∗ by tack-
ling the inverse problem in Fig. 2(c), which involves a
two stage implementation of model selection, i.e., the
best is selected by a criterion J(k|Θ∗) together with a
series of parameter learning to get Θ∗ on a set of candi-
date models obtained by enumerating k. Unfortunately,
not only a two stage implementation is very expensive

Fig. 4 Over-fitting problem and typical efforts towards it. (a) Fitting or empirical error vs generalization error; (b) adding
some constraints to maxΘ ln q(XN |Θ) by a correcting term Δ(XN , k); (c) Bayes; (d) Marginal Bayes
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to compute, but also performances of getting Θ∗ deterio-
rates considerably for those candidate models with large
k, especially when N is small and k consists of more
than one integers.

One road to reduce computing cost is featured by step-
wise implementation. Typical examples are those incre-
mental algorithms that attempt to incorporate as much
as possible what already learned as k increases step by
step, focusing on only learning newly added parameters,
e.g., the studies made on mixture of factor analysis [63].
However, it usually leads to a suboptimal performance
because not only those newly added parameters but also
the old parameter set actually have to be re-learned. Re-
versely, this suboptimal problem may be lessened in a
way that k starts at a large value and decrease step by
step. Taking out of Θ one or a subset of parameters, we
discard this subset if the criterion indicates an improve-
ment after updating the rest parameters or a biggest
improvement by trying a number of such subsets of
parameters. Precisely, this procedure is formulated as
a tree searching. The initial parameter set Θ is the root
of the tree. Discarding one subset leads to one imme-
diate descendent. A depth-first searching suffers from a
suboptimal performance seriously, while a breadth-first
searching suffers a huge combinatorial computing cost.
Usually, a trade off between the two extremes is consid-
ered.

The other road of studies is referred as automatic
model selection. An early effort is RPCL [64–66] for
the GM task shown in Fig. 1(b), with the number k au-
tomatically determined during learning. The key idea is
that not only the winner μw moves a little bit to adapt
the current sample xt but also the rival (i.e., the second
winner) μr is repelled a little bit from xt to reduce a
duplicated information allocation. As a result, an extra
μj is driven far away from data with its corresponding
αj → 0 and Tr[Σj ]→ 0. In general, RPCL is applicable
to any model that consists of k individual substructures,
with extra substructures discarded by the rival penal-
ized mechanism and thus model selection made auto-
matically.

Being a quite difference nature from a usual stepwise
implementation that adds or removes a subset of pa-
rameters from Θ based on whether a selection criterion
indicates an improvement, automatic model selection is
associated with a learning algorithm or a learning prin-
ciple with the following two features.

First, there is an indicator ψ(θSR) on a subset θSR

of scale representative (SR) parameters. Such a sub-
set θSR actually represents a particular structural com-
ponent that is effectively discarded if its corresponding
ψ(θSR) = 0. For the GM problem in Fig. 1(b), each αl

or a set of parameters in Σl represents a Gaussian com-
ponent, and we have either or both of ψ(αl) = αl and
ψ(Σl) = Tr[Σl]. A Gaussian component is discarded if

either or both of

αl = 0 and Tr[Σl] = 0. (3)

As a result, k effectively reduces to k− 1. For the FA
problem in Fig. 1(c), each eigenvalue of Λl represents
that one dimension y(l) or equivalently one column of
the matrix A becomes extra and thus discarded if its
corresponding ψ(λl) = λl gets

λl = 0.

Second, in implementation of this algorithm or this
learning principle, there is an intrinsic mechanism that
drives

ψ(θSR)→ 0, as θSR tends to a specific value, (4)

if the corresponding structure is redundant and thus
can be effectively discarded, e.g., RPCL learning drives
an extra μj with 1/||μj|| → 0, and its corresponding
αj → 0,Tr[Σj ]→ 0.

On a small size N of samples XN , the maximum
likelihood is not good on model selection. Though
maxΘ ln q(XN |Θ) sometimes also leads to Eq. (4) for
some redundant structural component, it fails to do so
normally and good enough. With a priori q(Θ|k) that
selectively prefers the desired value, those typical efforts
on Fig. 4 usually help to enhance the tendency of Eq. (4)
on redundant structural components. The above men-
tioned sparse learning can be regarded a special example
that prunes away extra weights by using a Laplace prior
for a regression or interpolation task [60–62]. The other
example is pruning extra αl in the GM problem shown
in Fig. 1(b) by a Dirichlet prior [67,68]. However, those
efforts highly depends on choosing an appropriate prior,
which is usually a difficult task, while an inappropriate
q(Θ) may deteriorate the performance of model selection
seriously.

2.2 Model selection and learning regularization from a
BYY learning perspective

For a task that includes the first level of inverse problem
as shown in Fig. 2, the inner representation consists of
not only Θ and k but also Y as the corresponding encod-
ing of each observation. As shown in Fig. 5(a), there is
a short term memory (STM) for accommodating Y with
its basic representation in either or both of a number of
labels and a number of real or binary vectors. The scale
set kY of the STM domain is featured by the number
of labels and the dimension of these vectors. This kY is
a primary part of the entire scale set k in an intelligent
system.

For many typical learning problems, the task of model
selection is actually only the selection of this kY [69]. For
Gaussian mixture in Fig. 1(b), the task is determining
kY that consists of the number k of labels. For FA in Fig.
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1(c), the task is determining kY that consists of the di-
mension m of y. Usually, the structure of q (Y |θkY ,kY )
is well specified by the nature of learning tasks, which
provides a relation kY → Y .

In spite of its unique nature, those efforts in Fig. 4
handle the problems via getting q(XN |Θ) such that the
relation kY → Y becomes hidden behind the marginal
integral over Y . Then, the model selection task on kY

becomes merged within the one on k, which fails to ob-
serve the relation kY → Y , i.e., the problem is tackled in
a same way as introduced in Figs. 4(b), 4(c), and 4(d).
However, the relation kY → Y could be in a better use
for helping model selection on kY since this relation is
actually in a position of equal importance to the relation
k→ Θk as discussed in Figs. 4(c) and 4(d).

In contrast, BYY harmony learning gets an appro-
priate use of the relation kY → Y via q

(
Y

∣∣θkY ,kY

)
for model selection on kY . As shown in Fig. 5(b), it
follows from Eq. (2) in help with mathematical deriva-
tion that H(p||q) becomes H(p||q,k,Ξ) approximately,
for which the details are delayed to Sect. 4. Here, we just
provide an introduction on its major features. Similar
to those typical efforts in Fig. 4, H(p||q,Θ, h,k,Ξ) pro-
vides a generic consideration for determining k,Ξ in help
of an informative priori q(Θb|k,Ξ) with hyperparameter
Ξ via Hb and a noninformative priori or bias cancel-
lation intended q(Θa|k). Moreover, it explicitly consid-
ers the relation kY → Y for model selection on kY via
q
(
Y

∣∣θkY ,kY

)
that takes a position of equal importance

as q(Θa|k) within L(X,R), which brings the following
favorable natures to the BYY harmony learning.

Improved model selection criteria For the na-
ture of learning tasks, the structure of q

(
Y

∣∣θkY ,kY

)
is usually well specified. Thus, its role on specifying
the scale set kY is more reliable, unlike that the role
of using a priori q(Θa|k)q(Θb|k,Ξ) for determining k

may become unreliable due to a bad pre-knowledge.
Therefore, it provides a model selection criterion J(k) in
Fig. 5(b) that improves those typical efforts in Fig. 4,
especially on the selection of kY , which has also been
shown empirically [54,69,70]. Promisingly, the model
selection problems of many typical learning tasks can
be reformulated into selecting merely the kY part in
a BYY system [69]. Furthermore, this criterion J(k)
can also improve a general selection of k by alterna-
tively making Ξ∗ = argmaxΞH(p||q,Ξ) and {Θ∗, h∗} =
argmaxΘ,hH(p||q,Θ, h,k,Ξ).

Improved automatic model selection The scale
kY is featured by SR parameters in q

(
Y

∣∣θkY ,kY

)
. Each

SR parameter actually represents a particular structural
component. For the GM in Fig. 1(b), each αl is such
an SR parameter for representing a Gaussian compo-
nent that is effectively discarded if αl = 0. For the FA
in Fig. 1(c), each eigenvalue λl of Λl represents one di-
mension y(l) or equivalently one column of A that is
discarded if λl = 0. These SR parameters are pushed
to zeros by two types of forces. One comes from a
priori q(Θa|k)q(Θb|k,Ξ), in a way similar to those ap-
proaches discussed in Fig. 4. Even much more impor-
tantly, the other comes from the role of q (Y |θkY ,kY ) in
an equal importance to q(Θa|k) within L(X,R). Specif-
ically, maxΘ,hH(p||q,Θ, h,k,Ξ) includes maximizing

∫
p(Y ) ln q (Y |θkY ,kY ) dY,

subject to p(Y ) =
∫
p (Y |X ) p (X |XN , h) dX, (5)

with respect to both P (Y |X) and q
(
Y

∣∣θkY ,kY

)
, which

will exert a force that pushes those extra SR parame-
ters → 0, i.e., the corresponding structural components
are discarded. This mechanism is illustrated by Jo(k) in

Fig. 5 Scale set kY of STM domain. (a) Relation kY → Y is hidden behind the integral over Y ; (b) BYY harmony
learning appropriately uses relation kY → Y via q

`
Y

˛̨
ΘkY

, kY

´
for selection on kY
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Fig. 5(b). For the GM in Fig. 1(b), αl → 0 means
its contribution to Jo(k) is 0, and a number of such
parameters becoming 0 result in that Jo(k) has ef-
fectively no change on a range [k̂, k̃]. For the FA in
Fig. 1(c), λl → 0 contributes to Jo(k) by –∞ as shown
beyond k̃. As long as k is initialized big enough, k̂ can
be found as an estimated upper bound of k∗. That is,
an automatic model selection is incurred even without a
prior q(Θa|k)q(Θb|k,Ξ).

At the first glance, maximizing
∫
p(Y ) ln q(Y |θkY ,

kY )dY seems also encountered in a number of typi-
cal learning approaches with an EM type two path-
way implementation, such as the EM algorithm imple-
mented maximum likelihood learning [21], information
geometry based EM algorithm [22], Helmholtz Machine
[42,43]. The difference is that there the maximization
is made with P (Y |X) fixed at what obtained by the
M-step. In fact, these approaches become equivalent
to maxΘ q(X |Θ) =

∫
q(X |Y, θX|Y )q

(
Y

∣∣θkY ,kY

)
dY ,

where q
(
Y

∣∣θkY ,kY

)
has been buried behind the inte-

gral. This point can be observed clearly from the bits-
back interpretation of Helmholtz free energy [71]. It
is this bits-back that makes ln q

(
Y

∣∣θkY ,kY

)
fail to be

taken in consideration. The details are referred to Sect.
II(D) in Ref. [49] and the last section in Ref. [3].

Ying based model selection versus Yang based
learning regularization The separated considera-
tion of kY from the rest of k also provides a general
framework that integrates the roles of regularization and
model selection. Specifically, model selection is made
via q

(
Y

∣∣θkY ,kY

)
in Ying machine, while regularization

is imposed in Yang machine via either or both of two
choices. One is designing the structure of P (Y |X) struc-
ture, with details delayed to Sect. 4.2. The other is
data smoothing regularization. Instead of directly in-
putting a sample xt or equivalently its Dirac delta den-
sity δ(x−xt), xt is smoothed by a Gaussian G(x|xt, h

2I)
as input. That is, we let p(X) in Eq. (2) given by

p(X |XN , h) =
N∏

t=1

G
(
x

∣∣xt, h
2I

)
or

ph(x) =
1
N

N∑
t=1

G
(
x

∣∣xt, h
2I

)
, (6)

where h is an unknown strength to control the regular-
ization [72–75], which is equivalent to adding a white
Gaussian noise to samples with a variance h2. More-
over, it is known that training with noise is equivalent
to typical learning regularization [76]. Progressing be-
yond [76], not only Eq. (6) is used as an input to a
BYY system, but also the difficulty of controlling this
strength h, usually encountered by typical regulariza-
tion approaches, has been avoided with an appropriate
h via maxΘ,hH(p||q,Θ, h,k,Ξ).

2.3 Five basic actions and circular implementation

According to a general problem solving paradigm A5
(see Sect. 4 of Refs. [72,77]), three levels of inverse prob-
lems are implemented via a circular flow featured by five
basic mechanisms or actions. We get the insights by tak-
ing Hough transform (HT) [78,79] as a starting example,
as shown in Fig. 6(a), which was also the original source
that motivated this A5 paradigm. The circle starts at
the first action A-1 by getting data (e.g., HT picks one
pixel from the image), based on which the next action
A-2 leads to one or more assumptions on the inner rep-
resentation. For example, HT quantizes a window of the
parameter space θ = {a, b} of a line y = ax + b into a
lattice. One pixel is picked to be mapped into a line
in the parameter space θ, which activates all the cells
on a line as candidate assumptions. The third action
A-3 allocates and updates the evidences that support
the candidates under consideration, e.g., each cell of a
HT window has an accumulator, and one score is added
to those accumulators activated by the sample picked.
Next, the action A-4 decides one or more best candi-
dates according to the evidences accumulated (e.g., HT
seeks the apex scores). Finally, the action A-5 assesses
the decided ones via testing samples and then makes
a final affirmation, e.g., HT tests whether a line is de-
tected by checking the pixels fallen within a linear band
illustrated at the bottom corner of Fig. 6(a).

The evolution of A5 actions is implemented sequen-
tially with each action governed by its local rule. By
identifying the feature of each action in the A5 circle,
we may get a guide to improve an existing approach. In
fact, it was the A5 circle analysis on Fig. 6(a) that moti-
vated the RHT [77,78]. Instead of picking one pixel and
activating candidate assumptions on a line by HT, RHT
changes it’s A-1 and A-2 to pick two pixels that jointly
activates merely one candidate assumption, which fur-
ther makes A-3 no longer limited to the windowed lattice
of accumulators but available to other choices. As a re-
sult, performances have been improved significantly and
computing costs have been reduced greatly. Moreover,
there are many other chances to improve one or more
of the five rules, which leads to other modifications too,
with details referred to a recent review in Ref. [77].

Interestingly, it coincides with the famous ancient
WuXing theory [53], a foundation of traditional Chinese
medicine (TCM), for which readers are referred to Ap-
pendix B. It follows that the problem solving paradigm
A5 in Fig. 6(a) can be regarded as a special case of the
WuXing theory or a modern interpretation of this meta
theory from an intelligent system perspective. One
most important part is the famous Sheng-Ke-Cheng-
Hui law for keeping five actions well balanced. Sheng
guides how to specify the circling order. Interestingly,
the order of five action circling in the A5 paradigm [77]
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Fig. 6 Five basic actions and circular implementation. (a) HT, RHT, and A5 circling; (b) BYY system and A5 circling;
(c) three levels of A5 circling

was independently proposed according to the nature of
intelligent problem solving, which well coincides with the
one of WuXing theory. Moreover, Ke-Cheng-Hui jointly
means that to reverse a unbalancing tendency of one
state should be made from the one before the preceding
one, towards a correct direction and with an appropriate
strength. Even interestingly, to tackle a bottleneck of a
huge computing load by an accumulation array of HT,
one key point of RHT is using a many-to-one converging
mapping to replace the one-to-many diverging mapping
by HT [52,78]. This is just a case of changing A-2 to
improve a bottleneck of A-4, which well coincides with
the Ke-Cheng-Hui law.

The A5 circle also applies to the two tasks in Figs.
1(b) and 1(c) as well as the general tasks in Fig. 2.
As shown in Fig. 6(b), the assumption space consists of
three layers for three levels of inverse problems. Corre-
spondingly, the first layer encodes the inner represen-
tation of the problem in Fig. 2(a) in help of an A5
circling (shortly L1st-A5 circling). For the example in
Fig. 1(b), the task of pattern recognition is featured by
the action A-4 that gets the apex j∗ of p(j|xt) or a sub-
set Cκ(xt) that consists of j∗ and its κ climax neighbors
(see Eq. (38)) as the decision. The A-4 action is sup-
ported by the A-3 action that combines new evidence
G(xt|μj ,Σj) with αj for ones accumulated in past into

p(j|xt). Upon receiving one or a set of samples of xt

obtained by the A-1 action, all the values of j is enu-
merated by A-2 as candidate assumptions. Finally, A-5
assesses whether these samples are well described by the
corresponding Gaussian component that they are classi-
fied to. When k is not too large, it is tractable to handle
this enumeration based computation for implementing
the L1st-A5 circling. However, when k is too large, the
computing burdens of A-4 and A-3 become too loaded.
In such a situation, the bottleneck of A-4 can be lessened
by restricting A-2 to provide only a subset of candidate
assumptions that the best one is still included, e.g., con-
sidering those with the value of G(xt|μj ,Σj)αj being
above a pre-specified threshold.

For the example in Fig. 1(c), the task of the action
A-4 is getting the apex y∗ = arg maxy f(y), f(y) =
q(x|y, θx|y)q(y|θy). For a Gaussian q(x|y, θx|y) and a
Gaussian q(y|θy), a lumped computation of A-2, A-3,
and A-4 is analytically solvable. However, when either
q(x|y, θx|y) or q(y|θy) is non-Gaussian, maxy f(y) be-
comes a hard nonlinear optimization, which is usually
tackled by a line search ynew = yold + ηgf (y) along a
direction gf(y) that ascends f(y), e.g., the gradient di-
rection of f(y). This is another example that coincides
with the Ke-Cheng-Hui law. To tackle a bottleneck for
maxy f(y) at A-4, we go back A-2 to consider those
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candidates merely along one direction from the current
yold, instead of searching the entire domain of y. In ac-
cordance to Proposition 4 in Appendix B, the L1st-A5
circling is actually handled by a series of smaller circling
within the same layer y. For each small circling, its A-
2 action considers candidates merely along a direction
gf(y), its A-3 action seeks the value of a scalar η, and
its A-4 action compares if the difference ynew − yold be-
comes ignorable. As a result, a difficulty is solved by a
series of lower level but much balanced and easy com-
puting, while the goal of seeking a global optimum is
downgraded to seeking a local optimum.

The second layer A5 circling (shortly L2nd-A5 cir-
cling) drives parameter learning XN → Θ, as shown
in Fig. 2(b). We still take the problem of Fig. 1(b)
as an example, making maxΘ F (Θ) in term of either
the ML with F (Θ) = ln q(XN |Θ) or Bayesian learning
with F (Θ) = ln q(XN |Θ)q(Θ|Ξ) or BYY harmony learn-
ing with F (Θ) = H(p||q,Θ, h,k,Ξ). The task is again
featured by getting Θ∗ = arg maxΘF (Θ) at the A-4 ac-
tion. However, it usually becomes not tractable to han-
dle A-2, A-3, and A-4 by an enumeration type of com-
putations because of the following two problems:

1) maxΘ F (Θ) is generally a hard nonlinear optimiza-
tion. Similar to ynew = yold + ηgf (y), this problem is
usually tackled by a line search Θnew = Θold + ηgF (Θ)
along a direction gF (Θ) that ascends F (Θ).

2) q(XN |Θ) or generally F (Θ) comes from a summa-
tion over j (e.g., in Fig. 1(b)) or an integral over y (e.g.,
in Fig. 1(c)), which will be very computational intensive
either for a large k or for a non-Gaussian vector y. This
problem is handled with the L1st-A5 circling at either
or both of its action A-2 and A-4 in help of apex ap-
proximation (see Sect. 4.2) that gets the apex j∗ and y∗

together with a subset of neighbors (see Eqs. (27)–(30)
and Eq. (38)) to be summed or integrated.

The third layer A5 circling (shortly L3rd-A5 circling)
conducts model selection XN → k,Ξ as shown in
Fig. 2(c) or simply XN → k when q(Θ|Ξ) is pre-
specified with Ξ. The task becomes mink J(k), J(k) =
− ln q(XN |k,Ξ), which is usually called Bayesian ap-
proach or marginal Bayes [27,60–62,67,68], as shown
in Figs. 4(c) and 4(d). Typically, an L3rd-A5 circling
starts at enumerating k for a series of values in its
A-2 action. Again, not only this enumeration is com-
putationally intensive (especially when k consists of a
number of integers), but also evaluating J(k) by ei-
ther J(k) = − ln q(XN |k,Ξ) or J(k) = H(p||q,k,Ξ) in
Fig. 5(b) involves an integral over Θ, which is computa-
tionally intractable. To tackle the blockage, the integral
is approximated such that J(k) becomes an additive ap-
proximation J(k) = F (Θ∗,k) + dk. As a result, eval-
uating J(k) involves an L2nd-A5 circling for parameter
learning XN → Θ∗ per value of k, which is further em-
bedded within an L3rd-A5 circling as one step. In other

words, a two stage implementation of model selection is
actually an L3rd-A5 circling with a series of L2nd-A5 cir-
cling for parameter learning, which is a compliment of
Proposition 4 in Appendix B.

Still, a two stage implementation of model selection
is too computationally intensive to be impractical. In-
stead, automatic model selection does not implement
L3rd-A5 circling but considers an L2nd-A5 circling at a
big initial value for k, with extra parts deducted effec-
tively by Eq. (4), as a subset of Θ is discarded during the
L2nd-A5 circling. As discussed previously about Figs.
4(c) and 4(d), the force of driving ψ(θk)→ 0 by Eq. (4)
comes from an external prior q(Θ) that is in an action
within the same level L2nd and is modulated by Ξ from
an upper level. For automatic model selection by the
BYY harmony learning via maxΘ,hH(p||q,Θ, h,k,Ξ) in
Fig. 5(b), an even important force comes from Eq. (5)
intrinsically by a series of L2nd-A5 circling in the lower
level, in addition to the one that comes from using a
priori q(Θ).

In a summary, the problem solving paradigm A5 and
WuXing theory provide new insights on the HT-RHT
based object detection and three levels of inverse prob-
lems, which provides a guide to develop new algorithms.
For solving any problem, A-1 and A-5 are generally easy
to be identified because one is associated with input
while the other is associated with output. However, the
actions A-2, A-3 and A-4 are usually lumped together
as one optimization task that is expensive to compute,
for which a guide is to allocate the task among three
actions in a balanced way, e.g., as above discussed for
maxΘ F (Θ). Also, we are guided by the Ke-Cheng-Hui
law to reverse an unbalancing tendency of one state.

3 Starting from three exemplar learning
algorithms

3.1 On Gaussian mixture: BYY learning algorithms
versus other learning algorithms

For Gaussian mixture introduced in Fig. 1(b), we start
from the standard EM algorithm for the ML learning
[7,8], which is here used as a benchmark for better in-
sights on the Bayesian Ying-Yang harmony learning and
other related algorithms. Specifically, the E-step simply
gets the Bayesian posteriori as follows:

pj,t = p
(
j|xt, θ

old
)
, p

(
j|xt, θ

old
)

= q
(
j|xt, θ

old
)
,

q (j|xt, θ) =
q (xt |θj )αj∑

j

q (xt |θj )αj

, (7)

which is obtained with the Ying machine G(x|μj ,Σj)αj

fixed at the last updating θold of the M-step. With pj,t
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fixed, the M-step renews θold into θnew as follows:

N� =
∑

t

p�,t, αnew
� =

N�

N
,

μnew
� =

1
N�

∑
t

p�,txt,

Σnew
� =

1
N�

∑
t

p�,tδΣ�,t,

δΣ�,t =
(
xt − μold

�

) (
xt − μold

�

)T
,

(8)

which comes from maximizing the following aux-
iliary function M(θ|θold) via solving θnew from
∇θjM

(
θ
∣∣θold )

= 0:

M
(
θ
∣∣θold )

=
∑
t,�

p
(
�
∣∣xt, θ

old
)
πt (θ�),

πt (θj) = ln [q (xt |θj )αj ] and

∇θ�
M

(
θ
∣∣θold )

=
∑

t

Gt (θ�), Gt (θ�) = p�,t∇θ�
πt (θ�) .

(9)

The EM algorithm alternates the E-step and the M-step
to implement the ML learning, such that the likelihood
ln q(XN |Θ) gradually increases to reach at least one local
maximum.

In contrast, the BYY harmony learning maximizes the
harmony functional by Eq. (2) that becomes here

H(θ) =
∑
t,�

p (�|xt, θ)Ht (θ�),

Ht (θj) = πt (θj) +R (h, θj) ,

R (h, θj) = ln [q (h |XN ) q (θj)]− 1
2
Tr

[
h2Σ−1

j

]
,

(10)

where p (�|xt, θ) is given by Eq. (38) according to the
variety preservation principle (see Sect. 4.2), with its
detailed derivation delayed to Sect. 4.3. This H(θ) is
maximized by a Ying-Yang alternation procedure with
its Ying step sharing a same expression of the M-step by
Eq. (8). However, its Yang step comes from modifying
the E-step by Eq. (7) in two places.

First, a key point is that pj,t = p (j |xt ) is replaced by

pj,t = p (j |t ) + Δj,t,

p (j |t ) = p
(
j
∣∣xt, θ

old
)
, Δj,t = Δj,t

(
θold

)
,

Δj,t(θ) = p (j |xt, θ )
[
Ht (θj)−

∑
j

p (j |xt, θ )Ht (θj)
]
,

(11)

where Ht(θj) consists of πt(θj) in Eq. (9) for describ-
ing the fitness of the jth component on the sample xt

plus a regularization term R(h, θj) for considering a pri-
ori q(θj) and data smoothing regularization by Eq. (6).
Specifically, Δj,t >0 means that the jth component is
better than the average of all the components in term
of this regularized fitness Ht(θj). We thus update the

jth component in Eq. (8) to enhance its contribution
of xt. If 0 > Δj,t > −1, i.e., the regularized fitness
Ht(θj) by the jth component is below the average but
not too far away, the contribution of xt on updating the
jth component remains a same trend as in Eq. (8) but
with a reduced strength. Moreover, when −1 > Δj,t,
the updating on the jth component reverses the direc-
tion to become de-learning, somewhat similar to updat-
ing the rival in RPCL learning [64–66,77]. As previously
discussed, RPCL learning incurs automatic model se-
lection. More precisely, the automatic model selection
nature of Eq. (11) can be better understood from Eq.
(5) that includes a part of maximizing

k∑
j=1

αj lnαj , αj =
∑

t

pj,t/
∑
j,t

pj,t,

which drives αj → 0 if the jth Gaussian is extra.
Second, p

(
j
∣∣xt, θ

old
)

= q
(
j
∣∣xt, θ

old
)

in Eq. (7) is re-
placed by the following first equation that holds not just
by a value fixed at θold, and we focus on considering
merely the first κ largest Ht(θj) as follows:

p (j |xt, θ ) = q (j |xt, θ )χκ,t (j) ,

Ht (θj) = [πt (θj) +R (h, θj)]χκ,t (j) ,

χκ,t (j) =

{
1, i ∈ Cκ

j,t,

0, i /∈ Cκ
j,t,

Cκ
j,t = {j : the κ � k largests of Ht (θj)} ,

(12)

which comes from the Ying-Yang variety preservation
principle, see Eqs. (28) and (38). Accordingly, updat-
ing of Eq. (8) focuses on only the first κ apex terms,
or called apex approximation. This nature may be fur-
ther understood by observing the following three special
cases:

1) RPCL learning [64–66] can be regarded as a sim-
plification of the case κ = 2 with pj,t = p(j|xt) + Δj,t

replaced by the following setting

pj,t = δjj∗ − γδjjr , 0 < γ � 1,

j∗ = arg max
i
Ht (θi) , jr = arg max

i�=j∗
Ht (θi) ,

where δij is the Kronecker delta, i.e., δij = 1 if i = j,
otherwise δij = 0.

2) If κ = 1, we are simply lead to pj,t = δjj∗ , j
∗ =

arg maxi Ht(θi), which can be further simplified into
Bayes winner-take-all (WTA) or MAP classifier [1] if
Ht(θi) degenerates back to πt(θj) in Eq. (9). The cor-
responding BYY harmony learning is thus called the
WTA based BYY harmony learning [77]. Still, the na-
ture αj → 0 applies but becomes weak because Δj,t =
0. Also, this case is previously referred as the hard-
cut EM algorithm (see Sect. 3 in Ref. [80]) since it
also comes from modifying the EM algorithm via hard-
cutting pj,t = p(j|xt) into pj,t = δjj∗ .
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3) For the cases of 1 < κ < k, if we force Δj,t = 0
and let Ht(θj) to degenerate back to πt(θj) in Eq. (9),
we are lead to one variant of the EM based ML learning
by focusing on the first κ maximum posteriori ones (κ-
MAP), e.g., see Table 2 and Eqs. (28) and (22) in Ref.
[77], which is actually on a halfway between the EM and
its hard-cut variant (i.e., κ = 1).

Due to the first equation in Eq. (12), ∇θjH (θ)
should consider not only

∑
j,t
p (j |xt, θ )∇θjHt (θj), i.e.,

a counterpart of ∇θjM
(
θ
∣∣θold )

in Eq. (9), but also
a term

∑
j,t
Ht (θj)∇θjp (j |xt, θ ). As a result, we

get ∇θ�
H(θ) =

∑
t
Gt (θ�), Gt (θ�) = p�,t∇θ�

πt (θ�)+

p (� |t )∇θ�
R (h |θ� ) , with p (� |t ) and p�,t by Eq. (11).

As shown in Fig. 7, we summarize the EM algorithm

and the BYY harmony learning, as well as the above
special cases into a unified Ying-Yang alternation proce-
dure. The Ying step implements Eq. (8) with its second
line for detecting αj → 0, while the Yang step takes op-
tions on setting Δj,t and κ for different algorithms. This
procedure is featured with calling those subroutines in
terms of the Boxes in Fig. 7. Also, these boxes act as
the building bricks of the algorithms in the subsequent
sections.

In addition, considering the second term of the above
Gt(θj), we are lead to another difference. First, we let
δΣl,t in the M-step to be replaced by δΣl,t + h2I, which
makes the EM algorithm by Eqs. (7) and (8) improved
into a smoothed EM algorithm for Gaussian mixture,
see Eq. (18) in Ref. [73]. Second, we are also lead to
updating h at the top of Fig. 7(b) by calling the Box- 4©,

Remarks (readers are suggested to skip this algorithm and details if you are not interested in programming):

a) h is updated at the top of Fig. 7(b) by Box- 4©, coming from
d

dh
R(h, θ�), with q(h) ∝

»
1

N

PN,N
t=1,τ=1 G(xτ |xt, h2I)

–−1

and with q(θj) ignored, where and hereafter in this paper, x ∼ y means x = cy with a unspecified scalar constant c, e.g.,
xnew − x ∼ y means xnew = x + cy.

b) Typical options

• EM algorithm: setting Δj,t = 0, h = 0, and κ = k, as weall as call Box- 2© that gets μnew
� = s�, Σnew

� = Σ� via Box- 3©
with η = 1.

• WTA-BY Y harmony (see BYY-CL in Table 2 in Ref. [77]): setting κ = 1, Δj,t = 0, p(j|xt) = pj,t = δjj∗ , j∗ =
arg maxi Ht(θi).

• κ-MAP EM learning (see BYY κ-map in Table 2 in Ref. [77]): 1 < κ < k, forcing that Δj,t = 0 and Ht(θj) = πt(θj).

• RPCL learning (see BYY-RPCL in Table 2 in Ref. [77]): κ = 2, pj,t = δjj∗ − γδjjr , 0 < γ � 1, j∗ = arg maxi Ht(θi),
jr = arg maxi�=j∗ Ht(θi).

• BY Y hamrony learning: Δj,t �= 0 and κ � k with and without R(h, θ�) = ln[q(h)q(θ�)], in options that ln q(θ�) �= 0
introduces a priori and ln q(h) �= 0 introduces a data smoothing regularization.

c) Additional note: since pj,t may be negative, calling the Box- 3© may not guarantee Σnew
j to keep nonnegative definite, which

is handled by an appropriate η > 0 in calling the Box- 3© for a linear interpolation from μj , Σj along the direction sj − μj

and Sj − Σj that has a positive projection on the gradient directions ∇θj
H(θ).

Fig. 7 A unified Ying-Yang alternation procedure for typical learning algorithms on Gaussian mixture. (a) Gaussian mixture;
(b) main program; (c) sub-programs
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which introduces data smoothing regularization in the
BYY harmony learning.

The last but not the least, in addition to automatic
model selection during the BYY harmony learning, a
further improvement can be obtained under the criterion
J(k) as shown in Fig. 5(b) by a two stage implementa-
tion, e.g., for the problem in Fig. 1(b), we have

J(k) = 0.5
k∑

j=1

αj

{
ln |Σj|+ h2Tr

[
Σ−1

j

]}

−
k∑

j=1

αj lnαj + 0.5nf (Θ) , (13)

where nf(Θ) is the number of free parameters in Θ, e.g.,
nf (Θ) = dk + k − 1 + 0.5d(d + 1)k for the problem in
Fig. 1(b).

3.2 FA and extensions

Next, we consider the FA in Fig. 1(c). Due to indetermi-
nacy, the parameterization of FA has different choices.
One conventional choice is that Λ = I and A is a general
d×m matrix [9,10]. One other choice is that Λ is a di-
agonal matrix and A is a d×m orthogonal matrix with
ATA = I [74(Sect. 3),81(Sect. 3.2)]. These two types
of parameterization are equivalent in term of maximiz-
ing the likelihood

∑
t
lnG (xt |μ,Σx ) since it is possible

to have AAT + Σ = Σx = AΛAT + Σ. However, two
types will become different in term of the BYY learning
[17(Eq. (128))]. Actually, it has been empirically shown
that the latter type is much better than the conventional
one [82]. In the sequel, we do not differentiate the situa-
tions of Λ and A when we discuss the EM algorithm for
the ML learning, while we actually consider a diagonal
Λ and an orthogonal A with ATA = I when we discuss
the BYY harmony learning.

We consider the standard EM algorithm for the ML
learning. The E-step gets p(y|x) = G(y|y(x, θold),
Γ(θold)) as the Bayesian inverse of Ying machine with
its parameters fixed at the last updating θold, that is, we
get the MAP estimate y(x, θold) = arg maxy[q(x|y)q(y)]
and Γ(θold) via the following equations:

y (x, θ) = Γ(θ)
[
ATΣ−1 (xt − μ) + Λ−1ν

]
,

Γ(θ) =
(
ATΣ−1A+ Λ−1

)−1
. (14)

With p(y|x) = G(y|y(x, θold),Γ(θold)) fixed, the M-step
maximizes the following auxiliary function:

M
(
θ
∣∣θold )

=
∑

t

πt

(
θ, y

(
xt, θ

old
))

−1
2
Tr

[
Γ

(
θold

)
Πy|x

]
,

πt (θ, y) = ln [G (xt |Ay + μ,Σ)G(yt|ν,Λ)] ,

Πy|x = ATΣ−1A+ Λ−1, (15)

from which we get the following M-step to renew θold

into θnew as follows:

μnew =
1
N

∑
t

(
xt −Aoldyt

)
,

Σnew = Δold
Σ +

1
N

∑
t

(
xt −Aoldyt

) (
xt −Aoldyt

)T
,

Δold
Σ = AoldΓ

(
θold

)
Aold T,

νnew =
1
N�

∑
t

yt, (16)

Λnew = Γ
(
θold

)
+

1
N

∑
t

(
yt − νold

) (
yt − νold

)T
,

Rxy =
1
N

∑
t

(
xt −Aoldyt

) (
yt − νold

)T
,

Anew = R−1
xy Λnew.

The above Eq. (14) and Eq. (16) are alternatively im-
plemented as the E-step and the M-step of the EM algo-
rithm, respectively, such that the likelihood ln q(XN |Θ)
is maximized. It has an expression that is different from
but equivalent to the conventional one [10]. We prefer
this expression because its M-step shares a format that
is not only same as the Ying step in Fig. 8 but also sim-
ilar to the M-step by Eq. (8) of the EM algorithm for
Gaussian mixture.

In contrast, the BYY harmony learning maximizes the
harmony functional by Eq. (2) that becomes here:

H(θ) =
∑

t

[πt (θ, yt) +R (h, θ)],

R (h, θ) = ln [q (h |XN ) q(θ)]− 1
2
Tr

[
h2Σ−1

]
−1

2
Tr

[(
Γy|x + εtε

T
t

)
Πy|x

]
, (17)

εt = yt − Ep(y|x )y, Ep(y|x )y = μ (x,W ) ,

Γy|x = Varp(y|x )y = Πy|x−1 + ρ2,

and Tr
[(

Γy|x + εtε
T
t

)
Πy|x]

= m+ Tr
[(
ρ2 + εtε

T
t

)
Πy|x]

with the detailed derivation delayed to Sect. 4.3, where
Γy|x = Πy|x−1+ρ2 in a Yang structure p(y|x) =
G(y|μ(x,W ),Γy|x) is given by Eqs. (30) and (31) accord-
ing to the variety preservation principle (see Sect. 4.2),
where ρ2= ρρ and ρ is a diagonal matrix, or even simply
a scalar matrix ρI. We maximize H(θ) by a Ying-Yang
alternation procedure with its Ying step sharing a same
expression of the M-step by Eq. (16), while its Yang is
obtained by modifying the E-step by Eq. (14) as follows.

A key difference is that Γt = Γ(θold) by Eq. (14) is
replaced with

Γt = ρ2+εtε
T
t .

This difference comes from the difference between
p(y|x) = G(y|yt(θold), Γ(θold)) and p(y|x) =
G(y|μ(x,W ), Γy|x) in that Γy|x is not fixed at Γ(θold)
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Remarks (readers are suggested to skip this algorithm and details if you are not interested in programming):
a) The Ying step implements Eq. (16), shared by all the algorithms. It consists of

• the 2nd line calls Box- 3© for updating ν, Λ and then the 3rd line discards extra dimension.

• the 4th line calls Box- 4© for updation G(x|Ay + μ, Σ) in help of calling Box- 7© that either directly solves a linear
equation or iteratively makes error correcting, with a projection to satisfy the orthogonality (if any).

b) The last line of Ying step calls Box- 5© for the extensions of q(y|θy) as follows:

• binary factor analysis (BFA) with an independent multi-variate Bernoulli B(y|ν) =
Q

j(ν
(j))y(j)

(1 − ν(j))1−y(j)
.

• non-Gaussian factor analysis (NFA) with a non-Gaussian q(yt|ν, ϕy).

• temporal factor analysis (TFA) that learns temporal relation ν = b +
Pκ

τ=1 Bτ yt−τ by calling Box- 6©.

c) In Box- 7©, PA is an operator that projects A onto PAA with (PAA)TPAA = I, e.g., PA = I − AAT.

Fig. 8 A unified Ying-Yang alternation procedure for typical learning algorithms on various factor analysis. (a) Main
program; (b) sub-programs

but becomes a function Γy|x = (AΣ−1AT +Λ−1)−1 +ρ2,
which results in the third term in R(h, θ). Maximizing
H(θ) includes minimizing the term ΣtTr[(ρ2+εtε

T
t )Πy|x]

that drives not only yt − μ(x,W ) = εt → 0 but also
ρ → 0. Thus, Γt → 0 gradually reduces its regular-
ization role in Eq. (16) such that some λj → 0 may
gradually emerge for automatic model selection by Eq.
(4). There is no such a scenario in the EM algorithm
because Γt = Γ(θold) will not tend to zero and its role in
Eq. (16) will not disappear, which shields the elements
of Λ to be pushed towards zero.

We notice that Γt = ρ2 + εtε
T
t → 0 leads to Γy|x =

Πy|x−1 and Tr[(Γy|x + εtε
T
t )Πy|x] = m. Thus, this term

becomes no effect on getting ∇θHt(θ) for renewing θold

into θnew. Alternatively, we may be also lead to this
situation either by letting ρ = 0 and μ(xt,W ) = yt to
directly get Γt = 0 or maximizing H(θ) with respect to
a structure free p(y|x) that directly becomes p(y|x) =
δ(y − yt), i.e., εt = 0, Γy|x = 0, Tr[Γy|xΠy|x] = 0. Con-
ceptually, all the three cases should reach a same limit
that learning finally converges towards. Also, all the
three are featured with the automatic model selection
nature by Eq. (5) that includes a part of maximizing∫

p (y) ln q (y |θy ) dy,

with p (y) = 1
N

∑
t
p (y |xt ) for p (y|x) = δ (y − yt) or

otherwise p (y) =
∫
p (y|x) ph (x)dx, which tends to
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∫
p(y) ln p(y)dy, and its further maximization pushes the

variance λj of y(j) → 0 if the dimension is redundant.
However, the case that Γt = ρ2+εtε

T
t → 0 do have the

following two nontrivial differences:
1) As εt → 0 and ρ → 0 gradually, Γt → 0 leads to

a better performance than directly setting Γt = 0 that
makes learning to be trapped in a local optimum.

2) Even in the limit case Γt = 0, having Tr[Γy|xΠy|x] =
m is still better than Tr[Γy|xΠy|x] = 0, because it
follows from H(θ) in Eq. (17) that we get a term
Tr[Γy|xΠy|x] = m to be included in the following cri-
terion J(m) = −H(θ) as shown in Fig. 5(b) for selecting
m in a two stage implementation.

J(m) =
1
2

[
ln |Σ|+ h2Tr

[
Σ−1

]
+ m+ nf (Θ) + ln |Λ|+m ln(2πe)] ,

with nf (Θ) = m+md− 1
2
m(m+ 1). (18)

As shown in Fig. 8, we summarize the EM algorithm
and the BYY harmony learning, as well as extensions
to non-Gaussian factors and temporal dependence, in
a unified Ying-Yang alternation procedure with major
parts in a same expression by Eq. (16) that is imple-
mented by the Ying step in Fig. 8(a), while differences
simply characterized by options in the Yang step, es-
pecially via the last line calling the Box- 3© ChoiceFA.
Specifically, the first line calls the Box- 1© Yangfor y for
getting yt = arg maxy[q(xt|y)q(y)] and the correspond-
ing Πy|x from which we further get Γt via the 5th line
that calls the Box- 3©. Moreover, εt → 0 and ρ → 0 are
controlled in help of calling the Box- 2© renewW,ρ.

Considering the term R(h, θj) in Eq. (17), we are lead
to data smoothing regularization. First, we let ΔΣ in Eq.
(16) replaced by ΔΣ + h2I, which leads to a smoothed
EM algorithm for factor analysis. Second, we update h

in the Yang step by the third line in help of calling the
Box- 4© in Fig. 7(c), which introduces data smoothing
regularization into the BYY harmony learning.

FA has been further extended by taking temporal de-
pendence in consideration, resulting in temporal factor
analysis (TFA) [83,84]. A detailed study on modeling
temporal dependence will be further addressed in Sect.
5.1. One useful simplification is letting the mean vector
of ν given by a linear regression of the past values of y,
as shown on the top of Fig. 8(a). In this case, the task of
getting yt by the Yang step closely relates to the classi-
cal state space and Kalman filtering [5,85]. Beyond the
Kalman filtering, TFA also learns parameters of Ying
machine by the Ying step in Fig. 8(a).

FA is also extended to non-Gaussian factor analysis
(NFA) with a Gaussian q(yt|θy) = G(yt|ν,Λ) replaced
by a non-Gaussian q(yt|ν, ϕy). One example is binary
factor analysis (BFA) with a binary vector y in a multi-
variate Bernoulli distribution B(yt|ν), also see Appendix
C 1)g). Typical examples with a real vector y include
q(yt|ν, ϕy) that is either a Gaussian mixture or a product
of each component distribution in a Gaussian mixture.
Further details are referred to Refs. [17,49,83], as well
as to Ref. [18] for a systematic review. For the Yang
step, Box- 1© in Fig. 8(b) considers q(yt|ν, ϕy) in gen-
eral with yt obtained from maxy π(y, θy). For B(y|ν),
maxy π(y, θy) is a quadratic combinatorial optimization
which can be effectively handled by the algorithms in-
vestigated in Ref. [86].

The last but not the least, all the above algorithms can
be further extended to a mixture of multiple individual
ones located at multi-locations {μj}, with parameters
in each local model learned to be responsible locally for
a cloud of samples. One typical example is local fac-
tor analysis (LFA) (see a review in Ref. [18]), which may

Fig. 9 A unified Ying-Yang alternation procedure for typical learning algorithms on multi-location extensions
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also be obtained from a perspective of GM in Fig. 1(b)
by getting each Gaussian in a constrained structure
G(x|μj , AjΛjAj + Σj) via a factor analysis. Particu-
larly, when Aj degenerates into a vector aj , each FA
becomes a hyperplane with its normal vector aj , which
leads to the task of line detection illustrated in Fig. 6(a).
That is, this special case of LFA can be regarded as an
improvement of RHT for line detection from noisy data.

In implementation, we can combine the learning algo-
rithms in Fig. 7(b) and Fig. 8(a) into the unified Ying-
Yang alternation procedure shown in Fig. 9. Specifically,
the Box- 1© of Yang step and the Box- 3© of Ying step up-

dates each individual model in a way similar to those in
Fig. 8(a), while the first line of Ying step takes the roles
same as the first line of Ying step in Fig. 8(a).

Moreover, the Box- 2© takes the roles similar to the
Box- 1© in Fig. 7(b), except that πt(θl) in the Box- 2© be-
comes different from the one in Fig. 7(b) by an additional
term 1

2 [· · ·]. Also, Gt(θl) gets an additional third term at
the bottom of Fig. 9. The extra terms come from equiva-
lently re-expressing ln

∫
G(xt|Aly+μl,Σl)q(y|θy,l,)dy in

term of ln[G(xt|Aly+μl,Σl)q(y|θy,l,)]. Improvement can
also be obtained by a counterpart of Eq. (13) for model
selection via a two stage implementation:

J
(
k, {mj}kj=1

)
=

1
2

k∑
j=1

αj

{
ln |Σj|+ h2Tr

[
Σ−1

j

]
+mj

}− k∑
j=1

αj lnαj +
1
2
nf (Θ) + Jy

(
k, {mj}kj=1

)
,

Jy

(
k, {mj}kj=1

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

k∑
j=1

αj {ln |Λj |+mj ln (2πe)}, (a) q (y |θy,j ) for a real vector,

−
k∑

j=1

αj

mj∑
�=1

[
ν

(�)
j ln ν(�)

j +
(
1− ν(�)

j

)
ln

(
1− ν(�)

j

)]
, (b) q (y |θy,j ) = B (y |νj ) ,

(19)

where nf (Θ) = dk+k−1+0.5d(d+1)k+md+
∑

j [mj +
mjd− 0.5mj(mj + 1)].

The Box- 3© also covers those previously discussed ex-
tensions of FA, namely, NFA, binary factor analysis
(BFA), TFA.

3.3 Insights from the perspective of A5 circling

From the perspective of three nested levels of A5 cir-
cling we expect well balanced circling within each layer
and across layers, in accordance to Proposition 4 in Ap-
pendix B.

For a circling balance within each layer, the circling
flow should be neither too watery nor too full to be
jammed at anyone of five actions, from which we further
get some insights on whether computational burdens are
appropriately allocated among the actions A-2, A-3 and
A-4.

Taking the L1st-A5 circling in Fig. 1(b) and the al-
gorithms in Fig. 7 as an example, the A-2 action by
a WTA-BYY considers merely one candidate j∗ by
pj,t = δjj∗ , which reduces the computing burden of A-3
and A-4 to a least. However, it also makes the L1st-A5
circling lost balance at A-3 and A-4 (too weak) and thus
gets learning easy to be trapped in a local optimum. On
the other hand, when k is too large, the computing bur-
den of A-3 and A-4 become too loaded to be jammed.
Therefore, the BYY harmony learning uses apex approx-
imation to consider a subset Cκ(xt) that consists of κ
climax neighbors (see Eq. (38)) for an appropriate bal-

ance.
For the FA problem in Fig. 1(c) and the algorithms

in Fig. 8, similarly we observe that either of directly
setting p(y|x) = G(y|yt,Πy|x−1) or p(y|x) = δ(y − yt)
leads straightly Γt=0, which makes the flow from the A-
2 action to the A-4 action become too watery and thus
vulnerable to be trapped at a point yt that could be far
from the global optimal one. In contrast, the BYY har-
mony learning tackles this problem by gradually driving
Γt = ρ2I + εtε

T
t → 0.

Extending the FA problem beyond that a vector y
comes from Gaussian, the flow from the A-2 action to the
A-4 action generally becomes too loaded because both
p(y|x) and its apex become analytically intractable. One
way to handle is seeking a p(y|x) to analytically approx-
imate a Gaussian as if it is in the case of Fig. 1(c). The
other way is iteratively seeking the apex of p(y|x) by an
optimization algorithm and then estimating p(y|x) on
an apex-zone Cκ

t (x), e.g., for a BFA with B(y|ν), we get
yt from maxy π(y, θy) in Box- 1© of Fig. 8(b) and then
considers maximizing H(θ) with

Ht(θ) =
∑

y∈Cκ
t (xt)

ln [G (xt |Ay + μ,Σ)B (y|ν)]

+ ln [q(h)q(θ)]− 1
2
Tr

[
h2Σ−1

]
,

Cκ
t (xt) = {y : y differs from yt by one bit} . (20)

In addition to seeking a circling balance within each
layer, we also seek a circling balance across layers. As
discussed in Sect. 2.3, the bottleneck of maxΘ F (Θ)
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can be tackled by a series of smaller circling Θnew =
Θold + ηgF (Θ), that is, a jamming in an upper layer cir-
cling can be resolved by a series of smaller circles in its
immediate lower layer. Still, it needs a step size η. If η is
too small, there will be a huge number of small circling
that takes an impractical long period to implement. If η
is too large, the iterating process will become unstable
and diverge. Interestingly, we observe that the prob-
lem of η has been avoided by the EM algorithm with
Θold updated into Θnew via a series of smaller circles
in a L1st-A5 circling for the first level inverse problem
xt → jt per sample xt, which provides the L2nd-A5 cir-
cling more than just the value of F (Θ) and gF (Θ), but
also pj,t that makes a move from Θold to Θnew without
using η. Also as discussed in Sect. 2.3, the bottleneck
of getting k∗ = arg mink J(k) at the A-4 action of the
L3rd-A5 circling is tackled by a series of L2nd-A5 circling
for updating Θ, via either a two stage implementation
or automatic model selection with one force of driving
ψ(θk) → 0 by Eq. (4). By the EM algorithm, the driv-
ing force ψ(θk)→ 0 comes from an external prior q(Θ|Ξ)
within the same level L2nd during implementation of ML
learning. In contrast, the BYY harmony learning gets
this driving force ψ(θk) → 0 not only from q(Θ|Ξ) but
also from Eq. (5) intrinsically via a series of L2nd-A5
circling in help of the L1st-A5 circling.

The last but not the least, it is also insightful to ob-
serve different ways for a series of L1st-A5 circling to be
nested within an L2nd-A5 circling. At one extreme case,
an L2nd-A5 circling is started after completing a series of
L1st-A5 circling that goes through every sample in XN ,
which is usually called a batch learning or learning in a
batch. At the other extreme case, an L2nd-A5 circling
is simultaneously made with a series of L2nd-A5 circling,
in a way that Θ is updated in a small step as an L1st-
A5 circling implemented per sample xt, which is usually
called adaptive learning. Moreover, there could be many
variants between the two extreme cases.

4 Bayesian Ying-Yang learning

4.1 Ying-Yang best harmony principle

The ancient Yin-Yang or Ying-Yang harmony philoso-
phy came from more than 3000 years ago [53,87–89]. As
restated in Appendix B, it can be regarded as a Meta
theory for a system that survives or interacts with its en-
vironment or world. This system consists of two differ-
ent but complement parts, one is called Yang that sam-
ples and gathers from its external world or called Yang
domain (e.g., we get XN in Fig. 2(d)) and transforms
them via a Yang pathway (e.g., those bottom-up arrows
in Fig. 2) into an inner domain; while the other is Ying
that consists of not only the inner domain (called Ying

domain, e.g., q(R) in Fig. 2(d)) that accumulates, inte-
grates, digests, extracts, and condenses whatever came
from Yang, but also a Ying pathway (e.g., those top-
down arrows in Fig. 2) from which either the most ap-
propriate one or ones chosen from the Ying domain will
generate the corresponding best reconstructions back to
the Yang domain. Three inverse problems in Sect. 1.2
are summarized by Eq. (1) from this Ying-Yang system
perspective, as shown in Fig. 2(d).

Ying is primary and its structure is designed accord-
ing to tasks of the system, while Yang is secondary and
its structure is designed from the Ying structure accord-
ing to a variety preservation principle for a Ying-Yang
balance. With inputs from and outputs to its world, a
Ying-Yang system behaves under a best harmony prin-
ciple. On the system by Eq. (1), it means that Ying
and Yang both adapt each other to reach a best agree-
ment in a most tacit way (consuming a least amount
of information communication) or that Ying and Yang
become a best matching pair in a most compact form
with a least complexity. This principle is mathemati-
cally implemented by maximizing a harmony functional
by Eq. (2), which is one typical example of the following
harmony functional in an even general form.

Considering two systems described respectively by
P,Q that are both σ-finite measures on the same mea-
sure space (X,Σ), and let μ be another reference σ-
finite measure that describes a volume or capacity (e.g.,
a Lebesgue measure) about this space (X,Σ) itself, we
observe how the nature of each system changes on ev-
ery differential piece of this space in help of the Radon-
Nikodym derivative [90] dP/dμ, dQ/dμ, each of which
represents the density of each measure on that piece. A
local harmoniousness between two systems may be de-
scribed by a product f(dQ/dμ)dP/dμ with a scale ad-
justment by f(r) that monotonically increases with r,
e.g., f(r) = ln r. As a whole, we have the following
harmony functional for the activities of two systems:

Hμ (P ‖Q ) =
∫

X

dP
dμ

f

(
dQ
dμ

)
dμ =

∫
X

f

(
dQ
dμ

)
dP ,

(21)
which becomes large as two measures on every differen-
tial piece are coherently large, for which both dP and
dQ are large while the volume of differential piece is
small, i.e., two measures are concentrated on small vol-
ume pieces. One intuitive example is considering to dis-
tribute two types of resources over the space (X,Σ) ac-
cording to dP/dμ, dQ/dμ, subject to those existing con-
straints of each system itself. In order to get a joint task
well done, we maximize Hμ(P ||Q) to make two resources
coherently distributed and concentrated on wherever re-
ally necessary for a best use of resources.

This triple-relation among dP , dQ, and dμ includes
two typical bi-relations as its degenerated cases. One is
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dQ = dP that

Hμ (P ‖P ) =
∫

X

dP
dμ

f

(
dP
dμ

)
dμ =

∫
X

f

(
dP
dμ

)
dP ,

(22)
which becomes large when those large values of the mea-
sure P are concentrated on small volume pieces. That is,
Hμ(P ||P ) describes a compactness of the measure den-
sity of P . The other bi-relation is obtained by letting
dμ = dP that leads to

HP

(
P

∥∥Q)
=

∫
X

f

(
dQ
dP

)
dP, (23)

which describes a closeness between the two systems.
For a concave function f(r) with f(1) = 0, −HP (P ||Q)
becomes actually the f -divergence [91].

Moreover, when μ is a Lebesgue measure, and P , Q
are probability measures on the probability space (X,Σ)
(e.g., the resources we deal with are chances or probabil-
ities), maximizing Hμ(P ||Q) by Eq. (21) makes dQ/dμ
match dP/dμ, i.e., each differential volume (or an event
to occur) gets a chance dQ from one system to be same
as dP from the other system, which tends to Hμ(P ||P )
by Eq. (22). Further maximizing Hμ(P ||P ) makes two
systems dP/dμ, dQ/dμ located as compacted as possi-
ble subject to those existing constraints on P , Q. That
is, each differential volume (or an event to occur) gets
either no chance or a chance as higher as possible from
both systems. Two systems best match in term of not
only equal distributions but also as higher as possible
chances concentrated wherever there is a match while as
less as possible chances wasted in other places. In other
words, two systems tend towards one agreement as de-
terministic or least-uncertain as possible. In a contrast,
maximizingHP (P ||Q) by Eq. (23) makes dP/dμ, dQ/dμ
match in distribution, but not be necessarily pushed to
a compact form, since it has no consideration of each
differential volume.

Furthermore, when f(r) = ln r, p = dP/dμ, q =
dQ/dμ, Hμ(P ||Q) by Eq. (21), Hμ(P ||P ) by Eq. (22),
and HP (P ||Q) by Eq. (23) become H(p||q), H(p||p), and
KL(p||q) respectively in a relationship as follows:

H (p ‖q )=
∫
p (X) ln q (X) dX=H (p ‖p)−KL (p ‖q ) ,

or KL (p ‖q )=H (p ‖p)−H (p ‖q ) , (24)

where H(p||p) is a negative entropy, and KL(p||q) is the
Kullback-Leibler divergence. Echoing the beginning of
this subsection, Ying and Yang seeks a best agreement
via minimizing KL(p||q) in a most tacit manner via min-
imizing the information −H(p||p) that is transferred by
Yang. Alternatively, this tacit agreement may also be
observed directly from maximizing H(p||q), which has a
separable nature that maxq H(p||q) for a fixed p leads
to q = p for best matching and that maxpH(p||q) for

a fixed q leads to p(x) = δ(x − c) for least complexity.
This best matching nature has been widely used in those
best data matching approaches via the special cases that
p is fixed at given data, i.e., p(X) = δ(X − XN ). In
these cases, we simply have H(p||q) = ln q(XN ), which
leads to the marginal Bayes learning (e.g., BIC, MDL)
for q(XN ) = q(XN |k) and the ML learning, as discussed
in Fig. 4(d).

Also, one must not confuseH(p||q) by Eq. (24) with an
information theoretic term called cross entropy though it
has apparently a same expression. Actually, the nature
that maxpH(p||q) for a fixed q leads to p(x) = δ(x − c)
has not been involved in the cross entropy related stud-
ies because it was regarded a useless degenerated case.
The name of cross entropy measure was originated from
the Kullback and Leibler [92] by KL(p||q) for the “dis-
crepancy” between p and q. In the literature, it has been
used in two ways. One is widely studied in the litera-
ture of signal processing and information theory under
the name of minimum cross entropy (MCE) [93] for es-
timating p subject to a set of constraints with a given
reference distribution q, which includes the maximum
entropy approach as a special case [94,95]. This way is
different from H(p||q) we studied here. The other way
is studied in the literature of statistical learning for es-
timating q by minimizing KL(p||q) = H(p||p)−H(p||q)
given a reference distribution p which is equivalent to
maximizing H(p||q) to getting q (since p is fixed), i.e., a
special case of the best data matching studies.

Promisingly, the above apparent useless singular na-
ture becomes useful and important when p, q are given
by a Ying-Yang pair by Eq. (1), which leads to the
BYY harmony learning by Eq. (2). Because p =
p(R|X)p(X) includes p(X) = p(X |XN , h) given by Eq.
(6), maxpH(p||q) for a fixed q can not push p(R|X)p(X)
simply to one extreme δ format, but instead to push
p(R|X) into a most compact form under the constraint of
p(X) = p(X |XN , h) and also certain structure of p(R|X)
(if any). On the other hand, maxq H(p||q) for a fixed
p forces the Ying machine q(X |R)q(R) to best match
p(R|X)p(X) and thus become more compact too. Due
to a finite size N and other existing constraints (if any),
the limit q(X |R)q(R) = p(R|X)p(X) may not be really
reached. Still we consider a trend towards this equal-
ity by which H(p||q) in Eq. (2) becomes the negative
entropy, and its further maximization will minimize the
system complexity, which makes the Ying-Yang pair in
a least complexity.

Shown in Fig. 10 is a simple geometrical illustration
of the BYY harmony learning for an intuitive insight.
The Ying machine is a parametric manifold designed ac-
cording to the nature of learning tasks subject to a least
redundancy principle (see the next subsection),while the
manifold of Yang machine consists of two submanifolds,
one is almost specified by XN and may vary subject
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to merely one free parameter h > 0, and the other for
p(R|X,Θq,Θp) comes from the Ying manifold subject to
a variety preservation principle (see the next subsection),
as shown in Fig. 10(a). Instead of that p(R|X,Θq,Θp) is
obtained from a fixed instance of q(X |R)q(R), the struc-
ture of p(R|X,Θq,Θp) is a functional of q(X |R)q(R), not
only possessing its own variables Θp but also sharing the
common variables Θq of q(X |R)q(R).

The learning process consists of two steps in alterna-
tion. As shown in Fig. 10(b), Yang step focuses on a
peak zone of p(R|X,Θq,Θp) centered around newly es-
timated Y ∗, L∗,Θ∗

p as functions of Θq, while the Ying
step adjusts Θ∗

q to project the Ying manifold towards
the peak zone of the Yang manifold, and accordingly
the peak zone also changes as a function of Θq too, dur-
ing which both manifolds shrink due to a least complex-
ity nature. This learning procedure has a quite unique
feature. As illustrated in Fig. 5(b), the manifold shrink-
ing will cause H(p||q) tends infinity, i.e., the process be-
comes diverging, which was regarded as a bad thing in a
conventional sense. Here, it however acts as signals that
the related dimensions should be discarded as the cor-
responding extra scale representative (SR) parameters

approach zeros.
The nature of Ying-Yang best harmony by Eq.

(2) is also observed from the relation of its gradient
flow ∇ϕH(p||q) to the differential flow

∫
p(R|XN ) ·

∇ϕ ln[q(XN |R)q(R)]dR, while the latter actually indi-
cates the updating flow of the M-step in the EM algo-
rithm for the maximum likelihood learning and Bayesian
learning, where and hereafter in this paper, we use ∇ϕf

to denote the gradient of f with respect to ϕ, a general
notation that could be flexibly Θ or one of its subsets,
and we simply have ∇ϕf=0 when f is irrelevant to ϕ.
Further discussions on this general formulation are re-
ferred to those made after Eq. (29) in Ref. [2] and after
Eq. (15) in Ref. [50]. For simplicity, we consider the
cases that there is no prior q(Θ|Ξ) and that p(Θ|X) is
free of any structure and thus determined by maximizing
H(p||q) in Eq. (2). In these cases, parameter learning is
made by maxΘ,hH(p||q,Θ, h,k,Ξ) as shown in Fig. 5(b).

Following the variety preservation principle to be in-
troduced in Sect. 4.2 and considering the Yang path by
Eq. (27) at Dp(X) = Dq(X), i.e., the following Bayesian
structure p(Y |X, θy|x) = q(Y |X, θ), we have

∇ϕH (p‖q,Θ,k,Ξ) =
∫
p

(
Y |X, θy|x

)
[1 + Δπ (X,Y )]∇ϕπ(X,Y )p (X |XN , h) dXdY,

p
(
Y |X, θy|x

)
= q(Y |X, θ), q(Y |X, θ) = q

(
X |Y, θx|y

)
q (Y |θy )/q (X |Θ), (25)

Δπ(X,Y ) = π(X,Y )−
∫
p

(
Y |X, θy|x

)
π (X,Y )dY, π (X,Y ) = ln

[
q
(
X |Y, θx|y

)
q (Y |θy )

]
,

where π(X,Y ) describes the fitness of an inner represen-
tation Y on the observation X , and Δπ(X,Y ) indicates
whether this Y fits X better than the average of all the
possible choices of Y . Without losing generality, we sim-
ply let p(X |XN , h) given by Eq. (6) with h = 0 to further
examine different scenarios of Δπ(X,Y ).

Let Δπ(X,Y ) = 0,∇ϕH(p||q,Θ,k,Ξ) actually be-
comes the updating flow of the M-step in the EM algo-
rithm for the ML learning [20]. Usually Δπ(X,Y ) 	= 0,

i.e., the gradient flow ∇ϕπ(X,Y ) under all possible
choices of Y is integrated via a weighting not just by
p(Y |X, θy|x) but also by a modification of a relative fit-
ness 1 + Δπ(X,Y ). If Δπ(X,Y ) > 0, updating goes
along the same direction of the EM learning with an
increased strength. If 0 > Δπ(X,Y ) > −1, i.e., the
fitness is worse than the average and the current Y is
doubtful, updating still goes along the same direction
of the EM learning but with a reduced strength. When

Fig. 10 A geometrical illustration of Ying-Yang harmony. (a) Manifold of Yang machine consists of two submanifolds, one
specified by XN and the other being a functional of the Ying manifold subject to a variety preservation; (b) Yang step focuses on
a peak zone centered around newly estimated Y ∗, L∗, Θ∗

p as functions of Θq; (c) Ying step updates Θ∗
q to be projected towards

the peak zone of Yang manifold, and both Yang manifold and Ying manifold shrink as a function of Θ∗
q
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−1 > Δπ(X,Y ), updating reverses the direction of the
EM learning and actually becomes de-learning. In other
words, the BYY harmony learning shares a mechanism
similar to RPCL learning [64–66].

Also, we may observe the model selection nature
from the roles of q(Θ|Ξ) and q(Y |Θ), as previously
discussed in Sects. 2.1 and 2.2. First, we consider
R = {Θ} and p(X) = δ(X − XN ), by which
Eq. (2) becomes

∫
p(Θ|XN) ln[q(XN |Θ)q(Θ)]dΘ. Its

maximization with respect to a structural free Yang
p(Θ|XN) becomes p(Θ|XN) = δ(Θ − Θ∗) and Θ∗ =
arg maxΘ ln[q(XN |Θ)q(Θ)], i.e., we are lead to those
studies of Bayes learning, with its model selection na-
ture discussed in Sect. 2.1 and especially around Fig.
4(c). To be further discussed after Eq. (33) in Sect.
4.2, ln[q(XN |Θ∗)q(Θ∗)] becomes coincided with the nor-
malized maximum likelihood (NML) used in the MDL
encoding if we let p(Θ|XN ) = δ(Θ − Θ∗) with Θ∗ =
arg maxΘ ln q(XN |Θ) and q(Θ) given by a so-called IBC
priori. Moreover, considering p(Θ|XN ) by a Gaussian
with its mean Θ∗ and its covariance matrix given by the
inverted Fisher information matrix of ln[q(XN |Θ)q(Θ)],
we are also lead to H(p||q,k,Ξ) in Fig. 5(b) with

H (p‖q,Θ∗, h,k,Ξ) = ln q (XN |Θ∗ )− 1
2
dk (Ξ |Θ∗ )

+ ln [q(h)q (Θ∗)]

−1
2
h2Tr [ΣL (XN)] , (26)

where the details are delayed to Eq. (36) and ΣL (XN )
to Eq. (37) (see Sect. 4.3), which extends Bayes learning.
Second, we consider R = {Θ, Y } and p(X) = δ(X−XN).
As already introduced in Sect. 2.2 and Fig. 5, the mecha-
nism of pushing the Ying-Yang pair into a most compact
form can be also observed from q(R) = q(Y |Θ)q(Θ|Ξ)
that puts q(Y |Θ) and q(Θ|Ξ) in the positions of equal
importance to be considered for model selection, i.e., the
BYY best harmony includes the maximization by Eq. (5)
as a part, which leads to those three favorable features
discussed at the end of Sect. 2.2.

Though both H(p||q) and KL(p||q) can be regarded as
special cases of the general form of harmony functional
by Eq. (21), it follows from Eq. (24) that KL(p||q) is not
a special case of H(p||q). Instead, H(p||q) and KL(p||q)
share some common special cases and also differ in that
minimizing KL(p||q) only covers a partial purpose of
maximizing H(p||q). With p, q given by Eq. (1), it fol-
lows from Eq. (24) that BYY best matching by KL(p||q)
leads to the early studies in 1995 made under the name of
Bayesian Kullback Ying-Yang (BKYY) learning in Ref.
[47], which provides a framework that unifies a num-
ber of typical learning methods. Also, Eq. (24) of Ref.
[47] actually initialized an effort on the BYY harmony
learning via getting a criterion for selecting the cluster
number. During 1996–1999, this criterion evolved into

a model selection criterion J2(k) for Gaussian mixture,
factor analysis, and other learning models, and finally
reached the generic formulation H(p||q) for Ying-Yang
best harmony. Details are referred to Ref. [96], especially
its Sect. II(B) and the footnote on its first page.

In a summary, the novelty and favorable natures of
BYY best harmony, as well as its relation to BYY best
matching, can be observed from the following aspects:
• As stated at the beginning of Sect. 4.1, Ying-Yang

best harmony means that both adapt each other
to reach a best match via a least amount of infor-
mation communication, that is, maximizingH(p||q)
minimizes KL(p||q) in a most tacit manner via mini-
mizing the information −H(p||p) that is transferred
by Yang.

• As discussed after Eq. (24), Ying-Yang best har-
mony means that Ying-Yang becomes a best
matching pair in a most compact form with a
least complexity, observable from the nature that
maxq H(p||q) for a fixed p leads to q = p for best
matching and maxpH(p||q) for a fixed q leads to
p(x) = δ(x − c) for least complexity. This least
complexity is regarded as useless singular case in
the studies of cross entropy but becomes a favor-
able nature in a BYY system.

• From the perspective of Radon-Nikodym derivative,
the harmony functional measures a triple-relation
among dP , dQ, and dμ, while the KL-divergence is
its degenerated case at dμ = dP for measuring a
bi-relation, see Eqs. (21)–(23).

• From Eq. (25), we observe how the updating flow
of the M-step in the EM algorithm for the maxi-
mum likelihood learning and Bayesian learning are
modified into the gradient flow ∇ϕH(p||q) with a
mechanism similar to RPCL learning.

• As illustrated in Fig. 10, the manifold of Yang ma-
chine is a functional of the Ying manifold subject to
a variety preservation principle, and the manifolds
shrink during BYY harmony learning, resulting in
a least complexity nature.

• As stated in Sect. 2.2 and Fig. 5(b), the BYY har-
mony learning puts q(Y |Θ) and q(Θ|Ξ) in the po-
sitions of equal importance to be considered for
model selection, including the maximization by Eq.
(5) as a part, which leads to those three favorable
features discussed at the end of Sect. 2.2.

• Referred to Fig. A2 and Appendix A, the concepts
of maximizing harmony, correlation, and similarity
all join together to form one evolution stream orig-
inated from the concept of seeking common points
or mutual agreement; while the concepts of mini-
mizing divergence, fitting error, least distance form
the other evolution stream originated from the con-
cept of least difference. Two steams are equivalent
in certain cases but also different in other cases.
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• Another information-theoretic perspective of BYY
harmony learning can be found in Sect. II(C), Sect.
II(E), and Fig. 3 of Ref. [49], which provides a three
level encoding scheme for optimal communication,
being different from both the conventional MDL
and the bit back MDL [71].

• As to be introduced in Sect. 5.2, BYY best match-
ing has a bottom-up hierarchical decoupling nature
that makes the tasks of learning hierarchical lay-
ers decoupled to be made sequentially bottom-up
or the tasks of handling latent variables, parame-
ter learning, and model selection decoupled to be
made sequentially step by step. Though this na-
ture makes implementation easy, learning within
one layer become insensitive to the components of
the lower layers. So, it is poor on determining a hi-
erarchical configuration. Also, as discussed in Fig.
5, it makes the role of q (Y, L|Θ,k) not considered in
the task of model selection. Without such a nature,
the BYY best harmony learning makes automatic
model selection possible on each layer and each step.

In addition, readers are referred to the roadmap shown
in Fig. A2. BYY best matching provides a unified frame-
work for typical existing learning methods, while BYY
best harmony provides a framework of new approaches
with a favorable new mechanism for model selection.

4.2 Bayesian Ying-Yang system, variety preservation

principle, and induced bias cancellation

To set up a BYY system as shown in Fig. 2(d), we en-
counter tasks similar to those discussed in Sect. 1.1 and
Fig. 2. Here, a family of infinite many structures {Sk}
means a family of BYY systems with each Sk sharing a
same Ying-Yang system architecture but in a different
scale. This system architecture is set up via designing
the structures of the Ying and Yang machines, which
actually consists of designing each of four components
in Eq. (2). Usually, p(X) = p(X |XN , h) is given by
Eq. (6), with a unknown smoothing parameter h. What
need to be designed actually consists of the structures
of q(X |R), q(R) and p(R|X).

The Ying domain q(R) is considered first. The key
point is the representation form of R, which is task-
dependent, e.g., R = {j, θ} for the GM in Fig. 1(b) and
R = {y, θ} for the FA in Fig. 1(c). As shown in Fig. 6(b),
we generally have three levels of inner representations.
The first level is a STM domain that accommodates ei-
ther or both of L = {j} of labels and Y = {y} of vectors
as inner representations of samples, the second level is
Θ = {θ} as a collective inner representation of the en-
tire set XN , and an even higher level consists of either
or both of hyperparameters Ξ of q(Θ|Ξ) and scales k
of Sk. In a compliment of ancient Ying-Yang philos-

ophy (see Propositions 1 and 2 in Appendix B), Ying
is primary and be a capacity of accommodating, accu-
mulating, integrating and digesting whatever came from
Yang, featured by simplicity (see Ref. [S2] in Fig. B1(b)
of Appendix B). Therefore, we prefer that the number
of variables and parameters of R should be as less as
possible. Already, this is a model selection task that can
only be partly considered in the following design guides.

Least redundancy principle Ying machine ac-
commodates inner representations and generates recon-
structions to fit observed data via structures with least
redundancy. As discussed in Sect. 2.2, a major part of
k is the scale set kY of the STM domain, which pro-
vides a lower bound for the number nYL of parameters
in q(Y, L|Θ). Thus, it is preferred that this number nYL

should be as close as possible to kY . Then, consider-
ing both q(Y, L|Θ) and the structure underlying XN , we
further design the structure of q(X |Y, L,Θ) that again
consists of a set of individual simple structures in a sim-
ple combination.

E.g., for the GM in Fig. 1(b) we have the parame-
ters q(l) = αl, l = 1, 2, . . ., k, with kY = k − 1 due to∑

l αl = 1, and for the FA in Fig. 1(c) we have parame-
ters λl, l = 1, 2, . . .,m, with kY = m. Generally, when y

is a multiple dimensional vector, we may consider a q(y)
with mutual independent dimensions. Also, we design
q(X |Y, L,Θ) via Gaussian based linear regressions of X
conditional on Y . Readers are referred to Refs. [2,51]
for a number of detailed structures. In some situation,
it is unnecessary to design q(Y, L|Θ) and q(X |Y, L,Θ)
separately. Instead, we may design q(X,R), especially
q(X,Y, L|Θ) via an integrated parametric model as a
whole but still attempting to follow the above principle,
e.g., we may consider q(X,Y, L|Θ) as a whole to be a
σ-finite measure.

Next, the structure of p(R|X) is designed from
q(X |Y, L,Θ)q(Y, L|Θ). It follows from Propositions 1
and 2 in Appendix B that the circling from Yang to Ying
is a converging or digesting process, with enough but not
excess inputs from Yang to what needed by Ying, which
motivates the following design principle.

Variety preservation (VP) principle (or called
uncertainty preservation) Yang machine preserves the
dynamism or variety of Ying machine for the inner rep-
resentation of X . That is, Yang should provide with
an enough but not excess variety on those candidate as-
sumptions upon X , for a subsequent processing or deci-
sion by Ying machine.

Let Dq to be the domain of R by Ying machine, we
consider

p (R|X) � q (R|X) , for each R ∈ D∗
ρ (X) ,

q (R|X) =
q (X |R) q(R)∫

R∈D∗
ρ(X)

q (X |R) q(R)dR
,



Lei XU. Bayesian Ying-Yang system, best harmony learning, and five action circling 303

D∗
ρ (X) = {R ∈ Dq : q (R|X) + ρ � q (R∗|X)} ,
for ρ � 0, and R∗ = argmaxR [q (X |R) q(R)] .

(27)

The realm outside of D∗
ρ(X) is relaxed to be free of the

constraint by Eq. (27). This D∗
ρ(X) consists of the apex

point R∗ and its certain neighborhood. Thus, we call
D∗

ρ(X) apex zone or climax neighborhood, which forms
a dynamic focus for us to avoid an excess variety. More-
over, D∗

ρ(X) is controlled by a scalar ρ to form a spec-
trum ranging between two extremes:

1) When ρ = 0, D∗
ρ=0(X) consists of only the apex

point R∗. It follows from Eq. (27) that p(R|X) �
q(R|X) = δ(R−R∗), and maximizing H(p||q,k,Ξ) with
respect to p(R|X) further leads to p(R|X) = δ(R−R∗),
i.e., the Yang is given by the maximum a posteriori
(MAP) estimate of the Ying machine. This is equiva-
lent to the cases that Yang is free of structure or the
corresponding BYY system is said to have a backward
architecture [47–49,83].

2) When ρ > 0 becomes large enough such that
D∗

ρ(X) = Dq, we have the strongest preservation
p(R|X) = q(R|X) for every R in Dq, i.e., the Yang is
given by the Bayesian inverse of the Ying machine, which
is a typical example of the cases that the corresponding
BYY system is said to have a bidirectional architecture
[2,3,47–50,83]. Actually, Eq. (27) let us focus on a par-
ticular subset of a bidirectional BYY architecture that
compliments to Proposition 2 in Appendix B.

In implementation, we decompose p(R|X) into com-
ponents as shown in Fig. 6(b), i.e.,

p(R|X) = q(Θ|Ξ)p(Y |X,L)p(L|X).

We consider each component separately. First, Eq. (27)
directly applies to L = {j} of labels, i.e., we have

p (L|X) � q (L|X) for each L ∈ D∗
δ (X) . (28)

Second, for Y = {y} of vectors and Θ of real parame-
ters, it becomes more convenient to measure the variety
or uncertainty by the information in term of the second
order statistics

Varp(R|X) [vec(Y )] � Varq(R|X) [vec(Y )] ,
(29)

Varp(R|X) [vec(Θ)] � Varq(R|X) [vec(Θ)] ,

where Varp(u)[u] denotes the covariance matrix of a vec-
tor u. This can be regarded as an extension of the cele-
brated Cramér-Rao inequality to the Ying-Yang system
[49(p889)]. For two positive definite matrices A and B,
A � B means uTAu � uTBu for any u. A simple exam-
ple is given as follows:

A = B + ρ2 for a diagonal matrix ρ > 0,

because uTAu = uTBu+ uTρ2u > uTBu. (30)

We may rather conveniently obtain

Varq(R|X) [vec(Y )] = ΠY |X −1,

Varp(R|X) [vec(Θ)] = ΠΘ−1,

(31)
ΠY |X = −∂

2 ln [q (X |R) q (R)]
∂vec[Y ]∂vec[Y ]T

,

ΠΘ = −∂
2 ln [q (X |R) q (R)]
∂vec[Θ]∂vec[Θ]T

.

Finally, the last component to be designed is q(Θ|Ξ).
We partition Θ into two subset Θa and Θb. The sub-
set Θb is supported by a prior distribution q(Θb|Ξ) with
unknown hyperparameters Ξ, and also associated with
a posteriori conjugate distribution p(Θb|X,Ξ) such that∫
p

(
Θb

∣∣X,Ξ)
ln q

(
Θb

∣∣ Ξ
)
dΘb is solved analytically:

Those priors in the literature of Bayesian approaches
may be adopted accordingly, e.g., a Laplace prior for a
regression or interpolation task [60–62] and a Dirichlet
prior for the GM problem shown in Fig. 1(b) [67,68]. If
it is difficult to handle such distributions, we may ignore
this type of priors in Θ, that is, let Θb to be empty.

The subset Θa is simply denoted as Θ hereafter when-
ever there is no confusion. It may have either no priori
or an improper priori without hyperparameters Ξ. The
case without a priori is regarded as an extreme case of
an improper priori with ln q(Θ) = 0. One widely used
improper priori is Jeffrey prior [97]. Moreover, a data
sensitive improper priori q(Θ) was proposed for regular-
izing the irregularity of a finite size of samples, under the
name of data smoothing [73,74,80], especially Eq. (18)
in Ref. [73] and Eq. (7) in Ref. [74], and of normalization
[80,98–100]. Two key points are given as follows:

1) It has been shown empirically that a good choice
of q(h) is simply

q(h) ∝ 1
N∑

t=1

p
h

(ut)

, p
h
(u) =

1
N

N∑
t=1

G
(
u|ut, h

2I
)
.(32)

2) The above is just a special case of the following
parametric model q(u|Θ) induced priori:

q(Θ) ∝ 1/
N∑

t=1

q (ut|Θ), (33)

which came from replacing the integral in H(p||q) by Eq.
(24) with a summation over a set of samples via turn-
ing q(ut|Θ) on these samples into a discrete distribution
q(ut|Θ)/Z(Θ) with Z(Θ) =

∑
t q(ut|Θ), e.g., see Eqs.

(21) and (22) in Ref. [99]. Alternatively, it has also be
re-explained that a finite size of samples makes Z(Θ) 	= 1
that imposes an implicit prior with some bias, and Eq.
(33) aims at canceling this induced bias, called induced
bias cancelation (IBC). Readers are further referred to
Sect. 3.4.3 in Ref. [77] for a recent overview and Sect.
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23.7.4 in Ref. [100] for historical remarks. Even interest-
ingly, we consider H(p||q) by Eq. (2) at a degenerated
case that R = {Θ}, p(X) = δ(X−XN) and p(Θ|XN ) =
δ(Θ−Θ∗) with Θ∗ = arg maxΘ ln q(XN |Θ), we have that
H(p||q) = ln[q(XN |Θ∗)q(Θ∗)] = ln[q(XN |Θ∗)/Z(Θ∗)]
becomes coincided with the normalized maximum likeli-
hood (NML) used in the MDL encoding [101].

The above understanding about IBC motivates a
generic consideration for getting a priori that consists
of two typical roles. One is adding an informative priori
q(Θb|k,Ξ), usually with a hyperparameter set Ξ, associ-
ated with a posteriori conjugate distribution. The other
is canceling out certain bias introduced implicitly by us-
ing a parametric model on a small size of samples, e.g.,
the above q(h) and q(Θ|k) in Eq. (32) and Eq. (33).

4.3 BYY implementation: Apex approximation,
primal gradient flow, and alternative maximization

Still, we use the notation Sk(Θ) to refer a BYY system,
with its configuration Sk specified by designing and with
Θ consisting of unknown parameters in both Ying ma-
chine and Yang machine. Moreover, the scale k features
the complexity of R, including the scale kY as a pri-
mary part. Both parameter learning for determining Θ
and model selection for selecting an appropriate scale
k are accomplished via maximizing the harmony func-
tional H(p||q) by Eq. (2). Partitioning Θ into two sub-
sets, with one denoted by Θb and the other still denoted
by Θ, we consider a prior q(Θ)q(Θb|Ξ) and correspond-
ingly the posteriori p (Θ|X,Ξ) p

(
Θb|X,Ξ)

. The smooth-
ing parameter h may be considered either in the subset
Θb or the subset Θ. With p(X |XN , h) given by Eq. (6)
and q(Θ) =

∏
L q(ΘL), it follows from Eq. (2) that we

rewrite H(p||q) = H(p||q,k,Ξ) as follows:

H (p‖q,k,Ξ)

= Hb (Ξ,k)

+
∫
p (Θ|X,Ξ) p (X |XN , h)H (p‖q,Θ,k,Ξ) dΘdX,

Hb (Ξ,k) =
∫
p

(
Θb|X,Ξ)

ln q
(
Θb|Ξ)

dΘb,

H(p‖q,Θ,k,Ξ)

=
∑
L

∫
p(Y |X,L)p(L|X)p(X |XN , h)

× ln[q(X |Y, L,ΘX|YL)q(Y, L|ΘYL)q(ΘL)]dXdY.

(34)

With h included in Θ, H(p||q,Θ, h,k,Ξ) given in Fig.
5(b) is a special case of the above H(p||q,Θ,k,Ξ) after
dropping L. Also, an improper priori q(Θ) can be ei-
ther no priori (i.e., ln q(Θ) = 0) or a Jeffreys prior [97].
Also, it can be the IBC priori by Eq. (33), which leads
to Z(Θ) = − ln q(Θ) that was studied under the term of

normalization regularization [48,49,80,83,96,98–100].
Computing difficulties are encountered for the integral

over Θ and the integral over Y for H(p||q,Θ,k,Ξ). To
get rid of it, we consider a Ying-Yang alteration pro-
cedure, featured with apex approximation and primal
gradient based search.

Apex approximation is made via the following Taylor
expansion around u∗ up to the second order:

∫
p (u)Q (u) du ≈ Q (u∗)− 1

2
Tr

[(
Γu + εuε

T
u

)
Ω (u∗)

]
,

u∗ = arg max
u

Q (u) , εu = uμ − u∗, (35)

where uμ,Γu are the mean and the covariance of p(u),
and Ω(u) = −∂2Q(u)/∂u∂uT. When Q(u) is a quadratic
function of u, not only this ≈ becomes =, but also Eq.
(35) applies to the cases that u takes discrete values,
with Ω(u) obtained by regarding that the domain of u
is expanded to a real domain.

Using it on the integral over Θ in Eq. (34), we get
H(p||q,k,Ξ) as shown in Fig. 5(b) with

dk (Ξ |Θ∗ ) = Tr
[{

Γ(Ξ)+ε(Ξ)ε(Ξ)T
}

Ω (Θ∗)
]
,

ε(Ξ) = vec [Θμ(Ξ)−Θ∗] , Θμ(Ξ) = Ep(Θ|X,Ξ)Θ,

Γ(Ξ) = Varp(Θ|X,Ξ) [vec [Θ]] ,

Ω(Θ∗) = − ∂2H (p‖q,Θ,k)
∂vec[Θ]∂vec[Θ]T

. (36)

That is, we approximate the integral over Θ by its apex
zone around Θ∗, which is referred as apex approximation
on the support of Θ. Particularly, we have Hb(Ξ,k) = 0
if there is no hyper-parameter Ξ and dk(Ξ|Θ) = nf (Θ).
It follows from Eq. (31) that Γ(Ξ) = Ω−1(Θ∗) and
ε(Ξ) = 0. Also, it follows from Eq. (29) and Eq. (30)
that we may consider Γ(Ξ) = Ω−1(Θ∗)+δ2 for a diagonal
matrix δ > 0, with or without considering a priori q(δ)
in q(Ξ), and dk(Ξ|Θ) = nf (Θ) + Tr[δ2Ω(Θ)], where δ
may also be learned during maximizing H(p||q,Θ,k,Ξ).
H(p||q,Θ,k,Ξ) is maximized by a gradient ascend-

ing via ∇ΘH(p||q,Θ,k,Ξ). Two typical roads are fea-
tured by choosing the order of handling ∇Θ and

∑
L

∫
.

One is making ∇Θ first and then approximating the
integral over Y and the summation

∑
L. The other

is removing all the integrals first and then computing
∇ΘH(p||q,Θ,k,Ξ). In sequel, we focus on the latter.

Again, we remove the integral over Y by apex approx-
imation. Similar to Eq. (35) we also consider a Taylor
expansion around uμ up to the second order and get∫
p(u)Q(u)du = Q(uμ) − 1

2
Tr[ΓHQ(uμ)], from which

we remove the integral over X in Eq. (34). Taking h

out of Θ and putting it explicitly in parallel to ΘL,
i.e., q(Θ) = q (h |XN )

∏
L q(ΘL), some derivation fur-

ther turns H(p||q,Θ,k,Ξ) by Eq. (34) into
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H (p||q,Θ,k,Ξ) =
∑
L

p (L |XN )HL (Θ) ,

HL (Θ) = πL (XN , Y
∗
L ,Θ) +RL (XN , Y

∗
L ,Θ) ,

πL (X,Y,Θ) = ln
[
q
(
X

∣∣Y, L,ΘX|YL

)
q (Y, L |ΘYL )

]
,

RL (XN , Y
∗
L ,Θ)

= ln [q (h |XN ) q (ΘL)]− 1
2
h2Tr [ΣL (XN )]

−1
2
Tr

[{
ΓY |X

L + εL (XN) εTL (XN )
}

ΠY |X
L

]
,

εL(X) = vec [μL(X)− Y ∗
L ] , μL(X) = Ep(Y |X,L)Y,

Y ∗
L = arg max

Y
πL [XN , Y,Θ] ,

ΓY |X
L = Varp(Y |X,L) [vec(Y )] ,

ΣL(X) = − ∂2πL (X,Y,Θ)
∂vec[X ]∂vec[X ]T

,

ΠY |X
L = − ∂2πL (X,Y,Θ)

∂vec[Y ]∂vec[Y ]T
.

(37)

Further insights are obtained by taking the cases of
Figs. 7–9 as examples. Considering that XN = {xt}
consists of i.i.d. samples and noticing ln Πtpt = Σt ln pt,
we observe that the aboveH(p||q,Θ,k,Ξ) becomes H(θ)
by Eq. (10) after simply discarding terms related to Y.
Considering the structure of p(L|X) by Eq. (28) ac-
cording to the variety preservation principle, maximizing
H(p||q,Θ,k,Ξ) with respect to p(L|X) leads us to

p (L |X ) = χκ (L) q (L |X ) ,

q (L |X ) =
q (X |L,ΘL ) q (L)∑

L∈Cκ(XN )

q (X |L,ΘL ) q (L)
,

χκ (L) =

{
1, for L ∈ Cκ (XN ) ,

0, for L /∈ Cκ (XN ) .

(38)

That is, the variety preservation is considered with
p(L|X) = q(L|X) within Cκ(XN ) in help of

q (X |L,ΘL ) =
∫
q
(
X

∣∣∣Y, L,ΘX|YL

)
q (Y, L |ΘYL ) dY

= eπL(X,Y ∗
L ,Θ)(2π)dY /2

∣∣∣ΠY |X
L

∣∣∣−1/2

,

Cκ (XN ) = {L : for the first κ largests of HL(Θ)} .
From dH(p||q,Θ,k,Ξ) =

∑
L[p(L|XN )dHL(Θ) +

HL(Θ)dp(L|XN )], we get

∇ΘLH (p||q,Θ,k)

= pδ (L |XN )∇ΘLπL (XN , Y
∗
L ,Θ)

+ p (L |XN )∇ΘLRL (XN , Y
∗
L ,Θ)

−1
2
ΔπL (XN , Y

∗
L )∇ΘL ln

∣∣∣ΠY |X
L

∣∣∣ ,
pδ (L |XN ) = p (L |XN ) + ΔπL (XN , Y

∗
L ) ,

ΔπL (X,Y ) = p (L |XN )ΔHL(Θ),

ΔHL(Θ) = HL(Θ)−
∑
L

p (L |XN )HL(Θ).

(39)

For the case that XN = {xt} consists of i.i.d. sam-
ples, Eq. (38) leads to the Box- 1© in Fig. 7. Moreover, it
follows from dRL(XN , Y

∗
L ,Θ)/dh (actually its first two

terms) that we lead to the Box- 4© in Fig. 7.
Alternatively, H(p||q,Θ,k,Ξ) becomes H(θ) given by

Eq. (17) after reducing ΣL into a sum merely over a sin-
gle term (i.e., p(L|X) = 1 and ΔπL(X,Y ) = 0). For the
structure of p(Y |X,L), we consider μL(X) in a paramet-
ric form, e.g., W (x−μ) in Fig. 1(c) for FA, and also Eqs.
(29)–(31). That is, we let

μL(X) = μL (X,WL) and ΓY |X
L = ΠY |X−1

L + ρ2

with Tr
[
ΓY |X

L ΠY |X
L

]
= dY + Tr

[
ρ2ΠY |X

L

]
, (40)

where ρ is a diagonal matrix and dY is the dimension
of Y , from which the last term of RL(XN , Y

∗
L ,Θ) leads

to the last term of R(h, θ) in Eq. (17). Also, we may
consider a priori q(ρ) in q(Θ).

Furthermore, H(p||q,Θ,k,Ξ) by Eq. (37) also leads to
the one at the bottom of Fig. 9 as a combined case of
Figs. 7 and 8. One additional issue is that the third term
of the gradient of H(p||q,Θ,k,Ξ) by Eq. (39) takes in
effect because we no longer have ΔπL(X,Y ) = 0, which
contributes a correcting term to πt(θl) within the Box- 2©
and to Γl within the Box- 3© in Fig. 9.

With the gradient ∇ΘH(p||q,Θ,k,Ξ), we make a gra-
dient based ascending for maxΘH(p||q,Θ,k,Ξ). Instead
of directly using ∇ΘH(p||q,Θ,k,Ξ), we propose to use
a technique called primal gradient flow. For a decom-
position ∇Θf(Θ) = GE(Θ)F with positive definite ma-
trices G,F , we have Tr[∇Θf(Θ)ET(Θ)] > 0 by noticing
Tr[HHT] > 0 with H = GT/2E(Θ)F 1/2. Thus, we use
one of the following two updating formulae for increasing
or maximizing f(Θ):

a) Θnew −Θold ∝ E(Θ) in general, which is

called primal gradient flow,
b) Θnew = A−1BC−1, for E(Θ) = AΘC −B,

if A,C are both positive definite.

(41)

It follows from Eq. (5.2) in Ref. [8] that the case b) with
cond[H ] = cond[I] = 1 converges faster than the gradi-
ent updating Θnew−Θnew ∝ ∇Θf(Θ) with cond[H ]� 1,
where cond[A] denotes the condition number of the ma-
trix A. In help of Eq. (40), we obtain those updating
equations in Figs. 7–9, particularly the Box- 7© in Fig. 8
from the above case b).

Considering a learning system in a Ying-Yang pair, we
are naturally motivated to make maxΘH(p||q,Θ,k,Ξ)
by the following alternative iteration:
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Yang step: fixing all the unknowns in the Ying ma-
chine, we get Y ∗

L by Eq. (37) and p(L|X) by Eq. (38), as
well as update WL and ρ in Eq. (40).

Ying step: fixing the above just updated unknowns,
we update all the unknowns in the Ying machine.

It provides a general procedure for developing EM-like
algorithms for maximizing the general formHμ(P ||Q) by
Eq. (21), which includes the well known EM algorithm
for HP (P ||Q) by Eq. (23) at the special setting μ = P .
Again, those algorithms in Figs. 7–9 are examples of this
Ying-Yang alternation.

From the perspective of the A5 circling in Fig. 6(b),
after getting sampling at A-1, a bottleneck is encoun-
tered in implementing A-2, A-3, A-4, i.e., the integral
over Θ in Eq. (34) and the integral over Y in Fig. 5(b)
for H(p||q,Θ,k,Ξ), which is tackled with apex approx-
imation for A-2 and primal gradient based ascending
H(p||q,Θ,k,Ξ) for A-3. The role of A-4 consists of de-
tecting Eq. (4) for automatic model selection and of iden-
tifying convergence. Finally, the job of A-5 is making a
validation, which is omitted here.

4.4 Unsupervised learning, semi-supervised learning,
and supervised learning

Conventionally, a learning that only bases on input sam-
ple xt is called unsupervised, for which a BYY system
directly applies. Instead, a learning that bases on each
input-output sample pair is called supervised, which is
also covered by the BYY system. Specifically, there are
two types of BYY system that implement supervised
learning.

The first type is directly using the BYY system by
its Yang machine when either or both of lt and yt are
available per sample xt, or when either or both of the
pair {LN , XN} and the pair {YN , XN} are available as
a whole. What need to do is simply setting the Yang
machine with either or both of

p(L|X) = δL,LN and p(Y |X,L) = δ(Y − YN ).

Particularly, if both of them are used, the BYY best
harmony and BYY best matching learning both equiv-
alently degenerate to making the maximum likelihood
learning on ln[q(XN |YN , LN ,ΘX|YL)q(YN , LN |ΘYL)] of
the Ying machine.

To use the information provided by the input-output
sample pairs and also use the estimation of Yang ma-
chine by unsupervised learning, a better consideration is
given as follows:

p(L|X) = (1 − �)χκ (L) q (L |X ) + �δL,LN ,

p(Y |X,L) = (1− �)G(Y |μL(X),ΓY |X
L )

+�G(Y |YN , h
2
yI), (42)

where μL(X),ΓY |X
L are same as in Eq. (37), and

χκ (L) , q (L |X ) are same as in Eq. (38). Also, hy > 0
is a data smoothing parameter that can be handled in a
way similar to h, in help of one q(hy) together with q(h)
to be included in q(Θ).

The combining coefficient 0 � � � 1 may be either
pre-specified or learned together with Θ in help of one
priori q(�) included in q(Θ), e.g., q(�) is a uniform dis-
tribution or a beta distribution. It becomes either su-
pervised when � = 1 or unsupervised when � = 0. Gen-
erally, we combine the two. This is a special task of com-
bining classifiers and learning mixture-of-experts [102].

The above discussed directly applies to an even gen-
eral case that we have two parts of samples, one is the
above XN with teaching pairing for which we use Eq.
(42) while the other is X ′

N without teaching pairing for
which we can still use Eq. (42) by simply letting � = 0.

A detailed insight can be obtained by considering the
problem of Gaussian mixture introduced in Sect. 3.1. It
follows from Eq. (42) that for a given pair (xt, jt) we
simply have

p (j |xt, θ ) = (1 − �)q (j |xt, θ )χκ,t (j) + �δj,jt ,

p(j|t) = p
(
j
∣∣xt, θ

old
)
,

pj,t = p(j|t) + (1 − �)Δj,t. (43)

We put the above p (j |xt, θ ) into Eq. (10) per sample
pair (xt, jt). Correspondingly in the algorithm given in
Fig. 7, we use the above pj,t to replace pj,t = p(j|t)+Δj,t

of the Yang step and use the above p(j|t) in the position
of p(j|t) in the Ying step.

What discussed above belongs to a recent topic that
becomes quite popular in the machine learning litera-
ture under the name of semi-supervised learning. One
early exploration on Gaussian mixture was made in 1997
under the name of semi-unsupervised learning, see Eq.
(7.14) in Ref. [73]. Interestingly, the BYY system pro-
vides an easy way to conduct such tasks. Also, we may
consider other combining rules reviewed in Ref. [102], in
addition to the linear combination in Eq. (42) and Eq.
(43).

The second type of BYY supervised learning consid-
ers learning an input-output mapping ξt → ζt via a set
of pairs {ξt, ζt}, which is implemented by the BYY sys-
tem with each pair {ξt, ζt} jointly taking the position of
an input sample xt = {ξt, ζt} that is mapped into its
corresponding inner representation {lt, yt}. Then, the
mapping ξt → ζt is obtained via a cascaded mapping
ξt → {lt, yt} → ζt.

Considering X = {ξ, ζ} with X = {xt}, ξ = {ξt}, and
ζ = {ζt}, we start at the special case Y = empty and
consider the following decomposition

q(X |L,ΘX|L) = q(ζ|ξ, L,ΘL)q(ξ|L,ΘL). (44)
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We further let

p(L|ξ) = p(L|ξ, ζ)|ζ=ζL(ξ),

ζL(ξ) =
∫

ζ q(ζ|ξ, L,ΘL)dζ. (45)

Putting them into Eq. (34) that is simplified into

H(p‖q,Θ,k,Ξ)

=
∑
L

∫
p(L|ξ)p(X |XN , h)

× ln[q(ζ|ξ, L,ΘL)q(ξ|L,ΘL)q(L|ΘL)q(ΘL)]dX,

which is maximized by the way as implemented in the
previous subsections. Then, we get ξ → ζ by

q(ζ|ξ) =
∑
L

p(L|ξ)q(ζ|ξ, L,ΘL). (46)

For the i.i.d. samples, with ph(xt) given by Eq. (6) we
are lead to the following special case:

H(p‖q,Θ,k,Ξ)

=
∑

t

∑
�t

∫
p(�t|ξt)ph(xt)

× ln[q(ζt|ξt, θ�t)G(ξt|μ�t ,Σ�t)q(�t)q(θ�t)]dxt,

p(�|ξ) = p(�|ξ, ζ)|ζ=ζ�(ξ), ζ�(ξ) =
∫
ζ q(ζ|ξ, θ�)dζ,

q(ζ|ξ) =
∑

�

p(�|ξ)q(ζ|ξ, θ�),

(47)

from which we are lead to RBF networks and alternative
mixture of experts [50,80], as illustrated by the Box- 9©
in Fig. 11.

Learning algorithms can be obtained from the algo-
rithm in Fig. 7 for Gaussian mixture with some modifi-
cations. We can directly use this algorithm for updating
the part G(ξ|μ�,Σ�)α�, with the first line of Yang step
modified by πt(θ�) =ln [q(xt|θ�)α�]xt=[ξt,ζ�(ξt)]

. Also,
the Ying step is added with a new part for updating
q(ζ|ξ, θ�), which can be implemented either in a batch
way that gets θnew

� by solving ∇θ�

∑
t p�,tq(ζt|ξt, θ�) = 0

or adaptively (e.g., see Figs. 3(C), 3(D), and 3(E) in Ref.
[50] there with pj,t in the position of ηj,t).

Second, we consider the special case L = empty and
the following decomposition:

q(X |Y,ΘX|Y ) = q(ζ|Y,ΘX|Y )q(ξ|Y,ΘX|Y ),

p(Y |ξ) = p(Y |ξ, ζ)|ζ=0. (48)

Fig. 11 A roadmap of typical supervised learning tasks
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Putting them into Eq. (34) that becomes

H(p‖q,Θ,k,Ξ)

=
∫
p(Y |ξ)p(X |XN , h)

× ln[q(ζ|Y,ΘX|Y )q(ξ|Y,ΘX|Y )

×q(Y |ΘY )q(Θ)]dXdY, (49)

which is also maximized by the way as implemented in
the previous subsections. Then, we get ξ → Y → ζ by

q(ζ|ξ) =
∫
p(Y |ξ)q(ζ|Y,ΘX|Y )dY. (50)

For the i.i.d. samples, we consider the special case below:

H(p‖q,Θ,k,Ξ)

=
∑

t

∫
p(yt|ξt)ph(xt)

× ln[q(ζt|yt, θx|y)q(ξt|yt, θx|y)

×q(yt|θy)q(θ)]dytdxt,

(a) q(x|y, θx|y) = q(ζ|y, θx|y)q(ξ|y, θx|y),

p(y|ξ) = p(y|ξ, ζ)ζ=0,

where

q(x|y, θx|y) = G(x|Ay + μ,Σ),

q(ξ|y, θx|y) = G(ξ|Aξy + μξ,Σξ),

q(ζ|y, θx|y) = G(ζ|Aζy + μζ ,Σζ),

x = [ξ, ζ]T, AT = [Aξ, Aζ ],

μ = [μξ, μζ ]T, Σ = diag[Σξ,Σζ ],

(b) q(ζ|ξ) =
∫
p(y|ξ)G(ζ|Aζy + μζ ,Σζ)dy,

ζ(ξ) =
∫
g(y)p(y|ξ)dy = Aζμ(ξ,W ) + μζ ,

μ(ξ,W ) =
∫
yp(y|ξ)dy,

g(y) =
∫
ζ G(ζ|Aζy + μζ ,Σζ)dζ = Aζy + μζ ,

(51)

from which we are lead to three layer network ξ → y → ζ

with hidden units being linear, sigmoid, and other non-
linear types [50,80,103], as illustrated by the Box- 1©,
Box- 2©, and Box- 3© in Fig. 11.

Learning algorithms can be obtained from the algo-
rithm in Fig. 8 with a slight modification. What needs
to do is letting μ(ξ,W ) in the Yang step replaced by
μ(ξ,W )ζ=0 and letting Σ ← Σnew at the bottom re-
placed by Σ ← diag[Σnew

ξ ,Σnew
ζ ], i.e., only considering

the block diagonal part of Σnew. The mapping ξ → ζ is
implemented by q(ζ|ξ) or simply ζ(ξ) = Aζμ(ξ,W )+μζ.

Third, we extend the above case with L taken in con-
sideration. That is, we consider

q(X |Y, L,ΘX|YL) = q(ζ|Y, L,ΘX|YL)q(ξ|Y, L,ΘX|YL),

p(Y |ξ, L) = p(Y |ξ, ζ, L)|ζ=0. (52)

For each specific L, we get a mapping ξ→ Y → ζ in the
same way as given in Eq. (50). For the i.i.d. samples,
we get its counterpart by modifying Eq. (51) via adding
the subscript � to all the components, e.g.,

H(p‖q,Θ,k,Ξ)

=
∑

t

∑
�t

∫
p(�t|ξt)p(yt|ξt)ph(xt)

× ln[G(ξt|Aξ,�yt + μξ,�,Σξ,�)

×G(ζt|Aζ,�yt + μζ,�,Σζ,�)

×q(yt|θy,�t)q(�t)q(θ�t)]dytdxt,

(a) q(x|y, θx|y,�)

= G(x|A�y + μ�,Σ�)

= G(ξ|Aξ,�y + μξ,�,Σξ,�)G(ζ|Aζ,�y + μζ,�,Σζ,�),

p(y|ξ, �) = p(y|ξ, ζ, �)ζ=0,

(b) q(ζ|ξ, θ�) =
∫
p(y|ξ, �)G(ζ|Aζ,�y + μζ,�,Σζ,�)dy,

ζ�(ξ) = Aζ,�μ�(ξ,W�) + μζ,�.

(53)

On the other hand, similar to Eq. (47) we have

(c) q(x|θ�) =
(2π)0.5m�

|Πy|x
� |0.5

G(x|A�y
∗
� + μ�,Σ�)q(y∗� |θy,�),

y∗� = arg max
y

[G(x|A�y + μ�,Σ�)q(y|θy,�)],

(d) p(�|x) =
q(x|θ�)α�∑
� q(x|θj)αj

,

p(�|ξ) = p(�|ξ, ζ)|ζ=ζ�(y∗
� ),

(e) q(ζ|ξ) =
∑

�

p(�|ξ)q(ζ|ξ, θ�),

ζ(ξ) =
∑

�

p(�|ξ)[Aζ,�μ�(ξ,W�) + μζ,�],

(54)

which combines each local three layer network ξ → y →
ζ via q(ζ|ξ, θ�) given by Eq. (53).

As illustrated by the Box- 8© in Fig. 11, when q(y|θy,�)
is a Gaussian G(y|v�,Λ�), each q(x|θ�) is a Gaussian fea-
tured by a subspace spanned by A� and located at μ�,
which supports a cascaded linear regression from ξ → y

byW�(xt−μ�)ζ=0 and then y → ζ by ζ�(y) = Aζ,�y+μζ,�.
These subspace based local regression function are com-
bined by p(�|ξ), called subspace based functions. The
details are referred to Ref. [50] (therein Figs. 5–7 and the
subsection after Eq. (11)). When q(y|θy,�) is a Bernoulli
B(y|v�), each Aζ,� μ�(ξ,W�) + μζ,� implements a three
layer networks and the above q(ζ|ξ) or ζ(ξ) actually im-
plements a mixture of experts (ME), as illustrated by
the Box- 7© in Fig. 11. Further details are referred to
Refs. [2,17,50,80]. Moreover, when q(y|θy,�) has a tem-
poral dependence (e.g., one given on the top of Fig. 8),
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we are further lead to those extensions illustrated by the
Box- 4©, Box- 5©, and Box- 6© in Fig. 11.

Similarly, learning algorithms for typical types of
q(y|θy,�) can be obtained from the algorithm in Fig. 9.
Taking the SBF functions as an example, we let W�(xt−
μ�) in the Yang step to be replaced byW�(xt−μ�)ζ=0 and
π(xt, y�,t, θ�) to be replaced by π(xt, y�,t, θ�)ζ=ζ�(y�,t),
and also let Σ� ← Σnew

� at the bottom replaced by
Σ� ← diag[Σnew

�,ξ ,Σ
new
�,ζ ].

Inherited from the BYY harmony learning nature of
automatic model selection, the number of basis func-
tions, experts, hidden units, and subspace dimensions
can be determined during implementing these super-
vised learning algorithms. This favorable nature is
shared generally by efforts along a road of decomposing
q(X |Y, L,ΘX|L) via the partition X = {ξ, ζ} for ξ → ζ

in help of maximizing H(p||q,Θ,k) by Eq. (34).

5 Hierarchical, temporal BYY harmony

learning and HMM examples

5.1 Hierarchical and temporal BYY harmony learning

The BYY harmony learning can also be extended to
learning hierarchical models. Here, an introduction is
made on extending a Gaussian mixture into a mixture
of hierarchical components as shown at the center of in
Fig. 12(b), i.e., each component of a finite mixture of
q(x|θ) is itself a mixture of finite components, and each
component in a higher layer is a mixture of a number of
components in its lower layer. The samples are input at
the bottom layer as a part of Yang machine.

We have Y = empty, L = {i, �, j} in a tree configu-
ration with q(Θ) ∝ 1 (i.e., ignored). Considering a set
{xt} of i.i.d. samples that inputs to the tree of three lay-
ers shown at the center of in Fig. 12(b), H(p||q,Θ,k)
by Eq. (34) is simplified into H(θ) on the top shown
of Fig. 12(a), given by the flow from the bottom up to
the top. At the bottom, it consists of the likelihood
πt(θj|� i) of a component on a sample and the corre-
sponding regularization information. After a sum by
the weight p(j|l, i, xt), the flow from each component is
integrated into one upper layer component. Finally, on
the top layer, the flow Ht(θ) for each sample is summed
up over all the samples. Specifically, the detailed form
of Ht(θ) is given as follows:

Ht(θ) =
∑
i,�,j

∫
p (j|�, i, xt) p (�|i, xt) p (i|xt)

×ph (xt) ln
[
q
(
xt|θj|� i

)
αj|� iα�|iαiq(h|XN )

]
dxt.

The Ying-Yang alternating algorithm given in Fig. 12(b)
is developed from ∇ΘH(p||q,Θ,k). In help of the chain

rule for derivatives, we can obtained the gradients hier-
archically as follows:

∇φiHt(θ) = p (i|xt)∇φiHt (θi) + Δi,t∇φiπt (θi) ,

∇φiπt (θi) = ∇φi lnαi +∇φi ln q (x|θi) ,

∇φi ln q (x|θi) =
∑

�

p (�|i, xt)∇φiπt

(
θ�|i

)
,

∇φiπt

(
θ�|i

)
= ∇φi lnα�|i +∇φi ln q

(
x|θ�|i

)
,

∇φi ln q
(
x|θ�|i

)
=

∑
j

p (j|�, i, xt)∇φiπt

(
θj|�i

)
,

∇φiπt

(
θj|�i

)
= ∇φi lnαj|�i +∇φi ln q

(
x|θj|�i

)
.

(55)

Accordingly, we can implement maxΘH(p||q,Θ,k) hier-
archically as shown in Fig. 12(b). The Yang step updates
the Bayesian posteriors p(j|l, i, xt), p(l|i, xt), p(i|xt) and
the corresponding Δj|li,t, Δi|l,t, Δi,t from the bottom
up to the top, which are transferred horizontally to the
Ying step on each layer. Then, from the top down to the
bottom, the Ying step updates αi, αi|l, αj|li, and finally
updates the components at the bottom, e.g., μj|li, Σj|li
for each Gaussian.

Setting Δj|li,t = 0, Δi|l,t = 0, Δi,t = 0, the Ying-Yang
iteration by Fig. 12(b) actually degenerates back to the
EM algorithm for a hierarchical mixture. With the cor-
recting terms Δi,t 	= 0, Δi|l,t 	= 0, Δj|li,t 	= 0, the Ying-
Yang iteration implements the BYY harmony learning,
during which the number of components in each layer
is determined by automatic model selection. That is,
those extra components are discarded if the correspond-
ing αi → 0, αi|l → 0, and αj|li → 0.

A typical example of using hierarchical mixture of
Gaussians shown in Fig. 12 is tree-based clustering
in context dependent phone modeling in HMM based
acoustic models [104]. This is commonly made by de-
cision trees in help of a greedy iterative node splitting
algorithm. However, the depth of a tree or the num-
ber of Gaussian components is controlled heuristically.
Recently in Ref. [105], BYY harmony learning has been
applied for a part of this purpose. It has been shown that
the number of Gaussian components has been reduced
with considerably improvements on recognition word er-
ror rate (WER). The Ying-Yang alternating given in Fig.
12 provides a further tool for this application.

In addition to a hierarchical relation bottom up from
observed samples, temporal dependence among samples
can also be introduced into a BYY system by model-
ing relation of hidden representations across times. Two
types of temporal BYY system are considered by Sect.
II(C) in Ref. [84]. One considers H (p||q,Θ,k) in Eq.
(34) by the following sum with each H(xt, yt) given by
an instantaneous Ying-Yang pair:

H (p||q,Θ,k) =
∑

t

H(xt, yt) + ln [q(h|XN )q(Θ)],
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Fig. 12 Hierarchical BYY harmony learning. (a) Hierarchical harmony flows; (b) main program

H(x, y) =
∑

�

∫
p(�, y|x)G(x|Ex, h2I)π�(x, y, θ)dxdy,

π�(x, y, θ) = ln[q(x|y, �, θx|y,�)q(y, �)],

(56)

where temporal relation is encoded by q(yt, �t|ωt−1, θy,�)
via q(yt, �t) =

∫
q(yt, �t|ωt−1, θy,�)q(ωt−1)dωt−1 with

ωt−1 = {yt−τ , �t−τ}κτ=1, κ � 1. One example is the tem-
poral extension of factor analysis (FA) on the top of Fig.
8 where we drop � and have q(y|θy) = G(y|ν,Λ).

The other type describes temporal dependence among
Y = {yt}, L = {�t} by a finite order Markovian, espe-
cially the first order. One typical example is

q (Y ,L |θy ) = q (y0, �0)
∏
t�1

q (yt, �t |yt−1, �t−1, θy ),

q
(
XN |Y ,L, θx|y

)
=

∏
t�1

q(xt|yt, �t, θx|y), (57)

which are put into Eq. (34) for implementing the BYY
harmony learning. There are two ways to remove the
integral over X . One starts from Eq. (37) via putting
Eq. (57) into πL (X,Y,Θ). The other is simplifying
Eq. (34) in help of a temporal decoupling nature of
ln[q(X |Y, L,ΘX|YL)q(Y, L|ΘYL)], resulting in

H(p||q, θ,k) =
N∑

t=1

[Ht(Θ,k) + ln [q(h|XN )q(Θ)]],

Ht(Θ,k)

=
∑

�t,�t−1

∫
p(�t, yt; �t−1, yt−1|xt)

×G(xt|Ext, h
2I)π�t(xt, yt, yt−1, θ)dxtdytdyt−1,

π�t(xt, yt, yt−1, θ)

= ln[q(xt|yt, �t, θx|y,�t
)q(yt|yt−1, �t, θy,�t)

×q(�t|�t−1, Q)],

(58)

with q(xt|yt, �t, θx|y,�t
) and q(yt|yt−1, �t, θy,�t) in differ-

ent specific structures, we are lead to different models
of the first order Markovian based temporal BYY har-
mony learning. One typical example is hidden Markov
models (HMMs). The detailed discussions are delayed to
the next subsection. Here, we introduce another typical
example by dropping L = {�t} in Eq. (58).

Using the same technique in Eq. (37), we remove the
integral over xt and make Eq. (58) simplified into

H (p||q, θ,k) =
N∑

t=1

[Ht(Θ,k) +R(h,Θ)] ,

R(h,Θ) = ln [q(h|XN )q(Θ)]− 1
2
Tr

[
h2Σ−1

]
,

Σ−1 = −∇2
xxTπ (x, yt |yt−1, θ ) ,

Ht(Θ,k) =
∫
p (yt, yt−1 |xt )π (xt, yt|yt−1, θ) dytdyt−1,
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π (xt, yt|yt−1, θ) = ln
[
q
(
xt|yt, θx|y

)
q (yt |yt−1, θy )

]
.

(59)

The maximization of the above H (p||q, θ,k) is imple-
mented by the schematic algorithm as shown in Fig.
13, in help of getting ∇ΘH(p||q,Θ,k). Specifically,
the integral over yt, yt−1 can be handled in one of
two ways. One is first making the gradient opera-
tion and then attempts to compute the integral over
yt, yt−1. The other way is first removing the integral
over yt, yt−1 in help of apex approximation by Eq. (35)
around Y ∗

t,t−1 given by the Ying step in Fig. 13, in a
way similar to Eq. (37), from which we have Ht(Θ, k) =
π(xt, y

∗
t , y

∗
t−1, θ)− 1

2Tr[(Γy|x
t,t−1 + εt,t−1ε

T
t,t−1)Π

y|x
t,t−1] and

εt,t−1 = Y ∗
t,t−1 − Ȳt,t−1, with Γy|x

t,t−1, Ȳt,t−1 obtained in
two choices given by the Yang step in Fig. 13. The
choice (a) is same as the one used in Eq. (37), with
p(yt, yt−1|xt) = q(yt, yt−1|xt) designed from the follow-
ing Bayesian inverse:

q(yt, yt−1|xt) =
q(yt, yt−1, xt)∫

q(yt, yt−1, xt)dytdyt−1

. (60)

The choice (b) is equivalent to the choice (a) when the
above q(yt, yt−1|xt) is Gaussian, In general, the choice
(b) provides an approximation to the choice (a).

Particularly, when q(yt|θy) = G(yt|Byt−1,Λ) and
q(xt|yt, θx|y) = G(xt|Ayt,Σ), we are lead to tempo-
ral factor analysis (TFA) [17,73(Sect. 5),83,84] that is
an extension of factor analysis (FA) in Fig. 8 with
q(yt|θy) = G(yt|ν,Λ). Alternatively, it may also be re-
garded as a state space model widely studied in the lit-
erature of control theory and signal processing [5].

5.2 Bottom-up decoupling versus temporal decoupling

A further insight can be obtained via a discussion on a
bottom-up hierarchical decoupling nature of BYY best
matching and a temporal decoupling nature of BYY best
harmony. We start from the following example of BYY
best matching

KL (p||q)
=

∑
t

∑
i,�,j

∫
p (j|�, i, xt) p (�|i, xt) p (i|xt)

×p (xt) ln
p (j|�, i, xt) p (�|i, xt) p (i|xt) p (xt)

q
(
xt|θj|� i

)
αj|� iα�|iαi

dxt,

with respect to p(j|l, i, xt)p(l|i, xt)p(i|xt), first we mini-
mize KL(p||q) respect to p(j|l, i, xt), resulting in

KL (p||q) =
∑

t

∑
i,�

∫
p (�|i, xt) p (i|xt) p (xt)

×ln
p (�|i, xt) p (i|xt) p (xt)

q
(
xt|θ�|i

)
α�|iαi

dxt,

which is further minimized with respect to p(l|i, xt), re-
sulting in

KL (p||q) =
∑

t

∑
i

∫
p (i|xt) p (xt) ln

p (i|xt) p (xt)
q (xt|θi)αi

dxt.

Its minimization with respect to p(i|xt) further leads to
KL(p||q) =

∑
t

∫
p(xt) ln[p(xt)/q(xt|θ)]dxt.

In other words, the BYY best matching of a three
layer will reduce the problem to the BYY best matching
of a two layer problem as if we are dealing with each
component q(x|θl|i) without involving the third layer.
Also, we get a similar scenario from the second layer to
the first layer, and then to the top layer. That is, we get
a bottom-up decoupling nature for KL(p||q) based BYY
best matching. This nature makes KL(p||q) within one
layer become insensitive to the number of components
from the lower layers. So, it is poor on determining the
number of branches of each node, and thus a tree con-
figuration.

We encounter a similar bottom-up hierarchical decou-
pling nature when we consider the minimization of

KL (p‖ q) =
∫
p (R|X) p (X) ln

p (R|X) p (X)
q (X |R) q (R)

dRdX,

featured by the hierarchy of inner representation R =
{{(Y, L),Θ},k}, i.e., we consider the minimization of

Fig. 13 Temporal factor analysis by temporal BYY harmony learning
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KL(p||q)
=

∫
p(k|X)p(Θ|X,k)p(Y, L|Θ,k, X)p(X)

× ln
p(k|X)p(Θ|X,k)p(Y, L|Θ,k, X)p(X)

q(X |R)q(Y, L|Θ,k)q(Θ,k)q(k)
dRdX,

with respect to p(k|X)p (Θ|X,k) p (Y, L|Θ,k, X). We
first minimize KL(p||q) respect to p(Y, L|Θ,k, X), which
leads to

KL (p||q) =
∑

k

∫
p (k|X) p (Θ|X,k) p (X)

× ln
p (k|X) p (Θ|X,k) p (X)
q (X |Θ,k) q (Θ|k) q (k)

dΘdX,

p(Y, L|Θ,k, X) =
q (X |R) q (Y, L|Θ,k)

q (X |Θ,k)
,

q (X |Θ,k) =
∑
L

∫
q (X |R) q (Y, L|Θ,k)dY,

(61)

which is further minimized with respect to p (Θ|X,k),
resulting in

KL (p||q) =
∑

k

∫
p (k|X) p (X) ln

p (k|X) p (X)
q (X |k) q (k)

dX,

p (Θ|X,k) =
q (X |Θ,k) q (Θ|k)

q (X |k)
,

q (X |k) =
∫
q (X |Θ,k) q (Θ|k) dΘ.

(62)

Its minimization with respect to p (k|X) further leads
to KL(p||q) =

∫
p (X) ln[p (X) /q (X)]dX with q (X) =∑

k q (X |k) q (k).
In other words, the BYY best matching can solve

three levels of inverse problems one by one from the
bottom upwards, such that the second inverse problem
is decoupled from the first one that is summarized into
q (X |Θ,k) by Eq. (61), a typical example is given in Fig.
5(a), and then the third inverse problem is decoupled
from the second one that is summarized into q (X |k) by
in Eq. (62), a typical example is given in Fig. 4(d). This
bottom-up decoupling nature makes the tasks of han-
dling latent variables, parameter learning, and model se-
lection decoupled to be conducted sequentially step by
step. Though this nature makes implementation easy
and thus regarded as being favorable traditionally, it
makes the role of q (Y, L|Θ,k) not considered in the task
of model selection while model selection is made only via
appropriate priori q (Θ|k) q (k), as previously discussed
about Fig. 5.

We have a very different scenario for the BYY best
harmony. There is no such a bottom-up decoupling na-
ture for H(p||q). From the relation H(p||q) = H(p||p)−
KL(p||q) by Eq. (24), it follows that

H(p||q) =
∑

t

∑
i,�,j

∫
p (j|�, i, xt) p (�|i, xt) p (i|xt) p (xt) ln

[
q
(
xt

∣∣θj|� i

)
αj|� iα�|iαi

]
dxt

=
∑

t

∑
i,�,j

∫
p (j|�, i, xt) p (�|i, xt) p (i|xt) p (xt) ln p (j|�, i, xt)dxt

+
∑

t

∑
i,�

∫
p (�|i, xt) p (i|xt) p (xt) ln

[
q
(
x

∣∣θ�|i
)
α�|iαi

]
dxt;

H(p||q) =
∫
p (k|X) p (Θ|X,k) p (Y, L|Θ,k, X) p (X) ln p (Y, L|Θ,k, X) dRdX

+
∑

k

∫
p (k|X) p (Θ|X,k) p (X) ln[q (X |Θ,k) q (Θ|k) q (k)]dΘdX.

We observe that a best Ying-Yang harmony of a three
layer system consists of not only a best Ying-Yang har-
mony of a two layer system, but also the above first term
that relates to minimizing the complexity of the third
layer. We get a similar scenario from the second layer
to the first layer, and then to the top layer. Hence, the
BYY best harmony learning makes an automatic model
selection on determining the number of components of
each layer, and finally a tree configuration. Similarly,
we observe that a best Ying-Yang harmony of the en-
tire BYY system is not just making a best Ying-Yang
harmony of the two upper levels via q (X |Θ,k), but also

including a term that relates to minimizing the complex-
ity of the bottom level via p (Y, L|Θ,k, X).

Interestingly, the BYY best harmony also has a tem-
poral decoupling nature that a BYY best harmony im-
plementation of Eq. (37) with a first order Marko-
vian temporal dependence can be decoupled into a
summation of terms, with each term only involving
a temporal dependence from t − 1 to t. This na-
ture comes from the temporal decoupling nature of
ln[q(X |Y, L,ΘX|YL)q(Y, L|ΘYL)], which is not difficult
to be extended into a finite order Markovian depen-
dence among {yt, �t}. However, this nature is not
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applicable to KL(p‖q,Θ), that is, the BYY best match-
ing counterpart of H (p||q,Θ,k) in Eq. (34), because
ln[p(Y |X,L,ΘL)p(L|X,ΘL)] does not have the same
temporal decoupling nature.

5.3 Learning hidden Markov models (HMMs) and
discriminative learning for HMM mixture

As illustrated at the center of Fig. 14(b), an HMM
model considers a hierarchy of three levels, i.e., remov-
ing the top level in Fig. 12(b). The temporal depen-
dence is considered on the third level with a sequence
L = {lt} described by a joint distribution q(L) =
q (�0)

∏
t�1

q (�t|�t−1, Q) with a first order Markov nature,

featured by a transfer probability matrix Q = [qi|j ] with
qi|j = q (�t = i|�t−1 = j,Q). At each time t, a discrete
random number lt takes a fixed number of values, called
states, while the observed sample xt depends on the state
that lt takes. Given that lt = l takes a particular state,
xt becomes irrelevant to lt−1. Specifically, it takes an
emission probability αj|l that the state l emits an out-
put package q(xt|θj|l). Jointly, an observed sample xt is
emitted from the state l in a finite mixture as follows:

q (xt|θ�) =
∑

j

q
(
xt

∣∣θj|�
)
αj|�,

and usually we have θj|l = θj without depending on
the state l. The simplest case is q(xt|θj|l) = δ(xt − aj)
with aj denoting a label or color. In this case, the corre-
sponding model is a classic HMM model. Widely applied
to acoustic models in speech processing [105], one typi-
cal extension is Gaussian mixture based HMM by which
q(xt|θj|l) is a Gaussian and thus each state l is associ-
ated with a Gaussian mixture [104]. Alternatively, this
case can be regarded as an extension of adding a level
L = {lt} on the top of the tree in Fig. 7(a). Recently,
factor analysis have also been made on each local Gaus-
sian with a structured covariance matrix [106]. This case
can be regarded as an extension of adding another level
L = {lt} on the top of local FA in Fig. 9(b).

Precisely, a first order HMM model is featured
by a Ying machine that describes the distribution

q (XN |θ) =
∑
L,J

q (XN , J |L) q(L) and q (XN , J |L) =∏
t�1

q
(
xt

∣∣θjt|�t

)
αjt|�t

. Putting it into Eq. (37) and

noticing that y is simply j and correspondingly
that q(yt|yt−1, �t, θy,�t) = q (jt|�t) = αjt|lt and
q(xt|yt, �t, θx|y,�t

) = q(xt|θjt|lt), we get a special case of
Eq. (37) as follows:

H (p||q, θ,k) = H (θ |XN ) =
∑

t

Ht(θ),

Ht(θ) =
∑

�t,�t−1

p (�t, �t−1|θ)Ht (θ�t |�t, �t−1 ),

Ht (θ�t |�t, �t−1 ) = Ht (θ�t) + ln
[
q�t|�t−1q

(
q�t|�t−1

)]
,

Ht (θ�t) =
∑

j

p (j |�t, xt )Ht

(
θj|�t

)
+lnα�t +ln q (α�t) .

(63)

Considering the variety preservation principle and apex
approximation by Eq. (38), the Yang machine is de-
signed via designing the following two components:

1) p(jt|lt, xt) = χκ|l,t(jt)q(jt|lt, xt) is designed from
the Bayesian inverse of q(jt|lt, xt), as given in the bot-
tom layer in Fig. 14(a). We have χκ|l,t(jt) = 1 for ones in
the apex zone, otherwise χκ|l,t(jt,) = 0. In other word,
p(jt|lt, xt) is same as q(jt|lt, xt) in the apex zone.

2) p(�t, �t−1|θ) = p(lt, lt−1|XN) is designed from the
Bayesian inverse of q(lt, lt−1|XN ). At time t, it means
that the probability of occurring lt is considered also
in help of future sample xt from t to N . This is pos-
sible when the entire set is available and considered,
i.e., learning in batch. For the case that has only
a set X0t of samples up to present, we may consider
p(lt, lt−1|θ) from the Bayesian inverse of q(lt, lt−1|X0t).
Both q(lt, lt−1|XN ) and q(lt, lt−1|X0t) are computation-
ally quite involved and usually handled by the well
known Baum-Welch algorithm [104]. If we further be-
lieve that the information of xt from 0 to t − 1 is al-
ready contained in lt−1, one simplified design considers
p(lt, lt−1|θ) from the Bayesian inverse of q(lt, lt−1|xt,).
In a summary, the Yang machine is designed from
q(lt, lt−1|θ) of the Ying machine that has the following
three typical choices:

q ( �t, �t−1| θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q (�t, �t−1|XN) =
q (�t, �t−1, XN)∑

�t,�t−1

q (�t, �t−1, XN )
, (a) entire set,

q (�t, �t−1|X0t) =
q (�t, �t−1, X0t)∑

�t,�t−1

q(�t, �t−1, X0t)
, (b) up to now,

q (�t, �t−1|xt) =
q (xt |θ�t ) q (�t |�t−1 ) q (�t−1)∑

�t,�t−1

q (xt |θ�t ) q (�t |�t−1 ) q (�t−1)
, (c) on sample.

(64)



314 Front. Electr. Electron. Eng. China 2010, 5(3): 281–328

Fig. 14 A unified Ying-Yang alternation procedure for three typical types of HMM models. (a) Hierarchical harmony
flows; (b) main program

The choice (c) may be alternatively obtained from Eq.
(58) by noticing that y is simply j and correspond-
ingly that q(yt|yt−1, �t, θy,�t) = q (jt|�t) = αjt|lt and
q(xt|yt, �t, θx|y,�t

) = q(xt|θjt|lt). We are again lead
to Eq. (64) but only with p(lt, lt−1|θ) in the form of
p(lt, lt−1|xt,). Here, we have two different perspectives
of interpretation. The one bases on Eq. (37) that comes
from Eq. (34) with the integral over X approximately
removed first, while the second bases on Eq. (58) that
comes from Eq. (34) with the Markovian temporal de-
pendence considered first.

Further considering apex approximation by Eq. (38),
on the top layer in Fig. 14(a) we get p(lt, lt−1|θ) from
q(lt, lt−1|θ) in one of three choices in Eq. (64), with the
apex zone consisting of κ best candidates for transfer-
ring lt−1 → lt. The maximization of H(p||q,Θ, k) is im-
plemented by the algorithm given in Fig. 14(b), which
comes from getting

∇ϕHt(θ)

=
∑

�t,�t−1

[
p (�t, �t−1|θ)∇φHt (θ�t | �t, �t−1)

+Ht (θ�t | �t, �t−1)χκ,t (�t, �t−1)∇φq (�t, �t−1| θ)
]
.

When q(lt, lt−1|θ) in the first two choices of Eq. (64),
it is quite involved and costly to compute its gradient.
For simplicity, we get ∇ϕq(lt, lt−1|θ) via q(lt, lt−1|θ) in
choice (c), while p(lt, lt−1|θ) can be any one of the three
cases. For a better understanding on Box- 2© and Box- 3©
in Fig. 14(b), one may observe that the counter part of
Eq. (39) becomes∑

�t,�t−1

Ht (θ�t | �t, �t−1)χκ,t (�t, �t−1)∇ϕq (�t, �t−1| θ)

=
∑

�t,�t−1

Δ�t,�t−1∇ϕπ�t,�t−1

(
θ�t , q�t|�t−1

)
,

where

∇ϕπ�t,�t−1

(
θ�t , q�t|�t−1

)
= ∇ϕ ln q (x |θ� ) +∇ϕ ln q�t|�t−1 +∇ϕ ln q�t−1 ,

∇ϕ ln q (x|θ�) =
∑

j

p (j |�, xt )∇ϕπt

(
θj|�

)
,

∇ϕπt

(
θj|�

)
= ∇ϕ lnαj|� +∇ϕ ln q

(
x

∣∣θj|�
)
.

Similar to the ones in Eq. (55) for the bottom layer
in Fig. 12, the equation of ∇ϕπ�t,�t−1 corresponds to
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the bottom layer in Fig. 14(b). Specifically, the Box- 1©
p & Δ gets the Bayesian posterior p(j|l, xt) and Δj|l,t,
which are combined with pl,t and p(lt|θ) from the upper
layer to call the Box- 6© for updating αj|l and the Box- 7©
for updating q(xt|θj|l).

Being different from Fig. 12, the first line in Eq. (65)
includes temporal dependence between lt, lt−1, for which
each term in the summation for Ht(θ) needs considering
lt, lt−1 jointly, as given on the top of Fig. 14(a). Specif-
ically, the Box- 2© implements Eq. (64), and the Box-
3© gets pδ(lt, lt−1|θ). Moreover, the Box- 4© computes a
correcting term Δqδ

ij used in the Box- 5© for updating Q,
which comes from approximately considering ∇ϕ ln q�t−1

by∇ϕ ln qj , see Appendix C 4)e). For simplicity, we may
also choose to ignore it simply by letting Δqδ

ij = 0. Fol-
lowing the Box- 5©, we get pl,t and p(lt|θ) and send them
downward to the Box- 6© for updating αj|l and the Box-
7© for updating q(xt|θj|l).

Again, setting Δjli,t=0 and Δltlt−1=0, the Ying-Yang
iteration by Fig. 14(b) actually becomes equivalent to
perform the Baum-Welch algorithm and the EM al-
gorithm for the maximum likelihood learning on the
HMM model. With the correcting terms Δjli,t 	= 0
and Δltlt−1 	= 0, the Ying-Yang iteration implements
the BYY harmony learning, during which the number
of states and the number of components in the bottom
layer is determined by automatic model selection. That
is, those extra ones are discarded if the corresponding
qi→ 0 and αi|l→ 0, respectively.

In the degenerated case that l takes one value only,
i.e., there is only one state, the Box- 2©, the Box- 3©, the
Box- 4© and the Box- 5© are all degenerated to be no ef-
fect with pl,t = 1 and p(lt|θ) = 1, while the Box- 1©,
the Box- 6©, and the Box- 7© jointly become equivalent
to the algorithms in Fig. 7(b) and Fig. 9(b). Moreover,
the Box- 7© can be extended to cover those extensions of

FA discussed in Sect. 3.2.
Learning HMM model in Fig. 14 can be further ex-

tended to a mixture of multiple HMM models as shown
in Fig. 15(a). This is equivalent to adding one top node
on the Fig. 14(a), which consists of a number of descen-
dants. Each descendant is one HMM model q(XN |θ(i))
as shown in the center of Fig. 14(b) for describing XN ,
with the superscript (i) added to its parameter set θ for
a notation purpose, i.e., we get θ(i). Correspondingly,
we are lead to a three layer hierarchical tree that can be
regarded as an extension of the hierarchical tree shown
in the center of Fig. 12(b), with the ith node of the
middle layer extended to covering temporal dependence
q(lt|lt−1). Similar to the top layer in Fig. 12(a), the har-
mony flow H(θ|XN ) about the added top layer is given
on the top of Fig. 15(a). The counterpart of updating
equations for the top layer in Fig. 12(b) is given in the
upper layer of Fig. 15(b). One difference is that adaptive
updating equation is provided for updating αi, since the
batch way needs to be made over a number of different
sample sets instead of just one set XN . It is very time
consuming and also practically not available. Adaptive
updating avoids this problem, it modifies αi each time
as pδ(i|XN) is updated by a small step size γ > 0.

Setting Δi|X = 0, Δjli,t = 0 and Δltlt−1 = 0, the
Ying-Yang iteration by Fig. 15(b) becomes equivalent
to perform the Baum-Welch algorithm for the maxi-
mum likelihood learning. With Δi|X 	= 0, Δjli,t 	= 0
and Δltlt−1 	= 0, the Ying-Yang iteration implements
the BYY harmony learning, during which not only those
extra states and extra components in the bottom layer
are discarded as the corresponding qi → 0 and αi|l → 0,
respectively, but also an extra HMM model is discarded
if the corresponding αi → 0. Moreover, it follows Eq.
(A.2) (see Appendix A) that maximizing H(θ|XN ) is
equivalent to maximizing

Fig. 15 Discriminative learning of multiple HMM models



316 Front. Electr. Electron. Eng. China 2010, 5(3): 281–328

∑
i

p (i|XN) ln p (i|XN) + ln q (XN |θN )

that consists of the second term for maximizing likeli-
hood on this mixture of multiple HMM models and the
first term for making these HMM models become more
discriminative. In other words, the Ying-Yang iteration
by Fig. 15(b) actually provides a discriminative learning
for multiple HMM models, which is an alternative solu-
tion for discriminative learning on HMM based acoustic
models in speech processing [107,108].

6 Summarizing remarks and further topics

An intelligent system is featured with two types of in-
telligent abilities, namely, Type I from inside to out-
side or top down for its knowledge about the world and
Type II from outside to inside or bottom up for solving
problem and adapting the system itself. To be specific,
Type II deals with three levels of nested inverse prob-
lems, consisting of XN → Y, L for perception, encoding,
and solving problem, XN → Θ for parameter learning,
and XN → k for model selection, which are summarized
as a mapping X → R with R = {Y, L,Θ,k}; while Type
I deals with R → X . In a probability theory frame-
work, two mappings are described in a joint distribu-
tion of X,R in two types of Bayesian decompositions
q(X |R)q(R) and p(R|X)p(X), which can be understood
from a perspective of ancient Chinese Ying-Yang phi-
losophy. We have p(X,R) = p(R|X)p(X) as Yang ma-
chine, and q(X,R) = q(X |R)q(R) as Ying machine, and
call this pair the BYY system.

To build up a BYY system, we first design its ar-
chitecture under a guideline that Ying machine accom-
modates inner representations and generates reconstruc-
tions to fit observed data via structures with least redun-
dancy, while the Yang is designed according to the prin-
ciple of variety preservation for a Ying-Yang balance,
in a compliment to Proposition 2 in Appendix B. First,
q(R) is considered according to the representation form
of R = {Y, L,Θ,k} in three layers as shown in Fig. 6(b).
Specifically, Y, L depend on the natures of tasks (e.g.,
clustering, encoding, feature extraction, etc.). Also, a
temporal and hierarchical dependence among observa-
tions is accommodated via a corresponding structure in
Y, L, e.g., as shown in Figs. 12–14. Both Θ and k de-
pend on the parametric structures used in the system,
based on pre-knowledge about data clouds XN . Next,
q(X |R) is designed for an appropriate mapping from R

to fit XN , in a structure that consists of a set of individ-
ual simple structures in a simple combination. Finally,
the Yang machine is designed with input data XN as
p(X), and p(R|X) in a structure that preserves the dy-
namism or variety of R by the Ying machine to maintain

a balanced information flow from Yang to Ying.
A BYY system operates in term of a circling flow

XN → R with (Y, L → Θ → k) → XN featured by
three nested levels of five action circling, namely, ac-
quisition → assumption → accumulation and amalga-
mation → apex-seeking → affirmation, which was pre-
viously proposed under the name of A5 paradigm [77].
Interestingly, it coincides with the famous ancient Chi-
nese WuXing theory [53]. Also, improving HT by RHT
and making maxΘ F (Θ) by gradient based line search
are even interesting examples of changing A-2 to im-
prove a bottleneck of A-4, which well coincides with the
Ke-Cheng-Hui law.

Generally, the WuXing theory provides a general guide
to keep the A5 circling within an intelligent system well
balanced, in a sense that each action should be neither
too weak to sustain the system nor too loaded to jam
the circling. Specifically, we consider to pick samples
adaptively versus in a batch by A-1, to make apex ap-
proximation by A-2, to conduct an effective searching or
evidence integrating (e.g., primal gradient flow) by A-3,
to well detect a peak or a convergence by A-4, and to
get a reliable verification by A-5.

All together, learning all the unknowns in a BYY
system and implementing all the levels of A5 circling
are governed under the principle of Ying-Yang best har-
mony. This principle is mathematically implemented by
maximizing a harmony functional H(p||q) that tends to
p = q with q in a most compact form, which is different
from the minimization of the well known KL divergence
KL(p||q) that only ensures the tendency towards p = q.
This BYY harmony learning provides a new road that
leads to improved model selection criteria, Ying-Yang
alternating algorithms with automatic model selection,
and a coordinated implementation of Ying based model
selection and Yang based data smoothing regularization.

Maximizing H(p||q) versus minimizing KL(p||q) are
different but closely related, which can be understood
from an number of perspectives. Both maximizing
H(p||q) and minimizing KL(p||q) can be represented as
special cases of Radon-Nikodym theorem based harmony
functional by Eq. (21). Moreover, as shown in Fig. A2
and further discussed in Appendix B, a BYY system
with a Ying-Yang best matching by minimizing KL(p||q)
provides a unified framework for typical existing learning
methods, including not only the best-inner-encoding in-
tended stream of minimum mutual information or max-
imum information transfer studies, but also the best-
data-matching intended stream of maximum likelihood
and marginal likelihood based studies (e.g., ML, AIC,
BIC, MDL, etc.), as well as their further progresses in
help of variational approximation methods. Also, an ap-
proximate implementation of the second stream leads to
the maximum a posteriori (MAP) based Bayes learn-
ing and MML. In addition, all these studies can be
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extended in help with a data smoothing regularization.
On the other hand, a BYY system with a Ying-Yang best
harmony by maximizing H(p||q) provides a framework
of new approaches with a favorable new mechanism for
model selection. Also, it shares some common special
cases with the ones of Ying-Yang best matching, e.g.,
maximum marginal likelihood based studies (e.g., AIC,
BIC, MDL, etc.), the MAP based Bayes learning and
MML, etc.

Learning for the unknowns in the Yang machine and
Ying machine can be decoupled by alternatively updat-
ing one with the other fixed, which provides a Ying-Yang
alternation procedure that summarizes not only algo-
rithms for implementing BYY harmony learning but also
the EM algorithm for the maximum likelihood learning,
as well as RPCL learning and MAP based competitive
learning in a unified procedure with most parts in a same
expression while options elected in a few setting choices.

On one hand, we believe that the Chinese ancient
Yin-Yang and WuXing Meta theories provide guidelines
for modern information theoretic studies. On the other
hand, we regard that Bayesian Ying-Yang learning pro-
posed in Sect. 4, especially the Radon-Nikodym theorem
based harmony functional by Eq. (21) as a mathemati-
cal formulation of the ancient Yin-Yang philosophy from
an information theoretic perspective. Moreover, it fol-
lows from Hμ(P ||P ) by Eq. (22) that information may
also have a more general interpretation. Given a σ-finite
measure P that describes how a resource distributes over
the space (X,Σ) relatively with respect to the Lebesgue
measure μ, dP/dμ represents the density of P measure
on a piece dμ,Hμ(P ||P ) describes the concentration or
compactness of this distribution. Thus, information is
the negation of the compactness of this distribution con-
figuration.

The last but not least, for future directions of studies,
we list ten further topics as follows:

1) Extensive studies have been made on the KL diver-
gence KL(p||q) from the perspective of geometry [109]
and then differential geometry with its metrics defined
by Fisher information matrix [22]. H(p||q) can be re-
garded as an evolution from the concepts about intersec-
tion and inner product but actually not an inner prod-
uct because symmetrical nature disappeared. As argued
in Ref. [49], it still can be regarded as a geometry con-
cept about projection from one manifold to the other. It
would be interested to study the natures of differential
flow of this projection as discussed in Fig. 10, especially
on how two manifolds shrink towards appropriate vol-
umes such that automatic model selection emerges. It
would be also interested to develop a new convergence
analyzing tool for a quite unique feature. As illustrated
in Fig. 5(b), the manifold shrinking will make H(p||q)
tend infinity. However, this diverging should not be re-
garded as a bad thing but as indicators that some related

dimensions should be discarded.
2) For the family of harmony functional by Eq. (21),

only the one with f(r) = ln r has the favorable separable
nature. Explorations can be made on further justifica-
tions and also on comparison with the harmony func-
tional by Eq. (A.1) (see Appendix A).

3) As discussed in Sect. 4.2, a Yang machine is de-
signed under a variety preservation principle by Eq. (27),
with a scale parameter ρ � 0. One extreme ρ = 0 leads
to p(R|X) = δ(R−R∗), while the other extreme with a
large enough ρ leads to p(R|X) = q(R|X) for every R.
There is a spectrum of choices between the two extremes.
Further explorations can be made on this spectrum and
also on what is an appropriate ρ.

4) As discussed in Sect. 2.2 and Fig. 5(a), the max-
imum likelihood learning has an invariant nature with
respect to extra number of hidden factors and their pa-
rameterization due to marginalization. This nature is a
special case of a bottom-up hierarchical decoupling na-
ture owned by KL(p||q) based BYY best matching as
discussed in Sect. 5.2, but not shared by the BYY har-
mony functional. Instead, the latter is sensitive to extra
number of hidden factors, which is favorable to model
selection. It deserves to reexamine those models with
different parameterizations that are usually regarded as
equivalent from a maximum likelihood sense. E.g., a
study has found the conventional parameterization for
factor analysis [82], though widely adopted in the liter-
ature, is inferior to the parameterization in Fig. 1(c).

5) The approximation of H(p||q,k,Ξ) in Fig. 5(b) is
made in help of a peak convex analysis by Eq. (35)
around Θ∗ that is obtained with q(Θa) included. Also,
we get dk(Θ|Ξ) in Eq. (36) with Ω(Θ∗) around Θ∗. Al-
ternatively, a peak convex analysis by Eq. (35) may
also be made around the following Θm obtained with-
out q(Θa) included.

Θm = arg max
Θ

ln
[
q
(
X

∣∣Y, θX|Y
)
q (Y |θkY ,kY )

]
.

Further explorations can be made on whether two differ-
ent ways makes differences, and whether different par-
titions of Θ = Θa ∪ Θb makes differences, as well as on
what are favorable features of the induced bias cance-
lation priors by Eqs. (32) and (33) in comparison with
Jeffreys prior [97].

6) To implement automatic model selection by de-
tecting Eq. (4), further explorations can be made on
a statistical testing H0 : ρ(θl) = 0 and H1 : ρ(θl) 	= 0
via appropriate probability distributions, e.g., a Dirich-
let distribution for αl and a gamma distribution for λl.
Moreover, investigations are also needed on how the per-
formances are affected by local optimum problems.

7) In the cases that the inner representation con-
sists of Y = {y} of real vectors, we removed the inte-
gral over y in help of Eq. (35) and get Eq. (37) that
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includes a term Tr
[
ΓY |X

L ΠY |X
L

]
= Tr

[
I
]

+ Tr
[
ρ2ΠY |X

L

]
for ΓY |X

L = ΠY |X −1
L + ρ2. The term Tr[I] becomes an

integer for the dimension of y that however has no help
on automatic model selection via a gradient based up-
dating, e.g., in the algorithms in Figs. 8 and 9. Alterna-
tively, we may investigate whether the information about
this term can be better used by switching the order, i.e.,
making the operation ∇Θ first and then approximating
the integral over Y .

8) To tackle the problems of updating αl that should
be nonnegative and Σl that should be nonnegative defi-
nite, one way is making the constraints satisfied in help
of techniques introduced in Refs. [49,72,80] with extra
computing costs. Alternatively, in this paper they are
updated by the Ying step (e.g., in Figs. 7 and 8) in a
batch way similar to the EM algorithm without ensur-
ing the constraints. When Δi,t = 0, as discussed after
Eq. (7), it degenerates back to the EM algorithm that
guarantees the constraints. However, there lacks such a
guarantee when Δi,t 	= 0, which needs a further investi-
gated.

9) In help of the BYY system, semi-unsupervised
learning can be simply embedded into the Yang machine,
typically via the linear combination in Eq. (42) and Eq.
(43). Further studies may be conducted on which types
of a priori q(�) is appropriate to this purpose. Also, we
may consider other combining rules used for combining
classifiers and learning mixture-of-experts [102].

10) For temporal BYY harmony learning, the design
of Yang machine encounters the three choices in Eq. (64),
we have two different perspectives on the choices. One
prefers the choice (a) based on Eq. (37) that comes from
Eq. (34) with the integral overX approximately removed
first, while the second prefers the choice (c) based on
Eq. (58) that comes from Eq. (34) with the Markovian
temporal dependence considered first. A further com-
parative study may be explored. Also, a further study
may be made on how to select an appropriate apex ap-
proximation with the κ best candidates for lt−1 → lt.

Appendix A Harmony functional versus

Kullback-Leibler divergence

Shown in Fig. A1(a) are two streams of the evolutions
on the two related concepts:

1) The harmony functional H(p||q) by Eq. (24) can be
regarded as evolution from the concept of inner product
to a probability space. The inner product in the Hilbert
space has been widely used in the literature of statistics
and signal processing for measuring correlation and thus
also called correlation function, while the inner product
in an Euclidean space of normalized vectors has been
widely used as a measure of similarity. Moreover, the

inner product is involved from the intersection P ∩Q of
two sets P and Q for expressing the concept of common
or agreement. The concepts of maximizing harmony,
correlation, and similarity all join together to form one
evolution stream originated from the concept of seeking
common points or mutual agreement.

2) The Kullback-Leibler (KL) divergence KL(p||q) =
min and also KL(p||q)+KL(q||p) = min is involved from
the orthogonal nature and the least square error in the
Euclidean and Hilbert space, respectively, and further
from the least difference concepts about two sets. We
have KL(p||q)+KL(q||p) = 0 if and only if KL(p||q) = 0
and the square error is least if and only if x, y are or-
thogonal, while # PΔQ = 0 if both #(Q− P ) = 0 and
#(P −Q) = 0.

The first stream seeks maximizing agreements while
the second stream seeks minimizing disagreements.
Moreover, the second stream is actually defined from
the concept of the first stream with more restrictions.
In other words, the first stream can be regarded as more
fundamental than the second stream, which concurs with
the discussions made after Eq. (24). In a view of geom-
etry [49(Sect. III)], the first one seeks a maximum pro-
jection of the manifold q onto the manifold p, while the
second one minimizes the residual that can not be pro-
jected. As listed in Figs. A1(b) and A1(c), the original
concepts of two steams are equivalent in the set theory.
After evolutions they become different and lead us to
the following three scenarios:

1) The equivalence is kept under certain constraints.
In the Euclidean and Hilbert space, the equivalence
holds with the L2 norm ‖ · ‖2 = 1. While in the prob-
ability space, one scenario is that the optimization is
made over q with p fixed, the other scenario is shown in
Fig. A1(c), i.e., the optimization is made over q, p within
their permutation set Πq.

2) The first stream leads to a relaxed relation than
the one by the second stream. In the Euclidean and
Hilbert space, as shown in Fig. A1(b), minimizing the
squared residuals makes two become equal is relaxed to
that maximizing the inner product makes two become
equal up to a unknown scale.

3) The first stream leads to a more strict relation than
the one by the second stream. In the probability space,
minimizing KL(p||q) for p = q is strengthen into maxi-
mizing H(p||q) that makes not only p = q and but also
both towards a most compacted form, in other words, to-
wards a deterministic agreement as possible. Such a sit-
uation may also occur by introducing certain constrain
in the Euclidean and Hilbert space. As in the Box- 3©,
we have

H (p||q) = 〈p(x), ξQ(x)〉 =
∫
p(x)ξQ(x)dx,

subject to p(x) � 0,
∫
p(x)dx = 1, and
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Fig. A1 Evolutions of harmony functional versus KL divergence. (a) Two streams of the evolutions; (b) maximization of
intersection, inner product, and harmony measure; (c) best harmony within their permutation set Πq; (d) least difference
and orthogonal property

∫
ξ2Q(x)dx � C, 1 < C <∞. (A.1)

Maximizing it with respect a free ξQ(x) leads to
ξQ(x) = Cp(x) and H(p||q) = C||p(x)||2. Therefore,
we can get q(x) = ξQ(x)/

∫
ξQ(x)dx = p(x), and a fur-

ther maximization of C||p(x)||2 pushes p(x) into a most
compacted form.

Applied to the BYY system by Eq. (1), it follows from
Eqs. (21)–(24) that H(p||q) and KL(p||q) are two typ-
ical cases of Hμ(P ||Q) by Eq. (21), namely BYY best
harmony by Eq. (2) versus BYY best matching by Eq.
(24), respectively. In sequel, we further discuss their re-
lations to existing typical approaches, summarized on
the roadmap shown in Fig. A2.

We start at the BYY best matching by Eq. (24) that
is rewritten as follows:

KL (p||q) = H (p (X)‖ p (X))

+
∫
p (X)KL (p (R|X)‖ q (X |R) q (R)) dX.

(A.2)

For p(X) = p(X |XN , h) by Eq. (6) at h = 0, we have
KL(p||q) tends ∞ due to H(p(X)||p(X)) = −dX ln ε
with ε > 0→ 0, where dX is the dimension of the input
data. However, this part dX ln ε is irrelevant to what
to be learned, and thus its effect can be removed by
merely considering KL(p(R|XN )||q(XN |R)q(R)), from
which we are lead to two situations as follows:
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Fig. A2 BYY best harmony versus BYY best matching: A roadmap to other approaches

1) Its minimization with respect to a free structure
p(R|X), equivalently the case of D∗

ρ=0(X) in Eq. (27),
leads to p(R|XN ) = q(XN |R)q(R)/q(XN ) and the maxi-
mization of q(XN ) =

∫
q(XN |R)q(R)dR, from which we

are lead to the canonical stream of Bayesian inference
based studies, as indicated by the path of Box- 1© →
Box- 2© → Box- 3© on Fig. A2. Also, it relates to Akaike
information criterion (AIC) and extensions [57–59].

2) Its minimization with respect to a parametric struc-
ture p(R|X) provides a general formulae that becomes
equivalent to the Helmholtz free energy or variational
function, as indicated by the path of Box- 8© → Box- 9©
on Fig. A2.

For p(X) = p(X |XN , h) by Eq. (6) at h 	= 0, we have
H(p(X)||p(X)) 	=∞. Along both the above paths, min-
imizing KL(p||q) by Eq. (24) leads to further extensions
in help of data smoothing regularization by Eq. (32).
Details are referred to Sects. 3.3 and 4.1 in Ref. [2] and
the last section in Ref. [3]. Also, minimizing KL(p||q)
with respect to a free structure q(X |R) leads to

q (X |R) =
p (R|X) p (X)

p (R)
and min KL (p(R) ‖q(R) ) ,

q (R) =
∫
p (R|X) p (X)dX, (A.3)

as indicated by the path of Box- 5©→ Box- 6© on Fig. A2.
Putting p(X) = p(X |XN , h) by Eq. (6) at h = 0 into the
above integral for q(R), we are lead to the MMI [15], the
INFOR-MAX [16], and their applications to ICA [17,18],
as discussed in the beginning of Sect. 1.2.

On the other hand, it follows from the discussions
around Eq. (26) at the end of Sect. 4.1 that the BYY
best harmony via maximizing H(p||q) by Eq. (2) with
respect to a free structure p(R|X) leads to

R∗ = arg maxR [q (X |R) q (R)] ,

(A.4)
H (p||q) =

∫
p (X) ln [q (X |R∗ ) q (R∗)]dX,

which further leads to those maximum Bayesian poste-
riori based studies, as indicated by the path of Box- 1©
→ Box- 4© on Fig. A2. It also leads to Box- 4©→ Box- 3©
to share some common parts with BYY best matching.

Moreover, in another special case q(X |Y, θ) = q(X |θ),
the BYY best harmony by Eq. (2) degenerates into two
separated paths. One is the path of Box- 7© → Box- 2©
→ Box- 3© again, while the other is the path of Box- 7©
→ Box-11© for minimizing a counterpart of INFOR-MAX,
namely the minimum information transfer (INFO-MIN),
which includes those studies under the name of minor
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component or subspace analysis (MCA and MSA)
[110,111], and extensions to minor ICA (M-ICA) [17].
Readers are referred to a recent review [18].

Even importantly, maximizingH(p||q) by Eq. (2) with
a parametric structure p(R|X), i.e., the case indicated
by the Box-10© on Fig. A2, leads to a framework with a
new mechanism for model selection, as previously dis-
cussed in Sect. 4.1.

Appendix B A modern perspective on Yin-

Yang and WuXing

The Chinese ancient Yin-Yang (or preferably Ying-
Yang) and WuXing philosophy came from more than
3000 years ago [53,87–89] (also see references in Fig.
B1(b), including why the spelling “Ying” is preferred
over “Yin”). Being very different from western sciences,
evolutions of this famous ancient theory are featured
by a large volume of documents and interpretations by
various peoples, with a diversified coverage. Even so,
there are a number of gradually converged viewpoints
by serious Chinese scholars from generations to gener-
ations, though often buried among various superficial
statements, applications, and variations. From a mod-
ern science perspective and based on the present author’s
understanding, this paper concentrates on regarding it
as a Meta theory of system sciences, especially for infor-
mation processing, knowledge discovering, and decision
making in an intelligent system. As shown in Fig. B1,
this Meta theory is believed to consist of the following
three major ingredients.

1) Complementary composition of Ying-Yang system
A system that survives or interacts with its world is

able to be functionally divided into two different but
complement parts. One is called Yang that inputs from
its external world called Yang domain and transforms
what gathered via a Yang pathway into an inner do-
main; while the other is Ying that consists of this inner
domain called Ying domain and a Ying pathway. The
Ying domain accumulates, integrates, digests, and con-
denses whatever came from Yang, and the Ying path-
way selects among the Ying domain the best ones to
produce the reconstructions back to the Yang domain.
Taking the Bayesian Ying-Yang system at the center of
Fig. B1(a) as an example, the Yang consists of a Yang
domain P (X) and a Yang pathway P (R|X), while the
Ying consists of a Ying domain q(R) and a Ying pathway
P (X |R).

Instead of simply regarding Ying-Yang as two opposite
parts, which was frequently misunderstood by westerns,
the major natures of a Ying-Yang pair are described by
the following two propositions.

Proposition 1 Ying is primary, while Yang is sec-

ondary and comes from Ying. Yang should be vigor and
capable in adapting to not only variety of external world
but also the needs of Ying. In contrast, Ying should has
a capacity of accommodating and accumulating, and a
good ability of integrating and digesting whatever came
from Yang. Yang is featured by its dynamism and vital-
ity, while Ying is featured by its solid and compactness.
Readers are referred to Refs. [S1–S3] in Fig. B1(b) for
the sources of these viewpoints. Taking the Bayesian
Ying-Yang system at the center of Fig. B1(a) as an ex-
ample, its Yang uses P (X) to get external samples while
the part P (R|X) is built up based on the Ying for map-
ping the samples into candidate assumptions that are
further supplied to the Ying. On the other hand, the
Ying P (X |R)q(R) should have an enough capacity and
a compact expression.

Proposition 2 Ying and Yang are not exclusive
each other, though they were sometimes misunderstood
by ones from a logical perspective. Illustrated by the
well-known Yin-Yang sign at the center of Fig. B1(a),
either of the Ying domain and Yang domain has a com-
mon area (called fish eye) for interacting and transferring
between Ying-Yang. Also, a Ying-Yang system usually
consists of multiple layers of Ying-Yang subsystems with
one nested within the other. Moreover, the Ying-Yang
pair keeps dynamic changes to seek a best harmony (e.g.,
growing and falling, expanding and shrinking) in a cyclic
and balanced manner. Readers are referred to Ref. [S4]
in Fig. B1(b) about its Chinese meanings.

2) WuXing circling of system operation
A Ying-Yang system survives or operates in a Wu-

Xing circling, as descried by the famous ancient Chinese
WuXing theory [53]. Together with the Yin-Yang philos-
ophy, the WuXing theory lays the foundation of TCM,
by which WuXing is regarded as five states of the flow
about Qi, namely, an abstract concept that is not ob-
servable but believed to be hidden causes of various ob-
servable matters, phenomena, and events. Accordingly,
each of the five states is also an abstract concept named
by one ancient Chinese character with its meanings be-
ing most close to the nature that the state represents,
as shown in Fig. B1(a). Readers are referred to Ref. [S5]
in Fig. B1(b). Be different from a spelling language,
every Chinese character has a rich meaning, and each
of five characters evolves itself in Chinese language for
thousands of years, which acts as one source that may
incur for confusions to this classic theory. Interestingly,
in an intelligent system as we are studying in Fig. 6 and
re-illustrated in Fig. B1(a), the five actions of the prob-
lem solving paradigm A5 [77] functionally coincides well
with the classic five states as follows:

Mu → A-1 Acquisition: Instead of understanding
Mu simply as plant, we understand it as a process that
samples (e.g., plants and trees) of the world are observed,
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Fig. B1 A Meta theory of intelligent system and information processing. (a) Ying-Yang, WuXing, and BYY system; (b)
Chinese ancient references

which is functionally same as A-1 acquisition for getting
samples as inputs to the Ying-Yang system.

Huo → A-2 Assumption: Instead of understanding
Huo as fire, we understand it as a process that turns
samples into another form or expression, which is func-
tionally same as A-2 Assumption for making candidate
assumptions based on observed samples.

Tu→A-3 Accumulation and Amalgamation: In-
stead of understanding Tu as earth, we understand it as
a process of accumulation and amalgamation.

Jin→ A-4 Apex-seeking: Instead of understanding
Jin as metal, we understand it as a process of refining or
selecting among possible candidates, which is function-
ally same as searching optimum or decision making.

Shui → A-5 Affirmation: Instead of understand-
ing Shui as water, we understand it as a process that
watering makes seeds rebirth new generations, which is
functionally same as reconstruction from selected inner
causes to fit observations.

As a result, the counterpart of the WuXing circling be-
comes the A5 circling in an intelligent system as shown
in Fig. 6. One most practically useful part of the
WuXing theory in TCM is the following Sheng-Ke-
Cheng-Hui law for keeping five states well balanced, re-
ferred to Ref. [S6] in Fig. B1(b) for its Chinese concept.

Proposition 3 Sheng or XiangSheng specifies one
generating or promoting the other and thus specifies
the circling order, as shown in Fig. B1(a), while Ke or
XiangKe tells that one state jumps to restrict the one
after the next state, e.g., if Jin is too strong, we should
enhance Huo to let Jin to return back a balance. More-
over, a too strong Huo will make Jin deviated from its
balance towards to the other side, which is said over-
restricted or Cheng; while a too weak Huo is unable to

bring Jin back to its balance, which will reversely cause
Huo deviated from its balance (it may also be under-
stood from the path Jin → Mu → Huo alternatively).
This is said Hui. In other words, Ke-Cheng-Hui jointly
states that reversing an unbalance of one state should
be made from the one before the preceding state, in a
correct direction and with an appropriate strength.

Moreover, a Ying-Yang system usually consists of mul-
tiple layers of Ying-Yang subsystems with one nested
within the other, and the XiangSheng also applies across
layers as follows:

Proposition 4 The A5 circling in a Ying-Yang sys-
tem that consists of a series of smaller circles of Ying-
Yang pairs nested within its inner layers, e.g., featured
by three or more levels of A5 circling as described in Fig.
6. A completion of a smaller circle assists with one mov-
ing step in its upper circle, and a jamming in an upper
layer circling can be resolved by a series of lower layer
circling. Therefore, a well balanced circling means a well
balance within each layer and across layers.

3) Ying-Yang best harmony principle
By the WuXing theory in TCM, the circling flow is

regarded as the flow about Qi that confused many west-
erns and attracted many Chinese scholars to find it out
materially. In a BYY system, one manifestation of this
flow is a mixed flow from XN → R (or more specifically
Y, L → Θ → k) → XN featured by three nested lev-
els of five action circling, as shown in Fig. 6. Though
it is unclear how this flow relates to the flow of Qi, we
may have an alternative insight that suggests to figure
out what drives this flow. Referring to Refs. [S1,S7] in
Fig. B1(b), this flow and all the parts in a Ying-Yang
system are governed by the highest principle of seeking
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a Ying-Yang best harmony, called TaiHe. Though there
is no definition of a western science style on what is
best harmony, there were several descriptive interpreta-
tions, involving the concept of Qi and various dynamic
behaviors. Here, we merely focus on one simplified un-
derstanding that includes two natures. First, it means
a best dynamic agreement or match between Ying and
Yang. Second, it follows from the above Proposition 1
that Ying is in a most compact form in a sense that ei-
ther it uses a given capacity to accommodate as many
as possible or it uses a capacity as least complexity as
possible to accommodate what obtained from a given set
of external observations. In turn, a compact Ying makes
Yang in a compact form. Shortly, an alternative under-
standing is that Ying and Yang seeks a best agreement
in a most tacit manner with a least amount of informa-
tion transferred from data via Yang to Ying. Readers
are referred to Ref. [S8] in Fig. B1(b) about its Chinese
meanings.

Proposition 5 Ying-Yang seeks a best harmony in
a sense of a best dynamic agreement or match by a Ying-
Yang system in a most compact form with a least com-
plexity. For the Bayesian Ying-Yang system by Eq. (1),
i.e., the one at the center of Fig. B1(a), the best harmony
principle is mathematically implemented by maximizing
a harmony functional by Eq. (21) in general and by Eq.
(2) in particular.

The last but not the least, we may also get an
alternative interpretation about Qi in TCM. It fol-
lows from Ref. [S5] in Fig. B1(b) that Qi is not ob-
servable but believed to be causes of observable mat-
ters, phenomena, and events, for which we simply
denote them by f1, f2, . . ., fm. The Ying-Yang re-
sources are jointly distributed over the space (X,Σ)
of its system, described by a Yang σ-finite mea-
sure and Ying σ-finite measure, respectively. The
two resources interact on every small volume dμ to
seek a best harmony that maximizes Hμ(P ||Q) by
Eq. (21). The flow of Qi consists of the chang-
ing flows of dHμ/df1, dHμ/df2, . . ., dHμ/dfm, as well
as dP/df1, dP/df2, . . .,dP/dfm and dQ/df1, dQ/df2,
. . ., dQ/dfm that drive the Ying-Yang system towards
a best harmony. In other words, Qi could be a relative
concept between Hμ, P,Q and f1, f2, . . ., fm on how the
Ying-Yang resources dynamically change everywhere.

Appendix C Typical notations and symbols

1) Common mathematical terms

a) ||x||2 = xxT, xTy is an inner product, xyT is an outer

product. x ∼ y means x = cy for a scalar c, e.g.,

xnew − x ∼ y means xnew = x + cy.

b) Given a matrix A, |A| is its determinant, κ[A] is its

conditional number, and Tr[A] is its trace, i.e., the

sum of its diagonal elements.

c) vec[A] is a vector from the columns of a matrix A

stacked one by one. A � 0 means nonnegative defi-

nite, i.e., uTAu � 0 for any u.

d) either diag[λ1, λ2, . . . , λm] or diag[y] denotes a di-

agonal matrix with diagonal elements being either

λ1, λ2, . . . , λm or the elements of y.

e) For f(x), ∇xf(x) =
∂f(x)

∂x
, ∇xxTf(x) =

∂2f(x)

∂x∂xT
, and

arg maxxf(x) denotes x∗ at which f(x∗) is its maxi-

mum.

f) Ep(x)(x)=

Z
xp(x)dx,

Varp(x)(x)=
R `

x −Ep(x)(x)
´ `

x − Ep(x)(x)
´T

p(x)dx.

Kronecker delta δij =

(
1, if i = j,

0, otherwise.

Dirac delta δ(x)=

(
∞, if x = 0,

0, otherwise.

g) G(x|μ, Σ) denotes a Gaussian with a mean vector μ

and a covariance matrix Σ. B(y|v) =
Q

j(v
(j))y(j)

(1−
v(j))1−y(j)

is a multivariate Bernoulli.

h) f (u) is a quasi-linear vector function f (u) =

[f(u(1)), f(u(2)), . . . , f(u(m))]T for a scalar function

f(r), e.g., s(r) =
1

1 + e−r
.

2) Symbols for variables and parameters

a) x is an observation vector, xt is a sample of x at time

t, X = {x} is a set of one or a number of observation

vectors.

b) XN = {xt}N
t=1 denotes a set of N samples, or a set

of N sequential observation vectors whenever there is

no confusion.

c) y is a vector, either real or binary, as a part of in-

ner representation of x; � is a label, as a part of inner

representation of x.

d) Y = {y}, L = {�}, YN = {yt}N
t=1, LN = {�t}N

t=1 are

counterparts of X, XN . Simply Y L = {y, �}, Y LN =

{yt, �t}N
t=1, even Y for Y L, YN for Y LN .

e) k consists of one or a set of integers. kY is the dimen-

sion of the STM domain, and STM denotes the short

term memory domain Y L.

f) Θ denotes a set of all the unknown parameters, usu-

ally θ denotes a subset of Θ. Ξ denotes a set of un-

known hyper-parameters.

g) Sk denotes a structure resulted from k element struc-

tures in a simple combination. For different k, Sk

shares a same configuration S but in a different scale.

S denotes a type of configuration, featured by element

structures and the rule for combining them.

h) R denotes a set {Y, L, Θ, k, Ξ} or one of its subsets,

e.g., {Y, L, Θ, k}, {Y, Θ, k}, {Θ, k, Ξ}, {Θ, k}, etc.

3) Custom symbols in BYY systems
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YING machine
dQ(X, R)

dμ
= q(X, R) = q(X|R)q(R)

a) μ is a σ-finite measure that describes a volume or ca-

pacity (e.g., a Lebesgue measure) about the measure

space (X, Σ).

b) For q(X|R), we have q(x|y, θx|y), q(X|Y, θx|y), q(X|Y,

L, θX|Y L), etc.

c) For q(R) and Θ = Θa ∪ Θb, we have q(y|θy),

q(Y |L, ΘY |L), q(L), α� = q(�),
Q

L q(Θa
L),

Q
L q(Θb

L|Ξ),

q(h|XN ) ∝ 1/
PN

t=1 ph(xt), etc.

d) q(Θa
L) is a noninformative priori (usually improper),

q(Θb
L|Ξ) is a priori with hyper-parameter.

YANG machine
dP (X, R)

dμ
= p(X, R) = p(R|X)p(X)

For p(X) = p(X|XN , h) and p(R|X) = p(Θa|X)

p(Θb
˛̨
X, Ξ)p(Y |X, L)p(L|X), we consider

a) p(Y |X, L) via μL(X) = Ep(Y |X,L)Y and Γ
Y |X
L =

Varp(Y |X,L)[vec(Y )]. Typically, we have μL(X) =

μL(X, WL) in a parametric structure and Γ
Y |X
L =

ΠY |X −1 + ρI, ρ � 0, Π
Y |X
L = − ∂2πL(X, Y, Θ)

∂vec[Y ]∂vec[Y ]T
,

πL(X, Y,Θ) = ln
ˆ
q(X|Y, L,ΘX|Y L)q(Y, L |ΘY L )

˜
, in-

cluding the detailed form πt(θ�), etc.

Y ∗
L = arg max

Y
πL(X, Y, Θ).

b) q(L|X) =
q(X|L, ΘL)q(L)X

L∈Cκ(XN )

q(X|L,ΘL)q(L)
,

q(X|L,ΘL) =

Z
q(X|Y, L,ΘX|Y L)q(Y, L|ΘY L)dY

= q(X|Y ∗
L , L,ΘX|Y L)q(Y ∗

L , L|ΘY L)
(2π)dY /2˛̨̨
Π

Y |X
L

˛̨̨1/2
.

p(L|X) = χκ(L)q(L|X),

χκ(L) =

(
1, for L ∈ Cκ(XN ),

0, for L /∈ Cκ(XN );
including

the detailed forms χκ,t(i), χκ|i,t(�), χκ|i�,t(j), etc.

Cκ(XN ) = {L: for the first κ largest ones of HL(Θ) =

πL(XN , Y ∗
L , Θ) + RL(XN , Y ∗

L , Θ)}, including Cκ
J,t,

J = i, �|i, j|�i, etc.

RL(XN , Y ∗
L , Θ)

= −1

2
Tr[{ΓY |X

L + εL(XN )εT
L(XN )}ΠY |X

L ]

+ ln[q(h)q(Θa
L)] − 1

2
h2Tr[ΣL(XN )],

including R(θ�, h).

ΣL(X) = − ∂2πL(X, Y, Θ)

∂vec[X]∂vec[X]T
,

εL(X) = vec[μL(X) − Y ∗
L ], including

εt = yt − μ(xt, W ).

c) p(Θb
˛̨
X, Ξ) is a conjugate of q(Θb

L|Ξ) while p(Θa|X)

and μL(Θ) = Ep(Θa|X)Θ = Θ(t) that is the last esti-

mate at time t.

ΓΘ = Varp(R|X)[vec(Θ)] = ΠΘ−1 and

ΠΘ = −∂2 ln[q(X|R)q(R)]

∂vec[Θ]∂vec[Θ]T
.

4) Specific notations in BYY harmony learning

a) ψ(θSR) is an indicator on a set θSR of scale repre-

sentative parameters, ψ(θSR) → 0 leads to automatic

model selection.

b) Apex approximationZ
p(u)Q(u)du≈Q(u∗) +

1

2
Tr

»
(Γu+εuεT

u )
∂2Q(u∗)
∂u∂uT

–
,

u∗ = arg maxu Q(u), εu = uμ − u∗.

c) Hμ(P ||Q) is the general harmony functional that cov-

ers two typical cases:

• dμ = dx, we get harmony functional H(p||q),
including its detailed forms H(p||q,k, Ξ) and

H(p||q,Θ, k, Ξ);

• dμ = dP , we get f -divergence −HP (P ||Q), including

Kullback-Leibler divergence KL(p||q) and its detailed

forms;

• P = Q, we get f -entropy −Hμ(P ||P ), including en-

tropy −H(p||p).

d) Gradient flow

∇ΘLH(p||q, Θ,k)

= [p(L|XN ) + ΔπL(XN , Y ∗
L )]∇ΘLπL(XN , Y ∗

L , Θ)

+ p(L|XN )∇ΘLRL(XN , Y ∗
L , Θ)

− 1

2
ΔπL(XN , Y ∗

L )∇ΘL ln |ΠY |X
L |,

ΔπL(X, Y )

= q(L|XN )

×
"
χκ(L)HL(Θ) −

X
L

q(L|XN )χκ(L)HL(Θ)

#

and p(L|X) = χκ(L)q(L|X),

including the detailed forms:

ΔJ,t

= q(J |xt)

×
"
χκ,t(J)Ht(θJ) −

X
J

q(J |xt)χκ,t(J)Ht(θJ )

#
,

p(J |xt) = χκ,t(J)q(J |xt), pJ,t = p(J |xt) + ΔJ,t,

J = i, �|i, j|�i.

e) For learning HMM in Fig. 14, we have pδ( �t, �t−1| θ) =

p( �t, �t−1| θ) + Δ�t,�t−1 in Box- 3© and Δqδ
ij in Box- 4©

that is obtained fromX
�t,�t−1

Δ�t,�t−1∇φ ln q�t−1

= τT∇φq

= Tr({(I − [qi|j ]
T)−1τqT}T∇φ[qi|j ])

=
X
ij

Δqδ
ij∇φ ln qi|j ,

Δqδ
ij = qjqi|j

X
�

(I − [qi|j ]
T)−1

i� τ�,

τj =
X
�t

Δ�t,�t−1=j

qj
,

which comes from ∇φq = (I − [qi|j ])
−1∇φ[qi|j ]q,

where τ = vec{τj}, q = vec{qj}, [U ]ij is the ijth

element of U .
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