Neural, Parallel & Scientific Computations 8 (2000) 55-83

BYY Learning System and Theory for Parameter Estimation,
Data Smoothing Based Regularization and Model Selection *

. Lei Xu :
Department of Computer Science and Engineering
Chinese University of Hong Kong, Shatin, NT, Hong Kong, P.R. China
Phone 852 2609 8423, Fax 852 2603 5024, Email Ixu@cse.cuhk.edu.hk

ABSTRACT

Bayesian Ying-Yang (BYY) learning system and theory has been developed in recent
years by the present author as a unified statistical learning framework for unsupervised
learning, supervised learning, and temporal modeling. A general learning problem is formu-
lated as the problem of building a pair of two complementary models, based on two Bayesian
decomposition representations of the joint distribution on the space where samples data are
observed and the space where samples are represented. Given a set of observed data samples,
the pair of models are built up via learning according to a fundamental harmony principle
that not only minimizes the mismatch between the two models but also let the matched pair
as firm as possible. Under this general framework, we not only revisit several ezxisting major
learning approaches with new insights, but also obtain a number of new results for learning
tasks of different levels. On the level of parameter estimation, not only both the batch way
and adaptive EM-like algorithms are revisited with new applications to the implementation
of mazimum likelihood learning on radial basis function nets and three layer forward net, but
also a new general learning algorithm called Coordinated Competitive Learning is obtained
for training several major unsupervised and supervised learning models. On the level of reg-
ularization, an easy-implementing regularization technique called data smoothing learning
is obtained for various statistical learning tasks on a size sample set. On the level of model
selection, a general principle as well as its specific criteria is proposed for a number of major
unsupervised and supervised learning tasks. This paper further systematically elaborate the
BYY learning system and theory, not only from the perspectives of system structures, typ-
ical architectures, fundamental theory and generalized formulation as well as implementing
techniques, but also from its applications to four major lypes of unsupervised learning tasks
and three major types of supervised learning networks, with not only those ezisting major
results revisited as special cases but also a series of new models and new results presented.

1 Introduction

The basic sprit of simultaneously building up models in both the directions, between the
space where samples data are observed and the space where samples are represented, has
been adopted in literature of modeling a perception or recognizing learning system for sev-
eral decades. A typical example is the ART theory developed by érossberg and colleagues,
started at 70’s. In the past decade, this sprit has been widely adopted in various model-
ing methods for perception and learning, examples include Kawato’s bi-directional theory,
Mumford’s pattern theory of vision, Ullman’s bi-directional information flow, and Hinton
and colleagues’ Helmholtz machine, from different viewpoints and for different purposes. In
addition, the LMSER self-organizing rule (Xu, 1991&93) can also be regarded as an effort
that suggests to use bi-directional modeling for statistical unsupervised learning. Readers
are referred to Xu(1999c) for a further reference.

Firstly proposed in 1995(Xu, 1995&96) and continuously developed in the subsequent
years (Xu, 1997a&b&c, 1998a&bé&c, 1999a&blic, 1999d&98, 1999e498), the BYY learn-
ing system and theory further formulates the bi-directional modeling sprit into a general
statistical framework in two complementary Bayesian representations of the joint distribu-
tion on the observation space and representation space. The BYY theory relates to the
information geometry theory (Csiszar & Tusnady, 1984; Amari, 1985&95) by sharing a
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common feature that both theoreies involve the ingredients of matching two distributions
by Kullback divergence and implementing the matching by an EM-like algorithmn for pa-
rameter learning. Also, a specific adaptive type of the BYY learning on a bidirectional
architecture becomes equivalent to the Helmholtz machine learning (Hinton, et al, 1995;
Dayan, et al, 1995; Dayan & Hinton, 1996). However, the three studies are made from
different perspectives with different purposes. The BYY theory aims at not only empiri-
cal parameter learning but also data smoothing based regularization and model selection,
while the information geometry theory and Helmholtz machine learning consider empirical
parameter learning only. Even focusing our comparison on empirical parameter learning,
the information geometry theory considers geometry structures and general properties of
matching two distributions by Kullback divergence, while the Helmholtz machine learning
considers effective implementation of Kullback divergence matching of two specific densi-
ties by forward and backward networks. However, the BYY theory functions as a unified
statistical learning framework for unsupervised learninE. supervised learning, and temporal
modeling, consisting of not only the matching of two distributions by Kullback divergence
but also the maximization of a harmony measure. Moreover, the BYY theory focuses on
considering the two complementary Bayesian representations and the inner relationship of
its components in various architectures as well as their applications in various unsupervised
and supervised learning tasks. The three studies are also different in several other aspects,
and a detailed discussion are referred to Xu(1999c).

This paper further systematically elaborates the BYY learning system and theory. Sec.
2 introduces the fundamental issues of the system and theory for parameter estimation, data
smoothing learning, and model selection, with further discussions on typical architectures,
extensions to a general mathematical formulation, and practical implementation techniques.
Sec. 3 systematically presents the applications of BYY learning on a number of typical
unsupervised learning tasks. Furthermore, Sec. 4 introduces the BYY supervised learning
system and theory, and then Sec.5 presents its applications on the studies of mixture-of-
expert model, radial basis function net and three Jayer forward net.

In addition, the temporal BYY learning system and theory has also been developed for
modeling signal in a general state space approach, which provides not only a unified point
of view on Kalman filter, hidden Markov model (HMM), independent component analysis
(ICA) and blind source separation (BSS) with extensions, but also several new results on
these studies. Readers are referred to Xu(1999a) for details.

2 BYY Learning System and Theory

2.1 Bayesian Ying-Yang system and unsupervised learning

We describe the joint density p(z,y) on X X Y by two different models in help of its two
complementary Bayesian representations LK '

Py (2,9) = pm,,, (Y|2)PM. (2),  PMy (2,9) = Pag,,, (]Y) oM, (v)- (1)

The model M, consists of two components My, and M;. M; models the density on
X, denoted by pp,(z) or shortly pa,. My, models the density of y conditioning on z,
denoted by ppm,,, (y|z) or shortly pum,,., from which we get a specific mapping z — y by
one of the following three choices:

fypm,,. (vlz)dy, (a) regression,
§ = { maxy pM,,, (¥|z), : (b) posterior, (2)

randomly pick y according to pm,, (ylz), (c) stochastic.
It usually performs (a) tasks of decision, classification, recognition, ..., etc, when y is a
discrete number, e.g., y = 1,---, k, (b) tasks of encoding, perception, recognition, ..., etc,

when y is a k-bit binary code, and (c) tasks of feature extraction or transformation when y
is a k-dimension real vector.

1 A discrete distribution is also described as a density, e.g., p(y) = ¢d(y — 1) + (1 — q)é(y) describes

Bernoulli distribution for a binary y = 0 or y = 1, where 4(y) = 0 for y # 0, 4(y) = limno h~! when
y=0.
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The model M; also has two components M, and M,. M, models the density on
Y, denoted by pas,(y) or shortly pay,, M|, models the density of z conditioning on y,
denoted by My, (z|y) or shortly PM,,,, from which we can also implement a mapping
y — = with a specific £ obtained by one of three choices in a similar way as given by eq.(2).
It usually performs tasks of reconstruction, decoding, imagination, verification, ..., etc.

Interestingly, the formalization eq.(1) compliments to a famous Chinese ancient Ying-
Yang philosophy?. M. models the visible space X by pas, and thus is a Yang, and M,
models the invisible space Y by pm, and thus is a Ying. While M, models a Yang
pathway from an observation into an invisible code or representation by PM,,, and M,
for a Ying pathway from y to z. Moreover, M, My, form the Yang model M, as described
by pm,(z,y), and M., My, form the Ying model M, as described by pm, (2, y). We call
such a pair of Ying-Yang models Bayesian Ying-Yang (BYY) system.

The task of specifying all the aspects of the components PMy.s PMos DM, PM, is called
learning inNa brc:a.d sense, which is unsupervised since it is based on a given training set
D, = {z;}:., only.

: Thi inf)-ﬁlt (())f gbserva,tion to the system is functioned by pas,, which is estimated from
the training set D.. Typically, it is given by the Parzen window nonparametric estimate:

Pr(z) = ﬁ Zf\_’__lk'h(m —-a;), e.g., Kp(x)=G(x, 2, hly), (3)

where Kj(z) is called kernel function (Devroye, et al, 1996) and h > 0 is a smoothing
parameter. A typical kernel function is the above gaussian G(z,z;, hl;) of mean z; and
covariance matrix hly, where I;is the d x d identity matrix and d is the dimension of z.
For any type kernel function, we have that Kj(z) becomes a §-density &(z) when h = 0.

In this case, the Parzen window estimate in eq.(3) becomes the conventional empirical
estimate

po(z) = £ TN, 8(z - z,). (4)

The estimate pj(z) in eq.(3) can be regarded as a smoothed modification of po(z) by
using a kernel with a & > 0 to blur out each impulse at z;. For brevity, we use po, p to
denote po(z),pn(z) whenever there is no confusion. The larger the parameter A is, the
more smooth p, will become. Usually, h is set heuristically. In this paper, a general theory
as well as its implementing algorithms will be developed.

The density of y on Y is described by Pm,- A certain structure can be designed
for pm, according to the nature of problem and a priori knowledge. First, we choose
the representation form for y. It can be discrete, e.g., a number y=1,---,k for tasks of
decision, classification, recognition, ..., etc, or a k-%)it, binary code for tasks of encoding.
perception, recognition, ..., etc. It can also be a k-dimension real vector. Second, we specify
a structure in a parametric density form 3 for pm, with aset 8, of finite number unknown

parameters, where a specific value of @, represents a specific density in the family of all the
densities that share this given structure.

The structures of PM, . PM,,, are also designed according to the nature of problem and
a priori knowledge. First, we exclude those degenerated structures with the relationship
between z and y broken, i.e., either PM,,, (z]y) = PM,,, (2) or PM,|,(y|3') = pum,,. (y)- Then,

we choose among two types of structures. One is described by a parametric density with a
set of finite number unknown parameters, similar to the above PM,, €.g., we have parameter

sets 0y, and 6, for PM, . PM,,,- The other is called structure-free, which means no any
structural constraints such that ppy, for each a € {z|y, y|z} is free to take any element

%1t should be “Yin” in the Mainland Chinese spelling. However, “Ying” is used here for keeping the sprit
of symmetry. The key point of the philosophy is that every normal entity in the universe involves a harmony
interaction between a “Ying” part and a “Yang” part in a twofold sense. Namely, a best matching between
the Ying and the Yang and the firmness of the matched the Ying-Yang pair. Usually, a visible or physical
component is called “Yang”, and an invisible or spiritual component is called “Ying”, which represents a
static pair of Ying-Yang spaces. Moreover, there is another dynamic pair of “Ying-Yang” that describes
the interactions between this pair of static spaces. E.g., a male animal is such a ‘Yang’ that functions as
a transform from a physical body into an invisible code, and a female animal is a ‘Ying’ that transfers an
invisible code into a next generation physical body.

3A discrete distribution is automatically understood as a parametric density since it is always specified
by a finite number of parameters.
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of P,, where P, and P, denote the family of all the densities in the form p(z|y) and
p(y|z), respectively.

A combination of structures for PM,),s PMys PM,, specifies a system architecture. There
are three typical architectures, featured by the structures of PMyjz PM,, ¢
o Backward architecture which consists of a parametric density pa,,, for directly

implementing the backward pathway, and a structure-free pp,, with no structure
for directly implementing the forward pathway;

o Forward architecture which consists of a parametric density pa,, for directly imple-
menting the forward pathway and a structure-free pa, ;

e Bi-directional architecture where both PM,jzs PM,,, are parametric densities for di-
tectly implementing the bi-directional pathways.

The case-tha,t both PM,. 1 PM,,, are structure-free is useless because both pathways can not
be implemented.

A specific architecture with the structures of all the component specified is called a
model M. For a given M = M(@), what remains to be further specified is a set 6 =
P h} of all the unknown parameters. We use parameter learning to refer to the

task of determining a specific value 6*, and correspondingly use M* = M (6*) to denote
a specification of M by 6*. Usually, we consider a set of models {M;} that share a
same architecture and a same structure on each component but in different complexity
scales. Typically, such a set is obtained by enumerating k as the representation complexity.
Sometimes, we even can get a set {M;} that shares the same architecture with same
structure on each component under a same complexity scale, obtained by enumerating only
a number of specific values taken by some parameters in 6. We use model selection to refer
to the task of selecting a particular k* among a set of given models {M;(6%)}.

2.2 Bayesian Ying-Yang learning theory

The analogy between the BYY system and the Chinese Ying-Yang philosophy motivates
us to use “Ying-Yang harmony” as a fundamental learning principle for implementing pa-
rameter learning and model selection in the BYY system. That is, we let the Ying model
pM, and the Yang model pps, to be best harmony in a twofold sense. First, the difference
between the two models should be minimized since they model the same joint density on
X x Y. Second, the obtained Ying-Yang pair should be as firm or confident as possible in
its representation of the observation D,.
To make a mathematical formulation, we consider the information theoretic measures:

D(pllg) = [p(z) In [p(z)/q(z)ldz,
H(p) = —[p(z) Inp(z)dz, H(p(z|u))= - [p(z|u)Inp(z|u)dz, (5)

where D(p|lg) is the Kullback-Leibler divergence that measures the difference between
two densities p,q, H(p) is the entropy that measures the uncertainty of the density p, and

H (p\%tliﬁ} denotes the entropy of the conditional density p(z|u).
e adopt the Kullback-Leibler divergence to measure the difference between pps, and

pM, in eq.(1) with pp, given by eq.(3), that is,
D(M) = D(pm, |lpmy) = D™ (M) — H(pa) ' (6)
where H (pn) depends on h only and is irrelevant to @, k. Specifically we have

pm,,, (ylz) y
P, (TlY)pa, (y)

D™ (M) = [pa(z)D"(M|z)dz, D~ (M|z) = [pm,, (ylz)In (7)

Moreover, we consider the entropy H(pMy|z(y|.1:)). For each z, the er the H(pm,, (y|z))

is, the more sure the mapping ¢ — y is, and thus the more confident we are on the repre-
sentation of D by the Ying-Yang pair. Therefore, we use He = [pn(z)H (pm,, (ylz))dz to

measure the uncertainty of the representation on a given data D, by the Ying-Yang pair.
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With the above two measures, the implementation of the Ymg—'Yan% harmony learnmg

principle becomes an optimization task that minimizes both D(M) and H( (Pm,- (yl2))
maximizing a harmony measure H(M) as follows:
~H(M) = D(pm,llpmy) + He, He = [pn(z)H(pm,,, (ylz))d (8)
which is equivalent to
H(M) = —H(pa) + H™ (M), H™ (M) = [pum, In par,dzdy. (9)

At a fixed h, max H(M) is equivalent to max H~(M). When pp ol is fixed, max M~ (M)
makes pp, be as close as possible to pa(z)pm,,, (y|z) and finally reach it when both
PM,,,, PM, are [ree of structure. While when ppy, is fixed, max ¥~ (M) makes PM,
locate around the modes of pay, (2, y) for each given x. Particularly, when PM,,, is free of
structure, it becomes the é-density at the mode of ppg,(2,y), that is, for each = we have

M, (Ylz) =8y = §), §=arg max My (7, ),
H™ (M) =H" (M), H (M) = [pn(x)Inpa,(z,j)dz. (10)

Thus, from this perspective we also see that max H(M) makes the Ying-Yang pair match
firmly (i.e., keep a minimal structural complexity).
For a set of specific models {M(8)}, with the notations D(M) = D(8,k) and H(M) =

H(8, k), we consider the following two choices for implementing max H(M):

(A) max H(D, k), (B) max H(6,k), subject to D(6, k) = min at each k. (11)

For the choice (A), we maximize ’H(O, k) with respect to both 8, k. While for the choice
(B), the maximization of (8, k) is under a constraint that D(6,k) is minimized with
respect to 6 at each k, which consents to the convention that first determines parameters
by minimizing mlsmatch and then selects models by a criterion for both mismatch and
model complexity.

Usually, both of the choices in eq.(11) are performed sequentially in the two steps:

(1) The first step is parameter learning for 0* at a fixed k. Specifically, we have

g — {arg maxg H(6,k), for the choice (A),

argming D(#,k), for the choice (B). (12)

We refer the choice (A) shortly by H-learning and the choice (B) by D-learning. The H-
learning tends to enforce the forward pathway py o= O be as simple or compact as possible.

Thus, in comparison with the D-learning, the H learning is imposed by a regularization
that reduces structural complexity.
(2) The second step is model selection. For both the choices (A) & (B), we get

k* —argmm J(k), J(k) = -H(6" k). (13)

In "addition, it should be noticed that usually D( p||F) # D(q|lp) for eq.(5), which will
lead us to other variants of mathematical formulations g., we can also use

D(M) = D(PM;"PMl) : (14)

to measure the difference between pas, and ppr,. Correspondingly, we can use the entropy

H(pM?) to measure the uncertainty of the representation on D, by the Ying-Yang pair.
That 1s, we have

-H(M) = D(pMzule) + H(]’Mz)' (15)
which is equivalent to
H(M) = [pa, In pp, dzdy, (16)

With these D(M) = D(6,k) and H(M) = H(8, k), we can again implement eq.(12) and
eq.(13).
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2.3 Empirical learning versus data smoothing learning

In eq.(12), the estimation #* consists of the searching of an optimal smoothing parameter
h*, which includes the special case that we simply prefix h = 0. We call eq.(12) at h = 0
empirical learning because it is made directly on the i.i.d. empirical samples D; = {z; N.
In contrast, we call eq.(12) with h* searched data smoothing learning because ppe(z) can
smooth out those disturbances in po(z). The role of ppe in place of pp can be further
understood by using a gaussian kernel as in eq.(3). In this case, we have

phe(z') = [po(2)G (2’ = x,0,h*Ig)dz, ' ==z +¢. (17)

That is, pr+(z') is the density of the sum 2! of two independent variables x from pg
and ¢ from G(e,0,h*I4). In other words, the data smoothing learning is equivalent to the
empirical learning on a noise blurred data set of a large enough size N':

Dh = {z! f\:l, gt =i+, € is from G(e.0,hlq), (18)

where D! is a data set that depends on the given value of h.

It is well understood in literature that adding noise into data is a type of regularization
that improves the performances in the cases of size of samples.

The regularization role of the data smoothing learning can also be understood by a
further analysis on eq.(6) and eq.(9). For a fixed h, we can ignore H(pn). Thus, eq.(12)
becomes equivalent to

- = {arg maxg- H™(6,k), for the choice (A), o— _ o (h)

g maxp- A . (19)
argming- D~(6,k), for the choice (B),

with the notations D~ (M) = D~(8,k) and H™ (M) = H~(8,k). It further becomes
empirical learning at h = 0 with H™ k), D™ (8, k) replaced by H™ (8, k)|n=0, D™ (0, k)|n=0,
in the sense of

T(M) = [pa(2)T(2)dz, T(M)lr=o = & LE T (2). (20)
We consider a kernel Kp(x) > 0 with
[Kh(z)dz = 1, JaKp(z)dz =0, f:z:QKh(:t)dm = h. : (21)

A typical example of such kernel is gaussian of zero mean and covariance matrix hl.
We further consider the 2nd order Taylor expansion at each sample z; = [Zigy - @id)

T(z) ~ T(2:) + (2 - 7)) "VaT'(%)lemr, + %(m — 2T Hi(z - 1),
H; is the Hessian of T'(z) at z = =z,

[Ka(z - 2)T(z)dz = T(x;) + 0.5h ] o1 (z)

Bm;{j !
9T (z;
T(M) = [pn(2)T(z)dz = T(M)ln=0 + 0.5h % =L, . ax(; ), (22)
"J
E.g., for D~(M)=D"(6,k) in eq.(7) we have
D~ (M) = D~ (M)|s=0+ 0.5hRp, Rp= g TN YL 8PP (M]zi) /9. (23)

Therefore, the data smoothing learning is equivalent to the empirical learning plus a
Tikhonov-type regularization term Rp controlled by the smooth parameter h. In the
literature of regularization methods, the parameter h in the position of eq.(23) is usually
called hyper-parameter. For those existing regularization methods (Girosi, et al, 1995;
Mackay, 1992), the task of estimating an appropriate hyper-parameter is usually a hard
job that is tedious to handle. In contrast, the data smoothing learning eq.(12) solves this
problem in a different framework that is easy to implement, which is introduced as follows.
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We start at a simple but generally applicable technique, based on eq.(17) and eq.(18).
Here, we only describe the case for the D-learning in eq.(12) but the details are same for

the case of the H-learning. Let D’ to denote D! given in eq.(18), the best h* is searched
by the following iterative procedure:

Step 1: For a fixed h, get D} and get J(h) = D~ (h) - H(ps),

new if J {d ' old
St 2: et A" = old ) ith 6 = {777 if . (h; + 7}) < J(hr ),
ep ( h?® + 8h, with éh = n, i J(hgld n) < J( gld). (24)

where 7 > 0 is a stepsize, it follows from eq.(7) that D~(h) and H(py) in Step 1 are
given by

D™ (h) = TN D~ (M*|2l), D™ (M*|x) = D™ (M|z)|s-.
H(pn) = =5 TN, Inpa(al), (25)

where 6* = {7, h = 0} is obtained from performing mins- D~ (8*,k)|s=0 on the noisy
data D%, which is equivalent to performing ming- D~ (8, k) at h on the original data D,.
Here and in the sequel, when we say that we perform maximization or minimization of a
cost T(M) as shown in eq.(20) on a data set D = {2} ,, we mean that based on this
data set we get py(z) by eq.(3) or po(z) by eq.(4).

Either or both D~ (h) and H(ps) can be estimated alternatively:

(1) We can also approximately get 6 from performing ming D~ (M)|x=0 on the original
data D;. Moreover, after ignoring D~ (M)|r=0 in eq.(23) which is irrelevant to A, in

eq.(24) we can simply use D~(h) = 0.5hRp, where Rp is obtainable for some specific
architectures, as will be further introduced latter.
(2) We can also estimate H(ps) based on D, directly. For a gaussian kernel, we

get H(pp) = ,—{,—}:ﬁ,[G(x,xi,hld) Inpr(z)de = co — 0.5dInh + ﬁZfY__lfG(x,:v;,hld)
In Z,N=l e~ 08llz==l?/h gz where ¢q is irrelevant to h and thus can be ignored. In help of
eq.(22) and ignoring terms that are irrelevant to h, we have

\

ho — ¢ .
H(py) = —=0.5dIn h + D(h) + 0.5 ; D)= 45N In SN S (=),

N N N N
ho = 71V Zi:le:ll’j(li)”"’i - ’71‘”2' €0 = 7lv izl - Ej:lpj(xi)zjllzv

=0.5)|z; -z, |12

=0.5l|z-z, 02 e_»T“L__
TS ()

Moreover, lumping up the above H(ps) in eq.(26) and D~ (h) = 0.5hRp, instead of
using Step 2 in eq.(24), we can also update h in gradient descent way as follows:

0J(h) aJ(h)
ah oh

where the relevance of p;(z;) to h is ignored. Furthermore, we can even directly consider

the two roots of %—iﬂ =0, i.e., Rph? —dh+ ey =0 and take the one that is a minimum
point of J(h) as an initialization of eq.(26) or eq.(24). :
However, the above discussions from eq.(19) up to now is not applicable to the formu-

lation eqs.$14)&(15)&(16), for which we can not avoid the integral over z. Instead, the
Monte-Carlo technique should be used to handle the integrals, as will be further discussed
in Sec.2.5.

hrew — pold _ o . J(h) = 0.5hRp + H(ps), = 0.5Rp + 0.5(2—‘; -2 (26)

2.4 H-learning versus D-learning on forward and backward architectures

The situations we encounter on a bi-directional architecture are same as the general settings
discussed in the previous subsections. However, specific features and further insights can
be found on the forward and backward architectures.

1. Backward architecture
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It consists of a parametric density PM,,, for implementing the backward pathway and a
structure-free PM,. for the forward pathway. This architecture describes how to generate
or reconstruct the data D, by the marginal density

pume(z) = [pm,,, (xly)pm, (y)dy, (27)

and thus is also called generative or reconstruction architecture.

e D-learning  The minimization of D(M) with respect to the structural free PM,),
results in

PMy, (21Y)Pm, ()
PMme ()

pm,. (ylz) = pume, (yl=), pag (yle) =

_ D(ﬁh"l’M;L for eq.(6),
D(M) = {'D pMc“p,, for eq.(14);
(pallpme) + [pn(: )II(pM :/l ydz, for eq.(8),

2R
D(pmellpn) + T (pam,)s for eq.(15). (28)

~H(M) = {
Moreover, ming,,, ¢,.» P(M) can be implemented either directly by gradient descent or by
iterating two steps:

Step 1 : with 6,,, 6, fixed, update h to reduce D;(M), get pMyh(yh),
Step2:  with h fixed, update 0., 6, to reduce D(M), (29)

D(pallpme), for eq. (6)
Where  Dy(M)= { —[pms In pp(z)dz, for eq.(14
- fPh('f ) Inppedz,  for eq.(6)
DM} = { D(pmellpn), for eq.(!

1.

We make a further consideration on the case of eq.(7). It follows that
D(pullpms) = D™ (M) — H(pn), D™ (M) = —[pi(x) In ppge(r)dz (30)

Thus, from eq.(20) we see that the empirical learning mingg, o } D™ (M)|h=o becomes
exactly the conventional maximum likelihood (ML) learning on the marginal density pase(r)
of the Ying model. Particularly, for a discrete y = I,---, k, this ppmc(z) is a finite mixture.

In this special case, eq.(28) becomes exactly the Expectation Maximization(EM) algorithm
(Dempster, et al, 1977), which is currently popular in the literature of neural networks.
The data smoothing learning mingg_ 0, 1) D(M) can be regarded as a regularized ex-

tension of the ML learning. The detailed implementation for updating A can be made, as
discussed in the previous subsection. Moreover, in this special case we can get

Rp~ % L lleill? e = Jrme, (Wl2) Ve lnpa, ), (2i)dy, (31)

by approximately using a general property E[V(VInp(z))] = —E[V Inp(z)(V In p(z))T).
e H-learning  For the H-learning in eq.(12) with eq.(16), max H(M) with respect
to the structure-free pps,,, will result in the same H(M) in eq.(28).

Furthermore, , for each fixed h the H-learning in eq.(12) with eq.(9) leads us to eq.(10).

Corresponding to eq.(29), we can also implement this type of H-learning by alternatively
repeating the following two steps:

Step 1: for asample z, fized 67, get § by eq.(10), (32)
Step 2: update f;, toincrease In pMﬂy(mlg), update 6, to increase Inpay, (7).

where each sample z comes either directly from the original data set D, for empirical
learning or from the noisy data set D! by eq.(18) for data smoothing learning. Due to
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max, pm, (7, y) = max, ])M;':(y]m) for each x, we see that d(y — g) is actually a winner-
take-all (WTA) version of PM;|z(y'Jf). Thus, eq.(10) can be regarded as a hard-cut version
of eq.(29). Particularly, when h = 0, eq.(32) can be regarded as the so called hard-cut EM

algorithm, which was previously obtained in Xu(1997a) heuristically.

Actually, j = argmax, par,(z,y) in eq.(10) is a generalized formulation of the conven-
tional WTA. To get a further insight, we equivalently consider

y=argmaxinpa,(2,y), Inpa,(z,y) = Inpum,, (zly) + In pag, (y). - (33)

In the special case that pm,, = G(z,my, o?ly) and pm,(y) = 1/k, we have that

maxy In pp,, (z|y) is equivalent to § = miny||lz; — my||?, which is exactly the conven-

tional WTA used in many competitive learning algorithms. The WTA in eq.(33) not only
considers the general form max, In pMﬂy(m|y), but also coordinately considers the effect of

In pp, (y) that imposes a priori preference. Thus, we call this type of WTA by Coordinated
Competition and the learning eq.(32) by Coordinated Competitive Learning (CCL), which
acts as a general formulation of many existing WTA-based competitive learning algorithms.
® Model selection  After the parameter learning eq.(12), with the obtained 8*, h*
we can make model selection by eq.(13) with #(M) given by eq.(28) or directly by eq.(9)
or eq.(16), except for the H-learning based on eq.(9) for which we insert H~(M) given
by eq.(10) into eq.(9) to get H(M) for eq.(13). Particularly, if the parameter learning is
empirical, i.e., h = 0, we can directly use H~ (M) given in either eq.(9) or eq.(10) as
H(M) for model selection by eq.(13).
2. Forward architecture

It consists of a parametric pp,,, for implementing the forward pathway and a structure-
free PM,,,- This architecture describes how to represent an input z by an inner representa-
tion y via eq.(2), and thus is called representative or recognition architecture.

e D-learnin Since ppr., is structure-free, min D(M) results in
g x|y rm |

' Ty

M, (Y1) P ()

pM;w = PM;'y» I’]\'I;‘y (Il'l'/) = p]w;(y) y ])[u;(y) = pryiz (ylx)ph(x)dlo’
_ } D(rmgllpmy),  for eq.(7),
DM) = {’D(pMyan;), for eq.(14);
_H(M) = D(pmcllpm,) + [pa(z)H (pm,,, (ylz))dz, for eq.(8), (34)
- D(pMy”pM;) + H(pMz)y for eq(15) -

Again, min{gw‘gy,h} D(M) can be implemented either directly by gradient descent or by
iterating two steps:

Step 1 : with @y, h fixed, get PMg and update 6, to reduce D{(M),
Step 2 : with 8, fixed, update 8,,,and h to reduce D,(M), (35)

"fI’M; Inpp,dy, for eq.(6),
D(pm,lipnmg), for eq.(14).
D(pmgllpm, ), for eq.(6),
~[pm, Inpuzdy, for eq.(14).

Where  Di(M) = {
Dy(M) = {

The empirical learning is featured by Pmg(y)ln=o0 in the sense of eq.(20). The data

smoothing learning is its regularized extension and the detailed implementation for updating
h is made as discussed in the previous subsection. In this special case, we also have

9%pm,, (ylz:)
VT iy - (36)

I

S ipm,, (ylz)
Npm,(y)

Rp=4[(1+n
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o H-learning  For the #-learning in eq.(12) with eq.(9), maxH(M) with respect to
the structure-free ppr,, will result in the same H(M) as in eq.(34).

However, for the H-learning in eq.(12) with eq.(16), when pp, (%) = po(z) as in eq.(4)
and pp, is also structure-free, max H(M) with respect to pay, will result in

. . _ [ 6y-9d(z-=i), atz =gz,
y=arg manPMy,,(yM), M, (2,y) = { 0, ‘ otherwise;

H(M) = H(M), H(M)=% T, Inpu,, (Gl (37)

which is a general formulation of the representative model based WTA-competitive learning.

e Model selection  After the parameter learning eq.(12), we can make model selec-
tion by eq.(13) with H(M) given by eq.(34) or directly by eq.(9) or eq.(16), except for the

#H-learhing based on eq.(16) for which we use (M) = H(M) given by eq.(37).

2.5 Generalized formulations

We consider a general measure called f-Divergence, which was first, introduced by Csiszar
in 1967 and a nice introduction can be found in (Devroye, et al, 1996):

T 2
D(pllg) = [p(z) f(%)d:x, d—d’;%‘l > 0 on [0, 00) with f(1) = 0. (38)

By Jensen’s inequality, D(pl|lg) > 0 and D(pllq) = 0if p=q. This f-Divergence includes
several interesting special cases:

Jlp(z) — q(:z:‘)|d:r, if f(z) = |z — 1|, variational distance,
2(1 - [p(x)q(z)dz), if f(z)= (1 - /7)?, Hellinger distance,

D(pllg) = fl’;g%dm -1, if f(z) = (= - 1)%, x*-divergence, (39)
fp(z)In sg'}dx, if f(z) = —In z, Kullback-Leibler divergence.

That is, the Kullback-Leibler divergence in eq.(5) is a special case of f-Divergence.
Correspondingly, we can also extend the entropy definition in eq.(5) by replacing —inz
with f(z) defined in eq.(38), that is,

H(p) = [p(z)f(p(z))dz, H(p(z|v))= [p(z|u)f(p(z|u))dz. (40)

We can directly generalize the definition of D(pm,|lpm,) with D(pllq) given by eq.(38).
While, for extending the definition of #(M), we have two choices. One is made by using
eq.(40) as H(pMm(yIa:)) in eq.(8) and as H(pa,) in eq.(15). The other is obtained directly
from eq.(9) or eq.(16) by replacing —Inz with f(z), thatis,

H™ (M) = —[pm, f(pm,)dzdy, or H(M) = —[pm,f(pm,)dzdy. (41)

Most of the previous discussions directly apply to the generalized formulations by re-
placing —In z with f(z), except those cases based on the property Inzy=Inz +Iny. In
these cases, we should return from Inz + Iny back to Inzy. E.g., in eq.(29) and eq.(35),
we should let Dy (M) = D,(M) = D(M) with

D(pnllpmg), for eq.(6),
D(pmsllpr), for eq.(14),
D(pmclipm,), for eq.(6),
D(pm,llpmg), for eq.(14),

D(M) = { for eq.(29);

D(M) = { for eq.(35). (42)
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2.6  Empirical implementation vs. Monte-Carlo implementation

In both parameter learning and model selection, D(M), H(M) in the forms of T(M) in
eq.(20) can get rid of the computational difficulty of the integral over = with po(z) given
by eq.(4) obtained either directly on the original data set ), when k = 0 or indirectly on
a noisy data set D? given by eq.(18). Moreover, if y is discrete or the integral over y is
analytically solvable, we can totally get rid of the computational difficulty of integrals.

However, in many cases we encounter the integral of a general type JT(z,y,0)dzdy. In
the sequel, we propose to deal with such integrals by the Monte-Carlo technique, either in
a batch way or in an adaptive way.

(a) Batch Monte-Carlo sampling. We make random sampling according to a known

reference density p"(z) to get a set of samples {27} with a large enough N". Then,

=1

we get an empirical density pj(z) based on this data set and obtain

PS(IB) 1 NT 1 AT
T(z,y,8)dzdy ~ T(z,y,0)dzdy = 7 30 —T'(z},y,0)dy. 43
JT(z,y,0)dzdy fp,(m) (z,y,0)dzdy = § o (¢, y,0)dy (43)

Typically, we can use pj by eq.(3) as p,(z), which includes as a special case the previously
discussed technique of handling D(M), (M) in the forms of T(M) as in eq.(20) in help
of po(z) by eq.(4) obtained indirectly on a noisy data set. D! by eq.(1R).

The integrals over y is simply the summations when y is discrete. Otherwise, we can
turn an integral over y into a summation in a way similar to the above discussed case for
the integrals over z.

(b) Adaptive Monte-Carlo sampling. We get a sample z" from p,(z) which could be
either the current estimate pp¢ or PM,,,- Similarly, we can use PM, of pum,, to get an

yr. Then, we minimize the cost functional [C'(z,y,8)dzdy by stochastic approximation
via updating

g = ¢° — yVy[C(a", ¥, 0)/(p-(z")p-(y"))], 1 > 0 is a learning stepsize. (44)

Next, we use 6" to get new estimates of p,.(x) and p,(y) flor sampling the next x", y".

v

3  Applications to Unsupervised Learning Tasks

3.1 BYY inversion and posteriori density estimation

1. Revisit of old results

Item 4.1 (Bayesian inverse mapping and Bayesian classifier) On backward architecture
with pam,,, ,pm, known, we have from eq.(28) that PMy. = PMS,, which is exactly the
Bayesian inverse of the mapping y — z. Particularly, this PMm,,, gives the conventional
Bayesian classifier (Duda & Hart, 1972) when y = 1,---, k.

2. New results

Item 4.2 (BYY inversion) For the tasks that need to compute PMg, (ylzi),by eq.(28)
for each sample z;, e.g., for implementing an inverse mapping z; — y, we have to calculate
Pmg(z), which is usually costly either when y = [y, -+, yi] is a binary code with a large
k or when y is real and either of PM,,, and pp, is nongaussian. This problem not only

increases computing cost but also is hard to make an on-line mapping z; — y.
The problem can be solved by a special case of the bi-directional architecture where
Pm,,, and pp, are already known. In this case, via min 8,=.h D(M) we directly implement

z; — y according to eq.(2) by parametric model PM,,- We call this technique BYY
Inversion, which can be made either with A = 0 or a best h searched as in Sec. 2.3.

3.2 BYY finite mixture, clustering and unsupervised classification

All these tasks share a common key feature that y is a finite integer, or equivalently y =
1,---,k. In this case, ppg in eq.(27) becomes a finite mixture of k individual distributions
PM,,, Y =1,---,k, each of which could represent a model, a cluster or a pattern class.
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¥

1. Revisit of old results

Item 4.3 (The EM algorithm for ML learning on finite mizture) On a backward archi-
tecture with par,,,, PMm, unknown, as discussed after eq.(30), that the empirical learning

mingg_, 6,) D~ (M) |p=0 becomes exactly the conventional maximum likelihood (ML) learn-

ing on a finite mixture ppe(zx) (including Gaussain mixture) and eq.(28) becomes exactly
the EM algorithm (Dempster, et al, 1977), which is currently quite popular in the literature
of neural networks (Csiszar & Tusnady, 1984; McLachlan, & Basford, 1988, Neal & Hinton,
1993; Amari, 1995; Xu & Jordan, 1996).

Item 4.4 (Least square clustering, K-means algorithm and elliptic clustering)  In the case
that h =0 and pp., = G(z,py, Ly) is gaussian, the H-learning eq.(10) becomes exactly

zly
the conventional least square clustering when pp, = 1/k and the covariance matrices
of phr,, are Ly = azl,y = 1,---,k. Also, the algorithm eq.(32) becomes equivalent

to the well known K-means algorithm (Duda & Hart, 1972]. Moreover, from eq.(10) we
get the so called Mahalanobis distance or elliptic clustering when X, # af,[, with eq.(32)

becoming an extended K-means algorithm. In addition, further variants can be obtained
when pp, # 1/k. These results were also obtained previously in Xu(1997a) from a heuristic

perspective called hard-cut Gaussian mixture.
2. New results

Item 4.5 (Model number selection on finite mizture) In company with the above ML
learning on finite mixture and the EM algorithm in ltem 4.3, starting from eq.(13) with
H)(M)|n=0 given by eq.(9), we are lead to a new criterion for selecting the number k of
distributions in a finite mixture (particularly of gaussians in a gaussian mixture), as shown
in (Xu, 1997a). While, in company with the above H-learning in Item 4.4, with some
simplifications we are also lead to a new criterion for selecting the number & of clusters in
the least square clustering by the k-means algorithm, as well as in its extensions to elliptic
clustering. The criteria were also obtained previously in Xu(1997a) from the perspective of
hard-cut Gaussian mixture.

Item 4.8 (Data smoothing learning)  For the cases of a size of samples, in help of data
smoothing learning as in Sec.2.3, we get a regularized ML learning on finite mixture (par-
ticularly a gaussian mixture with pa_,, = Gz, py, Ly) PM, = 0,y = 1,---, k). In imple-
mentation, for each fixed h # 0, we have two choices to make min{gm'gy} D~ (M). Oneis

running the EM algorithm on a noisy data set. D! as given by eq.(18). The other, as shown

in Xu (1998a), is still made on the original data D, but in help of the following modified
EM algorithm:

Step 1: with pp, (y) = oy and gy, By, fixed; get pM: (ylz:) by eq.(28), (45)

[E3
Step2: update oy = § Ll pu_(ylz:), my = gly Tilipmg, (vlzi)zi,
£, = hla + 3y T pme (912 (zi - my) (zi — my)T.

The updating on h can be made as in Sec.2.3. Particularly, when eq.(26) is used, Rp in

eq.(31) becomes simply e(z;) = E::n M, (y|z.-)2y_l(1?i — my), which is the average of the
yix

normalized error of using mi, to represent z;.

Furthermore, after data smoothing parameter learning, we can select k by directly using
the criteria discussed in Item 4.5. '

Item 4.7 (Maz-BMC principle) On a forward structure, from eq.(34) we can get its
special case at h = 0 by ‘

PMe(Y)la=0
~H(M)|p=0 = [Pm(y)lh=0ln Wdll - % Zfi;fPM;,, (yl=:) In pmz,_(ylzi)dy. (46)
y

When ppm, (y) is a uniform distribution, we get exactly the heuristically proposed Maxzi-
mum Balanced Mapping Certainty (Max-BMC) principle by eqn(5) and eqn(7) in Xu(1996).
Moreover, when h # 0, by eq.(34) with a uniform distribution pa, (v), we can get a regu-
larized Max-BMC learning from eq.(8) as well as its variants from eq.(15).
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Moreover, from eq.(8) with H(pa,,,) as in eq.(40) and D(ppy, |lpa,) as in eq.(39), we
get

“H(M)ln=o = [parg(y)ln=0f (Pag, (y)/Prmg(y) ln=0)dy
~& i mrg, (lz) S (pme, (yl:))dy, (47)

Which is the general (Max-BMC) principle by eqns(5),(3),(4) in Xu(1996). Particularly,
when f(r) is given by the third choice in eq.(39), we have the Nonlinear Maximum Variance
(NMYV) learning rule (Xu, 1995).

Item 4.8 (Structural regularization on finite mizture) We can also use a parametric - PM,,,
- that introduces a type of structural regularization or constraint on pms by eq.(28). Usually,
PM,,, can be designed by a forward structure z = [zy,---, 2] = f(z, W) which is followed

by a soft-max transformation o, = e/ ):le e,

3.3 Factor analysis, ICA and dependence reduction

The common key feature shared by these tasks is the factorial density

pm,(¥) = [li=ipm, (), fory=[y1, -, we)- (48)

Thus, the Ying model M, provides a independent factor model ppc by eq.(28) on how
z is generated from k hidden independent factors; while the Yang model M, generally
provides a dependence reduction mapping = — y in the sense that the resulted pM; by

eq.(34) is close to pa, (y) by eq.(48), and particularly provides an /CA mapping z — y
when pare = [15., pumig (y5)-
1. Revisit of old results
Item 4.9 (ML factor models, multiple cause models, factor analysis and PCA) On a
backward architecture, the empirical learning mingg, 6.} D7 (M)|r=0 is equivalent to the

ML learning on a general independent factor model pmg by eq.(28). This model relates

to the multiple cause model (Saund, 1995; Dayan & Zemel, 1995) when both y and z are
binary codes and PM,,, is specifically designed, and reduces to the conventional linear

orthogonal normal factor model (Anderson, et al, 1956) when pm, (y;) = G(y;,0, ;) and
pm,,, = G(z, Ay, a214), AAT = I (Xu, 1998c). Moreover, the latter case with PMy. = PMS,,
by eq.(28) is equivalent to the principal component analysis (PCA) (Xu, 1998c).

Item 4.10 (LMSER self-organization and Helmholtz machine) On a bi-directional archi-
tecture with y; taking binary value 0 or I, as shown in Xu (1998b), the empirical learning
mingg 6,3 D7(M)|n=0 will reduce into not only the Helmholtz machine learning of one
hidden layer structure (Hinton, et al, 1995; Dayan, et al, 1995; Dayan & Hinton, 1996)
when z is also a binary code and PM,. PM,,, are both given by an one-layer-net of sigmoid
activation units, i.e., given by eqn.(12) and eqn.(17) in Xu (1998b), but also a generalized
LMSER self-organization rule on real input = when PM,, and pu,,. are specifically de-
signed. The original LMSER learning was firstly proposed in (Xu, 1991&1993) and has
been later applied to ICA under the name of nonlinear PCA with success (Karhunen and
Joutsensalo, 1994). This original LMSER rule is actually just an additive part (and thus a
rough approximation ) of the generalized LMSER rule.

Item 4.11 (MMI-ICA, Informaz-ICA, LPM-ICA and MCA) On a forward architecture
with  D(pamgllpm,) given by eq.(34), as shown in Xu (1998b), ming,,. D(pmgllpm,)la=o
with @, prefixed will reduce into the following special cases: (a) the Informax-ICA
(Bell & Sejnowski, 1995) when ppy, (y;) is uniform on [0, 1] and M, = 0(y - S(Wz))
is deterministic with S(z) = [s(z),---s(2)]T for z = Wz and an invertible W, where

0 < s(r) < 1is a prefixed sigmoid function, (b) the minimization mutual information
(MMI) ICA (Amari et al, 1996) when pay, (y;) is given by a truncated Gram-Charlier

series and py,,, = 6(y — W) is deterministic with an invertible W, and (c¢) the minor
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component analysis (MCA) when pum, (y;) = G(y;,0, ;) and pp,,, = d(y—Wrz), WW =]
(Xu, 1999¢). In these cases, ming,, 7’(7'h1;||]’l\l,,)|h=n with 8, prefixed, becomes the
maximization of

J(W,8,) = & SN I W]+ Inpag, () ly=w=]s (49)

with respect to W under prefixed density form of pp,.
If we also adapt 6, instead of prefixing it, i.e., ming 0.} D(PM;HPM,,)Ih:m we get
exactly the learned parametric model(LPM) based ICA (Xu, et al, 1998f).

2. New results

Item 4.12 (New algorithms for the linear orthogonal normal factor model and new variants
of linear and logistic binary factor models) In Xu(1998b&c), we have also get both a
new batch algorithm and an adaptive algorithin for the conventional linear orthogonal
normal factor model (Anderson, et al, 1956). Moreover, from the general factor model pu:
eq.(28), we can get various specific factor models. F.g., for binary y; with pa, (y;) =
g¥ (1 — q)!~%, the design of pm,, = G(=, Ay, 0?l,) for a real noisy observation z leads
us to a linear binary factor model that is different. from the multiple cause model (Saund,

1995; Dayan & Zemel, 1995). In Xu(1998b), a simple adaptive algorithm is proposed to
implement this model and works well on binary source separation. Furthermore, if we design

M, = s(zi)™ (1 - s(z;))17%,z = Ay for a binary observation z, where 0 < s(r) < 1lisa
sigmoid function, we can get a logistic binary factor model and an adaptive algorithm for
its implementation(Xu, 1998b). Generally, from ppe by eq.(28), we can also get various
other specific factor models, based on different designs of pu, (y;) and pa,,, .

Item 4.13 (Linear non-orthogonal factor models and generalizations of LMSER) On a
bi-directional architecture, when par,,. = Gy, f(Wz),Ay,) and pum, = G(y,my, Ay),

yiz

pM,, = G(z,Ay,Zq) with Ay, A, being diagonal and  f(2) = [f(z1), - f(z)]T for
z = Wz, we have that D~ (M)|4=0 in eq.(7) becomes

|Ay|x|
D™ (M)|p=o = — In —25—
(M)lh=o = =10 72 1]
+Tr[A; Ayl + TS5 AN AT+ & T (i = Af(Wa)TEG) (20 = Af (W),

zly

—k+ F XL (fOVa) = m) AN (f(Wa) = my)  (50)

which is a correction of a typo in eqn.(47) of Xu(1998%¢) where 'I':'[S;':’A/\m,AT] was
absent. ,

For the special cases with f(u) = u, the minimization of the above D~ (M)|n=¢ pro-
vides a general scheme for linear non-orthogonal normal factor model, which reduces to the

conventional orthogonal model (Anderson, et al, 1956) if A, =1, ATA = I,.

More generally, when A = wT, Loy = ”:luld and f is a sigmoid function, the

minimization of the last term in eq.(50) is equivalent to the LMSER rule originally proposed
in Xu(1993). Thus, from eq.(50) we can also get various generalizations of the original
LMSER rule. In addition, on a specific design, the D-learning eq.(19) with eq.(50) will
become eqns.(44)&(47) in Xu (1998b) which give us another type of generalization of the
LMSER rule.
Item 4.14 (Non-invertible ICA, nonlinear ICA and noisy ICA) On a forward architec-
ture, as discussed in Item 4.11, ming,, D(pMycIlpMy)h___g given by eq.(34) will reduce into
the existing MMI based ICA, Informax 1CA , LPM ICA approaches when pp,, becomes
a deterministic d-density by an invertible deterministic mapping y = Wez.

Moreover, as proposed firstly in Xu(1997c) and then re-elaborated in Xu(1998b&99a),
these ICA approaches can also be easily extended to not only the linear mapping y= W=z

with a non-invertible matrix W of k x d, k < d but also a deterministic nonlinear mapping
y = f(z, W), with eq.(49) becoming

J(W,6,) = L [05In [WWT| +1In pu, (9)ly=wz,), (51)
J(W,8,) = 4 TN [0.51n|D;DF| + In pa, (W)ly=f(z.0))s Dy = 8f(zi, w)/ozT.
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Furthermore, for a bi-directional architecture with the forward pathway still being a deter-
ministic d-density as above, but with the backward pathway being PM,,, = G(z, Ay, 0?), we
get the so called noisy ICA model = = Ay+e with e being gaussian noise from G(e,0,0?)
In this case, min{gyhﬁy} 'D(pM;”pMy)h:o given by eq.(34) becomes the maximization of

J(W’ Av 02’ ay) = J(W1 oy) + ﬁ Zz,y:l In G(ﬂ?,’, Ay1 02]ri)|y=Wx.- or y=f(.1:,~.W)1 (52)

with respect to W, A, o2, 6y, where J(W, 8,) gives the learned parametric model(LPM)
based ICA (Xu, et al, 1998f). The maximization of the 2nd term becomes equivalent to
the original LMSER rule (Xu, 1991&93) when A = W7, which attempts to estimate the

noise variance o2 and filter out the effect of noise. Thus, eq.(52) describes a model that
combines the features of both LPM-ICA and LMSER for handling the noise ICA problem.
By gradient approach, it is easy to get an adaptive algorithm for maximizing eq.(52). as
shown in (Xu, 1999a). ~

Item 4.15 (Probabilistic ICA and dependence reduction)  When the mapping x — y by
PM,,, is probabilistic instead of deterministic, the minimization of D(M) in eq.(34) can
be regarded as a generalization of the cases discussed in the above Items 4.11 and 4.14 if
we use a probabilistic model PM,,, to replace the deterministic forward mapping such that

PM; given by eq.(34) best approximates pm,(y) given by eq.(48). If the resulted Pmg(y)
becomes ]"[;?:._l pmg(y;), the mapping by PM,,, realizes a probabilistic ICA mapping ¢ — y.

Generally, even if pmg(y) = Hf=, Pm;(y;) does not hold exactly, the mapping z — y that
lets PM;(y) to best approximate Pm, (y) also realizes dependence reduction to some extent.

Item 4.16 (Factor number selection and model selection) Generally speaking, we can

always use eq.(13) with H(M? = M~ (M) by eq.(9) to select the number k of independent
factors or sources, that is, we have:

mkin J(k), J(k)=-H" (M),
H™ (M) = [pm,, (ylz)p(z) In[par,,, (zly)pm, (y)]dzdy. (53)

On a bi-directional architecture, we can directly use eq.(53) for selecting k. Specifically, we
can develop criteria for selecting the number of hidden units in Helmholtz machine, LMSER
self-organization and its generalization as well as other bi-directional architectures, some
examples are referred to (Xu, 1998b).

On.a backward architecture, we can use eq.(53) with PM,,, given by eq.(28) to decide
the factor number & for the general factor model PMm: eq.(28). Moreover, detailed specific
criteria can be obtained for different designs on pm, (y;) and PM,,,- For examples, a
specific criterior is obtained in Xu(1998¢) for selecting factor number of the conventional
linear orthogonal factor model and another specific criterion is obtained in Xu(1998b) for
selecting the number of independent binary and real factors.

On a forward architecture, we can also develop specific criteria from eq.(53) for detecting
the number of independent components in the above mentioned ICA problems. When PM,,,

is not a J-density, e.g., the above mentioned probabilistic ICA case, we can get pm,,, by
eq.(34), and then use eq.(53) for selecting k*. However, when PM,,, is a §-density, e.g,

the above mentioned MMI-ICA, Informax-ICA, LPM-ICA cases, we can not directly use
eq.(53). Instead, we consider the reconstruction # = Wy by the pseudo inverse W+ of
W with a gaussian error z — #, that is,

P, = Gla, Why P, W* =W (wwT),
o* = gy Siillei - W (WWT) " w2 (54

For the cases of noise-free observation {zi}X,, as k increases from 1 to d, o2 will
decrease until becoming zero at a k* < d. in this case, we can select this k* as the
number of independent components. Moreover, when the observation {z:}X, contains
noise, we put the above PM,,, into eq.(53) for selecting k. At h = 0 we get H(M) =
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& YN In (Pm,, (W z)pp, () ly=1vs,]. Further ignoring those terms which are irrelevant

t=1
to k, we have

J(k) =0.5dIno" %2 — & YN In Py (Wly=wer,, 02 is given by eq.(h4). (55)

Item 4.17 (The H-learning and the CCl, Based Jactor modeling)  On a backward ar-
chitecture, the #-learning in eq.(12) leads to eq.(10), which provides a coordinated com-
petitive learning (CCL) technique for a general independent factor model Pmg by eq.(28)
with pam, (y) given by eq.(48). This technique is adaptively implemented by the algorithm
eq.(32). Specifically, its Step 2 can be simply

id - w __ pgold k
Ozly’ = b2y + Ve, Inpy,, (lh), 2 = 0y + 03 5=1 Ve, In pu, (y;), (56)
‘. -
and the 1st updating equation becomes an adaptive least square updating rule when PM,,,
is gaussian.
Moreover, the number of hidden factors is selected by

mkin J(k), J(k)=-4 5N, m;;nx[ln Pat,y, (i) }:’)‘_| I pas, (1)) (A7)

3.4 BYY dimension reduction and data structure mining

1. Revisit of old results

Item 4.18 (Principal subspace dimension reduction) As indicated above, the factor model
pm: €q.(28) will lead us to the conventional linear orthogonal normal factor model (Ander-

son, et al, 1956) and PCA when pm, (y;) = G(y;,0, Aj) and Pmy,, = Gz, Ay, 021,), AAT =

I (Xu, 1998c). Actually, PCAis a widely used dimension reduction tool in the cases of k <d,
where k, d are the dimensions of y and z, respectively.

2. New results

Item 4.19 (Determination of principal subspace dimension and selection)  For any di-
mension reduction mapping z — y, we need to decide an appropriate dimension k* < d.
When the first k* principal components by PCA is used for dimension reduction, in Xu
(1998c) we got a criterion for deciding this dimension k* which is equivalent to the number
of factors in the conventional linear orthogonal normal factor model.

Similarly, we can also use ICA to get k* < d independent components for dimension
reduction propose. We can perform ICA by the k x d matrix W at each k and select k*
that makes J(k) by eq.(55) become the minimum. Particularly, for the cases of noise-free
observation, we can select k* simply by either increasing k from a kq (e.g., ko = 1) until o?
given by eq.(54) becomes zero or decreasing k from d until o2 # 0 with k + 1 as k*.

Alternatively, we can also perform ICA by an invertible d x d matrix W for only
once, and then for each k, we select k column vectors of W such that J(k) by eq.(55)
or o2 by eq.(54) reaches the est. We call the corresponding k components as principal
independent components. Then, among different values of k we select k* that makes J (k)
by eq.(55) become the minimum. Particularly, for the cases of noise-free observation, we
can either increase k from a ko until 02 becomes zero or decrease k from d until o2 # 0
with k+1 as k*. Here, we encounter a typical combinatorial optimization problem. We can
approximately handle it by sequentially adding or removing one column vector of W.

Item 4.20 (A general BYY system for dimension reduction and structure mining) We
consider a general hidden data structure as follows:

PM, (y) = E:llay,rPMy,r (y~ Myr), PM,,, (y- Mmy,) = Hj:lpMy,r (yj - My, i) (58)

which returns to eq.(48) when ny = 1. Generally, it represents a mixture of ny independent
distributions that locates at different m,. Therefore, in correspondence to Sec.3.3, we can
get various localized extensions of ICA and independent factor models.

R

e
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Specifically, we can consider the following factorial gaussian mixtures:

PMy.- (Y5 = M j) = Gyj, my, 5,02, ),
ngy N n
pley = Z";ilax'yv"G(x’ A”y’ Ll‘ly.r)’ PA vt = Zv‘_i_';ayil’,rpMylx,r (y'x)v

PM,”,,, (U’T) = Hj:lpMylr‘,.(yj’m)i pl\fyh,,-(yj]m) = G(’/]v 103;;‘:_”1 a:‘x',-'j)~ (r)())

from which we can get local linear normal factor model and local PCA.

4  Supervised BYY Learning
4.1 Supervised BYY learning system and theory

To learn a mapping z — 2 based on a data set D, = Sm,‘,z,‘}f\;l, as shown in [24], we
consider a pair of the enlarged Yang model and Ying mode

M, (2, Y, 2) = par,, , (yle, 2)pmr, (2, ), PMy (T, 2) = pm,, (2|2, y)pa, , (2,y)  (60)

as the BY'Y supervised learning system, which consists of the following components:
(1) pu,, is estimated by the Parzen window kernel estimation based on D), :

PM.. = Pu(Z,2) = i (*)pn, (zlx), h = (e, h.}, (61)

where pj_(2) is still given by eq.(3) but with a notation change of % into the current h,,
and it is only necessary to define P, (z]z) at = =z

Pr.(zlz) = Ky, (z - z), at z = =;. (62)

(2) PM,,,, describes the big Ying pathway T,y = z and is always a parametric model,
while PM,,, , describes the big Yang pathway z,2 — Y, and can be either a parametric

model or free of structure that can take any density in the form p(y|z, z).
(3) PM, , (z,y) has three choices as follows:

PM,,, (ylz)p(z), Type (a),
M.y (z,y) = { P (yl2)p(z),  Type (b), Pmg,, is same as in eq.(28), (63)

PMm,, (2ly)Pm, (y), Type (c).

‘where p(z)is the unknown true densities of D, = {z:}X,, and pnf;lx,prly,pMy are same
as in eq.(1). : ‘
This BYY supervised learning system implements the mapping = — 2 via Pm, by

pue(z]z) = %‘(——)—) = [, (el y)payle)dy, (64)

PM(Z» .’L‘) = pr;v (:L', Y, Z)dyv p/\'l(-'lf) = fPM,,,, (ZE, y)dy|
_ J pmy (ylz), Type (a),

PHIE) =\ pare (ulz), Types (b)a(o).

Thus, the structure of pm(z|z) is featured by not only which type pp(y|z) is, but also
what kind of structure that PMm,,, (2|2, y) takes.

We consider two typical structures for PM,,.,(2]Z,y). One is called modular structure,
denoting the case that y = 1,.. *yk and the mapping = — z is implemented by k indi-
vidual modules M, ,(2|Z,y),y = 1,---  k, which are combined subject to the gating of
PH(y|z). The other is called cascade structure, denoting the case that y = [y, - - - u)T and
pm,, , (zlz,y) = PM,, (2ly), which can only implement the mapping y — z that cascades
the mapping z — y by pp(yle). S

Again, we use a model M = M(0) to refer a specific combination of all the components
in eq.(60), with their structures specified according to the nature of problem and a priori
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knowledge. We use paraineter learning to refer Lo the task of determining a specific value 6*
that includes a best h* = {h%, h:}, and use model selection to refer to the task of selecting

a particular k* among a set of given models {M(6*)}. We still use the “Ying-Yang
harmony” learning principle for specifying 6, k, which is still implemented by eq.(12) and
eq.(13), but in eq.(6), eq.(8) and eq.(9) we let pa,,pa,, b to be given by eq.(60) and
eq.(61).

Specifically, we have

(a) For eq.(6), similar to eq.(7) we have

H(pr) = H(pi(z,2)), D~ (M) = L(h;) + DI (M),
D7 (M) = [pi(z, z)D; (M]z, z)dzdz,

_ [ —Jpn.(z)Inp(z)dz, Types (a)&(b),
+ Lha) = {0, Type (c); (65)
PM,), , (VlT:2)
prylr.x (ylz, 2) In Pmm’y(:‘x‘.y)PMﬂ,(?Jh)dmdydz’ Type (a),
: PMy, , (VIZ:2) -
D7 (Ma,2) = { o, (ule. )0 Ry dodydz, Type (b),

| My, (VIT2) ded d. T i
Jrm,.  (ylz, 2) In PM ey I WIPM, (2lu)ras, (v) zdydz, Type ().

Though it contains the unknown true density p(z), the term L (hz) is only relevant to h.
and thus can be ignored for each fixed h,.
(b) For eq.(8) and eq.(9), we have

H. = [pn(z,2)H(pm,,, ,(ylz, 2))dzdz, H™(M) = ~L(hz) +HI (M), (66)

HI (M) = [pm, In ppydzdydz = [pr(z, 2)H] (M|z, 2)dzdz,
Iom,,., (ylz, 2) In[pm,,, (212, ¥)pm,,, (y]2)
HI (M|z,2) = {fPM,”,,,(yl-’m z) In[pm,,, , (zlz. y)pm;, (wlT)
Iom,,, (ylz, 2) I pay,, (2l y)om,,, (2ly)pm, (9)ldy,  Type (c).

ldy, Type (a),
1dy, Type (b),

where L(hz) is given by eq.(65) and still ignored for each fixed h.

4.2  Empirical learning versus data smoothing learning

Similarly, we use empirical learning to refer the case of eq.(12) at h =0 and data smoothing
learning to refer the case of eq.(12) with a best h* searched. The empirical learning is still
implemented by eq.(19) with %~ (6, k), D~ (0, k) replaced by %~ (6, k)| h=0, D~ (8, k)|n=0, in
the sense of eq.(20), where #~ (M) = H; (M) is given by eq.(66) and D~ (M) = D] (M)
is given by eq.(65) since L(h;) is irrelevant to 6~ and thus ignored.

The regularization role of the data smoothing learning can still be understood as dis-
cussed in Sec.2.3. Specifically, eq.(23) becomes

L(hz) = L(hz)|h=o0 + 0.5k Hy, DI (M) = D] (M)lr=0 +0.5(h-Rp + h: Rp),

1 N d 2 . 2 ’
H, = { (;Tv' Zi:le:la In p(mz)/axi,ju £§g:s($.)&(b)7 (67)

Rp = 4 TN, T4, 8*D; (M|zi, ) /022, Rh=% TN, SR, 8°DC (M2, z)/022;.

Similar to Sec.2.3, the simplest way for implementing data smoothing learning is still
based on a noise blurred data set of a large enough size N':

Dgz = {.z::,z: :IZ-.,I’ z: =2z;+¢, Zc” =z 4+,
¢ is from G(g,0, hlq), ¢ is from G((,0, helm), (68)

where D!, is a data set that depends on the given value of h.
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We can still use the algorithm eq.(24) for updating h, but with DA = D% and eq.(25)
being replaced by

D™ (h) =D (M*)|a+L™(h), H(pa) = -7 TN, In pa(al, 20,

— ¢y _ J 0.5h H,, Types (a)&(b),

L = {5 Type () .

0 - 0, When p(z) is uniform or In p(z) is linear to x,
P { ?:1 1/s%, otherwise;

DI (M*)|h = 7 TN\ DI (M*|2l, 2}), DI (M*|z,z) = DI (Mlz,2)lg-,  (69)

where 67" is obtained from performing ming- D7 (M)|n=0 on the noisy data D?_, which is
equivalent to performing ming- D] (M) at the given & on the original data D,,. Moreover,

3;‘7 is the variance of the j-th element of the original sample z;, and can be estimated by

st = F Tz —m)t mi= TN =
~ In eq.(69), L~(h)is a part of L(h;) in eq.(67). This L(h;) takes 0 for Type (c) in
eq.(65) but usually a unknown function of & for Types (2)&(b). However, even for Types
(a)&(b), it follows from eq.(20) that L(h;)|h=0 = —§ I p(z;) is irrelevant to learning
and thus can be ignored. Moreover, when p(z) is uniform or Inp(z) is linear to z, it
follows from eq.(67) that H, = 0; when p(z) is gaussian, H, is exactly the trace of the
inverse matrix of its covariance, which is thus used as an estimate of H, in eq.(69).
Again, similar to Sec.2.3, either or both D~ (h) and H(ps) can be estimated in other
choices:
(1) In eq.(69), we can approximately get 6~* from performing ming- DI (M)|p=¢ on
the original data D.,. Moreover, in eq.(67), after ignoring L(h;)|h=0 and DI (M)|r=¢
which are irrelevant to A, in eq.(24) we can also use

D™ (h) = 0.5h 1, + 0.5(h R}, + h, R}), (70)

where R}, R}, are obtainable for some specific architectures, as will be indicated in
Sec.4.3. .
(2) We can also estimate [1(py) based on D, directly. Corresponding L« eq.(26), we
have
hg — €9 -
H(pr) = -0.5(mInh, +dinhg) + D(h;) + 0.5 TR (71)

iz

where D(h;), ho,eq are given by eq.(26) at h = h,.
Moreover, corresponding to eq.(26), we also have

J(h) = 0.5(h: R + ho RS + ho Hy) + H(p), h™e¥ = hold — (gt J1T, h = [hy, b7,
Jz = 0.5h (R} + Hy)h2 — dh, + €], J. = 0.5k (R}h, — m). (72)
Furthermore, we can even directly consider the roots of J. = 0,.J! = 0, and take the one

that is a minimum point of J(h) as an initialization of eq.(72) or eq.(24).
"

4.3  Fully coordinated system versus partially coordinated system

The nature of supervised BYY learning is also featured by the structure of pMyl:,z(y|x’ z)

which coordinates the learning on pps(z|z) in eq.(64) through weighting the hidden repre-
sentation y according to the corresponding relation (z;, z;) given by the training set D,,.
We call a supervised BYY learning system either partially coordinated when M, . (ylz, 2)

is parametric with a given structural constraint or fully coordinated when pMyh'z(ylx, 2)
is structure-free such that it is automatically decided by eq.(12).

1. Parameter learning and model selection on fully coordinated systems

‘@ D-learning  For the D-learning, a structure-free PM,, . (ylz, 2) is automatically
decided by eq.(12), resulting in

PM,,. . (YT, 2) = pr,,, (2|2, Y)pu(ylz) /pM(2]), (73)
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with py(ylz), pm(z|z) given by eq.(64). It further follows from eq.(65) that

- ) _ In par(zlx), for Types (a)&(b), -,
DI (Mz,2) = ~ {In pm(z,x), for Type (c). (74)

For a fixed h, the D-learning in eq.(12) is equivalent to ming D7 (M) given in eq.(65)
with the above D (M]|z, z). Particularly, from eq.(20) we have that the empirical learning
ming D] (M)|n=0 is exactly the ML learning on either pas(z|x) for the cases of Types
(a)&(b) or pam(z,z) for the cases of Type (c). . - '

Moreover, we can use the following alternative reduction procedure for implementing
ming D7(M) at a fixed h: :

Step 1: Get puy,, by eq.(73). . (75)
Step 2: Update 6,y to increase L(f,),,2) = [pa(z, 2)pm,,  Inpw,,, (2|7, y)dzrdydz, update
By|- to increaseL(fy;) = [pa(x, z)pm,,,. pm,,. (ylz)dedyd:, Type (a).

Oz1y. Oy, to increase L(0.,,0,) = [pi(=, 2)my,, In 7-A,;|’(g/|1:)¢lrdyrlz. Type (h),

fz)y to increase L(071y) = [pu(z, 2)pm,,, , Inpwm,,, (z|y)dzdydz,
and 6, to increase L(6,) = [px(r, z)pm,,, ., \opy, (y)drdydz, Type (c).

This procedure can also be incorporated into Sec.4.2 for implementing the data smoothing
learning for a best h*. Further inserting eq.(74) into eq.(67), we can get rather simple
forms of RY,, RE such that it can be directly used in eq.(70) and eq.(72).

After the D-learning, with the obtained 6*,h* or a prefixed h = 0, we can use eq.(13)

for selecting an appropriate k* with 'H(M? = H, (M) given by eq.(66). Particularly, if the
D-learning is empirical, i.e., we can equivalently simplify it by letting

e H-learning For the H-learning, similar to eq.(10), for each fixed % it follows from
eq.(12) that

PMy.c (Wl 2) = 8y~ §). 9 = maxpw,,, , (2l )pag,, (2, ), (76)
H™ (M) =H" (M), H (M) = [pn(z,2)ln [pm,,. , (212, §)pm,, (2, §))dzdz.

Moreover, similar to eq.(32), we can also implement this type of #H-learning by alternatively
repeating:

B

Step 1: for each sample pair (z,z), with 8~ fixed, get y by eq.(76), (77)

Step 2: update 8, , to increase In PM,,.,(z]Z,§),and update (7R)
0+ to increaseIn My, (§2), for Type (a),
0zy+ 0y, to increase In pM;h(glx), for Type (b),

0}, to increase In pm,,, (z|§), 6, to increase In pm,(9), for Type (c),

where each sample pair (z,2) comes either directly from the original data set D,, for
empirical learning or from the noisy data set D%, by eq.(68) for data smoothing learning.
This procedure is a hard-cut version of eq.(75) since 6(y — §) is actually a Winner-take-all
(WTA) version of PM,,., in €q.(73). The WTA competition is made coordinately among

the two parts, namely In M, ,(z|lz,y) and In PM,, (z,y). Thus, similar to Sec.2.4, the
above learning is called supervised Coordinated Competitive Learning (CCL).

Similar to what has been discussed in Sec.4.2, we can also incorporate the above eq.(77)
for getting a best h*. Then, we use eq.(13) for selecting an appropriate k* with H(M) =
H~ (M) by eq.(76).

2. Parameter learning and model selection on partially coordinated systems

When PM, ., is parametric in a structure with a set by, Of parameters, the issues

encountered in parameter learning and model selection are basically the same as discussed
in Sec.4.1 and Sec.4.2. In the implementation of eq.(12), at a fixed k, both the D-learning
and H-learning can be made by alternatively repeating the following two steps:

Step 1: with 6, , 0, fixed, update fyjz.z» to reduce C(M),
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Step 2: with 8, , fixed, update 0.1z and 8, to reduce C'(M); (79)

where 6., consists of all the parameters in ppr, ,, and (M) = D(M) for the D-learning
and C(M) = H(M) for the H-learning. Particularly, for the D-learning, D (M) given in

eq.(65) can be directly used as C'(M) in the above step |. Moreover, the above step 2 can
be further detailed into the step 2 in eq.(75). A

The above procedure can be further incorporated into Sec.4.2 for implementing data
smoothing learning for a best A*. Furthermore, we use eq.(13) for selecting an appropriate

k* with H(M) = H™ (M) by eq.(66). ‘
Being different from the case that PM,, . is structure-free, a parametric PM,), , takes
two roles. First, some pre-knowledge may be incorporated into the structure of PM,,. .,

which imposes a structural constraint to regularize the learning. Second, a parametric
PM,. . in a simple structure can facilitate the computation by implementing Step 1 in

eq.(79) instead of Step 1 in eq.(75).
As shown in Xu(1999d&9R), a typical structure for DMy, consists of two factors.

One is the structure for implementing a deterministic regression relation (z, z) 2y, it is
generally denoted by

g(.”lf, 2, Wy‘x,z) = [Ul 1T I/k]’r =v. (30)

The simplest case is linear v = 5 = Wy|x_z[a:,z]7' + b. It can be further extended into -

a so called post-linear function v; = s(»;), with s(r) being a nonlinear monotonic or
sigmoid function. The second factor is the density form of PM,,,,» Which depends on the

representation form of y. Two typical examples are given by:

k Y; 1- : — T
: V(L= vty binary y = [y1,-- -, y] T,
pm,,, (ylz,2) =3~ J=17) ’ \ ' 81)
vl l {G(yvg(xvzv Wyl:r,z)wz_f])t real y= [ylv"'yyk]T' (
5 Typical Applications to Supervised Learning Tasks
5.1 Mixture-of-experts models and RBF nets
When y =1, -+, k and plex"y(zlrc,y),y = 1,--+, k has a modular structure as introduced

in Sec.4.1, the results introduced in Sec.4 will not only lead us to revisit existing results but
also provide us a number of new results on tasks of supervised learning based on mixture-
of-experts (ME) models and radial basis function (RBF) nets.

1. Revisit of old results

Item 5.1 ( The original model and alternative model of mirture of experts) For astructure-
free pm,, . (ylz,2) given by eq.(73), as previously discussed after eq.(74), we known that

the empirical learning ming D7 (M)|n=o0 is exactly the ML learning on either pm(z|z)
for the cases of Types (a)&(b) or par(z,z) for the cases of Type (c). From'eq.(63) and
eq.(64), we see that pas(z|z) of Type (a) is exactly the original mixture-of-expert (ME)
model (Jacobs, et al, 1991; Jordan & Jacobs, 1994) and that pM (2, z) of Type (c) is exactly
the alternative ME model (Xu, et al, 1994&95). Moreover, with h = 0 from eq.(75) we are
lead to the specific EM algorithins presented in Jordan & Jacobs (1994) and Xu, Jordan
& Hinten (1994&95) for implementing the ML learning on the original ME model and
alternative ME model, respectively. Furthermore, pas(z]z) of Type (b) provides another
variant of ME model, which can be also trained by eq.(75).

2. New results

Item 5.2 (The EM algorithm for RBF nets) Asshown in Xu(1998a), the normalized RBF

net (Moody & Darken, 1989, Xu, et al, 1994) and its further extension can be regarded as
two special cases of the alternative ME model. Thus, from this connection we have derived
the specific EM algorithms for the ML learning on RBF nets and shown that the EM
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algorithims outperform the conventional two step algorithm for RBF net learning (Moody
& Darken, 1989).

Item 5.3 (Coordinated Competitive Learning (C'CL) for ME models and RBI nets) As
discussed in Sec.4.3, the procedure eq.(77) is actually a hard-cut version of eq.(75). At the
special cases of the ME models and RBF nets with empirical learning (i.c., h = 0), eq.(77)
leads us to exactly the CCL learning technique which provides adaptive EM-like algorithins
for implementing on-line learning on the original ME, alternative ME and normalized RBF
(NRBF) nets as well as extended NRBF, firstly presented in Xu(1998a).

Item 5.4 (Dala smoothing learning) We can also get. the above original ME, alternative
ME and RBF nets to be trained by data smoothing learning with a best h* searched as
discussed in Sec.4.2, which provides a new and easy implementing regularization method
for learning on these models. Moreover, as shown in Xu(1999e&1998), for updating 6~ at
each*fixed h, we have two choices. One is made by directly using the above mentioned EM

algorithms or adaptive EM-like algorithms on the noisy data set D! . The other is made

on the original data set by modifying these algorithms slightly, with a term h_/,, added
to T,,, andaterm hcly added to ¥, in a way similar to the last equation in eq.(45),

where L,z ., 2z, are the covariance matrices of PM, ey and pm,,,, respectively.

Item 5.5 (Criteria for selecting the number of experts and of basis functions )  From
eq.(13) we can obtain specific criteria for selecting k as the number of experts in ME models
or the number of basis functions in RBF nets. The details are referred to Xu(1998a). For
examples, we consider eq.(13) at h = 0, and get the following general criterion:

J(k) = Ji(k) + Ja(k), —Ji(k) = & T, Tho oMy, (Wi 20) 10 pagege g (2il2i y).
N T oM, (Yl 2) npag, (vlei), Type (a),
SN T oM, (Wlze ) Inparg, (ylz:), Type (b),
LN oM, (Yl 2) Inpa,, (2ilY)

+Z§=1I'My(y) Inpag, (), Type (c);

~Ja(k) = (82)

where pM:, is given by eq.(28). Type (a) apples to the original ME model and Types (b)&

(c) apply to the alternative ME model, NRBF nets and extend NRBF nets with Type (b)
for the cases where the regression relation par(z|z) is focused on and with Type (c) for the
cases where the joint density pa(z,z) is focused on, respectively. Specifically, we have

IO (k) = IO (k) + L(k), L(k) = & T, Inpm(w:) (83)

where the superscripts (b), (c)’ denote Type (b) and Type (c), respectively.
Moreover, we can further get specific forms of Jy(k), Jz(k) when the densities forms are
given. E.g., when pm,, ., PMm,, are gaussians with covariance matrices Xz ., Xy}, after

ignoring some constants we can get oy = -,lv Zi’ilPMy.,,, (ylzi, zi) and

Jy(k) = Tk oy In|Syp,.ls T (k) = Tk ay In [Sappl + Thoyoy Inay, (84)

as long as N is large enough. Readers are referred to Xu(1998a) for further details.
Item 5.6 (Other variants) We can also get the above original ME, alternative ME and
RBF nets to be trained by either the D-learning or #-learning with pMy'x'z(ylx,z) con-
strained by a given parametric structure, as discussed at the end of Sec.4.3.

5.2 Three layer architecture: (I) with deterministic hidden layer

When pu,,,, (zlz,y) = pm,,,(zly) has a cascade structure as introduced in Sec.4.1, it
follows from eq.(64) that par(z|z) is realized by an architecture of cascaded three layers.

For Type (a), both the mappings z — y and y — z are directly implemented by the forward
architecture = y = z of pa,,.,PM,),, which formns a forward three layer architecture with

one hidden layer in a general probabilistic form. For Types (b) & (c), the mapping z = y
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is indirectly realized by PM:, s which forms a three layer architecture of £ « y — z. This

architecture can be used for bi-directional associate retrieval. After learning, we can use a
sample z as a key to call its inner code y by PM;, and then recall out Z, % as associate
vix

retrieval of z by pm,,,pm,,, - Similarly, we can also use a sample z as a key to call a y.
In this subsection, we focus on the forward architecture x — y — z with deterministic

hidden layer, that is, pa,, (ylz) = 6(y = flz, Wy)).

1. Revisit of old results

Item 5.7 (Three layer forward net with delerministic hidden layer and least sqaure learning)

We again consider the case given by eq.(74), obtained from a structure-free py,, ,(ylz, 2)

that is decided by eq.(73). As discussed after eq.(74) previously, the empirical D-learning
ming D7 (M)|p=0 is exactly the ML learning on pps(z|2) for Type (a), because of

DI (M)|h=o = - SN, Inpag (zil2)), (R5)

When pMﬂ, (ylz) = 5(y - f(xv Wyl:r))v from E(|.(64) we get’ ])M(Z'l‘) = pM,w(zlf(za Wylx))
So, we are lead to the ML learning on a three layer forward net with a deterministic hidden
layer. Furthermore, when

lely = G(Zv g(yv Wzly)v ‘7211")! f(’tv ”/yh') = [/‘l vl 'v/‘k]Tv ;= g(eJT(VVka:x) + aj)(gﬁ)

where m is the dimension of z, 0 < s(r) < 1 is sigmoid function, e.g, s(r) = (1+e ")},

and eJTa: producing the j-th element of x. In this case, when N is large enough, after

ignoring some constants, we find that ming D7 (M)|n=0 is asymptotically equivalent to the
minimization of

D™ (E3) = 0.5mInEz, Ep =N ||z — 9(f(xi, Wypa), W )II2, (87)

with respective to Wy, W,,. That is, it is eqlli{/alent to the least square learning on the

conventional three layer net, which is usually trained by the back-propagation technique.
More interestingly, we can also get a number of new results on three layer net as follows.

2. New results

Item 5.8 (H-learning as a new regularization)  We still consider the above special case.
When puy,, (ylz) = é(y — f(z, W), in help of a technique developed in Sec.4.2 of-
Xu(1999a) for handling f7’M_.,|x,z Inpm,,, dy = I8y = f(xi, I'l{ylz)) Ind(y — flzi, Wy ) dy,
it follows from eq.(76) that par,,, ,(ylz,2) = 6(y—9) = 6(y— f(z, Wy 1)) and H™(M)|a=0 =
‘D:(M)‘hzo + 7'(M), with T‘(A’{) = 7‘V 2:’\-,:1 f(s(l/ - .f(xiv Wyl:c) In 6(y - f(zii Wy|.1:)dy =
-0.5% YN In|Dy(z:)Dy(z)T| + C, Dy(z) = Bf(x,"Vy|x)/8xT, where C is irrelevant to
Wy and thus ignored. Therefore, it also follows from eq.(87) that the empirical #-learning
is equivalent to

min  —Hg (M), " (88)

vlr W, ly

~Hg (M) =mInEy + £ SN W |Ds(z)Ds(xi)T], Dy(z) =0f(z,W,,)/0z7,

w

where the second term acts as a regularization term.

Item 5.7 (A new criterion for selecting hidden unit number)  We keep to consider the
above special case. Not only the above empirical #-learning leads to pum,,, ,(ylz,2) =
5(y—f(z,Wy);)) and Hg (M) in eq.(88), but also the same result is obtained from the empir-
ical D-learning by eq.(73) with pa,,, . (ylz,2) = pm,,, (2ly)Pm, . (ylx) /DM, (2] f (2, Wyi2)),
which is put into H~(M)|n=0 to get the same Hg (M) in eq.(88). Thus, after either the

empirical H-learning or the empirical D-learning, from eq.(13) we can select the number k
of hidden units by ming J(k) with

J(k) = mIn SN, |2 — g(f (i, Wye) We I + 5 S, In | Dy(2:) Dy ()| (89)
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Item 5.8 (Data smoothing learning and hidden unit number selection) We can also im-
plement the data smoothing learning via searching a best h* as discussed in Sec.4.2, which

acts as a new type of regularization. In a simplest way, we update 6~ at each fixed h by
implementing the least sqaure learning or eq.(88) on the noisy data set Dg'z. Then, we
select the number & of hidden units by eq.(89) with .J(k) calculated on the noist data set
DY,

5.3  Three layer architecture: (II) with probabilistic hidden layer

When pr(y[:c) is not a é-density, i.e., the hidden layer is probabilistic, the ML learning

on pm(z|z) is no longer equivalent to the least square learning on  Ey. Actually, we have to

encounter the integral over y in eq.(64) for getting pas(z|z) and thus its regression function

E(z|z}. To overcome this difficulty, we propose a specific approximation technique here.
We consider [ p(u)T(u)du by the Taylor expansion of T'(u) around the mean i =

J up(u)du:

T(u) 2 T(d) + (v = 0)TG(@) + ep(u— )T H (@) (u - ),
_}o, Ist order expansion only,
r= { 0.5, 2nd order expansion, ' (90)

where G(u), H(u) are the gradient and the Hessian matrix of 7T'(u), respectively. Since
Jp(v)(u - @t)du =0, it follows that

[p(W)T (u)du =~ T(&) + c7Tr[E,11(@)], where £, is the covariance matrix of p(u). (91)

Moreover, provide that Jypm,,, (ylz)dy = f(=, W) and PM,, (2y) has a diagonal
covariance matrix L = diag[A;,- -+, \t], we consider pps(zlz) of Type (a) in eq.(64).
Regarding pp,,, (2]y) as T'(u) and PM,, (yl2) as p(u), from eq.(91) we have

. , 8%pm,
pM(Z|x) X pley(zlf(mv ”u[.’r)) + erRy(z, f(x, ”u!r))* RT(Z’ y) = Zf:l’\j_ﬁ;;’;m' (92)

where H, is the Hessian of PM,, With respect to y.

When pum,,, . (ylz,2) = p(ylz,z) is structure-free, from eq.(73) and eq.(92) we further
have

p(ylz,z) = pM,‘y(z'y)pMyh (ylx)/[PMzh,(zlf(mv Wylr)) +crRr(z, f(a, Wylx))]' (93)
Putting it into pag, in eq.(60), from eq.(66) we get HI (M)|p=o = 7{7 E;’N=1f1’M;|x(y|m,‘)
T(yl:r,-, z;)dy with

o pm,, (zily) _ ‘
Tlylen =) = pM,, (Zil f (i, Wy2)) + er Ry (2, [ (i, W,),)  Paey (Eil9)PM, e (120)- (949)

If we regard pm,, (ylz:) as p(u) and T(y|zi, z) as T(u) and consider the lst order
approximation in eq.(91), we get

HI (M=o = & L T (Wi, 20)lym ias (95)

yla)*
In the sequel, we get a number of results from eq.(92), eq.(93), eq.(94)‘amd eq.(95).
1. Revisit of old results

Item 5.9 (The least sqaure learning) When PM,,. (y|7, 2) = p(ylx, 2) is structure-free
and thus given by eq.(73), if we only consider the st order expansion in eq.(92), we again
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get pm(z|z) = pm,,, (2| f(z, W,z)). So, in the case of eq.(86) the empirical D-learning, i.e.,

)

ming D7 (M )|r=0, leads to eq.(87) again. In other words, the least sqaure learning on 7,
for a three layer forward net with deterministic hidden layer can be regarded as an 1st order
approximation of the ML learning on pas(z|z) given by eq.(64) for a three layer forward
net with probabilistic hidden layer.

2. New results

Item 5.10 (A criterion for selecting probabilistic hidden unit number) From eq.(13) and
eq.(9), after empirical parameter learning we can select the number k of hidden units by
J(k) = =H; (M)|r=0 given by eq.(95). Particularly, when we consider the 1st order case in
T (ylzi, ), i-e., er =0, we get

J(k) = =% TN, Inpa,,, , (2l f (@i Wyp,)) = F TRy In pag,, (f (20, Wyie)l22). (96)

Specifically, in the cases of eq.(86) with pPMm,. being a generalized Benoulli distribution,
i.e.,

pMyl: (ylx) = nf:l/l'j(m)yj(l — Iy (x))'—.y"v [l"l (T)» v '1/"1:(:”)]7' = f(zv Wylr)v (97)
after ignoring some irrelevant terins we get that eq.(96) equivalently becomes

J(k) = 0.5mIn T, ||z — g(f (i, Wypz), Wiy, |12
~ A T A i s+ (U= ) In (1 = pj)), (98)

where u;; = p;(z;). It is firstly obtained in Xu(1998a&b) via a so called mean field ap-
proximation. Here, we have justified this previous heuristics through the technique eq.(91).

Item 5.11 (Coordinated Competitive Learning (CCL) and hidden unit selection ) We
consider the empirical H-learning with a structure-free PMy|,,,(?/lxv z) . With h =0, from

eq.(76) and eq.(772’ we get a CCL based learning algorithm for adaptively training a three
layer net with probabilistic hidden layer as follows: ‘

Step 1: for each sample pair (z;,2;), get §; = mjxx[pr'y(z;ly)pMy'x(yl:z:,-)],
Step 2: update 6,), to increase In ])ley(z;h)),and. update 6, to increase v
Inpm,,, (§lz:), e.g., by gradient ascent. (99)

That is, we solve the so called credit-assignment task via a coordinated competition to get
a winner code j; for each z;, and thus separately train the layer 2 — y by the pair (z;, 7;)
and the layer y — z by the pair (4, z).

After parameter learning, with learned parameter 6%, ,6* ., it follows from eq.(76) that
z|y! Tylr q

H™ (M) |h=0 = -,{7 TN I [pm,, (2il9:)pm, . (9ilz:)]. Thus, from eq.(13) and eq.(9) we have
J(k) = = f T, In[pm,, (z:l8:)pm, , (Bil2)), 3= mgxbw,,,,(Zily)PMy,,q(ylx;)], (100)

for selecting hiddenr unit number. Specifically, in the cases of eqs.(86)&(97), we have

Jey= 0.5mIn T |z — g(5:, Wa)IIP
— & N k() 4 (1= ) In (L = p(2))). (101)

Item 5.12 (ML learning and hidden unit selection via second order approzimation) In
the sense of the 2nd order approximation in eq.(92) (i.e., cr = 0.5), both the least sqaure
learning on  E; and the ML learning on pum(2|z) = pm,,(2]f(z, W,;)) are no longer
equivalent to the ML learning on pMSzlz) since there is an additional term Rr(z, §(z)) that
penalizes the uncertainty due to the layer z — y and the layer y — z jointly. Thus, we can
regard that this ML learning on pas(z|z) actually introduces another type of regularization.



80 Xu

We can implement this learning either directly by maximizing pas(z|z) or indirectly via
the following adaptive EM-like algorithmn in help of random sampling:

Step 1: For each pair (z;, z;), randomly sampling a set {y,(j)};-'_'_,l,
then get p(y”)|z;, zi) by eq.(93);
Step 2: forj=1,---,n; with a stepsize 7, update (102)
()
new __ pold (DN, .. dIn pMﬂy(Zihli )
Hzlyl o 0;,'” + 7”’(-%’ l.l:,, 4,) (l)oz'y | ,
dln pg,,, (v7)):)

O’ = Ol + s )=
Fromm —H(M) = D(pm,llpm,) + He with H, given by eq.(66), eq.(13) at h = 0 can also
be estimated in help of random sampling as follows:

J(k) = =Ny npur (zilzs) + T S0, p(u i, 20) In p(y! e, 24), (103)
with pM(z|:i) given by eq.(92) and p(y|z, z) by eq.(93), where each {yfj)};":, is generated
for each pair z;, 2;.

Item 5.13 (Partially coordinated system )  As discussed at the end of Sec. 4.3, when
PM,,,, is parametric in a structure, the parameter learning can still be made by eq.(79)
from which we get specific EM-like algorithms for various sepcific designs of pp,,, , such

as given by eq.(80) and eq.(81). We can also get criteria for selecting hidden unit number
from eq.(13).

Item 5.14 (Data smoothing learning ) In-the cases of a size of training samples. we
can further improve all the above discussed cases by incorporating in the date smoothing
learning via searching a best h* as discussed in Sec.4.2.

6 Conclusion

BYY learning system and theory provides a unified statistical learning framework for pa-
rameter estimation, data smoothing based regularization and model selection on various
tasks of unsupervised learning, supervised learning, and temporal modeling. Under this
general framework, we can systematically obtain not only those existing major learning ap-
proaches with new insights, but also a series new findings. Many topics given in this paper
deserve to be further explored through both experiments and mathematical analyses.
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