
Neurocomputing 51 (2003) 277–301
www.elsevier.com/locate/neucom

BYY learning, regularized implementation, and
model selection on modular networks with one

hidden layer of binary units�

Lei Xu
Department of Computer Science Engineering, Chinese University of Hong Kong Shatin,

N.T., Hong Kong, People’s Republic of China

Received 16 July 2001; accepted 8 May 2002

Abstract

The BYY learning has been extended to a modular system, with developments on not only
regularized implementation via either normalization or data smoothing, but also the least com-
plexity based model selection. Moreover, both unsupervised and supervised learning have been
speci2cally investigated on networks with one hidden layer of binary units. Adaptive EM-like
learning algorithms are provided for implementing regularized learning with either automatic
model selection during parameter learning or post-learning selection criteria for both the num-
ber of individual nets and the number of hidden units. Furthermore, discussions are made on
application of rule extraction for tackling the paradox between con6ict and redundancy.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: BYY modular system; Harmony learning; Binary hidden layer; Mixture-of-experts; Hidden unit
number; Regularization; Model selection; Rule extraction; Con6ict and redundancy

1. Introduction

The tasks of pattern recognition, feature extraction, independent data analysis and sta-
tistical regression as well as rule extraction all share a common key point that performs
an expected input–output mapping. The speci2c type of mapping varies for di;erent

� The work described in this paper was fully supported by a grant from the Research Grant Council of
the Hong Kong SAR (Project No: CUHK 4383=99E).

E-mail address: lxu@cse.cuhk.edu.hk (L. Xu).

0925-2312/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925 -2312(02)00622 -7

278 L. Xu /Neurocomputing 51 (2003) 277–301

network structures and various practical applications. One widely used structure is for-
ward network with one hidden layer of binary units or approximately sigmoid units,
trained via either supervised learning or unsupervised learning.

By supervised learning, the most popular example is the one trained by the back-
propagation technique [28]. Another popular example is the mixture-of-expert model
[12–14] which implements the entire input–output mapping by a number of local in-
dividual networks or called experts that are combined via a probabilistic controlling
of the so called gating net. The EM algorithm [9,24] can be used to separate the
learning of experts and the gating net. Then, each of them can be further learned by
back-propagation. Moreover, an alternative gating model is proposed such that the en-
tire learning can be made in the maximum likelihood sense by the EM algorithm in the
case that each expert is described by a Gaussian with a linear regression [41,23,36].
Furthermore, adaptive EM algorithms have been proposed for fast learning of both the
original and alternative mixture-of-expert models in help of the so called coordinated
competition [36].

By unsupervised learning, one typical example is the multiple cause model that
regards the observed samples being generated from binary hidden factors with mutually
independent bits [29,8], trained by either cost minimization or maximum likelihood.
One other example is the auto-association network that is trained by back-propagation
via simply copying input as the desired output [5]. Another example is the least mean
square error reconstruction (LMSER) learning [34] that was found experimentally to
perform ICA with promising results [15]. Recently, it has been further shown in [38]
that LMSER actually implements not simply ICA but a so called principal ICA that
corresponds to the extension of PCA to ICA.

Regularization and model selection are two major issues that a;ect the performance
of a network learned on a training set of 2nite number of samples. For a network with
one hidden layer, the generalization performance is prone to the number of hidden
units. Many studies have been made. On one hand, several theories and heuristic tech-
niques for regularization have been proposed to impose constraints on the parameters in
networks such that it is e;ectively equivalent to reducing the number of hidden units.
Typical theories for this purpose include Tikhonov-type regularization theory [30,4],
Bayesian theory [21] and MDL theory [25,26], which are actually closely related to
each other. On the other hand, model selection explicitly selects a structure with the
best number of hidden units, by enumerating a number of structures with di;erent
number of hidden units. Typical model selection theories include Bayesian theory [21],
MDL [25,26,11], VC dimension based generalization theory [31], cross validation [27]
and AIC [1] as well as its extensions [6]. However, these theories are usually diLcult
or expensive in computational implementation.

The Bayesian Ying-Yang (BYY) learning was proposed as a uni2ed statistical learn-
ing framework 2rstly in 1995 and systematically developed in past years [38]. From
the perspective of general learning framework, the BYY harmony learning consists of a
general BYY system and a fundamental harmony learning principle as a uni2ed guide
for developing two new regularization techniques, a new class of criteria for model
selection, and a new family of algorithms that perform parameter learning with auto-
mated model selection. From the perspective of speci2c learning paradigms, the BYY

L. Xu /Neurocomputing 51 (2003) 277–301 279

learning with speci2c structures applies to unsupervised learning, supervised learning,
and state space approach for temporal modeling, with a number of new results. The
details are referred to [38].

The model selection ability of the BYY learning can also be further understood
from an information transfer perspective. As discussed in [39], the BYY harmony
learning shares the common spirit of the minimum message length (MML) [32,33] or
the minimum description length (MDL) [25,26], but with two key di;erences that make
the BYY harmony learning avoid the diLculty of encoding the parameter set, as usually
encountered by the MML=MDL approach. The relations of the BYY harmony learning
to certain existing learning approaches have also been discussed in [39]. Moreover, the
experimental results that demonstrate how model selection by the BYY learning works
have been made in comparison with some existing approaches on several learning
tasks, including the number of clusters on Guassian mixture and clustering analyses in
[35,17], the hidden unit selection of three layer nets [18,22], the number of experts
in the mixture-of-experts model [19], local PCA analyses [20], and temporal factor
analysis [7].

In Section 2 of this paper, after introducing the fundamentals of BYY harmony learn-
ing, we further extend the harmony learning to the BYY modular system. In Sections
3 and 4, respectively, both unsupervised and supervised learning have been speci2cally
investigated on networks with one binary hidden layer. Adaptive EM-like learning algo-
rithms are provided for implementing regularized learning with either automatic model
selection during parameter learning or post-learning selection criteria for the number
of individual nets and the number of hidden units. Finally, discussions are made in
Section 5 on applications of rule extraction for tackling the paradox between con6ict
and redundancy.

2. Bayesian Ying-Yang system and harmony learning

As shown in Fig. 1, we consider a world X with each object in observation rep-
resented by a stochastic notation x∈X. Corresponding to each x, there is an inner
representation y∈Y in the representation domain Y of a learning system. We con-
sider the joint distribution of x; y, which can be understood from two complement
perspectives.

On one hand, we can interpret that each x is generated (or called reconstructed=
decoded) from an invisible inner representation y via a backward path distribution
q(x|y) or called a generative model by which x is generated from an inner distribution
q(y) in a structure that is designed according to the learning tasks. On the other hand,
we can interpret that each x is mapped (or called encoded=recognized) into an invisible
inner representation y via a forward path distribution p(y|x) to match the inner density
q(y) in a pre-speci2ed structure.

The two perspectives re6ect the two types of Bayesian decomposition of the joint
density q(x|y)q(y)= q(x; y)=p(x; y)=p(x)p(y|x) on X ×Y . Without any constraint,
the two decompositions should be theoretically identical. However, in a real consid-
eration, the four components p(y|x); p(x); q(x|y); q(y) should be subject to certain

280 L. Xu /Neurocomputing 51 (2003) 277–301

Fig. 1. Bayesian Ying-Yang system.

structural constraints. Thus, we usually have two di;erent but complementary Bayesian
representations:

p(x; y) = p(y|x)p(x); q(x; y) = q(x|y)q(y); (1)

which compliments to the famous Chinese ancient Ying-Yang philosophy [38] with
p(x; y) called Yang machine that consists of the observation space (or called Yang
space) by p(x) and the forward pathway (or called Yang pathway) by p(y|x), and with
q(x; y) called Ying machine that consists of the invisible state space (or Ying space)
by q(y) and the Ying (or backward) pathway by q(x|y). Such a pair of Ying-Yang
models is called Bayesian Ying-Yang (BYY) system. The task of learning on a BYY
system consists of specifying all the aspects of the system, which is implemented in
three steps.

First, on a set X of samples from the observed world X, the distribution p(x) can
be obtained by a non-parametric Parzen window estimate [10]:

phx(x) =
1
N

N∑
t=1

G(x|xt ; h2xI); (2)

where, and throughout this paper, G(x|m;�) denotes a Gaussian density with mean
vector m and covariance matrix �. Particularly, phx(x) = p0(x) becomes the empirical
density when hx = 0.

Second, we need to design each structure of p(y|x); q(x|y); q(y). The details will
be discussed in the subsequent sections.

In a narrow sense, our learning task is mainly the third step that has two subtasks.
One is called parameter learning for determining a value of the set � that consists
of all the unknown parameters in p(y|x); q(x|y); q(y) as well as hx (if any). The

L. Xu /Neurocomputing 51 (2003) 277–301 281

other subtask is to select the scale of the representation domain Y, which is featured
by a set k of several natural numbers. This subtask is usually called model selection
since a collection of speci2c BYY systems with di;erent values on k corresponds to
a family of speci2c models that share a same system con2guration but in di;erent
scales.

Our fundamental learning principle is to make the Ying machine and Yang machine
be best harmony in a twofold sense:

• The di;erence between the two complementary Bayesian representations in Eq. (1)
should be minimized.

• The resulting BYY system should be of the least complexity.

Its implementation is made via maximizing a so called harmony measure. Specially,
we have two ways. One is making the above 2rst point via minimizing the Kull-
back divergence and then making the above second point via maximizing the har-
mony measure [37]. The other way is to make both points jointly via maximizing
the harmony measure [38]. This paper will focus on further studies on the second
way.

The simplest harmony measure is the following cross entropy:

H (p‖q) =
N∑
t=1

pt ln qt ; (3)

for two discrete densities both p(u); q(u) in the form of

q(u) =
N∑
t=1

qt�(u− ut);
N∑
t=1

qt = 1; (4)

with �(u) being a �-function.
Maximizing this H (p‖q) has two interesting natures:

• Matching nature with p 2xed, maxq H (p‖q) pushes q towards

qt = pt for all t: (5)

• Least complexity nature maxp H (p‖q) with q 2xed pushes p towards

p(u) = �(u− u�) with �= argmax
t

qt ; (6)

or equivalently p�=1, and pt=0 for other t, which is of the least complexity from the
statistical perspective [38]. Thus, the maximization of the functional H (p‖q) indeed
implements the above harmony learning principle mathematically.

When p(u); q(u) are discrete or continuous densities, a typical form of the harmony
measure is

H (p‖q) =
∫

p(u) ln q(u) du− ln zq; (7)

282 L. Xu /Neurocomputing 51 (2003) 277–301

where zq depends on how p(u) is estimated. For p(u) = ph(u) by Eq. (2), we have

zq =




N∑
t=1

q(ut) (a) hx = 0;

N∑
t=1

ph(ut) (b) hx to be learned;

(8)

under a mild assumption
∑N

t=1 q(ut) =
∑N

t=1 p(ut).
It can be observed that Eq. (7) degenerates to Eq. (3) when q(u); p(u) are discrete

as in Eq. (4). Moreover, for the case (a), H (p‖q) will degenerate to the likelihood
function either when q(u) is a discrete density with zq = �u(0) or when q(u) is a
continuous density but we make a crude approximation zq = 1. In other words, it
becomes equivalent to the maximum likelihood (ML) learning.

The fact that maximizing a cross entropy like cost max�
∫
p0(u) ln q(u) du leads to

the ML learning is well known in the literature. However, what is new is that a general
zq by Eq. (8) introduces a regularization to ML learning via either a de-learning in the
choice (a) or a Tikhonov-type in the choice (b) [38].

More interestingly, though the least complexity nature Eq. (6) is regarded as be-
ing useless in the conventional literature, it takes an essential role in learning on
the Bayesian Ying-Yang (BYY) system, with p(u) = p(x; y) = p(y|x)p(x); q(u) =
q(x; y) = q(x|y)q(y) inserted in Eq. (7). Instead of completely 2xed as p(u) = ph(u)
by a training set of samples, the Yang machine consists of not only p(x) = phx(x)
that is 2xed from the training set, but also p(y|x) that is free or at least not com-
pletely 2xed and thus will be pushed towards its least complexity form by the least
complexity nature Eq. (6). In turn, the matching nature of harmony learning will fur-
ther push q(x|y) and q(y) towards their corresponding least complexity forms. In
other words, the least complexity nature in a BYY system makes model selection
possible.

Mathematically, the harmony learning is described as

max
�;k

H (�; k); H (�; k) = H (p‖q); (9)

where H (p‖q) is obtained with p= p(y|x)p(x); q= q(x|y)q(y) in Eq. (7).

3. A new development on BYY harmony learning

3.1. BYY harmony learning with modular representation domains

The nature of a BYY system is featured by the structure of q(y), which depends on
the complexity of the representation domain Y that depends on the complexity of the
learning task in consideration as well as the world X we observe.

The most simpli2ed world X consists of only a single object which is observed via a
set X of samples with each sample x=[x(1); : : : ; x(d)]T from a same underlying probabil-
ity density function (pdf) p(x). Correspondingly, in the BYY system, the representation

L. Xu /Neurocomputing 51 (2003) 277–301 283

domain Y consists of each y= [y(1); : : : ; y(m)]T as an inner representation of x, subject
to a parametric structure of q(y). In the literatures of both biological neural system
modeling [3] and statistical data analysis [2], a widely adopted principle for represent-
ing the observed data via an inner representation is assuming that y= [y(1); : : : ; y(m)]T

comes from a distribution p(y) that is independent among components. The details of
such a type are referred to the previous papers [37,38].

Here, a new development is to consider a world X = {X; L} that consists of a
number of individual objects to observe, with L denoting a set of labels and each
‘∈L denoting an object. In this case, each x = {x; ‘} contains a feature vector x =
[x(1); : : : ; x(d)]T observed from the object ‘, subject to a joint underlying pdf p(x) =
p(x; ‘) = p(x|‘)p(‘). Correspondingly, we consider a modular representation domain
Y={Y; L} in the BYY system, subject to a parametric structure of p(y; ‘)=p(y|‘)p(‘)
that describes the vector y= [y(1); : : : ; y(m‘)]T and the label ‘ jointly, in the sense that
each p(y|‘); ‘∈L is independent among components, weighted by p(‘). That is, we
have a modular independence space.

Given a set of samples with each sample x appended with a known label ‘, the
learning tasks degenerate simply into the tasks of learning on each object separately.
Thus, we generally consider a set of samples of x with all the labels absented. Specif-
ically, the learning tasks can be understood from two complementary perspectives as
follows:

• It follows from q(x|y; ‘) that p(x) can be estimated via

q(x) =
∑
‘∈L

∫
q(x|y; ‘)q(y; ‘) dy =

∫
q(x|y)q(y) dy; (10)

with several q(x|y; ‘); ‘∈L structures engaged in action under the control of q(y; ‘).
We can interpret q(x) as a 2nite mixture

q(x) =
∑
‘∈L

q(x|‘)q(‘); q(x|‘) =
∫

q(x|y; ‘)q(y|‘) dy; (11)

where each q(x|‘) describes an object ‘∈L that is generated from each independence
pdf p(y|‘); ‘∈L via each individual Ying path.
Moreover, q(x) can also be interpreted as generated from a 2nite mixture

q(y) =
k∑

‘=1

q(y; ‘) =
k∑

‘=1

q(y|‘)q(‘) (12)

via q(x|y) in the form of the so called mixture-of-expert model [12–14], i.e.,

q(x|y) =
k∑

‘=1

q(x|y; ‘)q(‘|y); q(‘|y) = q(y|‘)q(‘)=q(y); (13)

which is a weighted sum of each expert q(x|y; ‘), gated by either the alternative
gate q(‘|y) [41,36] or the original softmax gate [12–14].

284 L. Xu /Neurocomputing 51 (2003) 277–301

• Alternatively, we can also use p(y; ‘|x); ‘∈L to get p(y; ‘) =
∫
p(y; ‘|x)p(x) dx

that matches an expected inner pdf q(y; ‘). It can be further understood from

p(y; ‘) =
∫

p(y; ‘|x; ‘)p(x; ‘) dx = p(y|‘)p(‘);

p(y|‘) =
∫

p(y; ‘|x; ‘)p(x|‘) dx: (14)

That is, each p(y; ‘|x; ‘) will discover certain structure of the corresponding object
‘∈L. Moreover, from Eq. (14) we have

p(y) =
∑
‘∈L

p(y; ‘) =
∫

p(y|x)p(x) dx;

p(y|x) =
∑
‘∈L

p(y|x; ‘)p(‘|x): (15)

That is, the Yang path can be implemented again by a mixture-of-expert model [13,14]
with each expert p(y|x; ‘), gated by p(‘|x). In this case, each sample x is not only
mapped to an inner representation via p(y|x) but also classi2ed into an object ‘ in
help of p(‘|x).
3.2. Learning implementation with B-architecture and BI-architecture

The architecture of a BYY system is featured by a combination of the speci2c struc-
tures of p(y|x); q(x|y), which leads to three choices, namely, the backward architec-
ture, the Bi-directional architecture, and the forward architecture (shortly B-architecture,
BI-architecture, and F-architecture, respectively). The details are referred to [38]. In this
paper, we extend to consider modular B-architecture and modular BI-architecture.

In a modular B-architecture, p(y|x) = p(y; ‘|x) is structure-free and will be indi-
rectly speci2ed via Eq. (9) by the structures of q(y; ‘) and q(x|y; ‘). Similar to a
B-architecture in [38], the least complexity nature Eq. (6) of the harmony learning
Eq. (9) will push

p(y; ‘|x) = p(y|x; ‘)p(‘|x) (16)

towards its least complexity form via a winner-take-all (WTA) competition

p(y|x; ‘) = �(y − y‘(x)); p(‘|x) = �(‘ − ‘(x));

y‘(x) = argmin
y

d(‘; x; y); ‘(x) = argmin
‘

d(‘; x; y‘(x));

d(‘; x; y) =−ln [q(x|y; ‘)q(y|‘)q(‘)] + ln zq; (17)

where zq does not vary with l; x; y and thus has no a;ect on the outcome of the
minimization, but being conceptually useful. In other words, q(‘) is a � pdf, and
either or both of q(x|y; ‘); q(y|‘) may also be � pdf, which makes the 2rst part of
d(‘; x; y) contains an in2nite term −ln �(0). The a;ect of this in2nite is canceled by
ln zq because it correspondingly contains a ln �(0).

L. Xu /Neurocomputing 51 (2003) 277–301 285

In a modular BI-architecture, we consider a speci2c parametric model of Eq. (16)
with

p(y|x; ‘) = G(y|y‘(x); h2yI); y‘(x) = f‘(x|�y|x;‘); (18)

with p(‘|x) being structure-free. Putting it into Eq. (9), we get p(‘|x) as in Eq. (17)
again but with

‘(x) = argmax
‘

[q(x|y‘(x); ‘)q(y‘(x); ‘)]: (19)

Actually, p(y|x; ‘) in Eq. (17) can be regarded as a special case of Eq. (18) at
hy = 0. Putting p(y|x; ‘) by Eq. (18) and p(‘|x) by Eq. (17) into Eq. (9), with Eq.
(2) we get

H (p‖q) = 1
N

N∑
t=1

H (xt ; yt;‘t)− ln zq; y‘; t = y‘(xt); ‘t = ‘(xt);

H (xt ; yt;‘t) =
∫

G(x|xt ; h2xI)G(y|yt;‘t ; h2yI) ln[q(x|y; ‘t)q(y; ‘t)] dx dy: (20)

Using v denoting either x or y, we have that h2v = 0 when v comes from a discrete
distribution or equivalently G(v|vt ; h2vI) degenerates to �(v − vt). In these cases, the
integral in H (xt ; yt;‘t) will disappear automatically.

In help of a trick used in [38], i.e., making Taylor expansion of ln q(x|y; ‘) and
ln q(y; ‘) around xt ; yt up to the second order, we can generally avoid the integral by
the following approximation:

H (xt ; yt;‘t) = ln[q(xt |yt;‘t ; ‘t)q(yt;‘t |‘t)q(‘t)] + 0:5h2xTr[H
x
q (xt |yt;‘t ; ‘t)]

+0:5h2yTr[H
y
q (xt |yt;‘t ; ‘t)] + 0:5h2yTr[H

y
q (yt;‘t ; ‘t)]; (21)

Hx
q(x|y;‘) =

@2 ln q(x|y; ‘)
@x@xT

; Hy
q(x|y;‘) =

@2 ln q(x|y; ‘)
@y@yT ; Hy

q(y;‘) =
@2 ln q(y; ‘)
@y@yT ;

where, and throughout this paper, Tr[A] denotes the trace of the matrix A.
Moreover, it follows from Eq. (8) that

zq =




N∑
t=1

k∑
‘=1

q(xt |yt;‘; ‘)q(yt;‘; ‘) (a) hx = 0; hy = 0;

N∑
t=1

phx(xt)
k∑

‘=1

q(yt;‘; ‘) (b) hy = 0; hx to be learned;

N∑
t=1

k∑
‘=1

q(xt |yt;‘; ‘)q(‘)
(2$hy)0:5m‘

(c) hx = 0; hy to be learned;

N∑
t=1

phx(xt)
k∑

‘=1

(2$hy)−0:5m‘ (d) both hx; hy to be learned:

(22)

286 L. Xu /Neurocomputing 51 (2003) 277–301

Similar to Eq. (8), (b) comes from (b) subject to
∑N

t=1

∑k
‘=1 q(xt |yt;‘; ‘)q(yt;‘; ‘) =∑N

t=1

∑k
‘=1 p(yt;‘; ‘|xt)ph(xt). Similarly, (b) and (c) come from (a).

Putting the above zq and Eq. (21) into Eq. (20), we can implement Eq. (9) both for
parameter learning and model selection.

The task of parameter learning is to determine the parameter set � that consists of all
parameters in q(x|y; ‘) and q(y|‘), plus (a) �y|x;‘ for a BI-architecture with p(y|x; ‘)
given in Eqs. (18) and (b) each of unknown hx; hy (if any).

The task of model selection is to select the values of k = {k; {m‘}k‘=1}, which can
be further understood by observing that the least complexity nature Eq. (6) pushes
p(y; ‘|x) towards its least complexity form Eq. (17). Then, the matching nature of
harmony learning in turn further pushes q(x|y; ‘) and q(y; ‘) towards their correspond-
ing least complexity forms.

Speci2cally, parameter learning and model selection can be implemented either in
the conventional two-phase style or in a parallel style in that model selection is made
automatically during parameter learning.

In the two-phase style, we enumerate k; {m‘}k‘=1 from small values incrementally,
and at each speci2c setting of k = {k; {m‘}k‘=1} we perform parameter learning

max
�

H (�); H (�) = H (�; k) (23)

for a best value � ∗, during which we can simply set

q(‘) = 1=k;
∫

(y − %y;‘)(y − %y;‘)Tq(y|‘) dy = b0I; %y;‘ =
∫

yq(y|‘) dy;
(24)

where b0¿ 0 is a given constant. For example, b0=0:25 when y comes from Bernouilli
and b0 = 1 when y comes from Gaussian.

Then, we select best setting k∗ by

min
k

J (k); J (k) =−H (� ∗; k): (25)

Considering q(y; ‘) = q(y|‘)q(‘), it is not diLcult to observe that letting p(‘) to be
zero is equivalent to reducing k by one. Moreover, we also observe that

q(y|‘) = �(y(j) − c0)
∏
r �=j

q(y(r)|‘); (26)

with c0 being a constant, implies that the dimension y(j) can be removed and m‘ is
reduced by one. That is, a value of � with such settings is equivalent to forcing k; m‘

e;ectively to be reduced to appropriate scales.
With Eq. (17) inserted into Eq. (9), we can observe that the on-line implemen-

tation of maxH (p‖q) is equivalent to maximizing ln q(x|y; ‘); ln q(y|‘) and ln q(‘).
Speci2cally, maximizing ln q(‘) leads to that

all extra q(‘) are pushed towards zero: (27)

While maximizing ln q(y|‘) leads to the nature that

q(y(j)|‘) on each extra dimension is pushed towards �(y(j) − c0): (28)

L. Xu /Neurocomputing 51 (2003) 277–301 287

Therefore, the least complexity nature Eq. (6) does imply model selection during
parameter learning. In other words, setting the scales m‘; k large enough, we can imple-
ment parameter learning by Eq. (23) during which model selection is made automatically.

More speci2cally, parameter learning Eq. (23) is implemented via gradient ascending,
by updating parameters in q(x|y; ‘); q(y|x; ‘); q(y|‘), an p(‘), separately. The details
are referred to Table 1.

4. Unsupervised modular binary hidden layer networks

4.1. Modular B-architecture

We consider a B-architecture with

q(x|y; ‘) = G(x|A‘y + c‘; +2
‘I);

q(y|‘) =
m‘∏
j=1

[q‘;j�(y(j)) + (1− q‘;j)�(1− y(j))]; (29)

from which we get a mixture q(x) =
∑

‘ q(x|‘)q(‘) with each q(x|‘) =
∑

y q(y|‘)
q(x|y; ‘) itself consisting of 2m‘ Gaussians G(x|A‘y + c‘; +2

‘I), where the variance for
each ‘ is a constant +2

‘ but the mean vector A‘y + c‘ changes as y varies according
to q(y|‘). These Gaussians are mixed by q(y|‘) in an organization formed by locating
a Gaussian with the zero mean and the covariance +2

‘I at every vertex of a polyhedra
that is obtained by an arbitrary aLne transformation from a m‘ dimensional hypercubic
in the Rd space of x.

Learning on the B-architecture Eq. (29) can be implemented as a special case of
what discussed in the previous section. Speci2cally, a structure-free p(y; ‘|x) will still
lead to Eq. (17) with

d(‘; x; y) = 0:5
‖x − A‘y − c‘‖2

+2
‘

+ 0:5 ln +2
‘

− ln q(‘)−
m‘∑
j=1

[y(j) ln q‘;j + (1− y(j)) ln(1− q‘;j)]: (30)

Also, it follows from Eq. (21) that

Hx
q(x|y;‘) =−0:5+−2

‘ I; Hy
q(x|y;‘) =−0:5+−2

‘ AT
‘A‘; Hq(y;‘) = 0: (31)

Putting Eqs. (29), (30), and (31) into Table 1, learning can be implemented, with its
Step 4 substituted by

4(a) : qnew‘; j = bnew 2
‘; j ; bnew‘; j = bold‘; j + -t;‘t b

old
‘; j (y

(j)
‘; t − qold‘; j)=[q

old
‘; j (1− qold‘; j)];

if either qnew‘; j → 0 or qnew‘; j → 1; discard the jth dimension

according to Eq: (28):

288 L. Xu /Neurocomputing 51 (2003) 277–301

Table 1
A uni2ed learning procedure for both B-architecture and BI-architecture

Set zq(t) = 0; q(‘) = 1=k: �x|y;‘; �y|‘ denote parameters in q(x|y; ‘); q(y|‘), respectively.
-0 ¿ 0 denotes a constant that may take di;erent values in updating di;erent parameters

Step 1: y‘; t = y‘(xt); ‘t = ‘(xt), by

{
(a) Eq: (17) for a BI-architecture;

(b) Eq: (18) and Eq: (19) for a B-architecture:

Step 2: zq(t) = zq(t − 1) +




k∑
‘=1

q(xt |y‘; t ; ‘)q(y‘; t ; ‘) (a) hx = 0; hy = 0;

k∑
‘=1

q(y‘; t ; ‘) (b) hy = 0; but hx �=0 to be learned;

k∑
‘=1

q(xt |y‘; t ; ‘)q(‘) (c) hx = 0; but hy �=0 to be learned;

0 (d) both hx; hy to be learned:

-t;‘ = -0[
�‘;‘t
tnew − -dt;‘],

�‘;‘t =
{

1 ‘ = ‘t ;
0 otherwise;

-dt;‘ =




q(xt |y‘; t ; ‘)q(y‘; t |‘)q(‘)
zq(t)

(a) hx = 0; hy = 0;

q(y‘; t |‘)q(‘)
zq(t)

(b) hy = 0; but hx �=0 to be learned;

q(xt |y‘; t ; ‘)q(‘)
zq(t)

(c) hx = 0; but hy �=0 to be learned;

0 (d) both hx �=0; hy �=0 to be learned:

Note: −ln zq results in a de-learning via -dt;‘ in e9ect when either or both of hx; hy are zero.

Step 3: Skip this step for the two-phase style implementation, otherwise update

qnew(‘) =




qold(‘) + -0
1 + -0

; ‘ = ‘t ;

qold(‘)
1 + -0

otherwise:

if qnew(‘) → 0, we discard the corresponding cluster ‘ according to Eq. (27).

Step 4: �newy|‘ = �oldy|‘ + -t;‘∇�y|‘ J (y‘; t ; �y|‘); J (y; �y|‘) = ln q(y|‘) + 0:5h2yTr[Hq(y|‘)].

(which is subject to the constraint Eq. (24) for the two-phase style implementation.)

Step 5: �newx|y;‘ = �oldx|y;‘ + -t;‘t∇�x|y;‘ J (xt ; y‘; t ; �x|y;‘),

J (x; y; �x|y;‘) = ln q(x|y; ‘) + 0:5Tr[h2xH
x
q(x|y;‘) + h2yH

y
q(y|‘)].

L. Xu /Neurocomputing 51 (2003) 277–301 289

Table 1 (continued)

Step 6: Skip this step for a B-architecture, otherwise via y‘(xt) = f‘(xt |�y|x;‘) to update

�newy|x;‘ = �oldy|x;‘ + -t;‘t∇�y|x; ‘ [J (xt ; y‘(xt); �x|y;‘) + J (y‘(xt); �y|‘)].

Step 7(a): For hx �=0 to be learned, it is updated via gradient ascent, i.e.,

hnewx = holdx + -0gx(hx); gx(hx) = d
hx

+ hxTr[Hx
q(xt |yt ;‘t)] −

dh2x;0
h3x

,

h2 new
x;0 = (1 − -0)h2 old

x;0 + -0
∑n

t=1
∑n

t′=1 pt; t′‖xt − xt′‖2,

pt; t′ = e−0:5‖xt−xt′ ‖
2 =h2x

zDq (t)
; zDq (t) = (1 − -0)zDq (t − 1) + -0e−0:5‖xt−xt′‖2=h2x .

Initially, set zDq (0) = 0. Also, hx can be set at the roots of gx(hx) = 0.
Note: The iterative process adaptively provides as approximations of

h2x;0 = (1=d)
∑N

t=1
∑N

t′=1 pt; t′‖xt − xt′‖2; pt; t′ = e−0:5‖xt−xt′‖2=hold 2
x =zNq (holdx ; d).

Step 7(b): For hy �=0 to be learned, it is also updated via gradient ascent, i.e.,
hnewy = holdy + -0gy(hy); gy(hy) = m

hy
+ hy Tr[H

y
q(xt |yt ;‘t) + Hy

q(yt ;‘t)
],

Similarly, hy can be initially set at the root of gy(hy) = 0.

4(b) : et;‘ = xt − A‘ty‘; t − c‘t ; A
new
‘ = Aold

‘ + -t;‘eoldt; ‘ y
T
t ; c

new
‘ = cold‘ + -t;‘eoldt; ‘ ;

+new
‘ = +old

‘ + -t;‘+old
‘ (‖eoldt; ‘ ‖2 − +2 old

‘); +new 2
‘ = +new

‘ +new
‘ : (32)

During learning, not only automatic selection on clusters is in action via Step 3, but
also automatic determination on each dimension m‘ is made via Step 4(a) by checking
if q‘;j is pushed towards 1 or 0.

In the two-phase style implementation, we can simply 2x q(‘) = 1=k; q‘; j = 1=2.
Putting Eqs. (22), (30), and (31) into Eqs. (20) and (21), we get a speci2c criterion
from Eq. (25):

J (k; {m‘}) = ln k +
∑k

‘=1 m‘

k
ln 2 +

0:5d
k

k∑
‘=1

(
ln +2

‘ +
h2x
+2
‘

)
+ ln zq; (33)

zq =




1
k

N∑
t=1

k∑
‘=1

2−m‘G(xt |A‘y‘; t + c‘; +2
‘I) (a) hx = 0;

zq(hx)
N (2$h2x)d=2

; zq(hx) =
N∑
�=1

N∑
t=1

e−0:5‖xt−x�‖2=h2x (b) hx
=0:

Particularly, when k = 1, removing the label ‘, it is simpli2ed into

J (m) =




ln + ln
N∑
t=1

e−0:5
‖xt−Ayt−c‖2

+2 (a) hx = 0;

m ln 2 + 0:5d ln +2 + 0:5
dh2x
+2 + ln zq(hx)

N (2$h2x)d=2
(b) hx
=0:

290 L. Xu /Neurocomputing 51 (2003) 277–301

4.2. Modular BI-architecture

In a B-architecture discussed above, the task of getting y‘; t is a combinatorial
optimization problem on the quadratic cost d(‘; x; y) in Eq. (30), which should be
solved per sample xt . This computing cost can be very expensive. In a BI-architecture,
this cost can be avoided when p(y|x; ‘) is given by a special case of Eq. (18) as
follows:

y‘(x) = s(ŷ ‘); ŷ ‘ =W‘x + d‘; (34)

where and hereafter in this paper, s(r) denotes a sigmoid function s(r)= (1+e−4r)−1.
Also, for a vector u= [u(1); : : : ; u(m)]T, we denote s(u) = [s(u(1)); : : : ; s(u(m))]T.

In this case, Table 1 is implemented with Eq. (32). Moreover, Step 5 takes the
following detailed form:

Step 5 : e0t; ‘ = Aold T
‘ ext;‘ + +old 2

‘ eyt;‘; e
x
t;‘ = xt − A‘y‘; t − c‘;

eyt;‘ =
[
ln

q‘;1
1− q‘;1

; : : : ; ln
q‘;m

1− q‘;m

]T

; dnew
‘ = dold

‘ + -t;‘Ds(ŷ ‘; t)e
0
t; ‘;

W new
‘ =W old

‘ + -t;‘Ds(ŷ ‘)e
0
t; ‘x

T
t ; ŷ ‘; t =W‘xt + d‘; (35)

where eyt;‘ is the correcting term from the part of q(y|‘). Here and hereafter, the nota-
tion Ds(u) denotes a diagonal matrix with its diagonal elements [s′(u(1)); : : : ; s′(u(m))]T

and s′(r) = ds(r)=dr.
To get a further insight, we consider Eq. (30) at the special case that k = 1;

qj = q‘;j = 0:5; c= c‘ = 0; d= d‘ = 0; hx = 0, and zq = 1. It follows that the harmony
learning Eq. (23) becomes equivalent to minimize

+2 =
1
N

N∑
t=1

‖xt − As(Wxt)‖2; (36)

which is called auto-association learning via three layer net and can be trained in the
same way as training a three layer net by the Back-propagation technique [28]. Under
the constraint that A =W T, it further becomes the so called least mean square error
reconstruction (LMSER) learning that was 2rstly proposed in 1991 [34] with both
batch and adaptive gradient algorithms provided. Also, it was found that a sigmoid
non-linearity s(r) leads to an automatic breaking on the symmetry of the components
in the subspace. Three years later, the LMSER learning and its adaptive algorithm have
been directly adopted in [15] to implement ICA with promising results under the name
of nonlinear PCA.

Why LMSER performs such an ICA task can be understood from the perspective
of Eqs. (29) and (34). By Eq. (29), each bit of y is expected to take value 1 with
probability 0:5, independent from other bits. By Eq. (34), each mapping from s(ŷ ‘) to y
has no cross-talk among components. Thus, the independence of y among components

L. Xu /Neurocomputing 51 (2003) 277–301 291

means the independence of ŷ=Wx, i.e., it implements ICA. One key feature of this ICA
is that the observation noise is considered via minimizing +2, so it actually implements
a noisy ICA problem.

Moreover, the BI-architecture Eqs. (29) and (34) with the learning algorithm Eq.
(35) extends the LMSER learning with the following new results:

(a) Criterion for hidden unit number and automatic selection. With k = 1 and
qj = q‘;j = 0:5, we can use Eq. (33) for deciding the number m of hidden unit,
with +2 given in Eq. (36). Moreover, with qj = q‘;j not 2xed, but learned by Step
4(a) in Eq. (32), automatic selection on these hidden units will be made during
learning.

(b) ICA that works on both super-Gaussian and sub-Gaussian sources. Instead
of 2xing qj = q‘;j = 0:5, making learning with qj updated via Eq. (32) will let
qj to adapt the distribution of y such that the above discussed ICA works on a
noisy observation x that is generated from y with components coming from
either or both of super-Gaussian and sub-Gaussian sources. Thus, it not only acts
as an alternative of the LPM-ICA [40] with a much simpli2ed computation, but
also makes the sources selected via either Eq. (33) or automatically during
learning.

(c) Local LMSER for structural clustering and competitive ICA. With k ¿ 1,
a local LMSER learning is made locally on each cluster of data via the competition
Eq. (17), i.e., ‘t = argmin‘ d(‘; xt ; y‘(xt)). In other words, it implements a compet-
itive ICA, with the number k selected via either Eq. (33) or automatically during
learning.

4.3. Bernoulli LMSER and automatic selection

We further consider the cases that x = [x(1); : : : ; x(d)]T with each x(j) = 0 or 1. That
is, we regard each binary code x generated from an inner binary code y. One example
that explores along this direction is the early work called multiple cause mixture [29].
It models each bit x̂(j) =1−∏

i(1−yiaij) via binary aij and then matches the observed
bit x(j) with a cost function. Learning becomes a combinatorial optimization problem
that searches the values of ai; j. Also, the maximum likelihood learning is proposed
on this model [8], with each binary code x interpreted as Bernoulli via de2ning the
probability that x(j) =1 in help of the generating model 1−∏

i(1−yiaij). Many studies
have been made along this line in literature.

Alternatively, here we consider BYY learning on either a B-architecture with

q(x|y) =
d∏
j=1

[s(x̂(j))�(x(j)) + (1− s(x̂(j)))�(1− x(j))]; x̂ = Ay + c;

q(y) =
m∏
j=1

[qj�(y(j)) + (1− qj)�(1− y(j))]; (37)

or a Bi-architecture with q(y|x) = �(y − s(ŷ)); ŷ =Wx + d added in.

292 L. Xu /Neurocomputing 51 (2003) 277–301

Table 2
Simpli2ed learning procedure for logistic LMSER

Step 1: yt = argmaxy{
∑m

j=1 [y
(j) ln qj + (1 − y(j)) ln(1 − qj)] +

∑d
j=1 [x

(j)
t ln s(x̂(j))

+(1 − x(j)t) ln(1 − s(x̂(j)))]};
Step 2: For the two-phase style implementation, simply 2x qj = 0:5;

∀j, otherwise update

qnewj =




qoldj + -0
1 + -0

if y(j)
t = 1;

qoldj
1 + -0

if y(j)
t = 0;

if either qnewj → 0 or qnewj → 1, discard the corresponding jth dimension
according to Eq. (28).

Step 3: ex|y = xt − s(x̂t); cnew = cold + -0ex|y; Anew = Aold + -0ex|yyT
t .

Step 4: Skip this step for a B-architecture, otherwise for a BI-architecture, update

et = 4Aoldex|y + [ln q1
1−q1

; : : : ; ln qm
1−qm

]T; W new =W old + -0Ds(ŷt)etx
T
t , ŷt =Wxt + d

dnew = dold + -0Ds(ŷt)et ; Ds(ŷt) = diag[s′(ŷ (1)
t); : : : ; s′(ŷ (m)

t)]; s′(r) = ds(r)
dr .

With k = 1, learning is made by Table 2 that is simpli2ed from Table 1. The
dimension m is determined either automatically by Step 2 or 2xing qj =0:5 in help of
Eq. (25) that is simpli2ed into

J (m) =− 1
N

N∑
t=1

d∑
j=1

[x(j)t ln s(x̂(j)t) + (1− x(j)t) ln(1− s(x̂(j)t))]

+ ln
N∑
t=1

d∏
j=1

s(x̂(j)t)x
(j)
t (1− s(x̂(j)t))1−x(j)t : (38)

5. Supervised modular binary hidden layer networks

5.1. Forward mapping via a speci?c B-architecture

We start at re-considering Eq. (29) by dividing x=[7; 8], which leads to q(7; 8|y; ‘)=
q(8|7; y; ‘)q(7|y; ‘) while q(y|‘) remains unchanged.

Speci2cally, q(7|y; ‘) can be further modeled via the following Bayesian inverse:

q(7|y; ‘) = q(y|7; ‘)ph7(7)
p(y|‘) ; p(y|‘) =

∫
q(y|7; ‘)ph7(7) d7; (39)

L. Xu /Neurocomputing 51 (2003) 277–301 293

with ph(7) estimated by Eq. (2) from a training set {7t}Nt=1, and q(y|7; ‘) given by a
logistic layer as follows:

q(y|7; ‘) = �(y − s(ŷ ‘)); ŷ ‘ =W‘7+ d‘: (40)

Moreover, considering 8 being Gaussian and assuming that 8 is independent from 7
upon knowing y, we have q(8|7; y; ‘) = q(8|y; ‘) =G(8|A‘y+ c‘; +2

‘I). Then, for each
‘ we can get a cascaded mapping 7 → y → 8 by

q(8|7; ‘) =
∫

G(8|A‘y + c‘; +2
‘I)q(y|7; ‘) dy

=G(8|A‘s(W‘7+ d‘) + c‘; +2
‘I); (41)

where its regression A‘s(W‘7 + d‘) + c‘ implements a forward mapping 7 → y → 8
by a conventional three layer net with sigmoid hidden units, which has been widely
used in literature and trained by the well known back-propagation technique
[28].

Furthermore, we can also get q(8|7) =∑k
‘=1 q(‘|7)q(8|7; ‘) with

q(‘|7t) = q(‘|y‘; t) = q(y‘; t |‘)q(‘)∑k
‘=1 q(y‘; t |‘)q(‘)

; y‘; t = s(W‘7t + d‘): (42)

Thus, E(8|7) = ∑k
‘=1 q(‘|7)[A‘s(W‘7 + d‘) + c‘] implements a mixture of several

three layer nets, with a Bayesian gate q(‘|7). That is, we get a variant of the alternative
ME model [41,36], with q(‘|7) = q(‘|y) that is indirectly modeled by q(y|‘) given in
Eq. (29).

The components q(y|7; ‘); G(8|A‘y + c‘; +2
‘I); q(y|‘) and q(‘) are learned from

a set of sample pairs {7t ; 8t}Nt=1 such that the above forward mapping performs as
desired. In order to apply the BYY harmony learning on this learning task in a way
similar to what made in Section 4, by summing up the above discussions we consider
the following B-architecture:

q(y|‘) =
m‘∏
j=1

[q‘;j�(y(j)) + (1− q‘;j)�(1− y(j))]; q(‘)¿ 0;
k∑

‘=1

q(‘) = 1;

q(7; 8|y; ‘) = G(8|A‘y + c‘; +2
‘I)

q(y|7; ‘)ph7(7)
p(y|‘) ; (43)

where p(y|‘) is obtained via the integral given in Eq. (39).
We can further get an easy implementing representation for p(y|‘). With ph(7)

given by Eq. (2), it follows from Eq. (39) that p(y|‘) = 1=N
∑N

t=1 pt(y|‘), where
each pt(y|‘) is mapped from a Gaussian G(7|7t ; h27I) that undergoes 2rstly a linear
map ŷ ‘ =W‘7+ d‘ and then a sigmoid map y‘ = s(ŷ ‘). Speci2cally, the linear map
ŷ ‘ =W‘7+d‘ results in a Gaussian pt(ŷ ‘|‘)=G(ŷ ‘|ŷ ‘; t ; h

2
7W‘W T

‘), ŷ ‘; t =W‘7t +d‘,
that is further mapped by y‘ = s(ŷ ‘) into p(y‘|‘) = pt(y‘|‘) = pt(ŷ ‘|‘)=|Ds(ŷ ‘)|.
Also, it follows from Qy‘ = (W‘W T

‘)
−0:5ŷ ‘ that pt(ŷ ‘|‘) = pt(Qy‘|‘)|W‘W T

‘ |−0:5 and

294 L. Xu /Neurocomputing 51 (2003) 277–301

pt(Qy‘|‘) = G(Qy‘| Qy‘; t ; h
2
7I). Thus, we have

ph7(y‘|‘) =
1
N

N∑
�=1

G(Qy‘| Qy‘; t ; h
2
7I)

|W‘W T
‘ |0:5|Ds(ŷ ‘; t)|

; Qy‘ = (W‘W T
‘)

−0:5ŷ ‘;

y‘ = s(ŷ ‘); ŷ ‘; t =W‘7t + d‘; Qy‘; t = (W‘W T
‘)

−0:5ŷ ‘; t : (44)

Particularly, as ph(7) becomes an empirical density with h7 → 0, we have

p(y|‘) = p0(y|‘) = 1
N

N∑
�=1

�(Qy‘ − Qy‘; t)

|W‘W T
‘ |0:5|Ds(ŷ ‘; t)|

: (45)

5.2. Adaptive learning, regularization, and model selection

We start at considering the empirical density p0(x); x= [7; 8]. It follows from Eqs.
(43) and (45) that we can modify Eqs. (17) and (20) into

H (p‖q) = 1
N

N∑
t=1

lnQ0(7t ; 8t ; ‘t)− ln zq; ‘t = argmax
‘

Q0(7t ; 8t ; ‘);

Q0(7; 8; ‘) = G(8|A‘y‘ + c‘; +2
‘I)q(y‘|‘)q(‘)|W‘W T

‘ |0:5|Ds(ŷ ‘)|; y‘ = s(ŷ ‘);

ŷ ‘ =W‘7+ d‘; zq =




1 (a) a crude approximation;
N∑
t=1

Q0(7t ; 8t ; ‘t) (b) normalization:
(46)

Similar to Table 1, putting Eq. (46) into Eq. (9), learning can be implemented by
the adaptive learning procedure given in Table 3. Similarly, automatic selection is
made on k by Step 3 and on m‘ by Step 4, respectively. Alternatively, simply setting
q(‘) = 1=k; q‘; j = 0:5, we can also make model selection by Eq. (25).

For the choice of zq = 1, we have J (k) as follows:

J (k) = ln k +
1
k

k∑
‘=1

[0:5d ln +2
‘ + m‘ ln 2 + R‘];

R‘ =−0:5 ln |W‘W T
‘ | −

N∑
t=1

ln |Ds(ŷ ‘; t)|: (47)

For the choice of zq given by (b) in Eq. (46), we have

J (k) = ln ẑq +
1
k

k∑
‘=1

[m‘ ln 2 + R‘];

ẑq =
k∑

‘=1

|W‘W T
‘ |

2m‘

N∑
t=1

|Ds(ŷ ‘; t)|e
−0:5

‖8t−A‘y‘; t−c‘‖2

+2
‘ : (48)

L. Xu /Neurocomputing 51 (2003) 277–301 295

Table 3
Learning procedure for modular sigmoid hidden layer net

Set zq(t) = 0; q(‘) = 1=k; q‘;j = 0:5.

Step 1: y‘; t = y‘(7t); y‘(7) = s(W‘7 + d‘); ‘t = argmax‘ Q0(7t ; 8t ; ‘),

Q0(7; 8; ‘) = G(8|A‘y‘(7) + c‘; +2
‘I)q(y‘|‘)q(‘)|W‘W T

‘ |0:5|Ds(ŷ ‘)|; ŷ ‘ =W‘7 + d‘.

Step 2: zq(t)=zq(t−1)+
k∑

‘=1
Q0(7t ; 8t ; ‘), -t;‘ = -0[

�‘;‘t
tnew −-dt;‘]; -

d
t;‘ =

{
0 (a) zq = 1;

Q0(7t ; 8t ; ‘)=zq(t) (b) normalization:

Step 3: For the two-phase style implementation, 2x q(‘) = 1
k and skip this step, otherwise update

qnew(‘) =




qold(‘) + -0
1 + -0

; ‘ = ‘t ;

qold(‘)
1 + -0

otherwise:

If qnew(‘) → 0, we discard the corresponding network ‘ according to Eq. (27).

Step 4: For the two-phase style implementation, 2x qj = 0:5; ∀j and skip this step, otherwise update

qnew‘;j =




qold‘;j + -0

1 + -0
if y(j)

‘; t = 1

qold‘;j
1 + -0

if y(j)
‘; t = 0

If either qnew‘;j → 0 or qnew‘;j → 1,

discard the corresponding jth dimension in the network ‘ according to Eq. (28).

Step 5: e8t;‘ = 8t − A‘y‘; t − c‘; cnew‘ = cold‘ + y‘; t gc‘ ; gc‘ = e8t;‘; A
new
‘ = Aold

‘ + -t;‘gc‘y
T
t;‘,

+new
‘ = +old

‘ + -t;‘+old
‘ (‖e8t;‘t‖2 − +2 old

‘); +new 2
‘ = +new

‘ +new
‘ .

Note: The updating direction gc comes from the gradient direction multiplied by a positive scalar +2
‘ .

Step 6: dnew
‘ = dold

‘ + -t;‘gd‘ ; gd = Ds(ŷ ‘; t) (
A‘e

8
t; ‘

+new‘
+ eyt;‘) + est;‘,

W new
‘ =W old

‘ + -t;‘gw‘ ; gw‘ =

{
gd‘7

T + (W old
‘ W oldT

‘)−1W old
‘ ; (a) gradient;

[gd‘ (W
old
‘ 7)T + I]W old

‘ ; (b) natural gradient;

s′(r) = ds(r)
dr ; ŷ ‘; t =W‘7t + d‘; eyt;‘ = [ln q1

1−q1
; : : : ; ln qm

1−qm
]T; est;‘ = [1 − 2y(1)

‘; t ; : : : ; 1 − 2y(m)
‘; t].

Note: (a) est;‘ is resulted from d ln|Ds(ŷ ‘)| = Tr[D−1
s (ŷ ‘) dDs(ŷ ‘)] via a sigmoid function s(r) with a

feature s′(r) = −4s(r)(1 − s(r)), e.g., s(r) = 1=(1 + e−4r);
(b) The second term of gw comes from d ln|W‘W T

‘ |0:5.

where ln ẑq comes from ln zq after releasing two terms that cancel ln k and 0:5
ln +2

‘.
In the particular case at k = 1, Table 3 provides a new adaptive learning algorithm

for training a conventional three layer net as a replacement of the back-propagation

296 L. Xu /Neurocomputing 51 (2003) 277–301

technique, with a feature that regularization is in action via a de-learning rate -dt;‘ in
Step 2 and selection of hidden units takes places automatically during learning by
Step 4.

Also, in this special case, J (k) is simpli2ed into

J (k) =




0:5d ln +2 + m ln 2− 0:5 ln |WW T| −
N∑
t=1

ln |Ds(ŷ ‘; t)| for Eq: (47);

ln
N∑
t=1

[
|Ds(ŷ ‘; t)|e

−0:5
‖8t−A‘y‘; t−c‘‖2

+2
‘

]
−

N∑
t=1

ln |Ds(ŷ‘; t)| for Eq: (48):

Another special case is that A‘=0; +2
‘=0 for all ‘, with the mapping y → 8 broken.

In this case, Table 3 is simpli2ed with Step 5 discarded and Q0(7; 8; ‘) in Steps 1
and 2 replaced by Q0(7; ‘) = q(y‘|‘)q(‘)|W‘W T

‘ |0:5|Ds(ŷ ‘)|. Interestingly, this simpli-
2ed learning procedure actually makes the mapping 7 → y implement a competitive
ICA, that is, implementing ICA at di;erent locations via the competitive allocation by
Step 1. Particularly, when k = 1 and d‘ = 0, the updating on W‘ by the natural gradi-
ent becomes the same format as the popular Amari’s natural gradient ICA algorithm,
but with a di;erent gd here. The di;erence makes this ICA learning applicable to the
cases that consist of both super-Gaussian and sub-Gaussian sources by adapting qj via
Step 4. This qj can be used as an identi2er on whether this source is super-Gaussian
or sub-Gaussian. Since

kj = E(Qy (j)−qj)4−3[E(Qy (j)−qj)2]2 = (1−qj)qj
[
qj−3 +

√
3

6

][
qj−3−√

3
6

]
;

we have

kj ¿ 0 if qj ¿
3 +

√
3

6
or qj ¡

3−√
3

6
and kj ¡ 0 if

3 +
√
3

6
¿ qj¿

3−√
3

6
:

5.3. Logistic outputs, smoothed learning, and Bernoulli hidden layer

The above results can be extended in three aspects as follows.
First, we can consider the cases that 8 is binary instead of Gaussian, by replacing

G(8|A‘y + c‘; +2
‘I) in both Eq. (43) and Step 1 of Table 3 with

q(8|y) =
d8∏
j=1

[s(8̂(j))�(8(j)) + (1− s(8̂(j)))�(1− 8(j))]; 8̂= By + b; (49)

where d8 is the dimension of 8.
Correspondingly, Step 5 of Table 3 is replaced with

Step 5 : =t = 8t − s(8̂t); Bnew = Bold + -0=tyT
‘; t ; bnew = bold + -0=t : (50)

Also, for J (k) in Eq. (47), the term 0:5d ln +2
‘ is replaced with

J8;y(k) =− 1
N

N∑
t=1

d8∑
j=1

[8(j)t ln s(8̂(j)t) + (1− 8(j)t) ln(1− s(8̂(j)t))]: (51)

L. Xu /Neurocomputing 51 (2003) 277–301 297

Second, we can consider the smoothing learning by modeling x= [7; 8] via the Parzen
window estimate Eq. (2), i.e., p([7; 8]) = 1=N

∑N
t=1 G(7|7t ; h27I)G(8|8t ; h28I). Similar to

Eq. (46), we can modify Eqs. (17) and (20) into

H (p‖q) = 1
N

N∑
t=1

H (7t ; 8t ; ‘t)− ln zq; ‘t = argmax
‘

Q(7t ; 8t ; ‘);

Q̃(7; 8; ‘) = Q0(7; 8; ‘)
ph7(7)

ph7(y‘|‘)
; zq =

N∑
t=1

Q(7t ; 8t ; ‘t);

Q̃(7; 8; ‘) = G(8|A‘y‘ + c‘; +2
‘I)q(y‘|‘)q(‘)

H (7t ; 8t ; ‘t) =
∫

G(7|7t ; h27I)G(8|8t ; h28I) ln[Q(7; 8; ‘t)] d7 d8;

≈ lnQ(7t ; 8t ; ‘t)− lnph7(y‘; t |‘) + 0:5h27Tr[HH]− 0:5h28+
−2
‘ Tr[I8];

HH = H7
q (8t |y‘; t ; ‘t) + H7

q (y‘; t |‘t) + H7
ph7

(7t)− H7
p(y‘; t |‘t); (52)

where H7
q (8|y‘; ‘); H7

q (y‘|‘); H7
ph7

(7t), and H7
p(y‘|‘) are the Hessian matrices of

lnG(8|A‘y‘ + c‘; +2
‘I), ln q(y‘|‘); lnph7(7), and lnph7(y‘|‘), respectively, all with

respect to 7.
Putting Eq. (52) into Eq. (9), learning can be implemented by an adaptive learning

procedure similar to Table 3, with three key modi2cations. First, Q0(7t ; 8t ; ‘t) is re-
placed by Q(7t ; 8t ; ‘t) in Steps 1 and 2. Second, in Steps 5 and 6, the updating on the
parameter set � should add 0:5h27@Tr[HH]=@� into its updating direction. Moreover, the
updating direction on +‘ should also be added in with h27+

−3
‘ . Third, Step 7 should be

added as in Table 1 with the part for updating h7; h8. Finally, we can obtain J (k) for
model selection in a way similar to Eq. (48).

Third, we can also replace the logistic hidden layer Eq. (40) by the following
Bernoulli hidden layer:

q(y|7; ‘) =
m‘∏
j=1

[s(ŷ(j)
‘)�(y(j)

‘) + (1− s(ŷ(j)
‘))�(1− y(j)

‘)]; ŷ ‘ =W‘7+ d‘: (53)

In this case, similar to Eq. (46) we modify Eqs. (17) and (20) into

H (p‖q) = 1
N

N∑
t=1

lnQB(7t ; 8t ; y‘t ; ‘t)− ln zq; y‘; t = y‘t (7t); ‘t = ‘(7t);

y‘(7) = argmax
y

QB(7; 8; y; ‘); ‘(7) = argmax
‘

QB(7; 8; y‘(7); ‘);

298 L. Xu /Neurocomputing 51 (2003) 277–301

QB(7; 8; y‘; t ; ‘t) = G(8|A‘y‘ + c‘; +2
‘I)q(y‘|‘)q(‘)

q(y|7; ‘)
p(y|‘) ;

p(y|‘) = 1
N

N∑
t=1

m‘∏
j=1

s(ŷ(j)
‘)y

(j)
‘ (1− s(ŷ(j)

‘))1−y(j)
‘ ; ŷ ‘ =W‘7+ d‘: (54)

Again, learning can be implemented by an adaptive learning procedure similar to Table
3, with Q0(7t ; 8t ; ‘t) replaced by QB(7t ; 8t ; y‘; t ; ‘t) and Step 1 replaced by y‘(7); ‘(7)
as given in Eq. (54), while Steps 2–5 can be directly adopted, with rdt;‘; gd‘ ; gw‘ given
as follows:

gd‘ =∇gd‘
ln q(y|7; ‘)7=7t = y‘; t − s(ŷ ‘; t);

gW‘ =∇W‘ ln q(y|7; ‘)7=7t = gd‘7
T
t ;

rdt;‘ =
q(y‘t |7t ; ‘t)
Spy(t)

; Spy(t) = Spy(t − 1) +
k∑

‘=1

q(y‘; t |7t ; ‘); (55)

Moreover, for J (k) in Eq. (48), the term R‘ is replaced with

B‘ =−
N∑
t=1

m‘∑
j=1

[y(j)
‘; t ln s(ŷ

(j)
‘; t) + (1− y(j)

‘; t) ln(1− s(ŷ(j)
‘; t))]: (56)

6. Discussions on application to production rule mining

As mentioned in the beginning of this paper, forward network with one sigmoid
hidden layer has been widely used on the tasks of pattern recognition, feature extraction,
independent data analysis and statistical regression. Sharing the common key point that
performs an expected input–output mapping, the results in the previous sections are
directly applicable to these tasks.

In recent years, there have been increasing interests on automatic extracting knowl-
edge in the form of production rules from data. One main stream of these studies bases
on the feature that a sigmoid unit s(ŷ (j)) with y =W7+ d; s(r) = 1=(1 + e−4r) with
4 → ∞ acts as a primitive predicate statement pj(7) that takes ‘1’ for true and ‘0’ for
false, according to the value of 7. Such a predicate statement can also be understood
as an IF–THEN type rule. In a three layer net, each of the hidden sigmoid unit acts
as such a primitive predicate and subsequently a sigmoid output unit further lumps
them into a compound statement. Thus, under the control of 4 → ∞, a three layer net
trained by a supervised learning algorithm (e.g., back-propagation), results in a rule
system.

For a hidden layer of m sigmoid units we have m primitive predicate statements in
the form of pj(7). Theoretically, a compound statement on the m primitive statements
encounters 2m di;erent situations since a logical conjunction p1(7) ∩ · · · ∩ pm(7) can
have 2m di;erent status, which geometrically locate at the 2m vertexes of a m dimension

L. Xu /Neurocomputing 51 (2003) 277–301 299

hypercubic. However, a sigmoid output unit only forms a hyperplane that separates
vertexes of two linear separable groups but be not able to separate vertexes in any
arbitrary two groups. Thus, for a rule system to cover all the situations, the problem is
that the extraction of the m primitive statements should be able to map two groups of
samples of x into two sets of linear separable vertexes of the m dimension hypercubic.
For this purpose, we have to use a large number m of hidden units.

However, a rule system empirically obtained on a set of training samples can-
not avoid a paradox between con6ict and redundancy. When m is too small, there
will be certain con6icts among the obtained rules. As m increases, even when con-
6icts have been eliminated and the obtained rules demonstrate a desired performance
on a given training set of 2nite number of samples, the problem cannot be really
solved. There are two reasons. First, when there are noises added to samples, there
will be always certain rules in con6ict. Reducing con6icts via increasing m will not
improve the performance but instead wastes resource on encoding noise. Second, the
rules with a desired performance on a training set may still encounter new con6icts
on new samples, i.e., the rules may not generalize well, especially when m is too
large.

We believe that the paradox between con6ict and redundancy is actually equivalent
to the problem of regularization that prevents an over-2tting on a training set and the
problem of model selection that decides an appropriate number of production rules.
Thus, the BYY harmony learning provides a solution to the problems, not only via
regularization in help of either normalization or data smoothing, but also via model
selection made either automatically during learning by one of Tables 2 and 3 or through
the selection criterion by one of Eqs. (33), (38), (34), (47), and (48).

The BYY unsupervised learning given in Section 4 also provides a solution on unsu-
pervised rule discovery. With 4 → ∞; m primitive statements are discovered via s(ŷ ‘)
in Eq. (34). Moreover, these statements become independent from each other, which
thus minimizes the dependence and con6ict among them. With these obtained primi-
tive statements, we can form certain compound statements in a subsequent processing,
and interpret how each sample of x is generated. As a group of independent primitive
statements is obtained for each ‘, we got k groups equivalently in a logical disjunction.
Moreover, it follows from the discussion made at the end of Section 5.2 that the above
arguments apply to the supervised case, too. That is, the paradox between con6ict and
redundancy is also being tackled by making the statements of the hidden units become
independent.

Technically, the larger of the slant parameter 4¿ 0, the better a sigmoid unit acts
as a logical predicate statement. However, the learning may be trapped into a local
optimal solution for a large 4¿ 0. One solution to this problem is a simulated anneal-
ing procedure with 1=4 acting as a temperature [16]. Moreover, we also impose the
constraint

√‖a‖2 + b2 = 1 on a sigmoid unit s(aTx + b) to remove the indeterminacy
aTx + b= c(a′Tx + b′).

Furthermore, for the rule extraction purpose, in Table 3 we can use q(8|y) by Eq.
(49) in Step 1 and use Eq. (50) as Step 5, with Eq. (51) put in Eqs. (47) and (49).
Similarly, when each component x(j) takes the value of ‘true’ or ‘false’, we can make
learning as described in Section 4.3.

300 L. Xu /Neurocomputing 51 (2003) 277–301

Acknowledgements

The author would like to express thanks to the reviewers for their comments that
help a lots on improving the original manuscript.

References

[1] H. Akaike, A new look at the statistical model identi2cation, IEEE Trans. Automat. Control 19 (1974)
714–723.

[2] T.W. Anderson, H. Rubin, Statistical inference in factor analysis, Proceedings of the Berkeley
Symposium on Mathematical and Statistical Probability 3rd 5, UC Berkeley, 1956, pp. 111–150.

[3] H.B. Barlow, Unsupervised learning, Neural Comput. 1 (1989) 295–311.
[4] C.M. Bishop, Training with noise is equivalent to Tikhonov regularization, Neural Comput. 7 (1995)

108–116.
[5] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular value decomposition,

Biol. Cybernet. 59 (1988) 291–294.
[6] H. Bozdogan, Model selection and akaike’s information criterion: the general theory and its analytical

extension Psychometrika 52 (1987) 345–370.
[7] K.C. Chiu, L. Xu, A comparative study of Gaussian TFA learning and statistical tests for determination

of factor number in APT, Proceedings of IJCNN ’02, Honolulu, Hawaii, USA, May 12–17, 2002,
pp. 2243–2248.

[8] P. Dayan, R.S. Zemel, Competition and multiple cause models, Neural Comput. 7 (1995) 565–579.
[9] A.P. Dempster, et al., Maximum-likelihood from incomplete data via the EM algorithm, J. Roy. Statist.

Soc. B39 (1977) 1–38.
[10] L. Devroye, et al., A Probability Theory of Pattern Recognition, Springer, Berlin, 1996.
[11] G.E. Hinton, R.S. Zemel, Autoencoders, minimum description length and Helmholtz free energy, Adv.

NIPS 6 (1994) 3–10.
[12] R.A. Jacobs, et al., Adaptive mixtures of local experts, Neural Comput. 3 (1991) 79–87.
[13] M.I. Jordan, R.A. Jacobs, Hierarchical mixtures of experts and the EM algorithm, Neural Comput. 6

(1994) 181–214.
[14] M.I. Jordan, L. Xu, Convergence results for the EM approach to mixtures of experts, Neural Networks

8 (1995) 1409–1431.
[15] J. Karhunen, J. Joutsensalo, Representation and separation of signals using nonlinear PCA type learning,

Neural Networks 7 (1994) 113–127.
[16] S. Kirkpatrick, et al., Optimization by simulated annealing, Science 220 (1983) 671–680.
[17] Z.B. Lai, P. Guo, T.J. Wang, L. Xu, Comparison on Bayesian Ying-Yang theory based clustering number

selection criterion with information theoretical criteria, Proceedings of IJCNN98, Vol. I, Anchorage,
Alaska, May 5–9, 1998, pp. 725–729.

[18] W.K. Lam, L. Xu, An experimental comparison of the Bayesian YING-YANG criteria and cross
validation for selection on number of hidden units in feedforward networks, Proceedings of ICASSP98,
Vol. 2, Seattle, WA, May 12–15, 1998, pp. 1189–1192.

[19] W.K. Lam, L. Xu, An experimental comparison of the Bayesian Ying-Yang criteria and cross validation
on experts number selection in original and alternative model for mixture of experts. Proceeding of
ICONIP’98, Vol. 1, Kitakyushu, Japan, October 21–23, 1998, pp. 71–74.

[20] Z.Y. Liu, K.C. Chiu, L. Xu, Local subspace analysis for astronomical object detection and star=galaxy
classi2cation, Proceedings of IJCNN’02, Honolulu, Hawaii, USA, May 12–17, 2002, pp. 962–967.

[21] D.J.C. Mackey, A practical Bayesian framework for backpropagation, Neural Comput. 4 (1992)
415–447.

[22] O. Ning, W.K. Lam, K. Yamauchi, L. Xu, Using an improved back propagation learning method to
diagnose the sites of cardiac, hypertrophy, MD Comput. 16 (1) (1999) 79–81.

[23] V. Ramamurti, J. Ghosh, Regularization and error bars for the mixture of experts network, Proceedings
of IEEE ICNN97, 1997, pp. 221–225.

L. Xu /Neurocomputing 51 (2003) 277–301 301

[24] R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood, and the EM algorithm, SIAM Rev.
26 (1984) 195–239.

[25] J. Rissanen, Stochastic complexity, J. Roy. Statist. Soc. 49 (3) (1987) 223–239.
[26] J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Scienti2c, Singapore, 1989.
[27] I. Rivals, L. Personnaz, On cross validation for model selection, Neural Comput. 11 (1999) 863–870.
[28] D.E. Rumelhart, et al., Learning internal representations by error propagation, Parallel Distributed

Processing, Vol. 1, MIT Press, Cambridge, MA, 1986.
[29] E. Saund, A multiple cause mixture model for unsupervised learning, Neural Comput. 7 (1995) 51–71.
[30] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-posed Problems, V.H. Winston and Sons, Washington,

DC, 1977.
[31] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin, 1995.
[32] C.S. Wallace, D.M. Boulton, An information measure for classi2cation, Comput. J. 11 (1968) 185–194.
[33] C.S. Wallace, D.R. Dowe, Minimum message length and Kolmogorov complexity, Comput. J. 42 (4)

(1999) 270–280.
[34] L. Xu, Least mean square error reconstruction for self-organizing neural-nets, Neural Networks 6 (1993)

627–648. Its early version on Proceedings of 1991 International Joint Conference on Neural Networks
(IJCNN91’ Singapore), 1991, pp. 2363–2373.

[35] L. Xu, Bayesian Ying-Yang machine, clustering and number of clusters, Pattern Recognition Lett. 18
(11–13) (1997) 1167–1178.

[36] L. Xu, RBF nets, mixture experts, and Bayesian Ying-Yang learning, Neurocomput. 19 (1–3) (1998)
223–257.

[37] L. Xu, Temporal BYY learning for state space approach, hidden Markov model and blind source
separation, IEEE Trans. Signal Process. 48 (7) (2000) 2132–2144.

[38] L. Xu, BYY harmony learning, independent state space and generalized APT 2nancial analyses, IEEE
Trans. Neural Networks 12 (4) (2001) 822–847.

[39] L. Xu, Bayesian Ying Yang harmony learning, in: M.A. Arbib (Ed.), The Handbook of Brain Theory
and Neural Networks, 2nd Edition, The MIT Press, Cambridge, MA, 2002, in press.

[40] L. Xu, C.C. Cheung, S.I. Amari, Learned parametric mixture based ICA algorithm, Neurocomput. 22(1–
3) (1998) 69–80. A part of its preliminary version on Proceedings of ESANN97, Bruges, April 16–18,
1997, pp. 291–296.

[41] L. Xu, M.I. Jordan, G.E. Hinton, An alternative model for mixtures of experts, Adv. Neural Inform.
Process. Systems, 7 (1995) 633–640. Its preliminary version on Proc. WCNN’94 2 (1994) 405–410.

Lei Xu (IEEE Fellow) is a professor of Computer Science and Engineering at
Chinese Univ Hong Kong (CUHK). He is also an adjunct Professor at Peking
University and three other universities in China and UK. After receiving his Ph.D.
from Tsinghua Univ. in early 1987, he joined Peking Univ. where he became one
of ten university-level exceptionally promoted young associate professors in 1988
and further been exceptionally promoted to a full professor in 1992. During 1989
–1993, he worked at several universities in Finland, Canada and USA, including
Harvard and MIT. He joined CUHK in 1993 as a senior lecturer, then became
promoted to professor in 1996 and took the current chair professor position in
1996. Prof. Xu has published over 240 academic papers, with a number of them
well cited in literature. He has given a number of keynote=plenary=invited=tutorial

talks in international major Neural Networks (NN) conferences, such as WCNN, IEEE-ICNN, IJCNN,
ICONIP, etc. He is on the Governor Board of International NN Society, a past president of Asia-Paci2c
NN Assembly, the chair of the Computational Finance Technical Committee of IEEE Neural Networks
Society, and an associate editor for six International journals on NN, including Neural Networks, IEEE
Trans. Neural Networks. He is the general chair of IEEE CIFER’03 and a program committee co-chair
of Joint ICANN’03-iCONiP’03, and was a ICONIP’96 program committee chair and a general chair of
IDEAL’98, IDEAL’00. Also, he has served as program committee members in international major NN con-
ferences in the past decade, including IJCNN (97,99,00,01), WCNN(95,96), IEEE-ICNN (96), etc. He has
received several Chinese national prestigious academic awards (including the National Nature Science Prize)
and also some international awards (including an 1995 INNS Leadership Award). Prof. Xu is a Fellow of
IEEE and a Fellow of the International Association for Pattern Recognition.

	BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
	Introduction
	Bayesian Ying-Yang system and harmony learning
	A new development on BYY harmony learning
	BYY harmony learning with modular representation domains
	Learning implementation with B-architecture and BI-architecture

	Unsupervised modular binary hidden layer networks
	Modular B-architecture
	Modular BI-architecture
	Bernoulli LMSER and automatic selection

	Supervised modular binary hidden layer networks
	Forward mapping via a specific B-architecture
	Adaptive learning, regularization, and model selection
	Logistic outputs, smoothed learning, and Bernoulli hidden layer

	Discussions on application to production rule mining
	Acknowledgements
	References

