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Abstract

First, we briefly introduce the basic idea of data smoothing regularization, which was firstly proposed by Xu [Brain-like computing
and intelligent information systems (1997) 241] for parameter learning in a way similar to Tikhonov regularization but with an easy
solution to the difficulty of determining an appropriate hyper-parameter. Also, the roles of this regularization are demonstrated on
Gaussian-mixture via smoothed versions of the EM algorithm, the BYY model selection criterion, adaptive harmony algorithm as well
as its related Rival penalized competitive learning. Second, these studies are extended to a mixture of reconstruction errors of
Gaussian types, which provides a new probabilistic formulation for the multi-sets learning approach [Proc. IEEE ICNN94 I (1994)
315] that learns multiple objects in typical geometrical structures such as points, lines, hyperplanes, circles, ellipses, and templates of
given shapes. Finally, insights are provided on three problem solving strategies, namely the competition-penalty adaptation based
learning, the global evidence accumulation based selection, and the guess-test based decision, with a general problem solving

paradigm suggested.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well understood that regularization is of key
important for parametric modeling or neural networks
learning on a finite set of samples. Several regularization
techniques have been studied in the literature. They are
closely related to the well known Tikhonov regularization
(Tikhonov & Arsenin, 1977; Girosi, 1995), featured by
adding to the fitting error with a regularizing term that is
weighted by a so called hyper-parameter. Conceptually,
this hyper-parameter can be further determined via one of
several methods, including estimating generalization error
bound, cross validation, Bayesian approach, and minimum
description length, etc. In implementation, however, they
not only suffer extensive computational cost but also are
able to provide a rough solution only.

It is also well known for several decades, e.g. in the
literatures of signal processing or control theory, that
adding a noise with an appropriate variance to a finite set
of samples will help parameter estimation or system
modeling. In the literature of neural networks, it has been
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shown that training with noise is equivalent to Tikhonov
regularization (Bishop, 1995).

When the size of noise samples are infinite or large
enough, it follows from probability theory that adding noise
to samples is equivalent to the convolution of the empirical
density obtained directly from samples with a smoothing
kernel function. This nature is directly used in a non-
parametric density estimation under the name Parzen
window estimation. When the kernel is a Gaussian function,
we have

1 N
mw=ﬁgmm&x 3, =1, (1)

where and throughout this paper, G(ulm,3) denotes a
Gaussian density with a mean vector m and covariance
matrix 3. Particularly, p,(u) returns back to the empirical
density when & = 0. That is,

1 N
pol) = 5 > 8 = ). @
=1

Therefore, this 4 is usually called smoothing parameter
and takes a role similar to the above noise variance and
the hyper-parameter in Tikhonov regularization. Though
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many studies have been made theoretically on how to
estimating an appropriate smoothing parameter (Devroye
et al., 1996), in implementation they share difficulties
similar to that discussed for determining a hyper-
parameter.

The idea of data smoothing regularization came firstly in
(Xu, 1997a-c) from using the Parzen window estimator by
Eq. (1) in place of directly using empirical density by Eq. (2)
on parameter learning of the Bayesian Ying Yang (BYY)
system such that the effect of a finite size of samples is
regularized via the smoothing role of an appropriate
smoothing parameter h that is decided during learning.
The BYY harmony learning was firstly proposed in 1995
(Xu, 1995a, 1996b) and systematically developed in the past
several years (Xu, 2000a,b, 2001a,b, 2002, 2003). This
BYY harmony learning acts as a general statistical learning
framework such that not only a number of existing major
learning problems and learning methods are revisited as
special cases from a unified perspective, but also a harmony
learning theory is developed with a new learning mechan-
ism that makes model selection implemented either
automatically during parameter learning or subsequently
after parameter learning via a new class of model selection
criteria obtained from this mechanism, with new insights
and a series of new results. Further details are referred to Xu
(2002, 2003).

After briefly introducing the basic idea of data
smoothing regularization in Section 2, this paper will
focus on its role in two types of finite mixture models via
both the maximum likelihood (ML) learning and the BYY
harmony learning. In Section 3, the roles of data
smoothing regularization are demonstrated on Gaussian-
mixture via smoothed versions of the EM algorithm, the
BYY model selection criterion, adaptive harmony learning
as well as its related Rival Penalized Competitive
Learning (RPCL). In Section 4, these studies are extended
to a mixture of reconstruction errors of Gaussian types as
a new probabilistic formulation for the multi-sets learning
approach (Xu, 1994) that learns multiple objects via
typical geometrical structures such as points, lines,
hyperplanes, circles, ellipses, and templates of given
shapes. Moreover, insights are provided in Section 5 on
three problem solving strategies, namely the competition-
penalty adaptation based learning, the global evidence
accumulation based selection, and the guess-test based
decision, with a general problem solving paradigm
suggested.

2. Data smoothing regularization
2.1. Data smoothing regularization

Given a parametric model g(u!6), learning with data
smoothing regularization is made via maximizing

the following criterion (Xu, 1998a, 1999, 2002, 2003):
Lp(0,h) = Ly,(6) + Z(h), 3

where L,(6) is a smoothed version of the likelihood function
Ly(0) as follows:

L(®) = | pyin qtulerd,
y 4
1
Lo(6) = Jpo(u)ln ol = 5 > in gt

with the empirical density p,(«) replaced by p;, (). We have
the following general form (Xu, 1999, 2002, 2003):

Ly(0) = Ly(0) —
92 In g(ul6)
R, (6) = ——ZT [Zh e ] K

It follows from 3, = h?I that

1 9% In g(ul0)
Ry(O) = Wy = =+ > Tr[ W . (®

t

O'SRh(O)’
o)

which provides a Tikhonov-type regularization (Tikhonov
& Arsenin, 1977; Girosi, 1995) on L,(6) and the role # is
equivalent to the hyper-parameter in (Bishop, 1995).

The new thing in Eq. (3) is that 7 can be decided by
maxg, L;(0) due to the role of Z(h), which can be one of two
choices (Xu, 1998a, 1999, 2002, 2003):

- jphwnn paG)du,  (a),
Z(h) = N 7
—InY piu), (b).
=1

In both the cases, it contains a dominated term R;(6) that
increases as & increases. On the other hand, it follows from
Egs. (5) and (6) that L,(6) is maximized as h — 0 since m, is
always non-negative. As a result, the trade-off of two
aspects results in an appropriate value for 4.

The two types of Z(h) lead to two types of data
smoothing regularization. It follows from Eq. (5) that

Z(h) =0.51Inl3,l + G(h) + In N + c,, c, is constant,

1 N N
W Z ln[ Z e*dh(llzvuf) ]’ (a)’

G(h) _ =1 =1 (8)
—In Z I:Z e dnluu T)] (b).
1

dy(uys 1) = 0.5, — u)" 3 ', — uy).

As observed in Xu (2002), two types of regularization in Eq.
(8) tends to being equivalent as the size N of samples
increases to be large enough. The case (a) is more suitable
when ¢(u!6) is modeled directly via the smoothed likelihood
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L,(0) in Eq. (3) but with no consideration on model
selection. While the case (b) is more suitable for making the
harmony learning with model selection (Xu, 2001a, 2002,
2003) on a Bayesian Ying—Yang system that represents
q(ul6) as its marginal density.

Moreover, it follows from Eq. (3) that the learning can be
implemented by alternatively (Xu, 1998a—c)

(a) Estimating 6 via mglx L, (60) with h fixed,

9
(b) Estimating & via m}?x Lp(6, h) with 0 fixed. ©

e.g. the step (b) can be made via the gradient ascent
iteration:

dLp(6, h)

WY =B+ mAh,  Ah=
A dh

(10)

Alternatively, Ak can also simply given by (Xu, 1999)
n, if Lp(6,h+m) > Lp(6,h),

Ah={ —mn, ifLp(6,h— m) > Lp(6,h), (11)
0, otherwise.

In the following we further introduce the details of Eq. (9) in
two typical situations:

(1) 3, = kI in Eq. (1). It applies to the cases that all the
components in an observed sample vector should be equally
smoothed, e.g. the case of estimating a density g(x|6) or
equivalently a joint density g(x, z|0) that becomes the same
as the former by u = [x, z]. In the case, we have Eq. (6). It
further follows from Egs. (5) and (8), max;,Ly(6, k) can be
made via (Xu, 2002)

%}?’h) ~ —hm, + d/h + dh o/,
uO_ d;gpr’q—”b‘t 7' s
r —d;,(u,,u;
%# (), (12)
> ot
. t=1
P =1 e*dh(unuf)
TR ., (b),
3 ot
L =1 =1

where d is the dimension of u. Thus, the estimation of 4 can
be made via solving a positive root of v w, +vd + h3d =0
with v = h? and h regarded approx1mately as a constant.
That is,

2h%

1+ /14412 d 'm,

which can be either used directly or as an initial value for
Eq. (10).

W =

13)

(2) 3, = diag[h2I,,h2I.] in Eq. (1) with & denoting a
vector [h,, h.]". Tt applies to the cases that the components in
an observed sample vector can be divided into two parts
(Xu, 1999). Each part has a quite different statistical
property and thus should be smoothed separately, where I,
I, denotes the unit matrix in the space of x, z, respectively.
Correspondingly, g¢(x,zl6) = q(zlx, 6,,)g(x!6,) also has
different structures on z, x. In the case, Eq. (6) is replaced
with

Ry(0) = 0512 1y + o] + 0.5

q(zlx) q(zlx)?
1 8% In g(x16,)
A= - T T X ,
Taw = TN Z r[ oxoxT | _.
c [ ngE 6 a4
Taelo = 7y Z d dx axT
t X=X;,2=Z;
e oy = — i Z Tr[ —62 In q(z|x, Hz‘x) ]
q(zlx) N 9. 97T
t <7z X=X;,2=2;.
Moreover, Eq. (12) is replaced by
dLD(a h) _ dx dth
Thx = h[’1T Z|X)+1T(X)]+hx + h; ,
. (15)
dLp(0,h) d, dh,
ah, My T

where d,, d, are the dimension of x, z, respectively, and hxo,
h20 are obtained from huO with u replaced by x, z,
respectively. Thus, the root by Eq. (13) becomes

5 212,
W =
1+ \/1 + ARy ]
(16)
2 2h2,
1+ \/1 +4h2od; ! wq(zm

The above studies apply to both the case of estimating a
joint density ¢(zlx, 6,,)g(x!6,) and the case of estimating a
conditional density g(zlx, 6,,) for supervised learning on the
regression function E(zlx) = [ zg(zlx, 6.,)dz. Typical
examples of the latter include three layer forward net,
RBF nets and mixture of experts. To do so, we can set
q(x16,) to be either of the following two choices:

pr (), (a)by Eq. (1),
q(xl6,) = (17)
Po(x), (b) the unknown true density.
Thus, we approximately have
_d. @ byEq. )
’ﬂ'){;(x) = { _ (18)
—Tr[S '], (b) the unknown true density,

where S is the sample covariance matrix estimated directly
from samples of x (Xu, 1999). Thus, the maximum
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likelihood learning on g(zlx, 6,,) with data smoothing
regularization can be implemented via maxg, L,(6) with
Ty Substituted into Egs. (14)—(16).

Being different from that in Eq. (8) of the case (a), an
alternative estimate of Z(h) is also given as follows (Xu,
1999, 2000b):

h2 _ 82
Z(h) = 0.51nl3,| — G(h) — 0.5d 0h2 Uy
1 N 2 (19)
2 _ L _
€y = dN 1; u; t:ZIpr,TMT s

where p, , is same as in Eq. (12). We can get both dL, (0, h)/
dh in Eq. (12) and /42 in Eq. (13) simply with /3 replaced by
e2. Similarly, we can get eio, eio with u, replaced by x,, z;,
and then get dLj (0, h)/dh, and dLp(6, h)/dh, in Eq. (15) and
h%, h? in Eq. (16) with k%, b2, replaced by e3, eZ. The
difference between Z(h) in Eq. (19) from that of the case (a)
in Eq. (7) is whether the second order information within
pr(u) is considered.

2.2. Historic remarks

The data smoothing learning by Eq. (3) with Z(h) by the
cases (a) in Eq. (7) came firstly from the implementation of
BYY parameter learning via minimizing the Kullback—
Leiber (KL) divergence between the Yang machine and
Ying machine in the case of the backward architecture (Xu,
1995a, 1996b). With p;(x) by Eq. (1), it was firstly proposed
under the name of data smoothing by Eq. (16) in Xu (1997b)
and Eq. (3.10) in Xu (1997a) that an appropriate A is also
learned via minimizing the KL divergence, which becomes
equivalent to

Pr(x)
q(x16)

n;ihn KL(6, h), KL(0,h) = Jph(x)ln dx, (20)

which was firstly presented by Eq. (7) in Xu (1997c¢).
Obviously, it can be rewritten into Eq. (3) with Z(h)
given by the case (a) of Eq. (7). In a BYY system,
q(x16) = [ q(xly)g(y)dy is the marginal density rep-
resented by the Ying machine. Generally, being inde-
pendent of the BYY system, g(x|6) can be any parametric
model for density estimation. Also in Xu (1997b), the
data smoothing regularization is suggested on g¢(zlx, 6,),)
for supervised learning of three layer forward net and
mixture of experts.

A preliminary systematic study on data smoothing
regularization was provided in Xu (1998a), including (a)
two ways to tackle the integral in L,(6); (b) the alternative
strategy of Eq. (9); (c) extensions to estimating g(zlx, 6.;,)
for supervised learning with three layer forward net, RBF
nets and mixture of experts; (d) the role of 4 in the model
selection by BYY harmony learning. Further progresses in
all the four aspects were presented in Xu (1999), including

(1) handling the integral in L,(6) in help of
JG(xbc,, R DF(x)dx = F(x,) + 0.5h°Tr[Hp], 1)

with Hy being the Hessian matrix of F(x); (2) the use of Ah
in Eq. (11) and the use of Eq. (21) in handling — fph(x)
In p,(x)dx; (3) the use of Eq. (1) with 3, = diag[A2[,, hflz]
for estimating g(zlx, 6,,,); (d) the suggestion of the case (b)
in Eq. (18) for learning of three layer forward net, RBF nets
and mixture of experts.

A systematic summary can be found in Xu (2000b) on
the studies of Eq. (3) with Z(h) by the case (a) in Eq. (7). The
data smoothing learning by Eq. (3) with Z(%) by the case (b)
in Eq. (7) was firstly proposed in Xu (2001b). The detailed
equations as those introduced in Section 2.1 were firstly
provided in Xu (2001a) and further discussions in
comparison with the case (a) are made in Xu (2002, 2003).

3. Gaussian mixture and multi-sets-mixture
3.1. Gaussian mixture and smoothed EM algorithm

Specifically we start at considering a Gaussian mixture:
k
q(x16) = > a,Gxlmy, 3,). (22)
=1

Give a known £, as proposed in Xu (1997b), the estimation
of can be implemented by the following smoothed EM
algorithm:

k
Estep : po, = a,G(0) Y a,Gy(6y),
€=1 (23)

Gt(gé) = G(xl|m4, 22)’ 0@ = {me’zz}

1 & 1<
M step : a, = N Zpg,,, my = New Zpe,zxz,
=1

€ =1
e(x;,mp) = x; — my,

1

N
N Zpe,te(xt’ ml)eT(xts m@)a
e

=1

2@ = h21+

which is different from the EM algorithm (Dempster, Laird
& Rubin, 1977; Redner & Walker, 1984) with a smoothing
parameter 4” added to the diagonal elements of 3. Also, it
follows from Eq. (5) that

| Nk - k -
To= = > D peIr3 = = a,Tr(3] (24
NS &S =i
and the estimation of 4* is made by Eq. (13) and can be
further elaborated via Eq. (10).

When k is unknown, we need also to select an
appropriate value for it. The task is called model selection,
which is usually made on selecting a best value for k via
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min, J(k), with J(k) called model selection criterion. In Xu
(1997d), a criterion is proposed from the BYY harmony
learning, without considering data smoothing regulariz-
ation. Considering data smoothing regularization in the case
of a finite size of samples, this criterion is further extended
into (Xu, 2002):

k |2 |0.5 k
Ty = apIn=— + 051> > a,Tr{3; "], (25)

=1 G =

which returns to the one in Xu (1997d) if h=0. As
experimentally shown in Hu and Xu (2003), J(k) with data
smoothing can select the correct value of k on a data of a
small size of samples, while the J(k) by Eq. (25) with s = 0
(i.e. without data smoothing) sometimes fail to find the
correct value of k. On a data set of enough number of
samples, the above J(k) without or with data smoothing can
both select the correct value of k. On the same data set of a
large size, however, typical existing criteria of the Akaike’s
information criterion (Akaike, 1974), the Schwarz’s Baye-
sian inference criterion (Schwarz, 1978) or equivalently the
minimum description length criterion (Rissanen, 1999) all
result in wrong solutions.

Via the BYY harmony learning, k may also be selected in
parallel automatically during estimating 6. For the Gaussian
mixture by Eq. (22), the resulted algorithm is a modification
of Eq. (23) with the E step simplified into the following
hard-cut form

1, £ = arg max [a;G,(6))],
Per = ! .

(26)
0, otherwise

As long as k is initially a number large enough, the
competitive role of Eq. (26) will make «;, that corresponds
to an extra Gaussian, become very small or zero (Xu, 2001b,
2002). Thus, the corresponding Gaussian can be discarded
with an appropriate number k determined automatically.

The winner-take-all (WTA) nature of Eq. (26) may cause
the learning process to be stuck at a local solution (Xu
2001b), especially on a finite size of samples. This problem
is compensated by the regularization of 4> during the M-
step.

The problem caused by this WTA can also be solved by
another type of regularization called normalization that
introduces a new conscience de-learning mechanism similar
to the RPCL (Xu, Krzyzak, & Oja, 1993), which gets

¢ = arg mind,,, r=arg mindt,
j . JjFc -

1, if £ = C, (27)
d;; = —In[e;G,(6))], Pes =1~ if€=r,
0, otherwise,

where 7y approximately takes a value between [0.1, 0.05].
The first winner will learn while the second winner (or
called rival) will be de-learned by a small degree. Though,

RPCL learning was originally proposed in a heuristic way. It
has been further found that it can be regarded as a
simplification or a variant of BYY harmony learning with
normalization regularization. The details are referred to Xu
(2001b, 2002).

The RPCL learning algorithm, an adaptive version of Eq.
(23) for maximum likelihood (ML) learning, and BYY
harmony (H)-learning with the E step replaced by Eq. (26)
can be unified into the following procedure:

by Eq. (23), ML-Learning,

by Eq. (26), Harmony-Learning,
(@) pe;s =

by Eq. (27) RPCL-Learning,

p(@lx,) — yq(£lx,), A general form.
where p(£lx,) = 0,

k k
> pelx) =1; qelx) =0, > qlelx,) =1.
£=1 £=1

(28)

k
(b) o = %new/ Z B%new’
£=1
k
1d 1d 1d
BEY = B2 + mpe, — a2 pe B,
£=1

new __ _ old — _
(c) Mg~ =mp + MPp €y o = X, — My,
T new old old cold
3 =8:8¢, S¢ =80 + mpe,G3, S,
oyl T v—1 _ v-1
Gze =3, ee,ree,zze 3.

where the updating rules on a,, 3, guarantee the
satisfaction, even when p,, <0, that a, =0, Zﬁz:l X
a, =1 and 3, is non-negative definite. The general form
of pe, = p(£lx;) — yq(£lx,) includes the other three cases as
its special cases. When y = 0, we get the ML-Learning case
for p(€lx;) = pe, by Eq. (23) and the Harmony-Learning
case for p(€lx,) = p,, by Eq. (26). When y approximately
takes a value between [0.1, 0.05], we get the RPCL-
Learning when p(@lx,) = ;.. q(£lx,) = §,, with ¢, r by
Eq. (27) and

- L, i=},
6,‘J ==
0, i#].
The general form also leads to the mentioned BY'Y harmony

learning with normalization regularization when p(£€lx,) =
6@,(7 and

o;G(x;(my, Ej))
> aGlxlme, 3

LEL,

€ L,
qlx,) =
0, otherwise;

where L, consists of the first k labels of {1,...,k}
that correspond the first k largest values of ajG(x|mj,Ej).
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It leads to the RPCL learning again when k = 2 (Xu, 2001b
and 2002).

3.2. Best modeling via a parametric set

Instead of representing multiple data sets with each
Gaussian density for a data set, a multi-sets-mixture is more
suitable for the fields of computer vision and image
recognition, where we often encounter the tasks of detecting
objects in typical shapes such as lines, circles, and ellipses,
as well as pre-specified shapes. In these cases, we need to
model multiple data sets with samples of each data set
coming from an object of a given shape. Except for the
simplest cases such as points and lines, a Gaussian density is
not able to represent such a data set. The multi-sets-mixture
or called multi-sets modeling is proposed for modeling these
objects (Xu, 1994, 1995b).

Samples from each object consists of one deterministic
part plus random noise. The deterministic part is described
by a finite or continuous set S(6) of real points in R?, subject
to a parametric set 6 of a finite number of unknown
parameters. Each S(6) represents a shape such as a line, a
curve, and an ellipsis, as well as a pre-specified shape.

Subject to such a set S(0), a sample x is represented by
X = arg min &(x,y),

YES(6) (29)

e(x,y) = Cle(x, ), e(x,y) = x — y,

where X is called the best reconstruction of x by S(6), and
e(x, 0) = e(x, X) is called the reconstruction error of S(6) per
sample x. Moreover, &(x,y) is a given measure for the
discrepancy e(x,y) such that e(x,y) = 0 and e(x,y) = 0 if
and only if e(x,y) = 0 or x = y. The best modeling of S(6)
on a given set of samples is made by determining 6 such that

N
min min &(x,,y), 30
jn D min, o(x.) (30)

The most widely used &(x, y) is

e(x,y) = e(x,y)" X "e(x,y), (31)

which is called the Mahalanobis distance with ¥ being
positively defined. It returns to the square distance between
x,y when ¥ =1. In this case, we call & the least square
reconstruction of x by S(6), with

= I> = min | 12
& (x, 0) e(x, 0) yl‘él;(r(l’) e(x,y) (32)
which is generally a minimizing procedure. However,

e(x, 0) gets an explicit expression in the following special
cases:

(a) apoint S(0) = {a} : e(x,0) =x —a; (33)
(b) alineS(0) = {x: x — a parallels w — a},

ex, ) =[I — (w— a)w — a)"1(x — a);

() aplaneS(A) = {x: (x — a)'(w — a) = 0},

(w—a)'w—a)

)

w0 =

(d) a subspace S(6) spanned by W at the origin a,
e(x,0) = (I — WW'W) "WHix — a);

(e)  acircleS(0) = {x: Ix — al* = 2},
e(x,0) = llx —all — ¢;

) an ellipse

_ 2 _ 2
S(0) = {x = [u, v]T: (u azuo) (v =) _

S = 10,

e(x, 0) = x — X, with X as in Eq.(29).

S(6) in the cases (b) and (c) consists of a line or a
hyperplane, respectively, passing through a point a, and S(6)
in the case (d) consists of a linear manifold—a shifted
subspace that locates at a point a. S(6) in the case (e)
consists of a sphere of radius c that locates at a. The
corresponding error &,(x, ) is actually the shortest distance
of the point x to the line, hyperplane, linear manifold,
sphere, and ellipse, respectively.

For the cases (a), (b), (c) and (d), the implementation of
Eq. (30) can be made with an analytical solution, with a
being the mean vector, w being the direction of either
principal or minor component of the sample set, and W
spans a principal subspace. For the case (e) and case (f), the
implementation of Eq. (30) can be implemented via an
iterative procedure, e.g. gradient descent. For all the cases,
the implementation of Eq. (30) can also be made adaptively
with the parameter 6 updated per sample x; via the descent
direction of the gradient Ve, (x;, 6).

More generally, given a set of samples % = {y,}Y_, that
represents a contour of a specific shape, we have

5(0) = {AR(P)(y, +a) : Vy, € ¥} (34)

for a shape resulted from a displacement a, a rotation of an
angle ¢ and a scaling by A, where R(¢) is a rotation matrix
and 6 = {a, ¢, A}. Correspondingly, fitting the shape by Eq.
(30) becomes

N
mgin Z még/ Ix, — AR(D)(y, + a)l*. (35)

=17

3.3. Multi-sets-mixture and adaptive learning

When samples come from multiple objects, a number of
S(6,), € =1,---,k are needed. As shown in (Xu, 1994,
1995b), the multiple counterparts by the cases of (a), (b), (c)
and (d) in Eq. (33) actually perform the mean square error
k-means clustering, local principal component analysis
(PCA), minor principal component analysis (MCA), local
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principal subspace analysis (PSA), and as well as its
complementary local MSA.

Directly considering x, a multi-sets will correspond a
mixture of non-Gaussian densities that is not easy to
implement (Xu, 1995b, 1996a). However, considering the
reconstruction error e(x, 6,) from a Gaussian, we have the
following Gaussian mixture

k
pleld) = > a,G(elo, 3y), (36)
£=1

which is a further extension of the mixture of exponential
densities in (Xu, 1996a).

For each sample x,, we get e, , = e(x;, 6,) for each S(6,)
with the probability p,, = p(£lx,), and make learning with
data smoothing regularization by maximizing

T
Lp(6,h) = [ﬁ

£=1

N
> pesLe )+ 2, (h)],

=1

(37)
Lo, (h) = J Glele, g, *DIn[a,G(el0, 3,)|de

where Z,(h) is same as in Eq. (8) with e, , in place of u,.

With h? fixed, learning can be modeled via the smoothed
EM algorithm by Eq. (23) with G,(6,) = G(e,,l0, X,) and
e(x;, my) replaced by e(x, 6,), as well as

1
me = N—ae Zpe,zxz

=1

replaced by

0, = arg max
0,

1 & g .
— > Pese(x, )" elx;, b). (38)
=1 £

which is usually solvable for those cases in Eq. (33) (Xu,
1994, 1995Db).

Then, 4 is updated by Eq. (10) or Eq. (11) or Eq. (13),
with 7 still given by Eq. (24) and dL;(6, h)/dh by Eq. (12)
but getting

f X —lle;, — el
1 Z/=1p.ivte"p(#
, (),
N ok —lle;, —e; I
Zt:IZi:IPJ'JeXp 2
] ley,—e; 2
el[ e
Ze 12, 1PjPe ,exp( 2 ) o
—lle;,— e,,H2 ’
ZrlZ:— ZE 12 1Pj.iPe.1€XP 72

Moreover, after parameter learning we can select k by the
minimum of J(k) via Eq. (25). Also, similar to the case of Eq.
(22), we can replace the E step by Eq. (26) such that an
appropriate number k is determined automatically during
learning. With G,(0,)=G(e,,10,%,) and e, ,=e(x;,0,), we get

various types of adaptive algorithms as in Eq. (28).
Particularly, when 3,=021I, the step (c) in Eq. (28) is
simplified as follows

2
O_new_ old _ “’IPe,zl— _ ”e(x, 0@)”
¢ T T new L g2od |
’ ‘ (39)
U%new — U_Eew % U_Eew’

05 =63+, lle(x, 0,)II.

A preliminary case of Egs. (28) and (39) at a,=1/k and
3,=pI for a given B>0 was proposed in (Xu, 1998¢) for
RPCL learning on a multi-sets.

4. Guess-test decision, competiton-penalty adaptation,
and global evidence accumulation

The tasks of learning or modeling or problem solving in
general can be understood mathematically as a mapping
from the observation space 2" to a set @ of hypotheses. A set
{x;} comes from Z with each x € Z called a sample or an
evidence. The set @ is either a finite or infinite set that
represents a family of models with a given form of
mathematical function and a parameter vector 6 such that
each fixed value of 1is an element or called a point of 6, i.e.
0 € 0 is a hypothesis that represents a specific mathemat-
ical model. A mapping from {x,} to one or several points in
O indicates that one or several hypotheses are drawn as
conclusions from the evidences in {x,}. Generally, there are
three fundamental strategies for these tasks:

(a) Competition-penalty adaptation. As discussed in this
paper, we have 0, € 0, £ = 1,..., k that compete to adapt
{x;} in Z via making each 6, of the k variables move in 6.
All the movements are motivated to minimize a given cost
function C({x;},{6,}) in a way that the trace of each
moving variable is a continuous trace of improvements from
a current hypothesis locally to a nearby hypothesis. Finally,
the trace is trapped at a hypothesis that any moving to its
nearby points has no improvement. Then, this hypothesis is
taken as a conclusion. The advantage of this process is easy
in implementation with only a small computing cost and
memory. Also, it is adapted once an new evidence comes
and we always have k hypotheses as current interpretations
available. A main disadvantage is thus that the movements
are made locally to neighbors only and thus likely trapped at
conclusions of local optimal instead of being the best.
Moreover, a strong competition among the k variables of 6y
will make the situation even worse. Usually one or more
type of penalty is companied with this competition to reduce
its negative effect.

(b) Global evidence accumulation based selection. As
used by the well known Hough Transform (Hough, 1962),
each point in @ is considered as a candidate hypothesis.
Each evidence x, casts one vote to a subset of points in @ as
possible hypotheses. After voted by all evidences in {x,},
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those points that receive the number of votes large enough
are taken as conclusions. The advantage of the approach is
the conclusion is made via a global voting based on all
evidences in {x,}. The disadvantages is that the cost is very
expensive in casting and storing all the votes, usually
increasing exponentially with the dimension of 6.

(¢) Guess-test based decision. As used by the RANSAC
approach (Fischler and Bolles, 1981), a point 6 of @ is
guessed from a few evidences in {x,}, then a given testing
criterion is used to check how many samples in {x,} are
fitted by the model with this 6 and how well this fitting. The
guess is either taken as a conclusion if the test is passed or
discarded if failed. Then, the next guess-test circle repeats.
This approach has little memory cost. However, a simple
algorithm that bases on only a few evidences is easy to give
a wrong guess and too many wrong guess will cost a lot of
computations. In contrast a complicated algorithm needs
many computing cost but may not be able to considerably
increase the accuracy of guessing. Similarly, a simple
testing criterion will create many wrong solutions while a
complicated criterion will waste a lot of computing times.
Moreover, a testing made on a hypothesis may only give a
local solution, instead of an optimal solution. Hence, many
open issues remain, especially on making a testing on
multiple hypotheses.

It can be observed that the above processes of learning,
voting a subset of candidates, and guessing share a
common point of providing certain hypotheses as candi-
dates. A difference is that these hypotheses are simply
taken as conclusions for (a) but will be further evaluated
for (b) and (c). Also, though (b) and (c) share a common
point that both evaluate candidate hypotheses before taking
any conclusion, a difference is whether conclusions are
based either on comparison after enough evidence
accumulated for (b) or on a testing immediately following
a guessing for (c).

Three strategies can all be regarded as the particular
cases of a general problem solving paradigm that
consists of

(i) Drawing candidate hypotheses from samples {x,},

(i) Accumulating votes on the candidate hypotheses,

(iii) Selecting most likely hypotheses via comparison,

(iv) Testing the most likely hypotheses that become
conclusions or rejected;

(v) Refining the conclusions (e.g. via local adaptation).

For a specific problem solving strategy, some of the
above five ingredients may disappear, and the strength of
each ingredient may be different. For examples, the
above (a) consists of only the ingredient (i), made via a
sophisticated learning process. The above (b) consists of
the first three ingredients with (i) being enumerating
simply each sample in {x,}. The above (c) consists of
the ingredient (iv) and the ingredient (i) that is simply
random sampling.

By putting the focuses and strengths differently on the
five ingredients, we may combine the advantages of the
above (a) (b) and (c¢) and reduce the effect of their
disadvantages. For an example, the Random Hough Trans-
form (Xu & Oja, 1993) improves the disadvantages of the
Hough Transform (Hough, 1962) via modifying the
ingredient (i) to reduce the burden of the ingredient (ii) as
well as via adding the ingredient (iv) to improve accuracy.
For another example, we can implement the above (a) of
learning that starts at different initializations to take the role
of the ingredient (i), followed by all or a part of all the rest
ingredients. Particularly, with learning on a mixture of
multi-sets by Eqs. (34) and (35) as the ingredient (i), we can
get an improved version of the generalized Hough Trans-
form (Ballard, 1981).

5. Conclusions

The data smoothing based regularization not only
provides an easy implementing solution to the difficulty of
determining an appropriate hyper-parameter in Tikhonov
like regularization for parameter learning, but also takes an
important role in BY'Y harmony learning both on penalizing
the WTA effect of the least complexity nature and on
improving the performance of model selection criteria in the
cases of a small size of samples. The roles are detailed via
Gaussian-mixture with the smoothed EM algorithm, the
smoothed BYY model selection criterion, adaptive algor-
ithm as well as its related RPCL learning. Moreover, the
studies are further extended to a reconstruction error based
Gaussian mixture for multi-sets learning with data smooth-
ing based regularization, which are suitable to tasks of
modeling and recognizing multiple objects of typical
geometrical shapes. Finally, insights are provided on three
problem solving strategies, namely the competition-penalty
adaptation based learning, the global evidence accumulation
based selection, and the guess-test based decision, under the
general problem solving paradigm.
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