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Abstract

First, we briefly introduce the basic idea of data smoothing regularization, which was firstly proposed by Xu [Brain-like computing

and intelligent information systems (1997) 241] for parameter learning in a way similar to Tikhonov regularization but with an easy

solution to the difficulty of determining an appropriate hyper-parameter. Also, the roles of this regularization are demonstrated on

Gaussian-mixture via smoothed versions of the EM algorithm, the BYY model selection criterion, adaptive harmony algorithm as well

as its related Rival penalized competitive learning. Second, these studies are extended to a mixture of reconstruction errors of

Gaussian types, which provides a new probabilistic formulation for the multi-sets learning approach [Proc. IEEE ICNN94 I (1994)

315] that learns multiple objects in typical geometrical structures such as points, lines, hyperplanes, circles, ellipses, and templates of

given shapes. Finally, insights are provided on three problem solving strategies, namely the competition-penalty adaptation based

learning, the global evidence accumulation based selection, and the guess-test based decision, with a general problem solving

paradigm suggested.
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1. Introduction

It is well understood that regularization is of key

important for parametric modeling or neural networks

learning on a finite set of samples. Several regularization

techniques have been studied in the literature. They are

closely related to the well known Tikhonov regularization

(Tikhonov & Arsenin, 1977; Girosi, 1995), featured by

adding to the fitting error with a regularizing term that is

weighted by a so called hyper-parameter. Conceptually,

this hyper-parameter can be further determined via one of

several methods, including estimating generalization error

bound, cross validation, Bayesian approach, and minimum

description length, etc. In implementation, however, they

not only suffer extensive computational cost but also are

able to provide a rough solution only.

It is also well known for several decades, e.g. in the

literatures of signal processing or control theory, that

adding a noise with an appropriate variance to a finite set

of samples will help parameter estimation or system

modeling. In the literature of neural networks, it has been

shown that training with noise is equivalent to Tikhonov

regularization (Bishop, 1995).

When the size of noise samples are infinite or large

enough, it follows from probability theory that adding noise

to samples is equivalent to the convolution of the empirical

density obtained directly from samples with a smoothing

kernel function. This nature is directly used in a non-

parametric density estimation under the name Parzen

window estimation. When the kernel is a Gaussian function,

we have

phðuÞ ¼
1

N

XN
t¼1

Gðulut;ShÞ; Sh ¼ h2I; ð1Þ

where and throughout this paper, Gðulm;SÞ denotes a

Gaussian density with a mean vector m and covariance

matrix S: Particularly, phðuÞ returns back to the empirical

density when h ¼ 0: That is,

p0ðuÞ ¼
1

N

XN
t¼1

dðu 2 utÞ: ð2Þ

Therefore, this h is usually called smoothing parameter

and takes a role similar to the above noise variance and

the hyper-parameter in Tikhonov regularization. Though
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many studies have been made theoretically on how to

estimating an appropriate smoothing parameter (Devroye

et al., 1996), in implementation they share difficulties

similar to that discussed for determining a hyper-

parameter.

The idea of data smoothing regularization came firstly in

(Xu, 1997a–c) from using the Parzen window estimator by

Eq. (1) in place of directly using empirical density by Eq. (2)

on parameter learning of the Bayesian Ying Yang (BYY)

system such that the effect of a finite size of samples is

regularized via the smoothing role of an appropriate

smoothing parameter h that is decided during learning.

The BYY harmony learning was firstly proposed in 1995

(Xu, 1995a, 1996b) and systematically developed in the past

several years (Xu, 2000a,b, 2001a,b, 2002, 2003). This

BYY harmony learning acts as a general statistical learning

framework such that not only a number of existing major

learning problems and learning methods are revisited as

special cases from a unified perspective, but also a harmony

learning theory is developed with a new learning mechan-

ism that makes model selection implemented either

automatically during parameter learning or subsequently

after parameter learning via a new class of model selection

criteria obtained from this mechanism, with new insights

and a series of new results. Further details are referred to Xu

(2002, 2003).

After briefly introducing the basic idea of data

smoothing regularization in Section 2, this paper will

focus on its role in two types of finite mixture models via

both the maximum likelihood (ML) learning and the BYY

harmony learning. In Section 3, the roles of data

smoothing regularization are demonstrated on Gaussian-

mixture via smoothed versions of the EM algorithm, the

BYY model selection criterion, adaptive harmony learning

as well as its related Rival Penalized Competitive

Learning (RPCL). In Section 4, these studies are extended

to a mixture of reconstruction errors of Gaussian types as

a new probabilistic formulation for the multi-sets learning

approach (Xu, 1994) that learns multiple objects via

typical geometrical structures such as points, lines,

hyperplanes, circles, ellipses, and templates of given

shapes. Moreover, insights are provided in Section 5 on

three problem solving strategies, namely the competition-

penalty adaptation based learning, the global evidence

accumulation based selection, and the guess-test based

decision, with a general problem solving paradigm

suggested.

2. Data smoothing regularization

2.1. Data smoothing regularization

Given a parametric model qðmluÞ; learning with data

smoothing regularization is made via maximizing

the following criterion (Xu, 1998a, 1999, 2002, 2003):

LDðu; hÞ ¼ LhðuÞ þ ZðhÞ; ð3Þ

where LhðuÞ is a smoothed version of the likelihood function

L0ðuÞ as follows:

LhðuÞ ¼
ð

phðuÞln qðuluÞdu;

L0ðuÞ ¼
ð

p0ðuÞln qðuluÞdu ¼
1

N

XN
t¼1

ln qðutluÞ;
ð4Þ

with the empirical density p0ðuÞ replaced by phðuÞ: We have

the following general form (Xu, 1999, 2002, 2003):

LhðuÞ < L0ðuÞ2 0:5RhðuÞ;

RhðuÞ ¼ 2
1

N

X
t

Tr
X

h

›2 ln qðuluÞ
›u ›uT

" #
u¼ut

:
ð5Þ

It follows from Sh ¼ h2I that

RhðuÞ ¼ h2pq;pq ¼ 2
1

N

X
t

Tr
›2 ln qðuluÞ
›u ›uT

" #
u¼ut

: ð6Þ

which provides a Tikhonov-type regularization (Tikhonov

& Arsenin, 1977; Girosi, 1995) on LhðuÞ and the role h is

equivalent to the hyper-parameter in (Bishop, 1995).

The new thing in Eq. (3) is that h can be decided by

maxu;h LhðuÞ due to the role of ZðhÞ; which can be one of two

choices (Xu, 1998a, 1999, 2002, 2003):

ZðhÞ ¼

2
ð

phðuÞln phðuÞdu; ðaÞ;

2ln
XN
t¼1

phðutÞ; ðbÞ:

8>>>><
>>>>:

ð7Þ

In both the cases, it contains a dominated term RhðuÞ that

increases as h increases. On the other hand, it follows from

Eqs. (5) and (6) that LhðuÞ is maximized as h ! 0 since pq is

always non-negative. As a result, the trade-off of two

aspects results in an appropriate value for h:

The two types of ZðhÞ lead to two types of data

smoothing regularization. It follows from Eq. (5) that

ZðhÞ ¼ 0:5 lnlShlþ GðhÞ þ ln N þ cz; cz is constant;

GðhÞ ¼

21

N

XN
t¼1

ln
XN
t¼1

e2dhðut ;utÞ

" #
; ðaÞ;

2ln
XN
t¼1

XN
t¼1

e2dhðut ;utÞ

" #
; ðbÞ:

8>>>>><
>>>>>:

dhðut; utÞ ¼ 0:5ðut 2 utÞ
TS21

h ðut 2 utÞ:

ð8Þ

As observed in Xu (2002), two types of regularization in Eq.

(8) tends to being equivalent as the size N of samples

increases to be large enough. The case (a) is more suitable

when qðuluÞ is modeled directly via the smoothed likelihood
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LhðuÞ in Eq. (3) but with no consideration on model

selection. While the case (b) is more suitable for making the

harmony learning with model selection (Xu, 2001a, 2002,

2003) on a Bayesian Ying–Yang system that represents

qðuluÞ as its marginal density.

Moreover, it follows from Eq. (3) that the learning can be

implemented by alternatively (Xu, 1998a–c)

ðaÞ Estimating u via max
u

LhðuÞ with h fixed;

ðbÞ Estimating h via max
h

LDðu; hÞ with u fixed:
ð9Þ

e.g. the step (b) can be made via the gradient ascent

iteration:

hnew ¼ hold þ hDh; Dh ¼
dLDðu; hÞ

dh
: ð10Þ

Alternatively, Dh can also simply given by (Xu, 1999)

Dh ¼

h; if LDðu; h þ hÞ . LDðu; hÞ;

2h; if LDðu; h 2 hÞ . LDðu; hÞ;

0; otherwise:

8>><
>>: ð11Þ

In the following we further introduce the details of Eq. (9) in

two typical situations:

(1) Sh ¼ h2I in Eq. (1). It applies to the cases that all the

components in an observed sample vector should be equally

smoothed, e.g. the case of estimating a density qðxluÞ or

equivalently a joint density qðx; zluÞ that becomes the same

as the former by u ¼ ½x; z�: In the case, we have Eq. (6). It

further follows from Eqs. (5) and (8), maxhLDðu; hÞ can be

made via (Xu, 2002)

dLDðu; hÞ

dh
< 2hpq þ d=h þ dh2

u;0=h
3
;

h2
u;0 ¼

1

d

XN
t¼1

XN
t¼1

pt; tkut 2 utk
2
;

pt;t ¼

1

N

e2dhðut ;utÞ

XN
t¼1

e2dhðut ;utÞ

; ðaÞ;

e2dhðut ;utÞ

XN
t¼1

XN
t¼1

e2dhðut ;utÞ

; ðbÞ;

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

where d is the dimension of u: Thus, the estimation of h can

be made via solving a positive root of v2pq þ vd þ h2
0d ¼ 0

with v ¼ h2 and h2
0 regarded approximately as a constant.

That is,

h2 ¼
2h2

u;0

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4h2

u;0d21pq

q : ð13Þ

which can be either used directly or as an initial value for

Eq. (10).

(2) Sh ¼ diag½h2
xIx; h

2
z Iz� in Eq. (1) with h denoting a

vector ½hx; hz�
T: It applies to the cases that the components in

an observed sample vector can be divided into two parts

(Xu, 1999). Each part has a quite different statistical

property and thus should be smoothed separately, where Ix;

Iz denotes the unit matrix in the space of x; z; respectively.

Correspondingly, qðx; zluÞ ¼ qðzlx; uzlxÞqðxluxÞ also has

different structures on z; x: In the case, Eq. (6) is replaced

with

RhðuÞ ¼ 0:5h2
x½p

x
qðzlxÞ þ px

qðxÞ� þ 0:5h2
zp

z
qðzlxÞ;

px
qðxÞ ¼ 2

1

N

X
t

Tr
›2 ln qðxluxÞ

›x ›xT

" #
x¼xt

;

p
x
qðzlxÞ ¼ 2

1

N

X
t

Tr
›2 ln qðzlx; uzlxÞ

›x ›xT

" #
x¼xt ;z¼zt ;

pz
qðzlxÞ ¼ 2

1

N

X
t

Tr
›2 ln qðzlx; uzlxÞ

›z ›
T
z

" #
x¼xt ;z¼zt :

ð14Þ

Moreover, Eq. (12) is replaced by

dLDðu; hÞ

dhx

< 2hx½p
x
qðzlxÞ þ px

qðxÞ� þ
dx

hx

þ
dh2

x;0

h3
x

;

dLDðu; hÞ

dhz

< 2hzp
z
qðzlxÞ þ

dz

hz

þ
dh2

z;0

h3
z

:

ð15Þ

where dx; dz are the dimension of x; z; respectively, and h2
x;0;

h2
z;0 are obtained from h2

u;0 with u replaced by x; z;

respectively. Thus, the root by Eq. (13) becomes

h2
x ¼

2h2
x;0

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4h2

x;0d21
x ½px

qðzlxÞ þ px
qðxÞ�

q ;

h2
z ¼

2h2
z;0

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4h2

z;0d21
z pz

qðzlxÞ

q :

ð16Þ

The above studies apply to both the case of estimating a

joint density qðzlx; uzlxÞqðxluxÞ and the case of estimating a

conditional density qðzlx; uzlxÞ for supervised learning on the

regression function EðzlxÞ ¼
Ð

zqðzlx; uzlxÞdz: Typical

examples of the latter include three layer forward net,

RBF nets and mixture of experts. To do so, we can set

qðxluxÞ to be either of the following two choices:

qðxluxÞ ¼
phx

ðxÞ; ðaÞ by Eq: ð1Þ;

poðxÞ; ðbÞ the unknown true density:

(
ð17Þ

Thus, we approximately have

px
qðxÞ ¼

2d=h2
x ; ðaÞ by Eq: ð1Þ

2Tr½S21�; ðbÞ the unknown true density;

(
ð18Þ

where S is the sample covariance matrix estimated directly

from samples of x (Xu, 1999). Thus, the maximum

L. Xu / Neural Networks 16 (2003) 817–825 819



likelihood learning on qðzlx; uzlxÞ with data smoothing

regularization can be implemented via maxu;h LhðuÞ with

px
qðxÞ substituted into Eqs. (14)–(16).

Being different from that in Eq. (8) of the case (a), an

alternative estimate of ZðhÞ is also given as follows (Xu,

1999, 2000b):

ZðhÞ ¼ 0:5 lnlShl2 GðhÞ2 0:5d
h2

0 2 e2
0

h2
;

e2
0 ¼

1

dN

XN
t¼1

ut 2
XN
t¼1

Npt;tut




2

;

ð19Þ

where pt;t is same as in Eq. (12). We can get both dLDðu; hÞ=

dh in Eq. (12) and h2 in Eq. (13) simply with h2
0 replaced by

e2
0: Similarly, we can get e2

x;0; e2
z;o with ut replaced by xt; zt;

and then get dLDðu; hÞ=dhx and dLDðu; hÞ=dhz in Eq. (15) and

h2
x ; h2

z in Eq. (16) with h2
x;0; h2

z;0 replaced by e2
x;0; e2

z;0: The

difference between ZðhÞ in Eq. (19) from that of the case (a)

in Eq. (7) is whether the second order information within

phðuÞ is considered.

2.2. Historic remarks

The data smoothing learning by Eq. (3) with ZðhÞ by the

cases (a) in Eq. (7) came firstly from the implementation of

BYY parameter learning via minimizing the Kullback–

Leiber (KL) divergence between the Yang machine and

Ying machine in the case of the backward architecture (Xu,

1995a, 1996b). With phðxÞ by Eq. (1), it was firstly proposed

under the name of data smoothing by Eq. (16) in Xu (1997b)

and Eq. (3.10) in Xu (1997a) that an appropriate h is also

learned via minimizing the KL divergence, which becomes

equivalent to

min
u;h

KLðu; hÞ; KLðu; hÞ ¼
ð

phðxÞln
phðxÞ

qðxluÞ
dx; ð20Þ

which was firstly presented by Eq. (7) in Xu (1997c).

Obviously, it can be rewritten into Eq. (3) with ZðhÞ

given by the case (a) of Eq. (7). In a BYY system,

qðxluÞ ¼
Ð

qðxlyÞqðyÞdy is the marginal density rep-

resented by the Ying machine. Generally, being inde-

pendent of the BYY system, qðxluÞ can be any parametric

model for density estimation. Also in Xu (1997b), the

data smoothing regularization is suggested on qðzlx; uzlxÞ

for supervised learning of three layer forward net and

mixture of experts.

A preliminary systematic study on data smoothing

regularization was provided in Xu (1998a), including (a)

two ways to tackle the integral in LhðuÞ; (b) the alternative

strategy of Eq. (9); (c) extensions to estimating qðzlx; uzlxÞ

for supervised learning with three layer forward net, RBF

nets and mixture of experts; (d) the role of h in the model

selection by BYY harmony learning. Further progresses in

all the four aspects were presented in Xu (1999), including

(1) handling the integral in LhðuÞ in help ofð
Gðxlxt; h

2IÞFðxÞdx < FðxtÞ þ 0:5h2Tr½HF�; ð21Þ

with HF being the Hessian matrix of FðxÞ; (2) the use of Dh

in Eq. (11) and the use of Eq. (21) in handling 2
Ð

phðxÞ

ln phðxÞdx; (3) the use of Eq. (1) with Sh ¼ diag½h2
xIx; h

2
z Iz�

for estimating qðzlx; uzlxÞ; (d) the suggestion of the case (b)

in Eq. (18) for learning of three layer forward net, RBF nets

and mixture of experts.

A systematic summary can be found in Xu (2000b) on

the studies of Eq. (3) with ZðhÞ by the case (a) in Eq. (7). The

data smoothing learning by Eq. (3) with ZðhÞ by the case (b)

in Eq. (7) was firstly proposed in Xu (2001b). The detailed

equations as those introduced in Section 2.1 were firstly

provided in Xu (2001a) and further discussions in

comparison with the case (a) are made in Xu (2002, 2003).

3. Gaussian mixture and multi-sets-mixture

3.1. Gaussian mixture and smoothed EM algorithm

Specifically we start at considering a Gaussian mixture:

qðxluÞ ¼
Xk

‘¼1

a‘Gðxlm‘;S‘Þ: ð22Þ

Give a known k; as proposed in Xu (1997b), the estimation

of can be implemented by the following smoothed EM

algorithm:

E step : p‘;t ¼ a‘Gtðu‘Þ=
Xk

‘¼1

a‘Gtðu‘Þ;

Gtðu‘Þ ¼ Gðxtlm‘;S‘Þ; u‘ ¼ {m‘;S‘}

ð23Þ

M step : a‘ ¼
1

N

XN
t¼1

p‘;t; m‘ ¼
1

Na‘

XN
t¼1

p‘;txt;

eðxt;m‘Þ ¼ xt 2 m‘;

S‘ ¼ h2I þ
1

Na‘

XN
t¼1

p‘;teðxt;mlÞe
Tðxt;m‘Þ;

which is different from the EM algorithm (Dempster, Laird

& Rubin, 1977; Redner & Walker, 1984) with a smoothing

parameter h2 added to the diagonal elements of S‘: Also, it

follows from Eq. (5) that

pq ¼ 2
1

N

XN
t¼1

Xk

‘¼1

p‘;tTr½S21
‘ � ¼ 2

Xk

‘¼1

a‘Tr½S21
‘ �; ð24Þ

and the estimation of h2 is made by Eq. (13) and can be

further elaborated via Eq. (10).

When k is unknown, we need also to select an

appropriate value for it. The task is called model selection,

which is usually made on selecting a best value for k via

L. Xu / Neural Networks 16 (2003) 817–825820



mink JðkÞ; with JðkÞ called model selection criterion. In Xu

(1997d), a criterion is proposed from the BYY harmony

learning, without considering data smoothing regulariz-

ation. Considering data smoothing regularization in the case

of a finite size of samples, this criterion is further extended

into (Xu, 2002):

JðkÞ ¼
Xk

‘¼1

a‘ ln
lS‘l

0:5

a‘

þ 0:5h2
Xk

l¼1

a‘Tr½S21
‘ �; ð25Þ

which returns to the one in Xu (1997d) if h ¼ 0: As

experimentally shown in Hu and Xu (2003), JðkÞ with data

smoothing can select the correct value of k on a data of a

small size of samples, while the JðkÞ by Eq. (25) with h ¼ 0

(i.e. without data smoothing) sometimes fail to find the

correct value of k: On a data set of enough number of

samples, the above JðkÞ without or with data smoothing can

both select the correct value of k: On the same data set of a

large size, however, typical existing criteria of the Akaike’s

information criterion (Akaike, 1974), the Schwarz’s Baye-

sian inference criterion (Schwarz, 1978) or equivalently the

minimum description length criterion (Rissanen, 1999) all

result in wrong solutions.

Via the BYY harmony learning, k may also be selected in

parallel automatically during estimating u. For the Gaussian

mixture by Eq. (22), the resulted algorithm is a modification

of Eq. (23) with the E step simplified into the following

hard-cut form

p‘;t ¼
1; ‘ ¼ arg max

j
½ajGtðujÞ�;

0; otherwise

8<
: : ð26Þ

As long as k is initially a number large enough, the

competitive role of Eq. (26) will make aj; that corresponds

to an extra Gaussian, become very small or zero (Xu, 2001b,

2002). Thus, the corresponding Gaussian can be discarded

with an appropriate number k determined automatically.

The winner-take-all (WTA) nature of Eq. (26) may cause

the learning process to be stuck at a local solution (Xu

2001b), especially on a finite size of samples. This problem

is compensated by the regularization of h2 during the M-

step.

The problem caused by this WTA can also be solved by

another type of regularization called normalization that

introduces a new conscience de-learning mechanism similar

to the RPCL (Xu, Krzyzak, & Oja, 1993), which gets

c ¼ arg min
j

dj;t; r ¼ arg min
j–c

dj;t;

dj;t ¼ 2ln½ajGtðujÞ�; p‘;t ¼

1; if ‘ ¼ c;

2g; if ‘ ¼ r;

0; otherwise;

8>><
>>:

ð27Þ

where g approximately takes a value between [0.1, 0.05].

The first winner will learn while the second winner (or

called rival) will be de-learned by a small degree. Though,

RPCL learning was originally proposed in a heuristic way. It

has been further found that it can be regarded as a

simplification or a variant of BYY harmony learning with

normalization regularization. The details are referred to Xu

(2001b, 2002).

The RPCL learning algorithm, an adaptive version of Eq.

(23) for maximum likelihood (ML) learning, and BYY

harmony (H)-learning with the E step replaced by Eq. (26)

can be unified into the following procedure:

ðaÞ p‘;t ¼

by Eq: ð23Þ; ML-Learning;

by Eq: ð26Þ; Harmony-Learning;

by Eq: ð27Þ RPCL-Learning;

pð‘lxtÞ2 gqð‘lxtÞ; A general form:

8>>>>>><
>>>>>>:

:

where pð‘lxtÞ $ 0;

Xk

‘¼1

pð‘lxtÞ ¼ 1; qð‘lxtÞ $ 0;
Xk

‘¼1

qð‘lxtÞ ¼ 1:

ð28Þ

ðbÞ a‘ ¼ b2new
‘

�Xk

‘¼1

b2new
‘ ;

ðcÞ

bnew
‘ ¼ bold

‘ þ hðp‘;t 2 aold
‘

Xk

‘¼1

p‘;tÞ=b
old
‘ ;

mnew
‘ ¼ mold

‘ þ hp‘;te‘;t; e‘;t ¼ xt 2 m‘;

S‘ ¼ S‘ST
‘ ; Snew

‘ ¼ Sold
‘ þ hp‘;tG

old
S‘

Sold
‘ ;

GS‘
¼ S21

‘ e‘;te
T
‘;tS

21
‘ 2 S21

‘ :

where the updating rules on a‘; S‘ guarantee the

satisfaction, even when p‘;t , 0; that a‘ $ 0;
Pk

‘¼1 �

a‘ ¼ 1 and S‘ is non-negative definite. The general form

of p‘;t ¼ pð‘lxtÞ2 gqð‘lxtÞ includes the other three cases as

its special cases. When g ¼ 0; we get the ML-Learning case

for pð‘lxtÞ ¼ p‘;t by Eq. (23) and the Harmony-Learning

case for pð‘lxtÞ ¼ p‘;t by Eq. (26). When g approximately

takes a value between [0.1, 0.05], we get the RPCL-

Learning when pð‘lxtÞ ¼ �d‘;c; qð‘lxtÞ ¼ �d‘;r with c; r by

Eq. (27) and

�di;j ¼
1; i ¼ j;

0; i – j:

(

The general form also leads to the mentioned BYY harmony

learning with normalization regularization when pð‘lxtÞ ¼
�d‘;c and

qð‘lxtÞ ¼

ajGðxiðmj;SjÞÞX
‘[Lk

a‘Gðxtlm‘;StÞ
; j [ Lk;

0; otherwise;

8>>><
>>>:

where Lk consists of the first k labels of {1;…; k}

that correspond the first k largest values of ajGðxlmj;SjÞ:
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It leads to the RPCL learning again when k ¼ 2 (Xu, 2001b

and 2002).

3.2. Best modeling via a parametric set

Instead of representing multiple data sets with each

Gaussian density for a data set, a multi-sets-mixture is more

suitable for the fields of computer vision and image

recognition, where we often encounter the tasks of detecting

objects in typical shapes such as lines, circles, and ellipses,

as well as pre-specified shapes. In these cases, we need to

model multiple data sets with samples of each data set

coming from an object of a given shape. Except for the

simplest cases such as points and lines, a Gaussian density is

not able to represent such a data set. The multi-sets-mixture

or called multi-sets modeling is proposed for modeling these

objects (Xu, 1994, 1995b).

Samples from each object consists of one deterministic

part plus random noise. The deterministic part is described

by a finite or continuous set SðuÞ of real points in Rd; subject

to a parametric set u of a finite number of unknown

parameters. Each SðuÞ represents a shape such as a line, a

curve, and an ellipsis, as well as a pre-specified shape.

Subject to such a set SðuÞ, a sample x is represented by

x̂ ¼ arg min
y[SðuÞ

1ðx; yÞ;

1ðx; yÞ ¼ Cðeðx; yÞÞ; eðx; yÞ ¼ x 2 y;

ð29Þ

where x̂ is called the best reconstruction of x by SðuÞ; and

eðx; uÞ ¼ eðx; x̂Þ is called the reconstruction error of SðuÞ per

sample x: Moreover, 1ðx; yÞ is a given measure for the

discrepancy eðx; yÞ such that 1ðx; yÞ $ 0 and 1ðx; yÞ ¼ 0 if

and only if eðx; yÞ ¼ 0 or x ¼ y: The best modeling of SðuÞ

on a given set of samples is made by determining u such that

min
u

XN
t¼1

min
y[SðuÞ

1ðxt; yÞ; ð30Þ

The most widely used 1ðx; yÞ is

1ðx; yÞ ¼ eðx; yÞTS21eðx; yÞ; ð31Þ

which is called the Mahalanobis distance with S being

positively defined. It returns to the square distance between

x; y when S ¼ I: In this case, we call x̂ the least square

reconstruction of x by SðuÞ; with

12ðx; uÞ ¼ keðx; uÞk2 ¼ min
y[SðuÞ

keðx; yÞk2: ð32Þ

which is generally a minimizing procedure. However,

eðx; uÞ gets an explicit expression in the following special

cases:

ðaÞ a point SðuÞ ¼ {a} : eðx; uÞ ¼ x 2 a; ð33Þ

ðbÞ a lineSðuÞ ¼ {x : x 2 a parallels w 2 a};

eðx; uÞ ¼ ½I 2 ðw 2 aÞðw 2 aÞT�ðx 2 aÞ;

ðcÞ a planeSðuÞ ¼ {x : ðx 2 aÞtðw 2 aÞ ¼ 0};

eðx; uÞ ¼
ðw 2 aÞTðw 2 aÞ

kw 2 ak
;

ðdÞ a subspace SðuÞ spanned by W at the origin a;

eðx; uÞ ¼ ðI 2 WðW tWÞ21W tÞðx 2 aÞ;

ðeÞ a circleSðuÞ ¼ {x : kx 2 ak2 ¼ c2};

eðx; uÞ ¼ kx 2 ak2 c;

ðfÞ an ellipse

SðuÞ ¼ {x ¼ ½u; v�T :
ðu 2 u0Þ

2

a2
þ

ðv 2 v0Þ
2

b2
¼ 1};

eðx; uÞ ¼ x 2 x̂;with x̂ as in Eq:ð29Þ:

SðuÞ in the cases (b) and (c) consists of a line or a

hyperplane, respectively, passing through a point a; and SðuÞ

in the case (d) consists of a linear manifold—a shifted

subspace that locates at a point a: SðuÞ in the case (e)

consists of a sphere of radius c that locates at a: The

corresponding error 12ðx; uÞ is actually the shortest distance

of the point x to the line, hyperplane, linear manifold,

sphere, and ellipse, respectively.

For the cases (a), (b), (c) and (d), the implementation of

Eq. (30) can be made with an analytical solution, with a

being the mean vector, w being the direction of either

principal or minor component of the sample set, and W

spans a principal subspace. For the case (e) and case (f), the

implementation of Eq. (30) can be implemented via an

iterative procedure, e.g. gradient descent. For all the cases,

the implementation of Eq. (30) can also be made adaptively

with the parameter u updated per sample xt via the descent

direction of the gradient 7u12ðxt; uÞ:

More generally, given a set of samples Y ¼ {yr}
N
t¼1 that

represents a contour of a specific shape, we have

SðuÞ ¼ {lRðfÞðyr þ aÞ : ;yr [ Y} ð34Þ

for a shape resulted from a displacement a, a rotation of an

angle f and a scaling by l; where RðfÞ is a rotation matrix

and u ¼ {a;f; l}: Correspondingly, fitting the shape by Eq.

(30) becomes

min
u

XN
t¼1

min
yr[Y

kxt 2 lRðfÞðyr þ aÞk2: ð35Þ

3.3. Multi-sets-mixture and adaptive learning

When samples come from multiple objects, a number of

Sðu‘Þ; ‘ ¼ 1; · · ·; k are needed. As shown in (Xu, 1994,

1995b), the multiple counterparts by the cases of (a), (b), (c)

and (d) in Eq. (33) actually perform the mean square error

k-means clustering, local principal component analysis

(PCA), minor principal component analysis (MCA), local
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principal subspace analysis (PSA), and as well as its

complementary local MSA.

Directly considering x; a multi-sets will correspond a

mixture of non-Gaussian densities that is not easy to

implement (Xu, 1995b, 1996a). However, considering the

reconstruction error eðx; u‘Þ from a Gaussian, we have the

following Gaussian mixture

pðeluÞ ¼
Xk

‘¼1

a‘Gðel0;S‘Þ; ð36Þ

which is a further extension of the mixture of exponential

densities in (Xu, 1996a).

For each sample xt; we get e‘;t ¼ eðxt; u‘Þ for each SðulÞ

with the probability p‘;t ¼ pð‘lxtÞ; and make learning with

data smoothing regularization by maximizing

LDðu; hÞ ¼
Xk

‘¼1

1

N

XN
t¼1

p‘;tL‘;tðhÞ þ Z‘ðhÞ

" #
;

L‘;tðhÞ ¼
ð

Gðelet;‘; h
2IÞln a‘Gðel0;S‘Þ

� �
de;

ð37Þ

where Z‘ðhÞ is same as in Eq. (8) with et;‘ in place of ut:

With h2 fixed, learning can be modeled via the smoothed

EM algorithm by Eq. (23) with Gtðu‘Þ ¼ Gðe‘;tl0;S‘Þ and

eðxt;m‘Þ replaced by eðxt;u‘Þ; as well as

m‘ ¼
1

Na‘

XN
t¼1

p‘;txt

replaced by

u‘ ¼ arg max
û‘

1

N

XN
t¼1

p‘;teðxt; û‘Þ
T
X21

‘

eðxt; û‘Þ: ð38Þ

which is usually solvable for those cases in Eq. (33) (Xu,

1994, 1995b).

Then, h2 is updated by Eq. (10) or Eq. (11) or Eq. (13),

with pq still given by Eq. (24) and dLDðu; hÞ=dh by Eq. (12)

but getting

pt;t¼

1

N

Xk

j¼1
pj;texp

2kej;t2ejtk
2

h2

 !
XN

t¼1

Xk

j¼1
pj;t exp

2kej;t2ejtk
2

h2

 ! ; ðaÞ;

Xk

‘¼1

Xk

j¼1
pj;tp‘;t exp

2kel;t2ejtk
2

h2

 !
XN

t¼1

XN

t¼1

Xk

‘¼1

Xk

j¼1
pj;tp‘;t exp

2kel;t2ejtk
2

h2

 ! ðbÞ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Moreover, after parameter learning we can select k by the

minimum of JðkÞ via Eq. (25). Also, similar to the case of Eq.

(22), we can replace the E step by Eq. (26) such that an

appropriate number k is determined automatically during

learning. With Gtðu‘Þ¼Gðe‘;tl0;S‘Þ and e‘;t¼eðxt;u‘Þ; we get

various types of adaptive algorithms as in Eq. (28).

Particularly, when S‘¼s2
‘I; the step (c) in Eq. (28) is

simplified as follows

snew
‘ ¼sold

‘ 2
hp‘;t

snew
‘

12
keðx;u‘Þk

2

s2old
‘

" #
;

ð39Þ

s2new
‘ ¼snew

‘ psnew
‘ ;

unew
‘ ¼uold

‘ þh7u‘
keðx;u‘Þk

2
:

A preliminary case of Eqs. (28) and (39) at a‘¼1=k and

S‘¼bI for a given b.0 was proposed in (Xu, 1998c) for

RPCL learning on a multi-sets.

4. Guess-test decision, competiton-penalty adaptation,

and global evidence accumulation

The tasks of learning or modeling or problem solving in

general can be understood mathematically as a mapping

from the observation space X to a set Q of hypotheses. A set

{xt} comes from X with each x [ X called a sample or an

evidence. The set Q is either a finite or infinite set that

represents a family of models with a given form of

mathematical function and a parameter vector u such that

each fixed value of u is an element or called a point of Q; i.e.

u [ Q is a hypothesis that represents a specific mathemat-

ical model. A mapping from {xt} to one or several points in

Q indicates that one or several hypotheses are drawn as

conclusions from the evidences in {xt}: Generally, there are

three fundamental strategies for these tasks:

(a) Competition-penalty adaptation. As discussed in this

paper, we have u‘ [ Q; ‘ ¼ 1;…; k that compete to adapt

{xt} in X via making each u‘ of the k variables move in Q:

All the movements are motivated to minimize a given cost

function Cð{xt}; {u‘}Þ in a way that the trace of each

moving variable is a continuous trace of improvements from

a current hypothesis locally to a nearby hypothesis. Finally,

the trace is trapped at a hypothesis that any moving to its

nearby points has no improvement. Then, this hypothesis is

taken as a conclusion. The advantage of this process is easy

in implementation with only a small computing cost and

memory. Also, it is adapted once an new evidence comes

and we always have k hypotheses as current interpretations

available. A main disadvantage is thus that the movements

are made locally to neighbors only and thus likely trapped at

conclusions of local optimal instead of being the best.

Moreover, a strong competition among the k variables of uk

will make the situation even worse. Usually one or more

type of penalty is companied with this competition to reduce

its negative effect.

(b) Global evidence accumulation based selection. As

used by the well known Hough Transform (Hough, 1962),

each point in Q is considered as a candidate hypothesis.

Each evidence xt casts one vote to a subset of points in Q as

possible hypotheses. After voted by all evidences in {xt};
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those points that receive the number of votes large enough

are taken as conclusions. The advantage of the approach is

the conclusion is made via a global voting based on all

evidences in {xt}: The disadvantages is that the cost is very

expensive in casting and storing all the votes, usually

increasing exponentially with the dimension of u:

(c) Guess-test based decision. As used by the RANSAC

approach (Fischler and Bolles, 1981), a point u of Q is

guessed from a few evidences in {xt}; then a given testing

criterion is used to check how many samples in {xt} are

fitted by the model with this u and how well this fitting. The

guess is either taken as a conclusion if the test is passed or

discarded if failed. Then, the next guess-test circle repeats.

This approach has little memory cost. However, a simple

algorithm that bases on only a few evidences is easy to give

a wrong guess and too many wrong guess will cost a lot of

computations. In contrast a complicated algorithm needs

many computing cost but may not be able to considerably

increase the accuracy of guessing. Similarly, a simple

testing criterion will create many wrong solutions while a

complicated criterion will waste a lot of computing times.

Moreover, a testing made on a hypothesis may only give a

local solution, instead of an optimal solution. Hence, many

open issues remain, especially on making a testing on

multiple hypotheses.

It can be observed that the above processes of learning,

voting a subset of candidates, and guessing share a

common point of providing certain hypotheses as candi-

dates. A difference is that these hypotheses are simply

taken as conclusions for (a) but will be further evaluated

for (b) and (c). Also, though (b) and (c) share a common

point that both evaluate candidate hypotheses before taking

any conclusion, a difference is whether conclusions are

based either on comparison after enough evidence

accumulated for (b) or on a testing immediately following

a guessing for (c).

Three strategies can all be regarded as the particular

cases of a general problem solving paradigm that

consists of

(i) Drawing candidate hypotheses from samples {xt};

(ii) Accumulating votes on the candidate hypotheses,

(iii) Selecting most likely hypotheses via comparison,

(iv) Testing the most likely hypotheses that become

conclusions or rejected;

(v) Refining the conclusions (e.g. via local adaptation).

For a specific problem solving strategy, some of the

above five ingredients may disappear, and the strength of

each ingredient may be different. For examples, the

above (a) consists of only the ingredient (i), made via a

sophisticated learning process. The above (b) consists of

the first three ingredients with (i) being enumerating

simply each sample in {xt}: The above (c) consists of

the ingredient (iv) and the ingredient (i) that is simply

random sampling.

By putting the focuses and strengths differently on the

five ingredients, we may combine the advantages of the

above (a) (b) and (c) and reduce the effect of their

disadvantages. For an example, the Random Hough Trans-

form (Xu & Oja, 1993) improves the disadvantages of the

Hough Transform (Hough, 1962) via modifying the

ingredient (i) to reduce the burden of the ingredient (ii) as

well as via adding the ingredient (iv) to improve accuracy.

For another example, we can implement the above (a) of

learning that starts at different initializations to take the role

of the ingredient (i), followed by all or a part of all the rest

ingredients. Particularly, with learning on a mixture of

multi-sets by Eqs. (34) and (35) as the ingredient (i), we can

get an improved version of the generalized Hough Trans-

form (Ballard, 1981).

5. Conclusions

The data smoothing based regularization not only

provides an easy implementing solution to the difficulty of

determining an appropriate hyper-parameter in Tikhonov

like regularization for parameter learning, but also takes an

important role in BYY harmony learning both on penalizing

the WTA effect of the least complexity nature and on

improving the performance of model selection criteria in the

cases of a small size of samples. The roles are detailed via

Gaussian-mixture with the smoothed EM algorithm, the

smoothed BYY model selection criterion, adaptive algor-

ithm as well as its related RPCL learning. Moreover, the

studies are further extended to a reconstruction error based

Gaussian mixture for multi-sets learning with data smooth-

ing based regularization, which are suitable to tasks of

modeling and recognizing multiple objects of typical

geometrical shapes. Finally, insights are provided on three

problem solving strategies, namely the competition-penalty

adaptation based learning, the global evidence accumulation

based selection, and the guess-test based decision, under the

general problem solving paradigm.
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