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Abstract—First, the relationship between factor analysis (FA) I. FACTOR ANALYSIS, APT THEORY, AND RELATED
and the well-known arbitrage pricing theory (APT) for financial LITERATURES
market has been discussed comparatively, with a number of
to-be-improved problems listed. An overview has been made from ]| T has been a well-known philosophy that a complicated ob-
a unified perspective on the related studies in the literatures of servation is regarded as generated from a number of hidden

Second, we introduce the fundamentals of the Bayesian ¥ing g, p, that the observation can be understood by recovering the
Yang (BYY) system and the harmony learning principle which

has been systematically developed in past several years as dactors via an inverse transformation or demixing system. Many
unified statistical framework for parameter learning, regular-  €efforts have also been made on developing mathematical theo-
ization and model selection, in both nontemporal and temporal ries that implements this philosophy to solve various practical
stochastic environments. We further show that a specific case of problems in a number of scientific and engineering fields.

the framework, called BYY independent state space (ISS) system, * ¢ oajiest effort can be traced back to the beginning of the
provides a general guide for systematically tackling various FA

related learning tasks and the above to-be-improved problems 20th century by Spearman [54], and had been followed by var-
for the APT analyses. Third, on various specific cases of the BYY ious studies in the literature of statistics, which use the following
ISS system in three typical architectures, adaptive algorithms, linear model:

regularization methods and model selection criteria are provided
for either or both of parameter learning with automated model
selection and parameter learning followed by model selection.
In the B-architectures, new results are provided for Gaussian . .
and non-Gaussian FA, binary FA, independent Hidden Markov where and throughout th's_ paper, the nOtat'm&) = Bu =
Model (HMM) and Temporal FA, as well as other extensions, E[] denotes the expectation of random variabl&he model
which are then applied to statistical APT analyses for solving the (1) has been applied to various explanatory modeling tasks
abovel to-_bhe-lmproveq pfOfblemS- Inlthe F-e_lfChlte?t_UrgS, addap- in sciences, especially behavioral and social sciences. In this
tive algorithms are given for several extensions of independent simple model, a random sample = [x§1)7”"x§d)]T of

component analysis (ICA), including competitive ICA, Gaussian . . . . .
and non-Gaussian temporal ICA. Moreover, the advantages of Observation is generated via a linear mapping matrifrom

the B-architectures and the F-architectures are traded off in the k& hidden factors in the forny, = [yt(l), R yt(k)]T, disturbed
Bl-architectures, not only with new strength to the existing least by a noisee; as given in (1). Usually, samples @f are
mean square error reconstruction (LMSER) learning, but also hqenendently and identically distributed (i.i.d.) from a same

with various LMSER extensions, including the so-called principal e . . "
ICA and its temporal extension. The fi?lal part of thig paprt)ar probability density function (pdfp.. The general ambition

introduces some other financial applications that base on the IS to determined and the statistics of: ande; from a series
underlying independent factors via the APT analyses, including of samplesx = {x;}’_,. Obviously, the problem is not well
prediction of macroeconomic indexes, portfolio management by defined because there are an infinite number of solutions. To
adaptively maximizing an adjusted Shape ratio, and a macroeco- oy ce the indeterminacy, we consider that samples, @ire
nomics modulated independent state-space model for financial . . . .
i.i.d. and correspondingly samples gf are also i.i.d. from a

pdf p,,. Hencex, can also be modeled by

2y = Ay +er, E(e) =0, e isindependentfrony (1)

market modeling.

Index Terms—Arbitrage pricing, BYY system, data-smoothing,
factor analysis, financial modeling, finite sample size, harmony
learning, hidden Markov model, ICA, independence, LMSER plxy) = /pe(xt — Ay)pye) dyy. (2
learning, normalization, portfolio, regularization, source separa-

tion, state space. Usually, the above treatment is still not enough to make the

problem sensible, and extra constraints must be adequately im-
posed. Specifically, different types of constraints will lead to
different statistical approaches that implement (1), which are
briefly summarized as follows:
* Linear Regression:When it is also possible to know the
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method or the weighted least square method wheis is a solution with A’ A/T AAT. Also, the additive in-
Gaussian. determinacy is removed when the ML learning is made on
« Inverse Problem: When bothA andp. are known, the p(z) = [ G(z|Ay,X.)G(y|0,I) dy. Furthermore, in the case
task becomes the typical inverse problem that maps eaXéb_ o—?I we even get an analytical solution thiatonsists of
x; into a corresponding estimage One typical technique the first k component eigen-vectors of the sample covariance
is again the ML method S, a diagonalA consists of the corresponding eigen-values,
ando? is an average of the lagt— & eigen-values [67]. The
other heuristic way is to select a specific rotation instead of
imposing v 1. Typical examples include Quartimax and
Varimax, which have been used in the literature of statistics
[40].
« Principle Component Analysis: Instead of gettingj,
based on knowingd and the covariance matrices g,
¢, an alternative is to ggt = Wz, under the orthogonal
constraint? W = I such thatj, becomes uncorrelated
in components and the variance of each component is
maximized. The solution is analytically given by = ¢,
where ¢ again consists of the firsk components of
S. This is well known as principle component analysis
(PCA), which can be backtracked to as early as in 1936
by Hotelling [31], and has been also widely studied
in the literatures of statistics, pattern recognition and
neural networks [43]. Putting the above solutidn= ¢A
at %, a21 into (3), we haveW = (AT A)~tAT =
A~1¢T. That is, the least square inverse of this specific
factor analysis is actually equivalent to PCA up to a scale

- Ayt)? e'g'l
for Pe = G(6|0, E)v Yt = W-Tta
(ATe 4y~ taTse L

9¢ = arg max ln p. (z;
Yt

W =

N
Nzﬂft AUt)(-Tt AUt) (3)

where and throughout this pap&¥(«|m,>) denotes a
Gaussian density with mean and covariance, and# =
arg max,. f(r) denotes the value ofthat makesf(r) be
maximum. Particularly, we hav& = (AT A)~t AT when
¥ = ¢21, which is usually called the least square inverse.
WhenX # o21, W, ¥ can be estimated iteratively via the
so called reweighted least square inverse.

 Factor Analysis: Instead of imposing that eithekor y, is
known, an alternative way is to impose certain structures
ony; ande; such that the indeterminacy of (1) could be
reduced to a level that (1) becomes meaningful to certain
applications. One typical example is well known as factor
analysis [40], [50]. Formulated by Anderson and Rubinin  difference byA—2.

1956 [4], bothe,, i come from Gaussian with(e;) = 0, Interestingly, the same model (1) has also been approached
E(y:) = 0. Specifically,c; is uncorrelated among its com-from the perspective of finance theory. In the literature of finan-
ponents with a diagonal covariance mafrx Moreover, cjal market modeling, the well-known arbitrage pricing theory
ey is uncorrelated tay, that is itself uncorrelated among(APT) is proposed by Ross in 1976 [47], [49]. According to
its components. Furthermore, it is usually assumed th&pT, the return on security can be broken down into an expected
E(ywy/ ) = I since the uncorrelated components remaiturn and an unexpected or surprise component, usually called

uncorrelated after any scaling transform

Ay, = Aly,, A =AD™Y = Dy,, Disdiagonal

4)
In such a formulation, the pdf-based equation (2) becomes

¥, = AAT +%..%,, X, are covariance matrices
of z, e respectively

(®)

This matrix equation may still have many solutions due to the

following two types of indeterminacy:

1) Rotation indeterminac¥ror any rotation matrix; =
Yy, Pp? = I, obviously we have

E(yyl) = E(mzl) =1, or AygT AT = 447 (6)

2) Additive indeterminacyhe additive symmetry of the
two items in the left side of (5) makes the indetermi-

nacy of decomposing the diagonalsXf into the di-

agonals oft, and of AA” . It is also called the com-

munality estimation problem [40].

Two heuristic ways are usually used to remove these types

of indeterminacy. One is simply sgt = I. That is, in help
of the singular value decompositioh = ¢pAp7T, ¢ = I,
1T = I with a diagonald, it follows from (6) that4d’ = ¢A

news. This news can be further classified into two types. One
is general news that affects all stocks, e.g., an unexpected an-
nouncement of an interest rate change by the government. The
other is specific news that affects particular stocks. The APT
theory believes that these general news will affect the rate of re-
turns on all stocks by different degrees of sensitivity.

To be more specific, the APT infers that an individual asset
is associated with multiple risky factofg®*)} as follows:

Za” E(fD)—+7)

(J) (7)

where

E(+)) expected return on a risky asget

rf risk-free return;

a; 5 is the sensitivity of assetto the risky factor.
Considering the instantaneous form, (7) is rewritten into the fol-
lowing form with a residual retura?), E(e; G )) = 0 to each

assetj:
eﬁj)

—7, = Zaw @ 7‘f
(J) _ Z aZ,JUt 651)

RN

, or

I A ®)
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Obviously, its matrix form is exactly (1).

Since its inception in the mid-1970s, the APT has attracted a
considerable interest as a tool for interpreting investment results
and controlling portfolio risk [25], [1], [18]-[20], [52]. To im-
plement the APT, the key is to determine what are used as thee
factors. Three approaches are usually applied for the purpose:
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x, for different¢ is i.i.d. and correspondingly eagh for
differentt is also i.i.d. However, in practice there is a tem-
poral or serial relation among the samplesef {z;}7_,,
which should not be ignored.

Problem (d) Non-Gaussian noisehe existing studies
on (1) consider the cases that the unknawrin (1) is

« Time series approachthat directly uses a historic time Gaussian, which is not suitable for the cases thais

series of a set of macroeconomic or fundamental indexes
as the series of factoss = {y,}7_,. These factors are  *
usually known agundamental factorsncluding GDP, in-
flation, interest rate, oil price, . etc. In this case, a typical
time series regression is made to estimatevhich itis a
typical linear regression problem. .
Cross-sectional approachthat begins with estimates of
elements ofA which are usually called the attributes or the

non-Gaussian.

Problem (e) Nonadditive modé&lquation (1) considers
two independent terms additively, which is not applicable
to the case that it is impossible to decompasinto two
independent additive terms.

Problem (f) Nonlinear modéThe linear model (1) is not
adequate for the cases that ¢, have a nonlinear regres-
sion relation.

securities’ sensitivities tg;, known as empirical factors. It should be noticed that the above problems are essential not
The attributes are obtained via observing the correlatiamly specifically to the performance of the APT implemented
betweenz,, 3. The task is to estimatg uponz,, which by statistical factor analysis but also generally to the success
can be made again by a linear regression on (1) at thethe factor model (1) on various practical applications. In ad-
current timet. Actually, it is equivalent to set up an inversedition, appropriate solutions of the above problems (a)—(f) also
mapping (3). provide improvements and extensions on the performance of the
 Factor-analytic approach that uses the factor analysisAPT implemented by the cross-sectional approach. The paper
approach to get both the unknowh and the unknown is motivated to tackle these problems systematically. Actually,

factorsy, estimated from the observed time series=

{z: };TF=1-

some problems have been partially touched already, scattered in
different literatures. To provide a background for a better un-

Despite its attractive features, the APT has not been widelgrstanding on the work of this paper, we make a comparative
applied by the investment community. The reason lies largedyerview on the existing major advances.
with the APTs most significant drawback: the lack of specificity .
regarding the factors that systematically affect security returns.
Inthe uses of the above first two approaches, either fundamental
factors or attributes are chosen heuristically and even quite arbi-
trarily, based on preknowledge or beliefs. In the use of factor-an-
alytic approaches, there is no need on external heuristics. Thus,
they become more appealing in the general cases where we have
only the observed price movements[25], [1], [18]-[20]. Un-
fortunately, certain empirical tests [25], [1] showed that factor
analysis does not specify what economic variables that the fac-
tors represent.

There remains a plenty room for improving the implementa-
tion of APT. The failures of the factor-analytic approach may be
due to both inappropriate tools for handling the intrinsic inde-
terminacy in (1) and the inadequacy of (1) for modeling a time
seriesx = {x;}I_,, which are summarized as follows:

* Problem (a) Three types of indeterminagpough the

scaling indeterminacy (4) can be acceptably removed by
considering uncorrelated factors with unit variance, both
the rotation indeterminacy and additive indeterminacy
make the factor-analytic approaches not able to specify
an appropriate solution. The above discussed ways of
imposing 1 I or Quartimax and Varimax are too
arbitrary to provide a good solution.

Problem (b) How to determine the numbkerof factors

Independent Component Analysis (ICA) and Blind
Source Separation (BSS)Started from Jutten and Her-
ault in 1988 [35], a simplified model of (1) is considered
by settingd = k£ ande, = 0, i.e.,z;, = Ay, with A
being a unknown invertible matrix. They assume that
the components of are independent and non-Gaussian
or with at most only one of them being Gaussian. This
assumption removes out the rotation indeterminacy (6)
because components can not keep independent after a
rotation transform. Thugy, = Wz, can recovel; up to

the scaling indeterminacy (4) iV makes nonGaussian
1+ become component-wise independent [59], [17]. For
this nature, it is called ICA, named in contrast to PCA.
The rotation indeterminacy is removed by extracting the
higher order information from data, instead of imposing
extra heuristics while still based on the statistics up to
second order only in the above mentioned Quartimax or
Varimax [40]. Moreover, when each componentypfis
interpreted as a sample of a time series at the moment
the fact that the ICA solutiofy, = Wz, recoversy, up

to the scaling indeterminacy (4) means that the waveform
of each component series can be recovered. Thus, this
recoveryiy, = Wz, is also said to perform BSS that
blindly separates the mixed signal = Ay;.

Advances on ICA can be roughly summarized into several

The selection of a correct number of factors are essentsihges. First, several learning algorithms for estimatihave
to the performances of using the APT model [20]. But ibeen proposed from different perspectives [35], [28], [17], [8],

is usually set heuristically.

[3], [27]. Usually, these algorithms work well on the cases that

Problem (c) Ignorance of temporal relatidtne above dis- the components of are either all sub-Gaussians or all super-
cussed implementation of (1) implies assuming that ea@aussians because a prefixed pdf form is used asp{@{tﬂ),
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either heuristically (e.g., the sigmoid used in [8]) or based on Even further, as an effort toward to tpeoblem (d) the case
kurtosis estimation or density expansion [17], [3]. Atthe secorttlat ¢; in (1) is not Gaussian has been considered in [68] by
stage, itis realized [72] that the pdf form for ean{@t(’)) should using Gaussian mixture to model the pdfz; — Ay;). In [68],

also be learned simultaneously during learning®rsuch that the linear model (1) has been also extended to a general non-
whether a component is super-Gaussian or sub-Gaussian lgzgar factor model

be automatically detected in order to work on any combination

of super-Gaussian or sub-Gaussian componenys Difiis idea
has been implemented by Iearnipg,é])), during learning on
W, via estimating the parametetgof the following parametric
model:

xr = g(yt, 0y) + e,

E(e;) = 0, ¢ is independent frony, (20)

as an effort toward to the aboyeoblem (f) Furthermore, in
the literature of neural networks, efforts have also been made
k N on modeling binaryr; (e.g., representing a binary image) by
p(yel0y) = Hp(yt(J)|9g(f))- (9) interpreting it as generated from binary hidden fagfowith
j=1 mutually independent bits. Typical examples include multiple

An early effort of this type is called the learning parametri€2use models [51], [21] and Helmholtz machine [22], [30].
mixture based ICA [69], [72], [79], where a finite mixture isThese studies can qctually be regarded_as efforts toward to
used a@(y§])|9§])), with 92(11) updated by an EM-like algorithm the problem (e) I_n this case, the regression petween binary
during updatingV’. Alternatively, efforts [44], [16] have also *+ @ndy. is nonlinear and thus acts gy:,0,) in (10), but
been made on estimating the kurtosispéf”’). At the third ¢t = @t — £(z:|y.) becomes not independent frog. That
stage, extensions have been made toward various general caSed, ¢an not be decomposed into two independent additive
e.g., (a) the dimension af, is larger thark instead of thatd terms_and described by (2). Actually, it is a specific case of the
is invertible [70], [69], [68], (b) some specific nonlinear systenPlloWing general factor model:

x+ = g(y) instead of the linear model (1) [57], [68]. A more
detailed review on the advances of ICA is referred to [63], [69], plwelf) = /p(xtlyt)p(yt) dyj.
[76], and [77]. Some interesting studies have also been made on

using an ICA algorithm for exacting structures from stock re3Y "€gardingg(y:,8y) = [ @ip(xlyt, b) dv, ande, = @, —
turns by [5]. g(y+,8,), we observe that (11) includes not only (10) but also

» Non-Gaussian Factor Analysis:lt is not realistic to as- Lhnoese cases that is not independent frorg, such as the above

sume zero noise;. Thus, it is more reasonable to con- , ) o
sider (1) with the independence assumption (9) in place of * Hidden Markov Model (HMM): As a popular topic in
the literature of speech processing since the early 1970s

the previous assumption that components are decorrelated. . i
[45], HMM is a classical example of the early efforts to-

For clarity, we refer this type of factor analysis (FA) as )
Non-Gaussian FAr independent FAo avoid being con- ward solutions to both thproblem (c)and problem (e)
and has been proved to be one of most effective tools

fused with the above discussed FA, which should now be : ’ ) ) et
for modeling temporal relation with wide applications. In

(11)

more precisely referred &aussian FA or de-correlating

FA. Similar to ICA, when eachy(y“)) is non-Gaussian
or at most only one of them is Gaussian [68], the rota-
tion indeterminacy (6) can be removed. However, not as
in Gaussian FA, it is not an easy task to estimatas
well as the parameters p(yt(])) andp. by using the ML
method orp(z) in (2) because a computational difficulty
will be encountered for implementing the integral (2), es-
pecially wheny, is areal vector. In [68], the integral is han-
dled by a Monte-Carlo sampling method, based on which
a general adaptive algorithm is proposed to make the ML
learning. Also, as a solution of th@roblem (b) a crite-
rion is obtained from the so called Bayesian Ying-Yang
(BYY) learning for detecting:. On the data with binary
signalsy,, experiments have shown that the algorithm and
criterion work well. Also in [68], an alternative way to
get rid of the integral (2) is made via a mean-field type
approximation. While in the literature of ICA studies, ef-
forts have also been made on gettifgthat makes), =
Wz, become component-wise independent by takipg
from (1) with e; # 0 in consideration, in help of some
heuristics or certain structures [16], [27]. These studies
are usually called noisy ICA, which are closely related to
non-Gaussian factor analysis.

a classical HMM,z, is discrete and described by (11)
with p(z:|y;) being ad x k transfer probability matrix,
which is equivalent to a nonlinear regressign;, 6,) and

er =z — g(yt, 8,) is notindependent from each discrete
value of ;. The temporal relation is modeled by intro-
ducing the first-order Markov transfer probabilityy, =
Jlyt—1 = 4) that turnsp(y;—1 ) into p(y: ), which is a spe-
cial case of the following general form of the order one
Markov model:

o) = [ ulndpt-) dis. (@12)
Inthe HMM studiesp(x: |y ) andp(y: |y:—1) are unknown
and can be solved from observations by the Baum algo-
rithm for the ML learning [45].

State-Space Model and Kalman Filter: Another early
effort toward solutions to th@roblem (c)is the classic
state-space model:

ye = Byr—1 + &, mp = Ayp +ey,

¢ is independent from bott, andy; (13)

which is studied in the literatures of control theory since
the early 1960s [36]. The model (13) can be regarded as an
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extension of (1), with the first equation added in for modiearning theory first in 1995 [73], [80] and then systematically
eling temporal relation. The added equation represents teveloped in the past years [62]-[64], [66], [68], [76], [77].
factor seriey = {y, }7_, inamultichannel autoregressiveSpecifically, the best harmony learning principle is presented
process, driven by an i.i.d. noise serigs}/_, that are in Section II-A for both parameter learning and model selec-
independent of botly,_; ande,. Generally, the indeter- tion, with discussions on its relation to the ML learning and
minacy of (13) is more serious than the original model (Iegularization. In Sections 1I-B—II-D, the BYY system and
because of the new unknownsmfind the statistical prop- three typical architectures are introduced. Also, the key issues
erty of ;. Thus, further constraints are obviously neededf the harmony learning on the BYY system are described in
The most well-known successful use of (13) is the Kalmamwo types of implementations, namely, parameter learning with
filter that adaptively estimate upon observing:;; under the automated model selection and parameter learning followed by
condition that bot4, B are known and both,, ¢; are Gaussian model selection. In Section II-E, the BYY harmony learning is
with known covariance matrices. The Kalman filter extends tHarther extended to stochastic environment, especially to the
task of the optimal linear mapping — ; by taking temporal temporal BYY learning. In Section II-F we present a general
relationin consideration. In the past three decades, Kalman filetaptive learning procedure that applies to all the three typical
has been widely used in the literatures of control theory af¥'Y system architectures in typical specific structures.
signal processing [13]. In recent years, efforts have been mad&he second part is given in Section Ill in which we intro-
on using Kalman filter for discovering the true pricing in fi-duce the detailed forms of the harmony learning on three typical
nancial series [10], [41], [42]. However, inherited from Kalmairchitectures of the BYY independent state space system, and
filter, these studies either fix the matricds B by some simple then apply them to statistical APT financial analyses with exten-
constants (e.g4 = 1, B = 1in[41], [42]) or model them by a sions. The backward architecture is introduced in Section IlI-A,
specific structure such that the unknowns are estimated alsowith adaptive algorithms, regularization techniques and model
Kalman filter [10], [34]. selection criteria on various cases of the independent state space
In [63], [76], and [77], as a new effort to th@roblem (c) we model (13) and their extensions, which include non-Gaussian
implant the basic assumption (9) into the state-space model (E8), Gaussian and non-Gaussian TFA, binary FA, and indepen-
and impose the independence assumption on the componentesit HMM as well as their extensions to non-Gaussian obser-

Y, 1.€., vation noise and nonlinear models. All of them can not only
. . be used for corresponding unsupervised learning tasks, but also
i DG be used as tools for implementing generalized APT financial
p(y) = [[p). pwlyer) = [[ o ly) P J 9

analyses, with the previously listgaioblems (a)—(fjn consid-
T eration. In Section Ill-B, we first introduce the forward archi-
Ye-1 = Y1, 1] (14) tecture, with adaptive algorithms on Gaussian and nonGaussian
wherey @, y&. denotes theth row ofy, y, 1, respectively, temporal ICA, as well as a competitive ICA for data of mul-
andy_; is an empty set. On (13), it becomes the foIIowinﬁfle modes. Then, we introduce the bidirectional a_rchltecture
condition: at trades off the advantages of a backward architecture and
a forward architecture, with not only new strength to the ex-
Bis diagona| and; is mutua"y independent isting LMSER Iearning [75], [82] but also to various LMSER
(15) extensions, including a type of principal ICA and its temporal
extensions. Moreover, in Section IlI-C, the APT analyses is
which is called temporal factor analysis (TFA) model. Specif!sed for return prediction, macroeconomic modeling and partic-
ically, it is called either Gaussian TFA whepis Gaussian or ularly portfolio management by adaptively maximizing a modi-
non-Gaussian TFA whef is non-Gaussian. It has been showified Shape ratio in help of hidden factors. In Section I1I-D, as an
in [63] that the use of temporal relation in (13) can also remowdternative to APT, a macroeconomics modulated independent
out the previous rotation indeterminacy. Moreover, for Gaussi&fte-space model is proposed to for capital market modeling
TFA, an adaptive algorithm is proposed to leatnB as well by taking macro-economy indices in consideration. Finally, we
as the covariance @f, via the ML estimation orp(z,;) by (2) conclude in Section IV after providing demonstrative experi-
under the constraint of (12). Also, a criterion is obtained frofents in Section llI-E.
temporal BYY learning for deciding as an effort toward to the
problem (b) Particularly, in the special casg = 0, we also ||. BAYESIAN YING YANG SYSTEM AND HARMONY LEARNING
get an extension of ICA, named temporal ICA, that takes tem- . o
poral relation in modeling, with an adaptive algorithm providecﬁ" Best Harmony Learning Principle
Furthermore, whep, is a binary vector, variants of HMM have In general, specifying a density«) involves three issues.
been obtained to consider higher order temporal relation in iMhe first issue is a given structure. A typical example is given in
plementation of binary non-Gaussian TFA and binary BSS wiffable | withy asu, which is a product structure that consists of
noise. Experiments have demonstrated that these temporal algomponents. Each component is either (a) a basic component,
rithms outperform their nontemporal counterparts significantlin a sense that its pdf form is given and there remains only a
The rest of paper consists of two parts. The first part is giveset of unknown parameters, or (b) a summation structure that
in Section Il in which we describe the fundamentals of thigself consists of a number of components which are organized
BYY harmony learning that is proposed as a unified statistical a weighted sum. The task sfructure designs to specify

j=1 Jj=1

in components
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the pdf forms of basic components and the structure that these TABLE |
basic components are organized. The second issue is the=set 'NDEPEND(E:“(‘)LB'?&'K S’“E?qs'#gEPENDENT
{k, {r; , }} that describes the scale of a given structure. The task
of specifying the scale is calledodel selectiom a sense that a dWl) = T e IE;, 65)
collection of different scales corresponds a collection of specif = e
models that share a same configuration but in different scal
and thus selecting a specific scale is equivalent to selecting (b) It is generally a conditional independent density,
model. Thethird issueis a collectiorf of unknown parameters. with each ¢(y)|¢;, 6;) being
The task of specifying is calledparameter learning

In a conventional sense, learning is a process that specifie
densityq(u) from a given data sat = {u,}{\ ;, via specifying

(a) It is an independent density when y is irrelevant to &,&;.

(i) either a simple one variable density,

e.g., with () = d;&; + m; we have

6, k under a given structure design. Without exarpriori con- Gaussian  ¢(y\lg;,0;) = Gy, o)
straints, learning frona is equivalent to learn from its empirical Bernoulli  q(y)¢;,65) = s(§@) V(1 — s(30)) v,
density [24]: (ii) or a compound one variable density in a finite mixture:
1 & 5 ayV1E, 05) = Triesra(yD1Es, 0,0,
)= ; (=) S, = 1, g, 2 0,
. & . q(u|€;,8;,) is a simple density with a known structure,
Sulu) = limp o 1/R%, ©w=0 (16) NN |
0, u # 0. e.g., with §V") = d; .£; + m;, we have

. i g 0: ) = D 5lir) 52
Instead ofpg(w), from u we can also use a kernel density es Gaussian  q(y7l¢;,05,) = G197, 07,

timate, where each sample is smoothed under the control of ~ Bernoulli  q(y9l¢;,8;,) = s(gUr)¥” [1 — s(gG0))1-v",
extraa priori smoothing parametér >, as will later to be in- Note: s(r) = k== is a scalar function. Moreover, in case (ii),
troduced in (25) and (33).

In a broad sense, we consider learning not only in this ca
but also in the cases that there are twa), ¢(«) in known
structures but each of them having some unknown parts, e.g.,
in either or both of the scale and the parametef$ie task of {

Pt =

q(yD)¢;,0;) actually relies on a scale kj, that is omitted for simplicity

but implied in the number of parameters in 9;.

1, fort=r

0, otherwise, & _ Alomaxg: (20)

learning is to specify all the unknowns from the known parts of
both the densities.
Ourfundamental learning principles to makep(u), g(u) be
best harmony in a two-fold sense:
 The difference between the resulting:), ¢(«) should be
minimized.
* The resulting(w), ¢(u) should be of the least complexity.
Mathematically, we use a function&l(p||¢) to measure the
degree of harmony betweerfu) and ¢(«). When bothp(w),
g(u) are discrete densities in the form

Thus, the maximization of the measufp||¢) indeed imple-
ments the above harmony purpose mathematically. It can also
be understood from the fact thabx, H(p||¢) leads toH (p||p)
whenp is free without other constraint. ClearlyH (p||p) is the
entropy ofp, which is a typical complexity measure for a sto-
chastic modeb. The further maximization off (p||p) or equiva-
lently minimization of—H (p||p) pusheg(u) toward (20) when
pisalso free. The density form of (20) is the simplest from prob-
abilistic view since it simply says that= . in probability one,

N N and the entropy- H (p||p) becomes its smallest value 0.
gw) =Y qbu—w), Y =1 (17)  To extend (18) to cover the cases thét) is a continuous
=1 =1 density, we consider a sat= {u;}}Y; of samples that comes
we can simply use the following cross entropy: independently and identically frog{«) and we form a discrete
N densityg(«) as in (17) via the following normalization:
H(pllq) = Zpt Ing (18) N
t=1 G = q(we)/2q, 2q = ZQ(Ut)- (21)
as a typical example of such a measure. The maximization of t=1
H(p||g) has two interesting natures: Wheng(u) is a discrete density in (17), we have
VI\CI:rtghmg naturéwith p fixed, max, H(p||¢) pushes; to 0= 8u(0), =g thus q(u) = gu). 22)

Putting (21) into (18), we hav#l (p||q) = Zf;l pelogluy) —
In z,. Similarly, we can also approximate a continugis,)

N T
« Least complexity naturdVith ¢ fixed, max, H(p|lq) 2and gety_,_; (p(us)/z,) Ing(us). Whenu = {u, }j’; comes

q = py, forall¢. (29)

pusheg toward independently and identically fromp(u) in a large enough
size N, we can further smooth each poimt by a hyper-cubic
p(u) = 6(u —u-), or bin with a small volumei* for a smallk > 0 and regard

1t can be observed more clearly in Section 1I-B, whete), ¢(u) denote p(%)h as the probability tham_falls in this bin. The_n'
two different structures of a same joint density. >, p(u)h® = 1 holds approximately for an appropriate
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volume h* =~ 1/ Zf‘r 1p(ut) = 1/z,. We further have)©,  whered consists of all the unknown parameters, &nebnsists

p(u)h® In q(w,) = [ p(u) In g(u)du ash — 0 and get the of unknown parts of scales i(u), ¢(u). In the case of (28),

following general form of the harmony measure: the smoothing parametéris also included iré, which is thus
N denoted a#;, = {6,h}.

H(pllg) = /p(u) Ing(u)du—Inz, 2= Z g(ur) (23) ”k;t”c;]a(\)r:)? observed that the first term{p||¢) is actually the

t=1
which consists of the continuous cross entropy as the first term
that accounts for learning with the large size of samples and L) = N Zln q(ut]6). (30)
the second term that accounts for the effect of a finite size of =
samples. Thus, if we roughly regard that, is approximately irrelevant
Furthermore, we can get two typical forms for the implemene 6, maxy H(p||q) becomes equivalent to the conventional ML
tation of (23). learning ong(«|é). This implementation of harmony learning
First, with p(u) given by (16), (23) becomes (29) is made directly based on a samplewset {u,}*, and

N thus is also referred ampirical learning

_ Generally, (24) and (28) provide us two types of the regular-
Hiplla) = Zlnq w) Iz =) qlw)  (24) ized ML learning as follows:

(a) Consideringz, in (23), maxs H(p||g) consists of the
ML learning plus a regularization that prevents|6) to
over-fit the data seti of a finite size. This point can be
better observed by comparing the gradients:

t=1

which applies to both the case thgit:) is a discrete density and
thatg(w) is a continuous density.
Second, for a continuous densifft:), another choice gf(«)
is the Parzen window estimate
N . VoL(0) = Gd(ve)|y, =1/~

p(w) =pr(w), pu(n) = ZG ulu, A°I) - (25) VeH(pllg) = GA(ve) o=/ auile)
Gd( Vel 6
which returns t@go(u) ash — 0. That is,p () is a smoothed () Z% o In q(ue[6)
modification ofpo(w) by using a Gaussian kern€(«|0, h%1)
with mean zero and covariané@! to blur out each impulse at G(ue]0) = q(us|6) /Z q(u.]6). (31)
Ut
Since we desire that the difference betwgéem) andqg(w) is

NN , ; That is, a delearning is added to learning on each sample
smallest, it is justified to impose a weak constraint

and the delearning step size is proportional to the degree

N of fitting on the sample by the current model. The im-
Zp u) = > q(ur) = 2. (26) plementation (24) of the harmony learning (29) is made
=1 with a normalization term,, in effect to avoid over-fitting
With this constraint, we can approximately get on a data set of finite size. Thus, the implementation
(24) of the harmony learning (29) is calladrmalization
2} (h, k) N R = learning
a7 N(2rh2)k/2’ zg (B, k ZZ - (27) (b) Considering (28), in help of the Taylor expansion of

T=he=t In ¢(u|6) aroundu, up to the second order, we have

From (25) and (27), (23) becomes
/ G(ulug, h*T)In q(u|6) du

H(p||q):/ph(u)1nq( ) du0.5kIn(2mh? I 2 (h, kE}HnN.

28) ~ 10 g(ue|0) + 0.5h% Tr[H (u|6)]
The first term encourages the best fittinggot:) to py, (w). The Ho(u|6) = 9 In g(ulf) (32)
smaller is theh, this fitting is more loyal to empirical samples. ! dudu®
However, the second term discourages thiaecomes too small Then,maxy H(p||q) becomes equivalent to
for avoiding over-fitting on a finite number of samples, espe-
cially when the data dimensiohis high. The third term bal- Hgflx Ls(n),

ances the second term for avoiding an over-action. Finally, the " 2

: : Ls(6r) = 0.5k1n(2 | L
termln N says that a large numbaéf is preferred. In this paper, s(0n) Olok n(2rh%) —lInz, 1 (h})Ls(6)
we only consider the case thtis given and thus the constant +Ls(6,) = = Z / G(ul|ug, h2I) 1n q(u|0) du
In NV can be neglected. However, (28) can also be used to those N

extended studies on how many samples are needed to achievea | (gh) o L(g) +0.5h2 24 (6)
desired harmony performance.
Based on (24) or (28), we describe a mathematical implemen- Z Tr[Hy(ut]0)] (33)

tation of harmony learning as follows:

hich | the ML learning vi thi
Irelg%{xH(H’k)’ H(8.k) = H(p||q) (29) which regularizes the earning via smoothing

ln g(u|6) in the near-neighbor of; and thus is called
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data smoothingregularization. So, the implementa- |

tion (28) of the harmony learning (29) is callethta ; Representation Space Y 1
smoothing learningFurthermore, it follows from the ap- Symbols, Integers, Binary Codes |
proximation inLs(#) that this data smoothing is closely aie) ‘
related to Tikhonov-type regularization [58], [29], [9].
We can implement (33) by alternatively repeating the fol p(yix, &)
lowing two steps.
Encoding Decoding
Step 1) Recognition 1 Generating
. new old Representation ; Reconstruction
fix h, getfd™®™ = 6°< 4 nd. axly, &) .
Step 2) F
[
fix 97 gethnew | Input Pattern Space X
k dlnzN(h, k) P(XI&) |
=hM 4 nSh, 6h = — 4 hA(0) — —2 " or 1
hnew?
2
20 Encoding
1+ 4hgk—17y(6) Stochastic: randomly picky by p(y1x,&)
, 1 N N ) 6%@—\\2 maximum post?riori: y = argmax, p(yIx, &)
P _ R regression: E d I x,
ho = A Z:I;’Yt,rﬂut ur ||, v, = 2y (ROR) 9 YIE] under p(y1x.&)

(34) Decoding

. . . L Stochastic: randomly pick x by q(x 1y, &)
wheren > 0 is a step size, antl is an ascend direction of 1 4ximum posteriori: x = argmaxy 4(x1¥ &)

Ls(6y) or L(8) +0.5h2),(6). The alternative solution is given regression: E[xl £] under a(x 1y, &)

by solving the critical equatioa = 0 with approximately
dinz)(h,k)  khZ : .
—gy— = 33 - Fig. 1. BYY learning system.

Tﬁlg fact tha}tL the maximization of the continuous cross en-
tropy maxe [ po(w) In g(u|6) du leads to the ML learning (30) sample mapping, — v, in three choices as shown in Fig. 1 or
are well known in the literature. However, the above two implez representative model
mentations of the matching nature (19) have been rarely studied.
More interestingly, the least complexity nature (20) has been re- p(y) = /p(y|x)p($) dr (36)
garded as being useless in the conventional sense of learning,
but in the sequel we will show that it is this least complexity nahat matches the inner densij_yy) in a specific structure.
ture (20) that takes an essential role in learning on the following The above two perspectives reflect the two types of Bayesian

BYY system. decomposition of the joint density(x|y)q(y) = q(z,y) =
_ p(z,y) = p(x)p(ylx) on X x Y. Without any constraints, the
B. BYY System and Harmony Learning two decompositions should be theoretically identical. However,
We considen, = (x,y) with x € X observable ang € Y in our above consideration, the four componeriigx), p(x),
invisible as shown in Fig. 1. q(zly), ¢(y) are subject to certain structural constraints. Thus,

On one hand, we can interpret that eaglis generated from we usually have two different but complementary Bayesian rep-
an invisible inner representatiop via a backward density resentations:
q(z|y). The mapping fromt” to X by ¢(z|y) can be under-
stood from two perspectives. One is sample-to-sample mapping p(@y) = plyle)p(x),  a(zy) = a(zly)ay) 37)
y+ — ¢ In three choices as given in Fig. 1. The other is a geich, as discussed in the original paper [73], [80] compli-
erative model ments to the famous Chinese ancient Ying-Yang philosophy

with p(z,y) called Yang model that represents the observation
q(x) = / a(xly)aly) dy (35)  space (or called Yang space) br) and the forward pathway
) ) ) . (or called Yang pathway) by(y|x), and with ¢(z,y) called
that maps from an inner densigyy) in a structure that is de- ying model that represents the invisible state space (or Ying
signed according to the learning tasks. space) by;(y) and the Ying (or backward) pathway byz|y).

On the other hand, we can interpret that eacls represented Thys, such a pair of Ying-Yang models is called BYY system.
as being mapped into an invisible inner representagionia With p(z) given by the observed data set= {z,},, the
a forward pathp(y|x). Again, the mapping fromX' to Y by  |earming task on a BYY system consists of specifying all the
p(y|z) can be understood similarly from either the sample-tespects ob(y|z), q(x|y), ¢(y). First, we need to design a com-

2The notatior¢ in Fig. 1 will be explained in Section II-E. At this moment, b?nat?on pf structures fop(y|z), q(y), Q($|U) and Such acom-
we can simply ignore the existence&f bination is referred as a system architecture. Specificg(ly)
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is always in a parametric structure, with the formatyahdi- Putting them into (39), we get
cating the inner representation form and the structugggfde- N
scribing the detailed inner representation. Moreover, the system B
architecture is featured by the structuresp6f|z), ¢(z|y), a H(Or ¥) = Halplla) = N ;Hh t(pllg) —Inz
will be further described in Section II-C. h = {ha by}

Second, we need to specifithat consists of all the unknown Y
parameters anK that consists of unknown parts of scalesinthe  H,+(p|lg) = /G(x|xt, REDG(y|F (x), thI)
system architecture. The task is made by the harmony learning I
(29) which becomes Infg(zly)g(v)] de dy.

Moreover, we consider the constraint (26), wjith= F(x;) and

(44)

max H(0,k), H(0,k) = H(pllq) (38)

N B ’ ,0_5[\\<wt—;r>u2,H(yt—bgmuzl
where H(pl|lq) is obtained by puttingp(x) = p(z,y) = zg (hk) =)D e " "
plylx)p(e), a(u) = a(z,y) = a(z|y)a(y) into (23). That is, we e (45)
have

: we have
Hlo) = [ polop) nla(aly)at)) dedy ~ 1z, (@9) N
2, A9 4 ,d is the dimension of.
which also have two specific forms corresponding to (24) and 1 N(2rh?)d=/2(2nh?)k/2
(28), respectively. (46)

Corresponding to (24), based on aget {z;}, of i.i.d.
samples, we can get the empirical dengity) = po(x) by (16)
and put it into (39), resulting in

Furthermore, similar to (32), we It g(z|y), ln ¢(y) to be ap-
proximated by its Taylor expansion around v = F(x;) up
to the second order and notice that

H(0,k) = H(p|lq) = N ZHt (pllg) — Inzg /G(37|37t7hiI)G(mF(xt)vth)(x —a)(y — F(x,))" dedy
t=1
- R2D)(x —
H(pl) = [ pole)blodpawl . @0) | ctetow iz -
2 T _
Moreover, as will be shown in Section 1I-C, due to the least ' U Gyl (), hy Dy = Fla))” dy| de =0,

complexity nature (20) in the harmony learning (3&)y|x) of

two typical structures will be pushed into it follows from (44) and (46) that

p(ylxe) = 6(y — F(x)) at eache, and F'(x;) L )
is a function ofz;. (41) =% > Hp(pllg) + 0.5d, In(27h2)

t=1

+ 0.5k 111(27rh§) —1In zé\‘r(h, k) +1nN,
Hy i (pllg) = ng(we|ys) + ng(y) + 0.5k

H(0,,k) = Hi(p

Thus, the abovéi (9, k) further becomes

1
=5 ; Hy(pllg) —Inzg, - TrHE (24]ye)] + 0.5k TILHY (2e|ye) + Hy(we)],
'_ 2
Hloile) = LugCecdun) + lug(u). h= P, H(oly) = T2tly),
2 2
v =F(xe), 2=) a(zely)a(yr).  (42) gy _ 9lnqlzly) H.(y) = 9 Ing(y) 47
=2 Yl = . H) = SEEN @

Similar to (31), this implementation of the harmony learniné discussion similar to that after (28) can be made on each item
(38) is callednormalization learning If we only consider the of H (64, k), as well as onthe role of the si2é. Moreover, sim-
first part by regardingz, to be irrelevant to learning, it be- ilar to (33), this implementation of the harmony learning (38) is
comesempirical learingthat directly bases on the samplesalleddata smoothing learningt degenerates backemnp|r|ca|
x = {z,}¥,. This empirical learning on the BYY system islearningif we only consider the partl/N) Y™ | Hy, .(pllq)
the counterpart of the ML learning (30). with b, = 0, hy, = 0.
Corresponding to (28), for the cases that bgthy) andg(y) ) _
are continuous densities, we use the Parzen estipfate= C- Three Typical Architectures
pr, (z) by (25) and consider the following soften version of A BYY system architecture, consisting af(y), p(y|z),
(41): q(xly), is featured by the specific structures pfy|z) and
q(z|y). Each ofp(y|z) and ¢(x|y) can be either parametric
plylee) = G(y|F (1), b T) at eache, 0$ s|trLcture free.(V\le)say(th() i|s)structural free in the sense
andF'(x) is a function ofz;. (43) thatp(u|v) can be any function that satisfigsp(u|v) = 1,
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p(ulv) > 0. In learning, a structure-free density is actus = 1,---, k. In this case, maximizing{ (¢, k) with respect
ally specified in terms of other parametric structures. At ~(j|z;) leads to (42) again but with

archltgcture W|_th bothy(y|x), ¢(x]y) being structure—frele. is e = F(w) = f;. (w2, 05,.)

meaningless since they are no longer able to be specified via 1 o

learning. Therefore, there remain the following three choices v(jlxe) = {0’ ‘(])tﬁejr*wise (50)

for a meaningful BYY architecture: . ) . . »
) , ) wherej, is the winner of the following constrained competition:
» Backward architecture (B-architecture)y|z) is struc-

ture-free andy(x|y) is parametric. Jr = argmflx[q(xt|y“)q(yti)]’ yei = fi(xe,0r5.)  (51)
* Forward architecture (F-architecture)(z|y) is struc- which not only makes the greedy WTA competition (48) be
tu.reifree. anq)(y|x)_ IS parametric. more “conscience” but also saves computing cost considerably.
* Bi-directional architecture (Bl-architecture): batty|z), However, when the structure pfy|) is too simple to describe
q(x|y) are parametric. the relationF'(,) in (48), the resulted BYY system may result

In a B-architecture, due to the least complexity nature (2Qk a poor performance on modeling= {z Y.
the harmony learning (38) pushes a fe@|z) into the least  The implementation of harmony learning via data smoothing

complexity form (41) with (47) is also an example that regularizes the WTA competition
(48) via the parametric structure (43) that adds “conscience”
ye = F(ay) = argmax[q(x¢|y)a(v)]- (48) to both the WTA competition (48) by introducing noise and
Y

the postcompetition learning afix:|y) andg(y) via H(8, k)

Thus, we get (42). Moreover, due to the matching nature (1 ven in (47). For simplicity, we can also Iéf(z;) given by

the least complexity form (41) will further pusiz|y) and (°0)- Actually, (43) withr"(a:.) given by (50) provides a(y|z)

q(y) to the least complexity. This nature can also be und 1at has a piecewise-structure which stochastically selects

stood by observing that maximizirig; (p||) in (42) consists of ac(cjordlng toy(jlze) in (50)_,hamo.ng functions of;(z+,6y;)

both maximizindn ¢(z.|y:) and maximizindn ¢(y. ) that push unAeralz aussian noise wit Vgrlﬁdﬁﬁ , bl

q(zx|y), ¢(y) to be as close as possible to their least complexit nother strategy Is to regard the learning problem as a typ-

formsg(z:|y.) = 8(xs — g(we)) andaq(ye) = 8(ye — o) ICal optimization for finding the global optimal solution in the
The process in (48) can also be understood as implementf:ﬁase.there are many local optir_nal_solutions_. We can use one of

a competition coordinately based on bathr,|y) and ¢(y) e>gst|ng classical global optimization techniques for this pur-

with 4(zy) representing the regression between the obseniZ®, L2 U1 1,10 TR U T n Y SRt
tionz; and its inner representatignand withq(y) representing g Pop 9

t 8hnique [38] via lettingz,, h, to start at some given values

the preferg.nce.of this mner.representatl(.)r_l. Thus, .SUCh aty nd then gradually to reduce to zero during the learning (47).
of competition is calledoordinate competitiof66]. It is also ) X .
In a F-architecture,q(z|y) is free and we simply set

calleda posterioricompetition because the resulte@|x) is

actually winner-take-all (WTA) based on the posteriori prob (xy) - ]13 0(636) Oby (116)' It Sf?”O\r’;;;g? m(gzzl.l:h?tl

bility q(xe|y)a(y)/ [ a(xe|w)aly) dy and thugy, is also called a 11+Pll9) = M 8.(0) + Ingly) st ' ingfu

maximuma posterioriprobability (MAP) estimate. because the infinite ter}r\irn 8.(0) is cancelled out by the one
from z, = 1In[6,(0)> ,_, ¢(y:)]. However, in this case, it

However, it is well known that a greedy WTA competition - . :
. . . : ids nonsense to consider whether the inner representgtion
will create local optimal solutions or even a bad solution, whic

. W ) ._can reconstruct; well. Instead, we only have the constraint
is usually referred as the “dead unit” problem in the classic N .
I . . -that 4, is independent in components. Therefore, the scale
competitive learning [23]. Such a local optimal problem is . - . :
. : ndeterminacy similar to (4) cannot avoided, which has two
solved from several aspects in the harmony learning. As

shown in (31), one aspect is that the tesin =, introduces consequences. One is that we need to prefix the value of

. - . because it becomes nonsense to consider model selection in
a delearning effect to the postcompetition learningzom, |y) . :
) . a F-architecture. The other consequence is that we need to
andgq(y). Other aspects can be observed in a Bl-architecture, . : . X . .
. . . ._prefix the covariance matrix associated with each regression
In a Bl-architecturep(y|x) is not free but in a parametric

. . j = f;i(x,0;) to a given diagonal matrix);, otherwise
structure. In this case, dug t‘.) the least cgmplgxny ”at!”e (2 ¢ learning process may not converge because of the scale
the harmony learning (38) in implementation via (40) will pus

. . : indeterminacy ofD;. As a result, from (40) we have
p(y|z) again toward to (48) subject to certain structural con- Y oL (40)

N
straint. This motivates us to design H(0,k) = ~ Z In g(y) — In 2,
Ky t=1
plylr) = 7lz)o(y — xa:,Hj , 0<v(ylz) £1 N .
() ;7(J| )y = fi(z.0,)) (i) 2= alu). subjecttas,, = D;.
t=1

kg =1 e k
Y ile) =1 (49) forj =1,k

=1 Yyi = Ellyj — Evj)(y; — Eu))"l,  wj = fi(=,05,)

S . . . is given by (50) withj. = argma ).
which is a piecewise-structure that stochastically selects among wisg y (50) v glanQ(y“)

one of k; deterministic functions with probabilities(j|z,), (52)
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D. Parameter Learning and Model Selection: Parallel versusm“’) and even reach it when there is no constraint to block it.
Sequential This nature can also be more directly observed from (42) and
(32), where maximizindn q(y:) Zleln'q(y(‘j”e‘j) pushes
eachq(y(?|6;) toward the forms(y) — m(). If one of them

is reached, it is effectively equivalent to reduciagp £ — 1. In
other words, model selection is made automatically in parallel to
parameter learning. Also, the least complexity nature (50) will
force p(y|z) to be used in a way of being effectively the least
complexity. In turn, the matching nature (19) will also force

From the above discussions, we observe that the paramete
), or 8 always contains the unknown parameterg@f) plus
the unknown parameters in one or bothpdf|=) and ¢(x|y),
with no parameter from either(y|z) for a B-architecture or
q(z|y) for a F-architecture. The scale dets featured by;(y).
For aq(y) given by Table I, the dimensioh of 4 indicates the
scale of the representation space 4rg,. } further describes

the complexity of the detailed inner representations, {fx; ,.}
are too small, we could not get good inner representations du
to the limited representing capacity. On the other hand, if th
are too large, it is difficult to form compact representations a

thus the modeling performance of the BYY system is also poé'?.”s a( i M
are complexity nature (20) will still push(x|y) andg(y) toward the

pejructures of the minimum complexity, but not necessarily lead

With appropriatek, {x; , }, the roles ofp(y|x) andg(z|y)
setting up a bi-directional mapping that best preserves infor

tion. For this purpose, the structuresgdfc|y) andp(y|z) are to

q(x
g) Parameter Learning Followed by Model Selectioim: the

|y) to be effectively of the least complexity.

sesthat, {«; , } are notlarge enough or in the data smoothing

arning (47), where the parametej is bounded from 0 and

y916;) is not able to reacl(y") — m\W)). The least

the consequence that the scateg; ,.} are automatically

designed with a mapping capacity large enough, neverthel&gduced. Thus, as an alternative to making the learning (53) at
the extra capacity is further minimized by the least complexif§€ Scales ok, {r;,.} large enough, we can also make param-

nature (20).
Moreover, parameter learning féx or ¢ may imply makin
model selection fok. As discussed before, due to the least conl

éter learning and model selection sequentially in two steps. With
g {r;r} prefixed, we enumerate from a small value incremen-
ally, and at each specific we perform parameter learning by

plexity nature (20), the implementation of (38) via normaliza(-ig) to get the best parameter valife Then, we select a best

tion learning (42) will pushy(y|@) toward the least complexity
form §(y — vo). Specifically, if the componery®) is redun-
dant in representing the observed dafg{?’|6,) will be forced
toward to§(y¥) — o) that can be reached by setting all of
o except one to zero and forcing the variance@f’?|6;) to
zero, when the structure gfy|#) is given in Table | with fixed
k, {r;}. For example, we ge(y¥) |m), ()?) = §(y) —
m)) whena? = 0. In fact,q(y|6;) = 6(y“) — yo) means
that thejth dimension is removed effectively singé) becomes
a constant. Thus, the dimensibiis effectively reduced by one.
It can be observed from (42) that(é, k) will remain bounded
even wheny(y)]6;) = §(y) — yo). As an infiniteln 6, (0)
from H,(pllq), we will simultaneously get-1n 6, (0) from
In z,, and thus the effects of two infinite terms are cancelled.

While for the harmony learning (38) implemented via
smoothing (47), the least complexity nature (20) will not lead
to (41), since the parameté@ is bounded from 0, and thus
q(y|@) will not become the least complexity fort{y — o).

As a result, the above automated model selection will not
occur. Even so, the least complexity nature (20) will still push
h, as well as the variance of eagly(’|¢;) to be as small as
possible. That isg(x|y) and¢(y) will still be pushed toward
their minimum complexity subject to the structure (43).

With the above understanding, we can get two typical proce-
dures for implementing the harmony learning (38) on a B-archi-
tecture or a Bl-architecture witH (¢, k) given by either (42) or
47).

1) Parameter Learning with Automated Model Selec-
tion: We set the scales ik large enough and implement the
harmony learning (38) by

max H(6), H(6)= H(0,k). (53)
The least complexity nature (20) as well as its specific forms

(48) and (51) will push eacf(y’|6,) toward the formd () —

by

H%Il J(k), J(k)=-H(6"k). (54)

f there are more than one values/obuch that/(k) gets the
same minimum, we take the smallest.

Remarks:

1) Asdiscussed atthe end of Section II-C, model selection
is not applicable to a F-architecture, where we only
implement parameter learning (53) with (52) under a
prefixedD; and a giverk.

2) If maxe H(6,k) has only an unique solution, the

above two implementations would be equivalent and

also both are equivalent to (38). However, in prac-
tice, H(f, k) may have many local maximums and

thus the two implementations may lead to different
local optimal solutions. Similar to the features of the
conventional parallel computing and sequential com-
puting, the parallel implementation considers a model
in a large scale with model selection made in parallel to
parameter learning, and thus it is implemented fast in
time. While the sequential implementation considers

many models incrementally from a small scale to a

large one with a lot of computing cost consumed, but

there is a minimum waste on using model structure.

The idea of finding a minimum complexity structure

to implement learning for a better generalization has

been well adopted in literature from many perspectives.

Typical examples include minimum complexity den-

sity estimation [6], MDL theory [48], Bayesian theory

[39], VC dimension based generalization theory [60],

Tikhonov-type regularization [58], [29], [9], cross vali-

dation [55] and AIC [2] as well as its extensions AICB,

CAIC, SIC [12]. The harmony learning principle han-

dles the issue from a new perspective that bases on the

3)
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least complexity nature (20), featured by its easy in in{40). In other words, (57) extends (40) to temporal modeling via
plementation. Its relation to Tikhonov-type regularizataking the past samplég into consideration.

tion has been discussed previously in Section II-A. Its Particularly, further imposing the Markovian assumption that
relation to other studies, especially to support vectar,, ¢, depend only a finite number of their past sample values,
machine and the VC dimension based generalizatigncan be represented as a vector in a fixed dimension and thus

theory is referred to [62]. oy |xe, &), gz |, &) andg(y &) can take regular structures
with a fixed number of parameters in each of the structures.
E. Temporal BYY System and Harmony Learning In this case, we get a temporal Bayesian Ying-Yang (TBYY)

We further consider observations = {z;}¥, with tem- SyStemasa general state space model. Furthermore, under the
poral relations among samples. Correspondingly, the inner réfdependence condition on the components;ofs in (14),
resentation is also a temporal series= {1} ,. To model NOt only a unified point of view is obtai_ned on hidden Markov
the temporal relations, we consider to pit) = p(x,y) and model (HMM), temporal factor analysis (TFA), and temporal
q(u) = q(x,y) into (23) for implementing learning. But this Sit_mdfape.nde_nt component analysis (TIC{-\) as well as their appll—
uation is too complicated to handle and further simplificatiorfétion in blind separation of temporal signals, but also adaptive
are needed. algorithms are developed for implementing TFA, TICA, and a

In [63], [76], and [77], we impose the causal or rationale a§igher order independent HMM, with the corresponding criteria
sumption thatz,, 1 only depend on their values at pastc ¢+ Provided for selecting an appropriate numbes the dimension
but not on any future > t. With p(u) = p(x.y) andg(u) = of 4. The details are referred to [63].

g(x,y) into (23), we get A key difference in (57) from (40) is that at each timeve
N must already havé;, = E(&;). Due to this nature, it is difficult
H _ H ) to directly implement learning witltf (¢, k) = H(pl||¢) on the
wle) ;[ t(pllg) = In 7. whole batch of all théV samples. Instead, it is more convenient
to make learning recursively at timethat is, we update
Ht(pH(.Z) = /p(gt)Ht(pH(.Lgt) dgt grew — 901(1 + 77697 W|th o6 belng an ascend
direction of H;(6, k
Hi(pllg. &) = /p(ytlwt,é"t)p(wtlé’t) 1| . 049
ln[q(a:t|yt,£t)q(yt|£t)] d.’L’t dyt (55) Ht(evk) = Z ZH‘F(pH(L g‘r) - lnzq(t)
where¢, is a set that consists of all or a part of the samplgs Tt:l 1t
y- inthe pastr < ¢. _
The aboveH,(p||q) involves an integral ovet,. To get rid 7(t) = [1:[1 ZW] (58)

of it, we consider the Taylor expansion & (p||q, &) around

ét — E(&) up to the second order and approximately get whereé’t is estimated as goes. In contrast, there is not such a

. temporal constraint on learning with (40), where samples in

Hi(pllg) = Hi(pllg, &) + or Tr[Ze, He,] are i.i.d. and thus learning ats independent frong,. We can

o - O0H(pllq, &) (56) implement learning (53) with (40) either recursively as in (58)

& = ager ¢ =¢, ) or in a whole batch of all thévV samples.

For simplicity, this paper will focus on the casg = 0, but all Specifically,§, = E(¢:) is a set that consists of all of th_e past
the discussions can be extended by taking the tefin JH,,| SAMPlesE(zr), E(y), 7 < t. We simply haveti(z,) = z..
in consideration for further adjustments. What we need to get i§- = E(y.) = [y-p(yr)dy- for all
By settinge; = 0 and also lettings(x:|&) = 8z — 7)) < b It follows thatp(y.) = [ p(&)p(yrler, &) dé.. To
since “, = %,” happens already and thus is irrelevant to anfFMOVe the integral ovef, we approximately lep(y; |+, &)

past sample, it follows from (55) that: feplaced by its linear expansion around the mgamesulting
’ v ' in p(yr) =~ p(y-|z-, & ). Thus, we get, that consists of all

H(pllg) = Z[Ht(pllq,é}) “lnzg :Ziup;;itelsyagwyple& andy. for all - < ¢, with ¢, obtained
t=1
1 N - Ur = /y'rp(y‘r|f‘rv£‘r) dys. (59)
=N lN ;Ht(pnq’&) In Zq] The current estimatg, can be directly used a%- next time,
N 1N thus no additional effort is needed to get
. = H . In (58), we also need the specific form gf,. At time ¢, we
" P “at have one sample pdit, 4 only and thus cannot get, ; simply
. . as in (42) and (52). To find an alternative way, we observe a
Hy(pllg, &) = /p(ytlfh&) special exampley(z,|y;, &) = Glay|Ay, + B& + p,o1)
n n for a linear relationr, = Ay, + B& + p + ey, Wheree, is
~n[g(@]ye. &)alyel€)] dye- (57)  a Gaussian white nois@(e;|0, 02 1), with i.i.d samples of;

In the special case that samplesxin= {Et]:f;l are i.i.d. with at different times. Though, 4, are time-varying ag goes,
no temporal relation, all the appearanceg,atan be removed. both the regression parametetsB, 1 and the density param-
In this case, we have, ; = z, and (57) becomes equivalent toeters? in G(c,|0, 021) are not time-varying, ang(z: |y:, &) =
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G(x¢|Ayr + B& + p,021) is also not time-varying or called When f(r) = r, we havef°(y) = y and thusp(y;|x, &) in
stationary. Thus, considering:|y:, &) andq(y:|&;) that are (62) describes a stochastic piecewise linear functions.

stationary in this sense, we can use all the past sammplasd In either a B-architecture or a Bl-architecture, similar to (42),
9. for all T < t to getz,, in the same way as in (42) andwe have
(52). Moreover, we can simply takeg(t) = z,, by regarding 1< . .
Zgt = Zqt—1 = -~ 291 Since we can use all the samples Hy(0,k) = N Z[hl q(T-|r, &) + Inq(d[87)]
andy; for all 7 < ¢ to reestimate all the pas} - based on the Tl=1 ;
currentg(wt |y, &) andq(y:|&:)- _t n2q(t),
In the rest of this paper, we focus on (57) with the three typ- s o n
ical architectures in Section II-C. Specifically, we ugg. |¢;) 7q(t) = Z U@+ [Gr, &) a(G-[E7)- (65)

7=1

as given in Table | withy replaced byy, and£ by &, which In a F-architecture, similar to (52), we get

covers the cases of (12) and (14). Also, we use the following

o p : i 1< o ’
conditional flnltke mixture: H,(6,k) = - Zln (- 1€) — Inz2(2),
g 7=1
Q($t|yt7£t) = Zﬁ(ﬂyt;ft)Q($t|th7£t79g,j) t .
=t Z}‘}J(t) = Z q(9-1&+)
T=1
1< B0, &) < Zﬁ Jlue, &) = subject tox,; = E[(§; — Eytj)(g)tj — Eyi)7]
( ) IDJ', forj=1,- kf (66)

where eachD, is an arbitrarily preflxed diagonal matrix, with
which is called themixture-of-expert modeB2], [33] since positive d|agonal elements.

it is a weighted sum of each expertz:|y:,&:,6,,;), 9ated  |n both (65) and (66); is obtained in a way similar to (48)
by B(jly:, &) that is described by either a softmax modeind (50). That is, we have
or the alternative gate [66], [74], [81]. Specifically, each argmax, [¢(T |y éf)Q(méf)]

Ay L1 61 2

q(xt|yt,|£t,9g7j) can be any conditional density. Two typical G = F(@ é’t) _ for a B-architecture
examples are fo(th i + Kjt St + th)
a(zelyr. &1, 6, ;) for a BI- & F-architecture
G(x4|#,%;), (a) Gaussian argmax;[q(Z:[§1;, & )a(Gis 1€ )]
n (J) (j) o= for a Bl-architecture
H -1 argmax; [g(d1€,)]
j=1 ) n for a F-architecture
+(1 = s(&)8(x,)] Uty = fOW;T + K& + p1y)- (67)
(b) Bernoulli

With H:(8,k) given by (65) or (66), we can recursively im-

Ty = Ajyn + Bi& + 1y, s(r)=1/(1+¢7"). (61) plement parameterlearning (53) via (58). Particularly, on a B-ar-
The choice (a) is an additive linear model= A;y, + B;& +  chitecture or a Bl-architecture, model selection is made either
p; + & with =, being independent from, ¢; and coming from automatically during parameter learning or via selecting a best
Gaussian with zero mean and covariaite The choice (b) %" by (54) with & enumerated incrementally as (58) is imple-
describes the case that bath 3, are binary with independent mented over all ofV samples at each.

bits. Furthermore, for a B-architecture or a Bl-architecture, we
Moreover, we extend the structure of (49) into can also implement the harmony learning via data smoothing
learning (56) withc; = 0 in help of the temporal extension of
plylwr, &) = Z’V |, £ )0y — fi(we, 05;1€0)) (“7).

With F(z,, £,) given by (67), by considering
ky p(zlér) = Glau|Ze, K1),

0 < y(lan &) < 1, ZWUM“&) =1. p(u[®1, &) = Gyl F(@1, &), hil) (68)
=1 it follows from (55) that instead of (57) we get

(62)
One particular example of;(z;, 6, |¢;) is the following post- _Hh (rlla) = ZHh 1(pllas &) — Inz, ()
linear function: - {h h )
fil@e, 05,18) = fO Wiz + K;& + 1) (63) ) S , o

wheref°(y) is a function given as follows: Hi 1 (pllg, &) = /G($|$t7 Re )G (| F' (T4, &), hiy )

o) =W, eI y=0, @ ‘gl E)a(wlér)] deedye. (69)

f(r) is scalar function, e.g. For a similar reason discussed above, we can simplyke=
o linear zq 1 thatis then approximately given by (46) under the constraint

flr)= {S(T) =1/(1+¢"), sigmoid. (64) (26).
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Following a similar process from (44) to (47), from (69) we
get

1< .
Hi(0n, k) = 5 > Hio(plla &) +0.5d, In(2rh3)
T=1
+ 0.5k In(27h7) — In 2} (h, k) + Int,

U = F(y, ét)
Hh,t(p||Qa£t) =1In Q(E‘rk&‘rag‘r) +In Q(Q‘FKT)
+0.5h2 Tr[H, ($t|yta£t)]
+0.5h3 TH[H (T+|§:, &)+
9% In Q($t|yt7£t)

+ Hy (3:l60)]
H;($t|yt7 St) =

Oz, 0zt
, 02 In q(¢|yr, &)
HY L
q (xtlyt,é}) aytayt
8?1
Hyful) = S AvS) (70
dy: Ay}

Again, a discussion similar to that after (28) can be made on
each iterm ofH (6;,, k) as well as on the role of the sizeWith
H,(6,,,k) given by (70), we can also recursively implement pa-
rameter learning (58) that pushe&:|y) and ¢(y) toward the
structures of minimum complexity. Moreover, we can select a
bestk* by (54).

F. A General Procedure for Parameter Learning

We further introduce a general procedure for parameter v, lnq(ylé’t

learning (53) with all the three typical architectures. Before
doing so, we discuss some essential computational issues.
» Computing maxy[g(x¢|y, £&)q(y|&:)]: In a B-archi-
tecture, at each, we need to gety = F(x:|&:) by (67)
for which we have to computewax, [¢(Z:|y, & )g(y|é)]-
When g(z:]y, &) and ¢(y|&;) are both Gaussians with
linear regression functions, it is a typical quadratic opti-
mization that can be analytically solved from its linear
critical equation

Vy In[g(z:|y, &)a(ylé)] = 0. (71)

e Computing Gradients via Chain Rule:

835

by approximately regarding that("(ulv) =
arqr(ulv)/ 32 ; ajq;(ulv) is irrelevant tou.

* Gradients nglyHt(O, k) and Vo, H: (0, k). We have

t
1 o
Ver‘yHt(evk) = Z <¥ - ’Yf) V@ﬂy 1HQ(Et|yt7£t)

=1
o A€ a@elin, &)
e 0
Vo, Hi(0,k) = Y (— - ’n) Vo, Ing(4:/€)
7=1
b, for (65),
= {%f . for (66)
;_ 4@ [B) -
T (72)

For an online updating, we can simply consider
Ve, mq(@|9, &) and Ve, Ing(y-|¢-). Also, we
can incrementally get; () = 2, (t — 1)+ q(7:|$)a(T¢|de,

&) andz(t) = 2 (t — D+ q(G:[¢1)-

Given

In g(z+|y, &) andln g(y|&:) withy = fo(Wa+HE+p),

in help of the chain rule we get

Vw 1HQ(Tt|Z/7€t) = Dy(y)(y)z!
Vo lng(@ly, &) = D)y (y)
A):Df( V) P()TT
v'w 1HQ(y|£f) :D ( ) ( )
P(y) = VyIn Q(wr[y, &)
P(y) = VyIng(ylé:)
Dy(y) = diadf'(y"), -, f' @™)]
oy df(r)
f (7) - dT A
Vgl &) = | ZEEEUIE) Ly )
Vm, In Q(yt|ét) = WTDf(yt)d)(yt). (73)

In other cases, (71) is usually a complicated nonlinear equation
with many solutions, and thus findingax, [¢(x: |y, & )g(y|&:)]

is a difficult task. Referred to Table Il for details, we can solve
this problem via three types of approximations:

1) Real approximation:When ¢(z:|y, &) is Gaussian
with a linear regression betweery and y, &, and
q(y|&) is Bernoulli, (71) is linear buy is binary. In
this case, we can approximately solydy regarding
it as real and then turn it into binary via a threshold.

2) Gaussian approximation: When g(z¢|y, &) is
Gaussian with a linear regression betweenand
y, &, butg(y|&) is non-Gaussian, we can approximate
q(y|&:) by a Gaussian with a linear regression between
y and&,. Then, we solve (71).

3) Fixed posteriori approximation®hen one or both of
q(z¢|y, &) andg(y|&,) are described by a mixture of
Gaussians or Bernoulli densities, we consiSgy In

2, atrl)aul)] = 2, 5Oulo) Vg (ulv),

e Lagrange Approach for

Ascend Directions: In
a F-architecture, we need to get the ascend direc-
tions of H(6,k) given in (66) subject to the con-

straints ofX,;, = D; for j = -+, ky. When
f°ly) = y and thusy,; = Wz —|— K& + py,
it follows from (66) that¥,;, = WEWW with
Yaj = Ely(lee, &)@ — py)(ze — p)?] In this

case, the constraink,; = D; only affect W;.
Thus, we consider the gradient of the Lagrange cost
with respect toW;, i.e., Vi, H;, = Vi, {H(0,k)+
TI’[AL(Eyj - DJ)]} = VVV].H(Q,k) + My, whereAp,

is a diagonal matrix consisting of Lagrange coefficients,
and My = Vvvj TT[AL(EW — DJ)] = 2ALW]’EJ;]'.
Following [3], we further consider the natural gra-
dient of H; with respect toW;, which is given by
(VW/’jHL)Wij = VW’].H(Q,k)W]TWj—i-Mw’Wij.
Moreover, My W/ W; = 2A0[W;3,;W/ W, =
2A1.D;W;. Furthermore,Vyy H(6, k) = ~{ ¢(5)zF,
$(5) = VyH (8, k) and~/ = (1/6) — (a(Gel&) /(1))
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TABLE I
FINDING PEAK T = argmax, In[p(u|v)p(v)] VIA SOLVING V, In[p(u|v)p(v)] = 0

(A) p(ulv) = G(u|Av + ¢, ) and p(v) = G(v|d, A)
Solution: b= A7 (va + A7), (A)
ua=ATS (u—c¢), A, =ATSTA+AL,

(B) p(ulv) = G(ulAv+e,5), p(o) =TT, (1~ p;)' ="

(a) Get an exact solution via either enumerating y or a quadratic programming;

(b) Get an approximate solution via solving V,In [G(u|Av + ¢, Z)p(v)] = 0 by
v,= (ATS 1A " HATE Yz — ¢) + [dy, - -, di] T},
e (9)
50) = 1, if v’ > 0.5, i _ln—lp—
0, otherwise;
(c) Extension to p(v) = 3. v [1; (pjr)“(])( - pir et

Get the above & with d) replaced by ¥, n(’) In —l'—

.,(J) 1- v(J)
where 3~ v, =1, 7. > 0, 7]( )= ’YTH - P(U) - ’

(©) plulv) =G(ulAv + ¢, %), p(v) = I1; T, @y G(0V)|my,, 02,)
(a) Get a solution via Item (A) with p(v) approximated by
a Gaussian G(v|d,A), d = [dy, -+, di]T, A =diag[Ay,---, M],
dj = T, 050y Aj =2 050[0], + (e = dj)?).
(b) Get a solution via solving V, In [G(u|Av + ¢, Z)p(v)] =
DV my, r\o?
by regarding that A, = ﬁ%ﬁ#ﬂ—) is constant to v, resulting in
o= (ATZ 1A + diag[by, - -, b)) "ATE Y (u - ¢) + d],
pld) = _%, d =%, J_r"?ﬂu
(D) Extension to p(ulv,£), p(v|¢) witn £ in consideration

(a) simply with ¢, m;, in p(u|v) replaced respectively by

0

B€ + ¢, mjr = ej,rfj,r + dj,ra
(b) with d, p;, p;- in p(v) replaced respectively by
E¢ +d,p; = sles&; + d5), pjr = 8(&5.r&ir + diir)-

di] denotes a diagonal matriz consisting of dy, - - -, dy.

Note: diag[dy,-- -,

As a result, the natural gradient direction of the Lagrang¥ p(y, |z, &) with its parameter set,|, is given by (62) and

costH, with respect td¥; is given by (63).
A General Recursive Procedure For Parameter Learning

(Vw, HL)WIW; = o] $(3:) (W)W, + 20, D; W Step 1) Get,by (67).
=7 [ (W) + AW Step 2)

A=2A;D;/v/ (74)

which can be used as the ascend directidf) in (58) with
H(6,k) replaced byH,(6,k). From (66),D, can be any b _(1—i
fixed diagonal matrix. Thus, we can simply choasé¢o e "

be any fixed diagonal matrix at our convenience, without
worrying what value of\ ;. For simplicity, we letA = 1.

(i
q(9¢|&)a(@e| 1, &)
24 (t)

1 NI
TR SRR 1712}
t ¢ ( R) Zg(t)

Step 3) From (72) we update
With the above preparation, we are ready to provide a 0y :9;1d+§y%f Ve, {In g(4:)&:)

general recursive procedure for parameter llgarnlng, _W|th +0.5h§iR- Tr[Hq(z}tlé’t)]}.
three typical architectures covered. Specifically, given L ; .
2 " . T 2 Step 4) Skip this step for a F-architecture, otherwise from
& = -1, Gr—m]*, the structure ofg(y:|&:) with its
parameter sef, is given in Table | (wherey, £ are replaced (72) we update
v = oy = Old + Cac|y’7t ve \y{111Q(xt|yt7£t)

by y: and &, respectively), the structure @y |¢;) with its 2ly = Yaly )
parameter sef,,, is given by (60) and (61), and the structure +0.5ig - TrRZHT (Te|dr, &) + R2HY (Feldh, &) }-
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Step 5) Skip this step for a B-architecture, otherwise, with

J« by (67) andi(y), 1(y), Dy (y) by (73)
(a) For a Bl-architecture, with

vy = Dyp(90)[¢(0e) + 9 (G) + irlly ()]
we update

N N

2o= 0 3 el —

T r=1t=1

x 2 2
N N e—0-3lleg—ar |7 tllve —urll

1 old2
2 2 _ h
hy,o - E Z Zryt,‘f'”yt - y"'” 7ryt,7' - Z,I(;LOId’k)

7=1t=1

which is obtained from Step 2) in (34).
Moreover, we also havlH i (1) in Step 5(a) given by

Wi(ye) = Vy{0.5h3 TrH (@:|yr. &)]
+ 0.5k Tr[HY (Z¢|wr, &)+ Hy(wlé)lr  (77)

1 id b e
Wrew =W+ Gyamviay
Knew _Kold b e prfT

P =K7Y Glami v

e = 8+ G s
(b) For a F-architecture witfi°(y) = y and thus
Dy (@) = I, from (74) withA = I we update which becomes zero when[H; (z:|y:, &)1, TIHY (Te|ye . &)
and T{H,(y:|&:)] are irrelevant tgy, e.g., they are the constant
covariance matrices whey(z;|y:, &) and ¢(y:|é;) are Gaus-
sians.

e Empirical learning is implemented by (75) when either
in = 0With~y? = 1,7/ = 1orig = 1 with h, = 0,

where(,, > 0, ¢y, > 0and(, > 0 are prefixed step hy = 0.

sizes for updating, angf, fytf are dynamic step sizes that change Furthermore, the above temporal learning procedure directly

ast for controlling delearning in implementing by normaliza-applies to the nontemporal case by simply setfng= 0 and

tion learning? is used in a Bl-architecture or a B-architecturediscarding all the updating equations for parameters that corre-
while ~/ is used in a F-architecturég is a prespecified indi- SPONd te:. In Step 4, e.g., fog(z:[y., &) by (60) and (61), we

cator that takes eithé, = 0 for implementing normalization canignore those updating rules Bp by simply settings; = 0.

learning oriz = 1 for implementing data smoothing learningAISO: in Stép 5 we can ignore those updating rulesionby

Specifically, we have three major situations: simply settingk; = 0.

* Whenig = 0, the normalization learning is implementeq
based on (65) or (66). Specifically, Step 3 and Step 4 al
featured by the updating for@ir< = 6°¢ + 586 that
ascend$n p(u|v, §), with the detailedd in several typical ~ With ¢(y;|¢;) given by Table I, which covers the cases of (9),
cases given in Table lII. (12), and (14), the BYY independent state space system in help

« When:y = 1, the data smoothing learning (47) is impleof the general adaptive parameter learning procedure (75) pro-
mented by (75) with., h,, fixed. We have two choices for vides a general tool for implementing a number of generalized
updatingh.., h,. One is simulated annealing [38] via let-APT analyses. In this section, we introduce several typical ex-
ting &.., h, to start at initial values large enough and theamples. For simplicity, we focus on modeling the first-order se-
gradually to reduce to zero during the implementation afal relation, i.e.£, = y,_1. However, all the results and discus-
(75). The other is to alternatively make the implementatigsions can be directly extended to the cases of modeling a higher
of (75) with .., h,, fixed and make the following updating order serial relation, simply by usirg to replacey; ;.
with 4 fixed:

hrew =2ty {% _ dinz, (1K)
he dhe « Factor Analysis Versus Temporal Factor Analysis:We
2’1.3;,0 further make a detailed consideration on the B-architec-
14 /14 4h2 Od;I%C ture pa_trt in (7_5), starting at the classic ste_lte—space model
’ (13) with a diagonalB as well as Gaussaing(e;|0, A)
and G(e:|0, %2). We call this special case Gaussian tem-
poral factor analysis (TFA) since it returns to Gaussian
factor analysis whe®? = 0. As shown in [63], one ad-
vantage of Gaussian TFA is that the temporal relation in
(13) removes out the rotation indeterminacy (6) that is suf-
fered by the Gaussian factor analysis.

Wrew = Wt Gl [+ o) (W, T) T IW e
K7 = K2 4 Cnvd pin)EF
15 = g Gl () (75)

Jé BYY | NDEPENDENTSTATE SPACE AND GENERALIZED APT
ANALYSES

A. B-Architecture: Temporal Factor analyses and Generalized

o T @, E)]), or AT analyses

h:ew? ~

t
1 MR
)‘ac = Z Z Tr[H;”(fﬂyt,m)]
T=1

ko dlnzi(h,k)
new __ pold A g\'"
hy™ = Ry {hy dh,
+hy TITHY @i, &) + Hy(é)]} 5 or
2h7

L \/1+4h2 gk — 1,

hpevv? ~

n In this case, (75) is simplified into the following algorithm:

Step 1)

1

t
i 1 £ g o= [ATH ATSTH AT ATS T T 4+ AT B,
M= ST T @G ) + Hy(lé) O A+ AT B
=1 €z

t &t = @t - B?)t—b Ct =

t — Al



EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

838 |
TABLE Il
ADAPTIVE RULES FORUPDATING #"¢% = #°¢ 4 16 TO ASCENDIn p(u|v, 9)
(A) Gaussian: p(u|v.0) = G(u]Av+ ¢, X)), y = Av,
diaglee’ — X], T is diagonal,
e=u—c, be=e, §A=cvT, 52:{ d } °
eel — % otherwise.

(B) Bernoulli: p(ulv,8) =T]; s(y(f))““) (1- S(y(J)))l—u“)
s(r=1/(1+¢7), y=Bv+e, )=o) —5(y0)), dc=e, §B=eT,
(C) Independent mixture : p(ulv,6) =[], Y 8 (0 p(uD ) 8,
xgj.r(v(j)) = ¢efir/ E:‘]:I ez, = bj,rv(j) + ¢

p(a@ ol 6; ) = G(u(ﬂ‘y&’)‘ al)s Gaussian,
Vir) = . .
s (1 = sy )= Bernoulli,
@ — ) ) ) — B (e ]l) 6, 1)
u" = a;,vV +my,, update b (vV)) = ENRTIENEINEE
€jo = Doy by (W)L = 350 (0D)),
8c;r =€, Ob;, = e]-'rv(f),
s { 1, i=mr, wl) — y,m, Gaussian,
L — €ir = .
v 0, otherwise; u) — s(y¥),  Bernoulli.
6777j,7' = hj,r('l"(j))fj,m 6aj,7' = hj,r(l?(j))ti‘j_,l'(]), 50']2‘7« = hj,r (U(Z))(Ej’l‘ - U?,r)v
Particularly, a; = S0’ §a;, when a;, = a;,b;, = 0. (84)
(D) Mixture-of-Experts: p(ulv,0) =3, o, (v)p(ulv,6,)
e‘"’lr)/z]— ezm, PLEE w]T‘U +d;, Soft-max gate,
o (v) = 80 (m, 1) atr) o
T, :%é‘(T\m],nJ)’ 3, = ZE oy Gaussian gate:
7
Guld v+ ¢ 5y, Gaussian,
p(u|v, 8,) = ‘ )
plu ) f;:l S(y}«]))“']) (1- S(yi])))l_“']). Bernoulli;
Yr = Ar v+ Cp
(i) Updating the Soft-maz gate: h,(v) = ”—(;(%(H;)il,
er =3 hi(0)[ Ly — ar(v)], 8d, = ¢, S, = epuy
ST R ST . _ BrGu|my Tr)p(ulv.br)
(ii) Updating the Gaussian gate: h,(v) = G, (a8
§80) = S by (W) (L — Br)y € = v —m,,
omy = hy (v)ed, 811, = A (u)[efed T — I1,).
(#i) Updating Gaussian Experts: €, = u — ¢, — A0, de = ho(v)e,,
$A, = h(v)e,vT, 8%, = h.(u)(eel — ).
(tv) Updating Bernoulli Ezperts: e = ) - s(y,(-j)).
e, = ¢, 04, = h,-(v)ervT.
Note: diag[M] is a diagonal matriz that takes the diagonal part of a matriz M.
Step 2) in Table Il for Step 3 and Step 4. In the sequel, we look several

1 .
Wt =5-1—in)

2y(t) = 2,(t — 1) + G(£4]0, A G (4]0, ).
Step 3)
B = B + ypy; diade 4]

G(g4|0, A% G (4|0, X0 typical cases:
24(t) a) Whenig =1, h, =0, h, =0, A = I, (78) is simplified

into
G = [+ AT A Y ATS T T, + B, 1)
e =W — Bip—1, e =7y — Al

ATV — (1 _ 77,}/i))[\old + nfyi’ diadetgf + ILRhZQJI] Brew _ Bold + n diag[&@?_l], Anew — Aold + netgér

Step 4)
Anew — Aold + n,yi) [CtQ;T _ iRhZQJAold]
snew (1 _ n,yi;)zold
+ylleel +ig(h2T+h2AAT).  (78)
Here, Steps 1-4 are the specific forms of Steps 1-4 in (75),
respectively, with Item (A) in Table Il for Step 1 and Item (A)

R = (1 — )X 4 peel (79)

At the special cas# = 0 it is actually a variant of the
adaptive algorithm for implementing Gaussian FA previ-
ously given [68, Sec. 4.2.4]. Whef is not forced to be
zero, (79) acts as a new variant of the adaptive algorithm
previously given by Table Il in [63] for Gaussian TFA.
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b) Equation (79) is further extended by relaxifigrom I to
a diagonal matrix that is determined via learning

A" = (1 — n)A°" 4 7 diage,eT]. (80)

As a result, for both Gaussian FA and Gaussian TFA,
automated model selection becomes possible via pushing
some of diagonal elements to zero, whenis large
enough. In implementation, we can simply remove
a diagonal element of\ if it becomes zero since it

839

analysis and thus we call it Non-Gaussian FA. In
this case, we can get a considerably improvement
over the previous nonGaussian FA algorithm given
in [68, EQgs. (35), (37), and (38)].

b) Non-Gaussian TFAWhena;,. = a;, b;,. = 0, for
the density by Item (C) in Table Il with Gaussian
p(u@ o), 6; ), we have a linear additive model
1y = By 1 + & with ; is non-Gaussian. In this
case, we get non-Gaussian TFA.

corresponds either a constant or a simple deterministicGenerally, the case of(y|y—1.6,) given by Item (C) in
exponential decaying series, both of which are not mugaple 11l describes a temporal relation betwegf’, 4, on
useful. Then, we continue to run the algorithm until ibach dimension in a piecewise way by a mixture of expert that
converges with no diagonal element/fstill tending to  weights a number of linear relations via a gate. We call this

Zero.

general cas&eneralized Non-Gaussian Th#vhich is imple-

¢) Whenig = 1 with o, > 0, h, > 0, learning by (78) mented via modifying (78) according to (75). Also, (82) is cor-
implements data smoothing that regularizes the effect gfspondingly modified with/, (k) replaced by

finite number of samples. Again, we can updaig h,,
via either simulated annealing or (76) which is now sim-
plified with

A =Tr=7Y, A, =T AT A+ AT (8D)

d) Whenig = 0, learning by (78) implements normalization

learning with delearning in effect.

Inthe case that, > 0orAissimply fixed atA = I, though
the least complexity nature will be in effect during learning by
(78), the scalé& is prevented to be further reduced. In such cases,
we can enumerateincrementally, and then select an approriate
scalek by (54), which is simplified as follows

Jy(k) +In %, (a) empirical
Jy(k) +1n |Z] + 21ln 2, (2),
min J(k) = 0.5 (b) normalization
» Jy(k) +In |S| + h2(k + Tr[ATE "1 4))
—kIn(27hl), (c)data smoothing,
Jy(k) = kIn2m) + k (82)

which is obtained from (70) after discarding those irrelevant
items. Also, from the relation between Gaussian factor anal-
ysis and PCA discussed in Section I, we can directly use (82)
at the special casE = ¢2I for the subspace dimension with
In 3| = dIno?, wheres? is given by the average of the— k
least eigenvalues of the sample covariance matrix dhe de-
tails are referred to [67].

* Non-Gaussian FA Versus NonGaussian TFAAnother
direction that extends Gaussian TFA (78) is to consider a
nonGaussian noisg in the state equatiop. = By;_1 +
.. We consider, e.gg(y:|y:—1, 8,) given by Item (C) in
Table 11l with eachp(u’ |+ 4, ,) being Gaussiany
beingy: andwv beingy:_1, which can be better understood
from its following two special cases:

a) Non-Gaussian FAWhena;, = 0, b;, = 0,

for the density by Item (C) in Table Il with
Gaussiarp(u®|v¥) 8, ), we havey, = e, that

is non-Gaussian and component-wise independent,
with each component described by an one variable
Gaussian mixture. That is, the temporal relation
betweeny:, 4:—1 has been removed by setting
B = 0. This degenerated case of non-Gaussian
TFA is actually an extension of Gaussian factor

N
1 e
Ty(k) = = D (@i, 0y)- (83)
t=1

* Non-Gaussian Observation Noise and Nonlinear Gen-

erative Model: Extensions can be further made with=

Ay + e, in (13) replaced by a mixture-of-experts density
p(z¢|yt, 05,) in Item (D) of Table Ill. For a Gaussian ex-
pertG(u|Av + ¢, X,.), whenA, = A, w,. = 0 for all r,
p(z¢|ye, 05),) describes an additive mode] = Ay, +

¢y, where non-Gaussian noisg is modeled by a mix-
ture of Gaussians with different mean and%,.. While
p(z¢lyt, 0,),) describes a nonlinear model in a piecewise
linear way under a Gaussian noise whenX,. = X for

all r.

Binary Factor Analysis Versus Independent
HMM: Another non-Gaussian extension is to con-
sider g(y¢|y:—1,6,) by Item (C) in Table Il with
p(u@ |09 6, ) beingBernoulli, with « beingy, andv
beingy;_1. This case can be better understood from the
following two special cases:

a) Bernoulli FA: For x; = 1, q(yt|y:—1,6y) reduces
into a Bernoulli density whena;; = 0, b,; =
0. In this casegx; = Ay, + ¢, is generated from
independenBernoulli binary factors, and thus is
called Bernoulli factor analysisThere is no need
to consider the cases af > 1, a finite mixture
of k£ Bernoulli densities is still 88ernoulli density
since wheru;; =0, b,; = 0.

b) Independent HMMThe temporal relation between
¥, Ye—1 IS taken in consideration by(y: |y:—1,6,)
wheng; 1 # 0. In this case, the serigg, yi_1, - - -
consists oft independent Markov chains which are
hidden to the observed series, z;_1, ---. That
is, we actually encounter an independent hidden
Markov model (HMM). When:; = 1, the temporal
relation betwee@,@, yt@l is set up via a postlinear
regressions(a;y\”; + m;,). Whens; > 1, the
temporal relation betweeylgj), ut(’_)l is set up via
S B (09)s(a; 4P, +m; ), which reduces
tod 7, /Jjj,,s(ajyfj_)l +m; ,-) under the constraints
Ajr = Ay, bj,r = 0.
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Similar to (78), from (75) we can implement tBernoulli FA
andIndependent HMMy
Step 1) Getj, in help of IterFs'(B) a)ntzl (D|) in Tab)le I;
y 1 4G 9e—1)q(Te|Gr, Gr—1
Step 2) v; —Z—(l—LR) o)
2q(t) = 2zg(t — 1) + q(Ge|Ge—1)a(Ze|Ge, Ge—1);
Step 3) With the substitutions af by y, andv by %, 1, as
well asn by 77?, we have that
a) For Bernoulli FA,g(y:|y:—1,8,) is given and
updated as in Item (B) of Table III;
b) For Independent HMMg(y:|y:—1,6,) in a
mixture of Bernoullis is given and updated as
in Item (C) of Table 1lI, [see (84)];

(@) Forarealr; = Ay;+ e, with G(e|0, X), up-
datee, = T, — Afy, A" = AU pyleq],
ynew — (1 — gy )N pyblesel + igh21),

(b) For a binaryz,, p(x|y:, 8.)y) is given and
updated as in either Item (B) or Item (C) of
Table Ill, with the substitutions of, by z, and
v by w.

Specifically, the above algorithm is implemented via either
normalization learning wheix, = 0 or data smoothing learning
whenir = 1. Particularly, both cases will reduce to empirical
learning when eitheizr = 0,7 =1 orig = 1, h, = 0.

The Bernoulli FA case is an improved variant of the adapti
algorithm firstly given in [68, p. 238, eq. (1)] for binary factor
analysis. The independent HMM case with = 1 is an im-
proved variant of the independent HMM algorithm previously
given by [64, Tab. IV].

Sincey, is binary, q(y:|y:—1) consists of5-densities. Thus
in (84), ¢(4:|w:—1) can be regarded as probability after divided
by 6,(0). In the case ofz = 0 for normalization learning, the
effect of thiss, (0) is cancelled out by letting, (¢) also divided
by 6,(0). While in the casér = 1 for data smoothing learning,
h, = 0, which results in-Inh% = §,(0) that cancels out the
effect of 6,(0) from g(:|ye—1).

Again, model selection will be made automatically during
the implementation of (84), whehis initialized large enough.
During learning, somes(ajj,,yt@_)1 + m;,) will tend to either
one or zero as eithet; ,. or m, ,. diverges. In this case, we can
simply remove the corresponding ., /; ,., which effectively
makesk reduced.

Alternatively, we can also enumerdtencrementally from a
small value and running (84). Then, for the case of a sgal
we select a best* by (82), where a Bernoullj(y:|y:—1,6,) as
in either Item (B) or Item (C) of Table Il is used. By Item (B),
e.g.,Jy(k) becomes

N k
1 . . .
- _ @) () _ @)
J#) = =7 3 DI ) + (154
‘In(1 = s(u?))]. (85)
While for a binaryz; with ¢(x:|y:, %:—1) given by ltem (B) in
Table Ill, the termD.51n |¥]| in (82) should be replaced by

N d,
1 = ; ;
- 22 @) msal)
t=1 j=1

+ (1= s(&) In(1 — s(@))]

Step 4)

(86)
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wherei, = Ay, + ¢ and

a(xelye yemr) = [[ls@)o(1 - 2)

J

+ (1= s(@)s(z).

» Generalized APT Analyses:In the existing statistical
factor analysis for APT, the requirement on knowidg
in (1) is exchanged by assuming that is a standard
Gaussian and uncorrelated (i.e., second-order indepen-
dent in components). However, as discussed in Section |,
some empirical tests [25], [1] failed to provide a strong
support. Here, we still believe that it is on a right direc-
tion to assume that the security returns are affected by
factors that mutually have a minimum dependence on
each other. However, the use of only the second-order
independence leads to the intrinsic indeterminacy (6). It
is this indeterminacy and several problems discussed in
Section | that affect the performances considerably. As
above introduced, the indeterminacy (6) can be removed
by considering either higher order independence (9) in
help of non-Gaussiaf(y|£) or temporal relation between
Y andy;_;.

Moreover, the above various models also provide tools for

vseolving the other problems in Section I. Specifically, we are able
to generalize the existing APT analysis from the following per-
spectives:

a) Being different from [18], the equation in Step 1 of (78)
provides an alternative solution for the cross-sectional
approach discussed in Section | for estimatipg The
equation actually provides an optimal inverse of the APT
model (1) in help of estimating priori densityq(y|&) =
q(y:) whenB = 0 as well as using the temporal relation
whenB # 0.

b) Using the adaptive algorithm (79) for implementation,
with G(e,|0,A) and G(e0,%) as well as a diagonal
B, the state space model (13) provides a solution to the
Problem (a) and Problem (fn Section |, i.e., we get a
temporal extension of the statistical APT by considering
1 = By:—1 + &, such that the rotation indeterminacy (6)
is removed due to temporal relation.

¢) The parameter learning with automated model selection
or making model selection via the criterion (82) provides
a tool for deciding the number of factors, i.e., we get a
solution to theProblem (b)in Section | [20].

d) Thenon-Gaussian FAwith (78) for implementation also
solves the rotation indeterminacy (6) of tReoblem (a)
in help of considering higher order independence and
temporal relation. Also, thEroblem (b)can be solved by
(83) in this case.

e) TheBinary Factor Analysis and Independent HMim-
plemented by (84) provide solutions of tReoblem (e)
which acts as a type ahdependent binary APT model
that looks more appealing by noticing that news in capital
market is usually binary (e.g., a particular news “come”
or “not come”).

f) The generalized APT analyses can also be made with
non-Gaussian observation noise and nonlinear generative
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model in consideration, as efforts to solve fmblem this case, we can drop the equation foand every appearance
(c) andProblem (d) of the indexj, in (88). Then, we can get further insights by
considering three typical casesffy;|y:—1) as follows:
B. Temporal ICA, Competitive ICA, LMSER+ICA and
Temporal Extensions ) q(y+|y:—1) describes a linear modgt = By,—1 + &
with ¢, being non-Gaussian, whet,, = «;, b;, =
0, and is given by Item (C) in Table Il with Gaussian
p(u@ [0, 6; ). In this case, the above (88) is actually
equivalent to the temporal ICA algorithm (TICA) given
by [63, eq. (42)]. Moreover, it is not difficult to observe

We further discuss typical cases of (75) on a F-architecture
and a Bl-architecture, which provide some alternative or sim-
plified solutions for implementing APT analyses.

» F-Architetcure: Gaussain TICA, Non-Gaussian TICA

and Competitive ICA: We start at a simple F-architec- that this TICA reduces to the above Gaussian TICA (87)
ture withp(ys|z¢, ye—1) = 6(ye — (W-Tt + Kyi—1 + w)) atr; = 1.
andq(yelyi—1) = G(ye| Bye—1, I). With ¢(ye) = —(y — i) q(y:|m—1) describes a Gaussian mixture, if we further

By, 1) and a diagonaB, the algorithm (75), especially

: eghiial, U S imposea,; ,, = 0, b, = 0, and is given by Item (C)
its Step 5(b), is simplified into the following steps.

in Table Il with Gaussianp(u?|v), 6, ,.). Fixing

w = 0, K = 0 and thusy, = Wz, both the above

Step 1) TICA and (88) further degenerate to the previously
G =WZ + K1 +w, e =14 — Bije_1. proposed learned parametric mixture based ICA [69],

[72], [79]that improves the ICA algorithm [3], [8], as

Step 2) . . .
1d ld g discussed in Section I.
W = W 4 (o [I — eo(WH, ) TIWe iii) Generally, given by Item (C) in Table Il with Gaussian
WY — qpold _ Cylat p(u(]) |U(]), 9].71‘)', Q(yt|yt—1) describes the temporal rela-
K" = K7 = C Eﬂ)T tion betweeryfj)1 y,(il ina piECEWiSG way by a mixture
new — potd " g, or of expert. We call (88) in this caggeneralized TICA
B = B7 + C’y|.7: diage:i;_4]- (87)

Furthermore, for the cases pfy:|x:, &) in (62) withk; >

We call this algorithmGaussian temporal ICAAs shown in 1 (88) implements:; different generalized TICAs via a WTA

[63], without the rotation indeterminacy (6) it is able to mak@ompetition in Step 1. Each of thedg generalized TICAs

yr = Wy + K1 + w become independent in componentsyorks locally on a segment of a time series at the locgtign

because of considering the temporal relation betwgeand Thys, (88) in such a case is calledmpetitive TICAor particu-

Yt—1- larly competitive ICAN the above case ii), which is more suit-
Generally, we consider a F-architecture that consists ghle for a series ok = {x,} with a number of different local

p(yelxe, &) given by (62) and (63) withf°(y) = vy and statistical properties.

q(yt|:—1) given by Item (C) in Table Ill, and with replaced

by %, andv by y,_;. After discarding Step 4 and those items ir- ¢ Bl-Architetcure: LMSER, LMSER+ICA and Tem-

relevant to a F-architecture, from (75) we can get the following  poral Extensions: The B-architectures and the F-ar-

steps. chitectures both have advantages and weak points. A
Step 1) By (67), get B-architecture focuses on how data is reconstructed by

R _ R q(zt|ye, e—1) from factors ofy, to fit the observed data

Ge =W T+ K Gy + 1, x¢, such that not only noise is taken in consideration but

Je = argm]ax (sl h—1), also the factors can be evaluated as principal or minor in

P T o ) a sense of the fitting goodness, which makes meaningful

by = WiTe + Byl + 1. the problem of model selection for the best factors or

Step 2) structures of minimum complexities. However, the dis-
k24 (t) = 2Y (t—1) + q(G|ye_1), advantage of a B-architecture is its expensive computing

;1 (i) cost both on learning and on pgrfo_rmlng the mapping

M=y W xy — y that myolves th'e peaking finding by (£_18). In con-
e . f ) _ trast, a F-architecture implements the mapping—

Step 3) Updat@;“ = 6% + (,; 66,, with 66, given as directly by a parametric model with a much reduced
in Item (C) of Table Il computing cost. However, there are two disadvantages in

Step 4) F-architecture. First, there is no consideration on noise.
Wi =Wt 4 Cywy{[l + () (W) TIW . Second, as discussed at the end of Section II-C, there is

Krew — geold oo Fgin \eT no concept on principal or minqr compgnents such that
I Jo T Sl $G0) the selection of thé best factors is meaningless.
K = 15+ G 9() (88) i i
I I yla ft PRI In a Bl-architecture, the advantages of a B-architecture and of

which is implemented via normalization learning that reducesF-architecture are both retained via a paramefrie|y:, v+ —1)
to empirical learning Wheryf =1. and a parametrip(y. |z:,4:—1) in a tradeoff way. Moreover, a

In the special case Qf(y: |z, &) by (62) withk; = 1, we parametrig(y: |z, y:—1) also helps to reqularizg x|y, yt—1)
have only one linear functiop; = Wz, + Ky,—1 + p. In to avoid overfitting.
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We further investigate the Bl-architecture part of (75) bgimilar to the discussions made after (75), the above (90) is

starting at a special case that
p(yelzs) = 6(ye — fCWare + 1)), q(welye) = G| Ay, X2)

( k&
H W = 1)+ (1 - p)dy)]

1
q(l0y) =  pj = Troo

Gy |, A), (b) Gaussian,

By Item (C) in Table Ill

L (c) Independent non-Gaussian.

In this case, the algorithm (75) is simplified as follows.

(a) Bernoulli, (89)

Step 1) gr = fOWT + p), e =Ty — Afhr.
Step 2)
2(t) = 2t — 1) + 624(2),
1 . 0z4(1)
b q
=2 —(1—1
RERNETC
624(t) = G(er]0,0%)
() @
Hp?f (I—pj)¥
j=1
X (a) Bernoulli
G(i)m, A), (b) Gaussian
q(in)0,), (c) Non-Gaussian.
Step 3)
a) For Bernoulli
GEW — old +Cy7t5t
) =i -,
b) For Gaussian
m" =m? 4+ Cy’YfEt
& =Yt — LLOId
AW — (1 _ Cy,yi;)Aold

+ ¢, diadeel + irh1].
¢) For non-Gaussian

grew — ezld + Cy’yf
. 9*In q(yl6,)
. 2 &
with 66, given by Item (C) in Table II.
Step 4)
Anew :Aold + Cxly,ﬁ; [etgél" _ iRhiAou]
snew (1 _ Cm|y’Yf)EOld
+ Capyvilecer +in(h2T + h2AAT)].
Step 5)
,(/}(y) — AoldTEold 716t7
Dy(y) =Vyf(y)
T
p<1)ld o pzld
1— p<1)ld’ ? 1— pzld
P(y) = (a) Bernoulli

_Aold—l(y _ uold)
Vy 1nq(y|9y)’
yi = Dsi)[o(ie) + ()]
W = W Gy v T

new old

H + Cy|ac7t yt

(b) Gaussian
(c) nonGaussian

(90)

implemented via either normalization learning whign= 0 or
data smoothing learning whép = 1. Again, both cases reduce
to empirical learning when eithég, = 0,72 = 1 orig = 1,
hy =0,hy =0

We can further understand the above algorithm by starting at
the simplest special case thgt:) is Bernoulli withg; = 0.5
andz,(t) is approximately regarded to be irrelevant4pX. In
this case, (65) becomes equivalent to

H(6,k) = -0.5n 2| — kln2,
t
1 _ o e
me = Afe Wz + p)])*, or
When¥ = 021, H,(#,k) = —0.5d,lno? — kIn2,

t
= Xl - AP

Thus,max H,(6, k) is equivalent tanin 2. Further lettingA =
WT, it becomes equivalent to the least mean square error re-
construction (LMSER) learning that was firstly proposed with
both batch and adaptive gradient algorithms provided in [75]
and [82]. Moreover, it was also first discovered in [75] and [82]
that with a sigmoid nonlinearity () it can automatically break
the symmetry of the components in the subspace. Three years
later, the LMSER learning and its adaptive algorithm given in
[75] and [82] have been directly adopted to implement ICA with
promising results by the authors of [37] under the name of non-
linear PCA.

Two direct extensions of the LMSER learning are obtained
by relaxingd = W7 andX = ¢21. Also, it follows from (91)
that we have the following simple criterion for selecting a best
numberk* as the dimension af;:

H%Il J(k), J(k)=0.5d,Inc*+kIln2, or

J(k)=0.5In|Z| + kln2 (92)

which is an open problem that has not be studied in [75].

Further extensions of the LMSER learning include 1) con-
sidering either the role of,(t) by settingiz = 0 in (90) for
normalization learning or the role @éf, by settingir = 1 in
(90) for data smoothing learning and 2) relaxing the constraint
g; = 0.5 and lettingg(y|6,) to be either of the three choices in
(89) such that learning is made with automated model selection
or structural minimization.

The general case of (90) can be understood from the term
(1/8) Xy (@[5, &) + (1/8) T, n g(3-|€;) which
is the major part of both (65) and (70). From the fact (tiat)
Zi L In q(yT|£T) is also the major part of (66), we know that
its role is to implement ICA or TICA. This point can also be ob-
served from the existence of a terify) in Step 5, which helps
to reduce couplings among the componentg,oMoreover, as
discussed above, the terth/t) 3> _, In ¢(Z, i, &;) imple-
ments LMSER-like learning that also performs ICA from the
perspective of nonlinear PCA. Thus, the general case of (90)
should perform ICA-like tasks by combining the two types of
features.

Specifically, the forward™ (W z, +u) performs an ICA map-
ping such that the backward linear mappifig= Ay, can best

(91)
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reconstructz;. When the dimensiod,, of =, is larger than the control of the discovered hidden factors behind the secu-
dimensionk of 4, there will be( ) choices to select thecom- rities in the portfolio.

ponents of;,. Thek components are regarded as principal orim- We consider a portfolio of risk securities with retumis')
portant in a sense that can give a best reconstructiondg. In 5 = 1,---,m and a risk-free bond with retumf where the

this case, we say thgt retains the principal information af,.  return is defined as?) = () — p@)/p, . Moreover, we
This role is similar to principal component analysis (PCA) thatistribute o, percentage of capital on risk securities and thus
extracts a&-dimension subspace spannediyyrincipal compo- 1 — «; percentage of capital on the risk-free bond. In this case,
nents. But there is no such a role in the existing ICA approach®g return of the portfolio is given by

which only provide a-dimension subspace spanned by &ny

independent factors. In other words, (90) implements a type of Ry = (1 — au)r/ 4+ oy 2[3(1)3751), subject to

task that can be called principal ICA (P-ICA) or LMSER+ICA.

Similar to (92), we can also have oct >0,1> /3(1) >0,
min J(k) = 0.51n 5] 2/3(’) =1, Choice (a)
( t k
1 59 (94)
7 Inp; G _ .
t Tz_:_l Jz: Z_:l/}t = 1,no constraint on
+(1 - )ln(l —pj)l . &) .
+ Choice (a) \ Oy, ﬁt s Choice (b)

0.5(k ln 27r +1u|A|+ k), Choice (b) In the choice (a), short of a risk security is not permitted but
borrowing from the risk-free bond is allowed (i.e., we can have
_% Z Z Inp(i,]6,), Choice (c). l—a; <Oora; > 1). While in the choice (b), short of a risk
= security is permitted.
(93) Our purpose is to maX|m|ze the retuly by adaptively con-

trolling the weightss3, () as timet goes. Any change o, ()
The above LMSER-like learning, PICA and LMSER+ICAjg4¢s to atransactlon that incurs a cost return

learning can all be further extended along two lines. One is to

\ =1

consider thay(z|y, £), q(y|¢) are both Bernoulli densities that cr = —ay Zrcv}f’) (’) p: J)/p(J)
are given and updated as in Item (B) of Table IIl, which leads to j

a case thatis equivalent to the one layer deterministic Helmholtz ™ )

machine learning [30], [21], [22], as previously discussed in =~ y_relAY = B+ 2)
[68], [63]. The other direction is made toward to temporal situ- i=1

ations, which are covered by the Bl-architecture part in (75). Wherer. is the rate of transaction cost. Thus, we have the fol-
lowing adjusted return:

C. Return Prediction, Macroeconomic Modeling, and Portfolio - T

Management Bi=(1-a)! +a Z )

In addition to directly implementing APT financial analyses ) (J) )
as previously discussed, we can also make other financial appli- = el A+ )] . (95)
cations in help of making APT analyses as a pre-stage. Thide want not only to maximize the adjusted retii#nbut also to

examples are given as follows. minimize its uncertainty or called volatility, which is measured

« Time Series Prediction:After setting up an independentPY its variancel/ (R, ). This purpose is implemented by
state-space model (13) with = 7, we can user; 1 to M(R,) . 1 T
getj;_1,e.g., by _1 = [ATS LA+ T Y ATS gy + max Spy,  Sp=———=, M(R)= T Ry
Bij;_») in the Gaussian TFA model. Then, we d&§,_, v V(Ry) =0
which in turn provides a predictiom; = ABi;_;. This R = R
prediction method can be applied, e.g., to predict the return V(R) = T [R; — M(R)]?,
movement of securities. t=0

» Macroeconomic Prediction via Capital Market: We can (o =gy, ) >
build a macroeconomic prediction model in two steps. () _ 20 5<r>
First, we use statistical APT on the security returngo B Z
get its hidden factorg;. Second, we believe that the cur- Subject to (96)
rent economic situation is reflected in the capital market, &= f(u. ), for,ChOJ(?,e @)
and thus it is able to predict the macroeconomic indexes Gy = 9y, ), ﬁt(J) = 5}(])
2, via the current capital market. Therefore, we set up a L& = f(y,¢), for Choice (b).
regression; = Cy; + ¢, based on the basic factogsof The aboveS,, is a modification of the well-known Sharpe ratio
the capital market obtained via APT. S, = M(R:)//V(R:) that has been widely used in the fi-

 Portfolio Management: Using an APT analysis as thenance literature for evaluating the performance of a portfolio
first step, we can make portfolio management under tf@3], [52]. In recent years, several efforts have been made on
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maximizing the Sharpe ratio by adjusting the weig(hﬁ"s), in-  whereal = [a; 1, -+, a; ). Similarly, requiring (100) to hold

stead of just being used for a performance evaluation [42], [18r any zero investment leads td = ;1 for constants;,

In those existing efforts, the Weigh@éj) either are constants oré = 1,- - -, m. So, strictly speaking, an equilibrium market via

depend directly on the security returns z¢ = Ay, + e; with no arbitrage chance does not exist in the
In contrast,/it(j) in (96) are functions of the independensense of considering all the possible zero investments, though

factor vectory, in (13) and we learn the best Weighﬂg) after it may exist when we only consider one or a subset of specific

we first implement the temporal APT model (13) and thef€r0 Investments. - o

make the mapping, — .. Specifically, bothu, /3t(j) in (96) Therefore_, we relax the condition of an eqwhpr.lur_n market

are modeled with bottf(1;, ¢) and g(y, ) implemented by from no arbitrage chance to that there is an eqU|I|br!um factor

any forward network, e.g., a mixture of expert or its specifiodelz; = Ay, + ¢; such that the series @, consists of

case—the extended normalized RBF net [66]. The simplddtd Ssamples from a density that is independent frgmand
case is to use linear functions the elements ofy are independent to each other but may be

- - time-varying ag.
9y, V) ="y +vo, [y, d) =¢ y+do.  (97) Moreover, we use mode}, = By, 1 + & and thus get
We can indirecﬂy adjus(b7 r(/) to get Optimalﬁt, v that Change the State—space model (13), which are then implementEd in var-
with ¢ under the control Ogﬂt- In imp|ementation’ the maximiza- ious cases as given in Section IlI-A. PartiCUIarIy, for Gaussains
tion can be made simply by using gradient ascent method. G(e¢[0, A) andG(e, |0, X), we use (78) for the modeling via im-
The above method will deteriorate when the varian¢&,) Plementing Gaussian TFA. o

varies witht. One solution is to use the ARCH [26] or GARCH Furthermore, we can also take macroeconomic indexes,
[11] to estimate the time-varying varianté R,) and then make Which are usually observable, into the modeling of a capital

|earning adaptive|y market as follows:
= y=DBy1 +Hxu_1+e, x=Ap+e
w o (R [\/V (R,
(/)ne :¢ld+c ( f/a(f)( 1))7 thcyt+EUt+6t
5 hite noises and independent
’ a(R / V(R )) Et,Ct, €t are w
new old t t
P =7 + CT’ from each other
¢ > 0is a stepsize (98) ¢, is independent from both,_; andy,_;
ey, ¢ are independent from, v, (101)
D. Macroeconomics Modulated Independent State-Space Wherez, consists of a number of macroeconomic indexes, and
Model v; consists of a number of known nonmarket-factors that af-

fect the macro-economy. Specifically,z;_, describes the indi-
rect effect of the macroeconomic indexes to the security market
via the hidden factorg,, and Cy; describes the feedback ef-
fect of the market to the macroeconomic indexes. Thus, we
call (101)macroeconomics modulated independent state-space
model We belive that the model (101) describes a capital market
m via both a short-term dynamics and a long-term dynamics. In
Zﬁ(j) —17g8 =0, 17 =[1,1,---,1] (99) the sho_r_t—t(_arm _dynamics;t, 4 and perhe_lpst move to reach
an equilibrium in the sense that the seriesQfs;, ¢; become

0?Ittationary white noises, while the paramet&sH, A, C, E
and statistics of,, €, ¢, can be relatively regarded as constants
dUe their slow changing. In a long-term dynamics, the parame-
tersB, H, A, C, E and statistics o#,, ;, ¢; are all in changing
"o cohere the current equilibrium.

The process of the long-term dynamics is the process of

. . . learning. WithH fixed, H~ nstant an n re-
result, we gek, = ¢1 with ¢ being an arbitrary constant. Thatea g. Wit ed, Hz acts as a constant and can be re

: X L rded as a part of the meansgf Thus, we can make learning
is, each security gets a same return, and thus it is not a muc ' . . . :

. . : : on the first two equations in (101) in the same way as in (78).
interesting case. So, strictly speaking, there should be some

r- ;
bitrage chance theoretically, though such a chance is difficultl}t%oreover‘zt = Cyi + Bu + ¢ can be handled in the way

. similar tox; = A . Furthermore, the task of estimatin
discover or use due to fast or random movementof ot Yo+ Ce 9

) . . is a linear regression problem whep 4, 1, B are fixed.
TdheI A(]P)Tiheory lmpo(.s;)es an(;a)\r_bnrgge consFra||nt ct>|n the_facgérticularly, forGes|Hzy—1, A), G(ex |0, 5) andG(e,[0, 5.)
?41; iiz inzl)z.:%ﬁgti’ijsftwe—i_hgve in (8) or equivalentlyr, =\ 0 can modify (78) for implementing (101) as follows:

m Step 1)

Y 8V =afB=0, i=1,---k with ge=[AT"+ AT A CTYTN O

j=1 (AT Y7 4+ CTY TNz - Ew)
1"=0 (100) + AN (Byoy + HZ 1)

For a market ofn risk securities which form a vectoy; in
R™, if we can get a portfolio via the: weights of 3 which
also form a vectof in R™ such that

S pVa? =xI'g > 0, with

i=1

j=1
it is said that we have an arbitrage chance of getting a pr
with a zero investment. All the possible zero investments for
am — 1 dimensional hyperplane that passes the origiiR®f
and is orthogonal to the vectdr Thus, no arbitrage chanceina
equilibrium market means that in equilibrium is orthogonal
to the samen — 1 dimensional hyperplane, i.&x{' 8 = 0. As a
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et =i — Bip—1 — Hzyy
et =Ty — Ay, ¢ =2 — Cfy — Buy;
Step 2)
§24(t) = G(e4]0, A% G(e|0, B9
G(e|0, 20
1 o 02, (8)

v
=~ (1-
Tt f ( iR)—

zg(t)
7g(t) = 2g(t = 1) + 824();
Step 3)
B = B 41y diagie, 5/, ],
H™ = H" 4 1y} diage 7/, ]
A" = (1 =y )AT oy
- diage;el + iRhZQJI]
Erew — pold 4 777? dianvtT];
Step 4)
AT = A% Lo — inhi A
T = (1 ) S
et +in(hR21 4+ R AC AT
Step 5)
Ce = O +i[ay) —irh,C]
DI = (1 =y )52

+myilecet +ir(h2 4 B,CMC] (102)

where{z, }¥_, are a set of observations enthat consists of a
number of the macroeconomic indexes.
1) Remarks:

a) Similar to the discussions made after (90), (102) is imple-

mented via either normalization learning whign= 0 or
data smoothing learning wheéi = 1. Also, both cases
degenerate to empirical learning when eitlhgr = 0,
v =1orig =1,h, =0.

b) When making data smoothing learning, we can uptate
h-, hy via either simulated annealing or (81) which no
becomes

2/132070

R e [y
2]73,70

L /14402 gd= A ]

h?eVVQ ~

new?2 __
hy

h?eWQ ~

2h2
1+ \/1 FAh2 ok —1THAT S A4 CT Y O+ A1)

aco— ZZ%Tth_x‘rH

“’r_lt 1

hyo= ZZ%TII.% y-|?

‘rltl

,40— 227t7||7t_7‘r”

"r_lt 1

845

i t—~-H21
noldz

2 2

srlee—=7ll e —vrll
—0.3] jo0ldz + joold2
C x

Yt,r =

P [ [P | g | t*~—H2
—0.5] olde T ol #9142 ]
x Yy

(103)

>

1Et 1 N,7€C

whered, is the number of macroeconomic indexes.

¢) Bysimply setting = 0in (101) and (102), we canignore
v, when it is not available. Moreover, by settiag = 0
we can ignore the effect of the market to the effect of
macroeconomic indexes, while by settifig= 0 we can
ignore the macroeconomic indexes to the market.

d) We can also take in consideration the fact that securities
are divided inton groups, with each group affected by
specific factors and macroeconomic indexes. Usually, the
interactions between groups are much weaker and thus
can be ignored. In such cases, we can impose the con-
straint thatA, B, C, H are block matrices of the form
U =diagl,---, U]

E. Experimental lllustrations

Experiments on temporal model (13) can be found in [63],
[14], [61], either with real factors by the Gaussian TFA algo-
rithm (79) and temporal ICA, or with binary factors by the
Bernoulli FA and independent HMM algorithm (84). Here, we
give two more illustrations on financial analyses.

« lllustration on the APT-Based Portfolio Management:
We consider to set up a portfolio by (96) such that it is
managed dynamically bpif’). The portfolio consists of
four compound securities of Hong Kong Heng Seng in-
dexes on finance, ut|I|t|es properties and commerce and
industry, denoted byt ,j = 1,2.3,4. The data consists
of the closing value of each day from 1 Jan 1990 to 27
July 1999. The first 2000 samples are used for training the
value of3; by (96). The remaining 500 samples are used
for testing the results. The transaction costs are ignored.
In implementation, we first use the Gaussian TFA algorithm
79) on the temporal APT model (13) to get the hidden fagtor
rom secur|t|e31:§ ) j = 1,2,3,4. Then, we use the obtained
v, in (96) to geté, = ¢T e + ¢y,0. Equation (96) is imple-
mented in the batch way by a gradient ascending algorithm. To
compare the advantage of using the hidden independent factors
for controlling, we also run (96) on the same experiment with
g} ¢z + ¢ 0, With -, consisting of the original indexs. For
simplicity, we denote (96) by Portfolio based on TFA for the
caseg} = d) ¥ + ¢y.0, and by Portfolio without TFA for the
caseé, = </)T97t + @0
Shown in Fig. 2(a) are the resulted relative returns by the Port-
folio based on TFA and the Portfolio without TFA. It can be
observed that the Portfolio based on TFA outperforms the Port-
folio without TFA. Moreover, we can recursively get the port-
folio pricep; = pr—1(1 + R;) with initial po = 1. We plot each
price curve ofy, in comparison with the normalized original in-
dices such that all of them start at the same level that is one. As
shown in Fig. 2(b), the Portfolio based on TFA outperform the
Portfolio without TFA considerably, and also both outperform
each of the original indexes. However, it should be noticed that
this is only a preliminary result. The ignorance of transaction
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Fig. 2. Comparisons on Portfolio based on TFA and Portfolio without TFA. (a) The relative returns.

costs can be a severe limitation. Further experiments should be 1, = Wz, by using the learned parametric mixture based
made with these costs taken in consideration. ICA [69], [72], [79], i.e., the special case ii) of (88), in

« lllustration on Modeling and Prediction of Macroeco- comparison with using PCA.
nomic Indexes via Securities:Preliminary experiments  The experiments were made on the 340 real stocks of the S&P
are also demonstrated on the proposed two-step modelf@ since January 1973. In the same period, we consider ten
in Section I11-C for modeling macroeconomic indexes vienacroeconomic indexes. The linear mapping= W xz; maps
securities in a capital market. Focusing on the issue tife 340—dimensionat, into the ten-dimensional factor vector
the higher order independence versus the second-ordenjin-Then, we use the least square ap};)roach to build up a linear
dependence only, we omit the temporal relation and igepressiorkt(]) = Ejy, between eacht(] of the ten macroeco-
nore the observation noisg, and implement the mapping nomic indexes and the ten basic factgysSpecifically, we use
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Fig. 2. (Continued) Comparisons on Portfolio based on TFA and Portfolio without TFA. (b) The portfolio price with initial p, = 1 and the normalized
indexest\”’ = {7 /2{7,j=1,2, 3, 4.

80% of data as a training set for gettidg £’;, and then use 20% IV. CONCLUSION
of data as a testing set to ggtby y; = W, and to predict each

(’) ofthe ten macroeconomlcmdexes;ﬂy) E;4,. The pre-
d|ct|on performance is demonstrated via the mean square erroThe relationship between factor analysis and the well-known
N7y, 210 (2 () — E;y:)* as shown in Table IV. The pre- arbitrage pricing theory (APT) for financial market has been dis-
diction results based on ICA outperform considerably the reussed, with a number of to-be-improved problems listed. The
sults based on PCA, which have demonstrated the feasibility®YY ISS system and harmony learning principle, with a general
using a F-architecture-based ICA for a simplified APT impleadaptive learning procedure, have been suggested as a unified
mentation. However, this is only a preliminary result and furthguide to tackle the problems systematically. New adaptive algo-
experiments should be made with error bars provided. rithms, regularization methods and model selection criteria are
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TABLE IV [14]
THE MEAN SQUARE ERROR (MSE) OF PREDICTIONS ONMACROECONOMIC
INDEXES
(18]
Macroeconomic Indexes PCA ICA [16]
Dow Jones Industrial Index 59007 57090
Dow Jones Average Index 5108.3 4787.6 (17]
S&P500 Average Index 580.2854 | 571.7302 [18]
US Customer Price Index 0.0785 0.075 [19]
US Industrial Production Index | 0.4352 0.3764
US Civilian Employment 67395 | 66079 [20]
US Consumer Confidence Index | 21.7832 | 21.5333 (21]
US Producer Price Index 0.155 0.151 [22]
US Total Business Sales 27729000 | 25057000 [23]
US Unemployment Rate 0.234 0.214 [24]
(25]

provided on various specific cases of each of three typical archi-
tectures, with applications to APT analyses for solving the listed26]
to-be-improved problems. Moreover, other APT-based applica-
tions, namely macroeconomic prediction, optimal asset allocgz7)

tion, and macroeconomics modulated independent state-space
model are also proposed. 28
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