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Abstract

It is shown that a particular case of the Bayesian Ying–Yang learning system and theory reduces to the maximum
likelihood learning of a finite mixture, from which we have obtained not only the EM algorithm for its parameter estimation

Žand its various approximate but fast algorithms for clustering in general cases including Mahalanobis distance clustering or
.elliptic clustering , but also criteria for the selection of the number of densities in a mixture, and the number k in the

conventional Mean Square Error clustering. Moreover, a Re-weighted EM algorithm is also proposed and shown to be more
robust in learning. Finally, experimental results are provided. q 1997 Elsevier Science B.V.
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1. Introduction

� 4NGiven a data set D s x , the task of parti-x i is1

tioning D into k clusters is a classical problem inx

the literature of statistics and pattern recognition,
Ž .usually called cluster analysis Jain and Dubes, 1988 .

A well-known formulation of this task is to use k
� )4 kvectors m , called centers or code-vectors toy ys1

represent the k clusters such that a sample x isi
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Endowment Fund HSH 95r02.
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Ž < .classified into the yth cluster when I y x s1,i

according to

5 5 21 if ysarg min x ym ,y i y<I y x s 1Ž .Ž .i ½ 0 otherwise,

� )4 kwith m obtained byy ys1

Min k E ,�m 4 MSEy ys1

k N1
2< 5 5E s I y x x ym . 2Ž .Ž .Ý ÝMSE i i yN ys1 is1

This formulation is called the Mean Square Error
Ž .MSE clustering analysis or vector quantization. It
is typically implemented by the well known k-means
algorithm or the LBG algorithm, which is a two-step
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iterative procedure, starting from an initial guess on
� 4 k � Ž < .4Neither m or I y x :y ys1 i is1

k-means Alg.

N
<Step 1: update I y x by Eq. 1 , then get� 4 Ž .Ž .i is1

N1
<a s I y x ,Ž .Ýy iN is1

N1
<Step 2: update m s I y x x . 3Ž .Ž .Ýy i i

a Ny is1

Equivalently, many of the so-called competitive
learning algorithms in the literature of neural net-
works can be regarded as adaptive variants of the

Žabove algorithm for MSE clustering e.g., see the
Ž ..Reference List in Xu et al., 1993 .

The algorithms in this formulation all have two
serious limitations. The first one is that the number k
of clusters must be pre-known and fixed. EMSE

monotonically decreases with increasing k, and thus
cannot detect a correct k. However, a bad estimate

Žof k can cause serious problems as stated in Xu et
.al., 1993 . To the best of our knowledge, the selec-

tion of a correct k remains an important open prob-
lem. There is no theoretical guide available for solv-
ing the problem, except for some heuristic tech-

Ž . Žniques, e.g., ISODATA Duda and Hart, 1972 Jain
.and Dubes, 1988 , and Rival Penalized Competitive

Ž .Learning Xu et al., 1993 . The other limitation is
that the formulation implies that samples come from
a mixture of k Gaussian densities with equal propor-
tion and equal variance s 2I, which can be clearly
seen in Section 5. This special case deviates from
many practical situations. In the literature, the so-
called Mahalanobis distance clustering or elliptic
clustering attempts to overcome this limitation.

A unified statistical learning approach called
Ž .Bayesian Ying–Yang BYY system and theory has

been developed by the present author in recent years
Ž .Xu, 1995, 1996, 1997a,b,c . This theory functions
as a general theory for both unsupervised and super-
vised learning for parameter learning, regularization,
structural scale or complexity selection, architecture
design and data sampling. For unsupervised learning
and its semi-unsupervised extension, as summarized

Ž .recently in Xu, 1997a , the general theory can pro-
vide new theories for unsupervised pattern recogni-

tion and clustering analysis, factorial encoding, data
dimension reduction, and independent component
analysis, such that not only several existing popular

Žunsupervised learning approaches e.g., finite mix-
ture with the EM algorithm, K-means clustering
algorithm, Helmholtz machine, principal component

Ž .analysis PCA plus various extensions, Informax
and minimum mutual information approaches for

.independent component analysis, . . . , etc. , are uni-
fied as special cases with new insights and several
new results, but also a number of new unsupervised
learning models are obtained, and a number of hard
model selection problems are solved, e.g., for sub-
space dimension in PCA related approaches, the
number of clusters or number of Gaussians in clus-
tering analysis, and the number of sources in ICA
related blind separation. For supervised learning, as

Ž .summarized recently in another paper Xu, 1997b ,
the general theory can provide new theories for
supervised classification and regression based on
three-layer nets, mixtures-of-experts, and radial basis
function nets such that not only the existing ap-
proaches are unified as special cases with new in-
sights, but also new learning algorithms are obtained
and new selection criteria for the number of hidden
units and experts are developed.

In this paper, we show that a particular case of the
BYY learning system and theory reduces to the

Ž .maximum likelihood ML learning of a finite mix-
ture, especially Gaussian mixture, from which we
can get the EM algorithm and its variants for various
extensions of the MSE clustering and the k-mean
algorithm, with criteria for the selection of the num-
ber of densities or the number of clusters. Moreover,

Ž .a Re-weighted EM REM algorithm is also pro-
posed and shown to be more robust in learning.

2. BYY learning system and theory

The perception tasks can be summarized as the
Ž .problem of estimating the joint distribution p x, y

of the observable pattern x in the observable space
X and its representation pattern y in the representa-
tion space Y, as shown in Fig. 1. In the Bayesian
framework, we have two complementary representa-

Ž . Ž < . Ž . Ž .tions p x , y s p y x p x and p x , y s
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Fig. 1. The joint input-representation spaces X, Y and the YING-YANG machine.

Ž < . Ž .p x y p y . We use two sets of models M s1
� 4 � 4M , M and M s M , M to implement eachy < x x 2 x < y y

of the two representations:

<p x , y sp y x p x ,Ž . Ž .Ž .M M M1 y < x x

<p x , y sp x y p y . 4Ž . Ž . Ž .Ž .M M M2 x < y y

Ž .We call M a Yangr visible model, which de-x
Ž .scribes p x in the visible domain X, and M ay

3 Ž . Ž .Ying r invisible model which describes p y in
the invisible domain Y. Also, we call the passage

Ž .M for the flow x™y a Yangr male passagey < x
Žsince it performs the task of transferring a patternr a

. Ž .real body into a coder a seed . We call a passage
Ž .M for the flow y™x a Yingr female passagex < y

Žsince it performs the task of generating a patternr a
. Ž .real body from a coder a seed . Together, we have

Ž .a YANG machine M to implement p x, y and a1 M1

Ž .YING machine M to implement p x, y . A pair2 M 2

of YING-YANG machines is called a YING-YANG
pair or a Bayesian YING-YANG system. Such a
formalization compliments to a famous Chinese an-
cient philosophy that eÕery entity in the uniÕerse
inÕolÕes the interaction between YING and YANG.

The task of specifying a Ying–Yang system is
called learning in a broad sense, which consists of
the following four levels of specifications:

Ž .a Based on the nature of the perception task, the
Representation Domain Y and Its Complexity k are

w xdesigned. For example, we have yg 1,2, . . . ,k ,
with x mapped into one of k for the purpose of
clustering.

3 It should be ‘‘Yin’’ in the Mainland Chinese spelling system.
However, I prefer to use ‘‘Ying’’ for the beauty of symmetry.

Ž .b Based on the given set of training samples,
some previous knowledge, assumption and heuris-
tics, Architecture Design is made by specifying the

Ž . Ž < .architectures of four components p x , p y x ,M Mx y < x

Ž < . Ž .p x y and p y . First, with a given set D sM M xx < y y

� 4N oŽ . Ž .x from an original density p x , p x isi is1 M x

fixed to some parametric or nonparametric empirical
oŽ . Ž . Ž .density estimation of p x , e.g., p x sp xM hx x

Ž .given by a kernel estimate Devroye, 1987 :

N1 1 r
p x s K xyx , K r s K ,Ž . Ž . Ž .Ýh h i h d ž /N hhis1

5Ž .

Ž .with a prefixed kernel function K P and a prefixed
smoothing parameter h. Next, for the other three

Ž . � < < 4components, each p a , ag x y, y x, y can beMa

designed in two ways. One is called Free. It implies
a totally unspecified density or probability function

Ž .in the form p a without any constraint. Thus, it is
free to change such that it can be indirectly specified
through other components. The other is called Pa-

Ž .rameterized Architecture. It means that p a , agMa

� < < 4x y, y x, y is either a simple parametric density,
Ž < . Ž .e.g., a Gaussian p x y sG x,m , S withM x < y x < yx < y

mean m and variance matrix S , or a com-x < y x < y

pounded parametric density with some of its parame-
ters defined by a complicated function with a given
parametric architecture consisting of a number of
elementary units that are organized in a given struc-
ture.

Ž .c We also need to select the above complexity
k, as well as other scale or complexity parameters for
a complicated architecture. This task is called Struc-
tural Scale Selection or Model Selection.
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Ž .d After the above three levels of specifications,
Ž .the unspecified part for each component p a ,Ma

� < < 4ag x y, y x, y is a set u of parameters in certaina

domains. Putting them together, we get the parame-
� 4ter set Qs u ,u ,u , which we call Parameterx < y y < x y

Learning.
Our basic theory is that the specifications of an

entire Ying–Yang system in the above four levels
best enhances the so-called Ying–Yang Harmony or
Marry, through minimizing a harmony measure
called separation functional:

F M , M sŽ .s 1 2

< <F p y x p x , p x y p y 00,Ž . Ž .Ž . Ž .Ž .s M M M My < x x x < y y

F M , M s0, if and only ifŽ .s 1 2

< <p y x p x sp x y p y , 6Ž . Ž . Ž .Ž . Ž .M M M My < x x x < y y

which describes the harmonic degree of the Ying–
Yang pair. Such a learning theory is called Bayesian

Ž .Ying–Yang BYY Learning Theory.
This min F can be implemented by an Al-M , M s1 2

ternatiÕe Minimization iterative procedure:

Step 1: Fix M sM old , get M new sarg min F ;2 2 1 M s1

Step 2: Fix M sM old , get M new sarg min F ,1 1 2 M s2

7Ž .

which guarantees to reduce F until it converges to as

local minimum.
Three categories of separation functionals, namely

ConÕex DiÕergence, L DiÕergence, and De-corre-p
Ž .lation Index, have been suggested in Xu, 1997c .

Particularly, the ConÕex DiÕergence is defined as

<F M , M s f 1 y p y x p xŽ . Ž . Ž .Ž .Hs 1 2 M My < x x
x , y

=
<p x y p yŽ .Ž .M Mx < y y

f d x d y ,
<ž /p y x p xŽ .Ž .M My < x x

8Ž .

Ž . Ž .where f u is strictly convex on 0,q` . The BYY
learning is called Bayesian Convex YING-YANG
Ž . Ž . Ž .BCYY learning. When f 1 s0 and f u is twice

Ž .differentiable, Eq. 8 is equivalent to Csiszar gen-

Ž .eral divergence. Particularly, when f u s lnu, Eq.
Ž .8 becomes the well-known Kullback Divergence:

KL M , MŽ .1 2

<s p y x p xŽ .Ž .H M My < x x
x , y

=
<p y x p xŽ .Ž .M My < x x

ln d x d y. 9Ž .
<p x y p yŽ .Ž .M Mx < y y

In this special case, the BYY learning is called
Ž .Bayesian-Kullback YING-YANG BKYY learning.

Ž .As shown in Xu, 1997a , the theory given by Eq.
Ž .6 provides theoretical guides for parameter learn-
ing, regularization, structural scale or complexity
selection, architecture design and data sampling. In
this paper, we only consider the cases that the archi-
tecture has been pre-designed and a training set

� 4ND s x is given and that the remaining unspeci-x i is1

fied parts are the parameter set Q and the structural
Ž .scale k. In this case, we denote F M , M simplys 1 2

Ž .by F Q ,k . With k fixed, we determines k

Q ) sarg min F Q ,k , 10Ž . Ž .k Q s kk

which is called parameter learning. Then, we do
structural scale selection by determining

k ) smin KK, KKs j N J j smin J k ,� 4Ž . Ž .k 1 k 1

J k sF Q ) ,k . 11Ž . Ž .Ž .1 s k

That is, to pick the smallest one among those values
Ž .of k that makes J k reach its smallest value. In1

other words, we select the simplest structural scale
when we have multiple choices.

We also have an alternative way for selecting k ) ,

k ) sarg ming J k ,Ž .k 2

< ) < )J k sy p x , y ln p x , y d x d y ,Ž . Ž . Ž .H Q Q2 M Mk k1 2
x , y

12Ž .
Ž . < )where p x, y , is1,2, denote the learned jointQM ki

Ž . )densities given in Eq. 4 with the parameter Q

Ž . Ž .given by Eq. 10 . This J k is a kind of complex-2

ity measure of the BYY system and is expected to be
the smallest for the least complicated system. Usu-

Ž .ally, J k reaches its minimum for one value of k.2
Ž . Ž Ž ..In most cases, the results of Eq. 11 and Eq. 12

are the same. However, each way has a different
feature, which will be discussed in the next section.

Ž . Ž .In fact, J k is just a part of J k .2 1
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3. BKYY learning, finite mixture and number of
densities

3.1. BKYY learning, finite mixture and EM algorithm

d Ž . Ž .Let ys1, . . . ,k, xgR and p x sp xM hx

Ž .given by Eq. 5 , with other architectures being
Ž < . Ž < . 4p x y sp x u andM yx < y

k

p y sa )0, a s1,Ž . ÝM y yy
ys1

k

< < <p y x sp y x 00, p y x s1.Ž . Ž . Ž .ÝM y < x
ys1

13Ž .

Ž < . Ž < .That is, p x y is parametric, p y x andM Mx < y y < x

Ž .p y are free probability functions.M y

Ž .Putting the above design into Eq. 9 , we get

KL M , MŽ .1 2

k <p y x p xŽ .Ž . h
<s p y x p x ln d xŽ .Ž .Ý H h <p x u ax Ž .y yys1

<sKL Q , p y x q p x ln p x d x ,Ž . Ž .Ž .Ž . Hk h h
x

<KL Q , p y xŽ .Ž .k

k

< <s p x p y x ln p y x d xŽ . Ž . Ž .ÝH h
x ys1

k

< <y p y x p x ln p x u d xŽ .Ž . Ž .Ý H h y
xys1

k

y a ln a , 14Ž .Ý y y
ys1

� 4 kwhere Q s a ,u . We can equivalently justk y y ys1
Ž Ž < ..consider min KL Q , p y x since the sec-� pŽ y < x .,Q 4 kk

4 Ž .Strictly speaking, we can only use p P to denote a density of
Ž .real a variable. For discrete y, we should use a probability P P to

Ž . Ž .replace p P . For convenience, we still use p P to denote a
probability, but identified via y.

Ž .ond term in KL M , M is irrelevant to Q . More-1 2 k

over, by noticing that

<KL Q , p y x s p x KL d xyL Q ,Ž . Ž .Ž .Ž . Hk h y < x k
x

k <p y xŽ .
<KL s p y x ln ,Ž .Ýy < x

) <p y xŽ .ys1

L Q s p x ln p x ,Q d x ,Ž . Ž . Ž .Hk h k
x

<p x u aŽ .y y
) <p y x s ,Ž .

p x ,QŽ .k

k

<p x ,Q s a p x u , 15Ž . Ž .Ž .Ýk y y
ys1

we further have Theorem 1.

Theorem 1. BKYY learning under the aboÕe archi-
( )tecture design Eq. 13 is equiÕalent to obtaining

) Ž < . ( )p y x by Eq. 15 and simultaneously getting
) ) Ž .

)k ,Q by either maximizing L Q or minimizingk k
Ž Ž < .. Ž < .KL Q , p y x under the constraint p y x sk

) Ž < .p y x .

That is, the result k ) ,Q )

) obtained by BKYYk

learning in this special case is equivalent to the
Ž .maximum log-likelihood ML solution of the finite

Ž . Ž . Ž .mixture p x,Q given by Eq. 15 , based on p xk h
Ž .given by Eq. 5 . In implementation, to avoid the

Ž .difficulty due to the integral operations in Eqs. 14
Ž .and 15 , when N is large enough, we approximate
Ž Ž < .. Ž .KL Q , p y x and L Q by their limits as h™0:k k

<KL Q , p y xŽ .Ž .k

<syO p y xŽ .Ž .N

N k1
< <y p y x ln p x uŽ . Ž .Ý Ý i i yN is1 ys1

k

y a ln a ,Ý y y
ys1

N1
L Q s ln p x ,Q ,Ž . Ž .Ýk i kN is1

N k1
< < <O p y x sy p y x ln p y x .Ž .Ž . Ž . Ž .Ý ÝN i iN is1 ys1

16Ž .
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From which we can even more clearly see that
Ž . Ž .L Q is the likelihood function of p x,Q by Eq.k k

Ž .15 .
Ž .At a fixed k, the parameter learning Eq. 10 can

Ž .be made by the ALTMIN, Eq. 7 , as follows:

EM Algorithm
) <E step: get p y x by Eq. 15 ,Ž .Ž .i

N1
) <and a s p y x ;Ž .Ýy iN is1

N
new ) < <M step: u sarg max p y x ln p x u .Ž . Ž .Ýy u i i yy

is1

17Ž .

It is guaranteed to converge to a local maximum of
Ž . Ž .L Q since the ALTMIN, Eq. 7 , is guaranteed tok

converge to one local minimum. Actually, it is ex-
Žactly the well-known EM algorithm Dempster et al.,

.1997 . Here, we obtain it in a much simpler way,
with its convergence proved easily.

3.2. The selection of scale k

Ž . Ž .Based on Eq. 16 , we can use Eq. 11 or Eq.
Ž .12 for selecting the scale k – the number of
densities in a mixture, with

) ) <J k sKL Q , p y x ,Ž . Ž .Ž .1 k

N k1
) )< <J k s p y x ln p x uŽ . Ž . Ž .Ý Ý2 i i yN is1 ys1

k
) )y a ln a , 18Ž .Ý y y

ys1

) ) Ž < .where Q , p y x are the results of the parameterk
Ž .learning, e.g., by the EM algorithm Eq. 17 . In the

following, we provide some theorems for further
theoretical justification on the selection criteria Eq.
Ž .18 .

gŽ . gŽ .Fig. 2. The curves of J k ‘‘- -’’, J k ‘‘—’’ and E ‘‘-P-’’ with parameters estimated by the EM algorithm, on the data sets of five1 2 MSE

elliptic Gaussians with three different degrees of overlap.
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g hŽ .Fig. 3. The curves of J k ‘‘–’’ and E ‘‘-P-’’ with parameters given by the k-means algorithm, on the data sets of nine2 MSE

spherical-shape Gaussians with three different degrees of overlap.

Ž . Ž .Fig. 4. Comparison of the REM and EM algorithms. a A mixture of six elliptic Gaussians with each long axis along y-direction; b the
Ž . gŽ .estimated means by REM ‘‘x’’, EM ‘‘)’’ versus the original ‘‘o’’; c The curves of J k with parameters obtained by REM ‘‘-P-’’, EM2

‘‘–’’, respectively.
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� 4NGiven a set D s x from an original densityx i is1
oŽ .p x ,

ko

o o o o o o<op x sp x ,Q s a p x u , a )0,Ž . Ž . Ž .Ýk y y y
ys1

ko

oa s1, 19Ž .Ý y
ys1

Ž . Ž . Ž .and p x sp x by Eq. 5 , we can get theM hx x

following lemma.

oŽ . Ž . Ž < .Lemma 1. When p x , K r and p x u satisfyy

some mild regularity condition, as Nhd ™` and
Ž Ž < .. ( )h™0, KL Q , p y x giÕen by Eq. 14 or Eq.k

( )16 tends to the following limit almost surely:
o <KL Q , p y xŽ .Ž .k

k
o < <s p x p y x ln p y x d xŽ . Ž . Ž .ÝH

x ys1

k
o< <y p y x p x ln p x u d xŽ .Ž . Ž .Ý H y

xys1

k

y a ln a , 20Ž .Ý y y
ys1

The condition is quite mild and can be given in
several different forms. Here, we will not go into the
details. This lemma ensures the consistence of the

Ž .above approximation Eq. 16 , and thus we are able
Ž .to get some insight in Eq. 18 as N is large enough.

Ž . ( ) oŽ .Theorem 2. GiÕen J k by Eq. 18 and p x by1
( ) Ž < o. oEq. 19 with p x u , ys1, . . . ,k being linearlyy

independent. Also, for any Q there is no u thatk y
Ž < . Ž .leads to a degenerate case p x u sd xyc , withy y

c being a constant. Then, as Nhd ™` and h™0y

we haÕe almost surely:
Ž . Ž o. Ž . o Ž o. Ž .a J k -J k for k-k and J k sJ k1 1 1 1

for k0k o;
Ž . Ž o. Ž . ob J k -J k for any k/k if and only if1 1

there is no Q with u /u / PPP /u such thatk 1 2 k
Ž . oŽ o .op x,Q sp x,Q .k k

Here, we omit the proof. The condition of Theo-
rem 2 is very mild. Particularly, it holds as long as
Ž < . op x u , ys1, . . . ,k are linearly independent fory

any u /u / PPP /u . Theorem 2 justifies the use1 2 k

Ž .of Eq. 18 as a criterion for the selection of k. When
N is large enough, as k increases we can calculate
Ž . ) Ž ) . Ž ) .J k until k with J k yJ k q1 s0. How-

Ž .ever, if N is small, J k may continue to decrease
slowly even after k0k o; in this case we can stop at

) Ž ) . Ž ) .k with J k yJ k q1 -´ with ´)0 being a
small threshold. Obviously, this ´ should be chosen
according to N. Theorem 2 also suggests an im-

Ž .provement on the EM algorithm Eq. 17 , as will be
discussed in Section 6.

Ž . ( )Theorem 3. GiÕen J k by Eq. 18 , we define2

o <O p y xŽ .Ž .e

ok
o o o< <sy p x p y x ln p y x d x ,Ž . Ž . Ž .ÝH

x ys1

a o p x ,u oŽ .y yo <p y x s . 21Ž .Ž . o o
op x ,QŽ .k

Under the same conditions as in Theorem 2, we haÕe
Ž o. Ž . oalmost surely J k -J k for any k/k as long2 2

Ž . Ž o. Ž oŽ < .. oas J k yJ k )O P y x for k-k .1 1 e

Ž oŽ < ..This O p y x describes the degree of overlape
oŽ .between the component densities in p x since

oŽ < .p y x describes the degree that x belongs to the
y th density. Theorem 3 says that as long as this

Ž . Ž o.overlap is not too high, we will have J k -J k2 2
o Ž .for any k/k . That is, in this case, J k can be2

used, even when N is not large enough, as will be
shown by the experimental results in Figs. 2–4.

4. Gaussian mixture, clustering and number of
clusters 5

4.1. Gaussian mixture, EM algorithm and number of
Gaussians

Ž < . Ž .Particularly, for Gaussian p x u sG x,m , Sy y y
Ž . Ž .the finite mixture p x,Q by Eq. 15 becomesk

5 ŽThe basic results in this section were first obtained in Xu,
.1995 , and then some further extensions and variants were given

Ž .in Xu, 1996 . In this section, those main results are systematically
summarized into a concise form with certain modifications. Due

Ž .to limited space, many details are still left to Xu, 1995, 1996 .
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Gaussian mixture. The M-step of the EM algorithm
Ž .Eq. 17 has a more detailed form as follows:

N1
new ) <M step: m s p y x x ,Ž .Ýy i i

a Ny is1

N1
new ) <S s p y xŽ .Ýy i

a Ny is1

=
Tnew newx ym x ym . 22Ž .Ž . Ž .i y i y

ŽMoreover, for special cases of S e.g., diagonal,y
.spherical shape, etc , the above updating equation

can be modified by incorporating the corresponding
constraints. For example, for the spherical shape

2 2 ŽS ss I and S ss I, we have noticing that d isy y y
.the dimension of x
N1new 22 ) new< 5 5s s p y x x ym ,Ž .Ž . Ýy i i y

a dNy is1

k N1new 22 ) new< 5 5s s p y x x ym .Ž . Ž .Ý Ý i i ydN ys1 is1

23Ž .
Also, Theorems 1, 2 and 3 still hold. Here, the

Ž < . Ž .degenerate case p x u sd xym happens wheny y
Ž .S becomes singular. Moreover, G x,m , S , ysy y y

1, . . . ,k o, are linearly independent when m /m /1 2

PPP /m only. This simplified property will bek

used in Section 6 to improve the EM algorithm.
Moreover, since

N1 T y1<tr p y x x ym x ym SŽ . Ž .Ž .Ý i i y i y y
a Ny is1

w xs tr I sd ,

by some derivation and ignoring some constant,
Ž . Ž .J k and J k become1 2
g ) < gJ k syO p y x qJ k ,Ž . Ž .Ž .Ž .1 N 2

k k
g ) ) ) )< <J k s a ln S y a ln a , 24Ž . Ž .(Ý Ý2 y y y y

ys1 ys1

Ž Ž < ..where O p y x is still the same as given in Eq.N
Ž . gŽ .16 . Also, J k can be further simplified for spe-2

cial cases of S . For example, we havey

k k
g ) ) ) )J k sd a ln s y a ln a ,Ž . Ý Ý2 y y y y

ys1 ys1

for S ss 2I ,y y

J g k sd ln s ) q ln k ,Ž .2

for S ss 2I and a s1rk . 25Ž .y y

4.2. Hard-cut implementation, clustering algorithms
and number of clusters

The purpose of cluster analysis is to partition a
� 4Ndata set x into non-overlapping regions R ,i is1 y

ys1, . . . ,k. It is equivalent to consider the ideal
Ž < .case that the data comes from a mixture of p x uy

with a priori a on the non-overlapping supportsy
d Ž < .R 9R , ys1, . . . ,k, such that p x u s0 if x isy y

not in R , and then we can classify xgR with fully y
Ž < . Ž < .certainty because we have p y x s1 and p j x s

0 for j/y. In this case, the classification of x to a
density and the partitioning of Rd into non-overlap-
ping regions R , ys1, . . . ,k, are equivalent iny

probability 1. All the previous results still apply to
this special case. Moreover, we also simply have
Ž . Ž . Ž ) Ž < ..J k sJ k since O p y x s0.1 2 N

Ž < .However, in practice most of p x u are sup-y

ported on overlapping regions. We often assign an xi

into one of non-overlapping regions by Bayesian
Ž < .Decision ysarg max p y x , which is equivalenty i
Ž < .to hard-cut or quantize p y x intoi

<1 if ysarg max a p x u ,Ž .j j j<I y x s 26Ž .Ž .i ½ 0 otherwise.

Ž .For a Gaussian mixture, Eq. 26 becomes

<1 if ysarg min d x a ,m , S ,Ž .y i y y y<I y x sŽ .i ½ 0 otherwise,
27Ž .

Ž < .where d x a ,m , S is generally given byi y y y

< < <d x a ,m , S syln a SŽ . (i y y y y y

T y1q0.5 x ym S x ym ,Ž . Ž .i y y i y

N1
<a s I y x , 28Ž .Ž .Ýy iN is1

which can be further simplified for various special
cases of S .y

Ž < .I y x partitions the whole domain into R ,i y

ys1, . . . ,k, non-overlapping regions such that each
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region R supports a hardcut density induced fromy
Ž .p x,Q :k

°p x ,QŽ .k
if xgR ,X y~q x , R ,Q s aŽ .y k y¢

0 otherwise,

with a
X s p x ,Q d x . 29Ž . Ž .Hy k

xgR y

As a result, we have an induced finite mixture
Ž . k X Ž .expression p x,Q sÝ a q x, R ,Q for clus-k ys1 y y k

tering purpose. For this mixture, theoretically we can
Ž . Ž .still get a J k sJ k for selecting k. However, in1 2

practice R is usually difficult to handle.y
Ž < .For simplicity, we directly use I y x to replacei

) Ž < . Ž .all the occurrences of p y x in J k and the EM2

algorithm obtained previously, which results in their
hardcut variants that can save the computing cost

Ž < .significantly. For a Gaussian mixture, with I y xi
Ž . ) Ž < .by Eq. 27 to replace p y x we can have:

Ž .a The hardcut EM Algorithm: its E-step consists
Ž < . Ž . Ž .of getting I y x by Eq. 27 and a by Eq. 28 ;i y

Ž .and its M-step consists of simply Eq. 22 and Eq.
Ž . ) Ž < . Ž < .23 with p y x replaced with I y x by Eq.i
Ž .27 .

Ž . g hŽ . gŽ .b The hardcut J k , which is simply J k2 2
Ž . Ž . ) Ž < .given in Eqs. 24 and 25 with p y x replaced

Ž < . Ž .with I y x by Eq. 27 .i

In particular, for the special case of equal a sy
2 Ž .1rk and equal spherical shape S ss I, Eq. 27y

Ž .simplifies into Eq. 1 exactly, and the hardcut EM
Algorithm reduces into exactly the k-means algo-

Ž . 2rithm Eq. 3 , after ignoring the updating on s

since it is not needed in the MSE clustering.
Ž . g hŽ .Moreover, from Eq. 25 we can get J k for2

selecting the k that is used in the k-means algorithm
Ž .Eq. 3 :

EMSEg ) 2hJ k sd ln s q ln k , s s , 30Ž . Ž .2 dN

Ž .with E given by Eq. 2 . Moreover, we can evenMSE

simplify it into

J g h k sEŽd r2.k . 31Ž . Ž .2 MSE

As shown in Fig. 3, although E decreasesMSE
g hŽ .monotonically with increasing k, J k has a U-2

shape with a clear minimum at the correct k o due to
the fact that ln k increases monotonically with k.

Furthermore, for various special cases of S /y

s 2I, the hardcut EM Algorithm will become various
types of extensions of the k-means algorithm, includ-
ing those so called Weighted MSE clustering, Maha-

Žlanobis distance clustering or elliptic clustering Xu,
.1996 . Here we give them not only a unified form,

but also we give criteria for detecting the correct
number of clusters.

5. BCYY learning, finite mixture and REM algo-
rithm

Ž .Instead of using the Kullback divergence Eq. 9
Ž .as F M , M , we can also use the ConÕex DiÕer-s 1 2

Ž .gence Eq. 8 and get the corresponding learning
Ž .called Bayesian ConÕex Ying–Yang BCYY learn-

ing. In this case, we cannot get an expanded form as
Ž .Eq. 14 . However, we can still directly use ALT-

Ž . Ž .MIN, Eq. 7 , for the minimization of F M , M ,s 1 2

and its first step will result in the E-step in the EM
Ž . ) Ž < .algorithm Eq. 17 . With p y x thus obtained puti

Ž . Ž . Ž .into Eq. 8 , L Q in Eq. 16 becomesk

N1
L Q s f p x ,QŽ . Ž .Ž .Ýf k i kN is1

N1
ln pŽ x ,Q .i ks f e . 32Ž . Ž .Ý

N is1

Ž .That is, arg min F M , M is equivalent toM , M s 1 21 2
) Ž < . Ž .firstly obtaining p y x by Eq. 15 and then

) ) Ž .
)getting k ,Q by maximizing L Q . This is ak f k

generalized ML learning procedure for a finite mix-
ture.

Ž . Ž .Moreover, the M-step in Eq. 17 or Eq. 22 will
become, respectively,

M step: get u new by solvingy

N <d ln p x uŽ .i y
w y , x s0;Ž .Ý i duyis1

N1
newM step: m s w y , x x ,Ž .Ýy i i

a Ny is1

N1
newS s w y , xŽ .Ýy i

a Ny is1

=
Tnew newx ym x ym , 33Ž .Ž . Ž .i y i y
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Ž . XŽ Ž .. Ž . ) Ž < .where w y, x s f p x ,Q p x ,Q p y xi i k i k i
XŽ . Ž .and f u sd f u rdu. Here, the original weight

) Ž < . Ž .p y x is reweighted into w y, x . We call thei i

corresponding EM algorithm the Re-weighted EM
Ž .REM algorithm.

Ž .When f u is monotonically increasing for posi-
Ž . btive u, e.g., f u su , 0-b-1. The effect is the

bj Ž . bjmaximization of e , js ln p x ,Q . e is alsoi k

monotonically increasing with j , and gives a larger
weight to larger values of j . Thus, the maximization

Ž .of L Q gives more weight to those samples withf k
Ž .large p x ,Q . In other words, the learning reliesi k

more on those samples around the modes of each
density, while the boundary samples are discounted.
Thus, the learning will giÕe more robust estimations
in cases that data consists of multi-modes with out-
liers or high oÕerlap between densities. The more
close the b is to 1, the more rapid e bj changes, the
more robust the learning will be.

6. Implementation and experiments

Several improvements can be made on the imple-
mentation of the EM algorithm, its hardcut variants

Žand the selection of k. First, we can use RPCL Xu
.et al., 1993 to find an initial estimation of k, and

) Ž . Ž .then finely search a best k via J k or J k1 2

around k. Second, for each fixed k, before running
the EM algorithm or one of its hardcut variants, we
can run some heuristic clustering algorithm to get an
initialization. Third, during the running of the EM
algorithm or one of its hardcut variants, according to
Theorem 2 we can introduce in each iteration the
following two enhancements:

Ž .1 Once we find that S becomes singular ory

a s0, we can simply remove the correspondingy
Ž < .p x u .y
Ž .2 If there are two y /y such that u su or1 2 y y1 2

very close to each other, we can simply remove the
Ž < .corresponding p x u and merge a qa ™a .y y y y1 1 2 2

Due to space limits, we only focus on demonstrat-
ing how the proposed criteria for selecting k work.
In Fig. 2, all the parameters in the mixture are

Ž .unknown, and the EM algorithm Eq. 22 was used
for solving the parameters of each Gaussian. We can
observe that E decreases monotonically as kMSE

gŽ . gŽ . Ž .increases, but both J k , J k given by Eq. 241 2
) gŽ .can detect the correct k s5. J k has its mini-2

) gŽ . )mum at k s5, while J k flattens out at k s5.1

In Fig. 3, the k-means algorithm was used for getting
the cluster centers. Again, E decreases monoton-MSE

g hŽ . Ž .ically as k increases, but J k given by Eq. 302

can detect the correct k ) s9 at its minimum. Fig. 4
Ž .gives a comparison of the EM algorithm Eq. 22

Ž .and the REM algorithm Eq. 33 . We can see that
REM gives a more accurate estimate of the mean

Ž .vectors. Moreover, from Fig. 4 c we can success-
) gŽ .fully detect the correct k s6 by the curves J k2

Ž .by Eq. 24 also.

7. Conclusions

We have obtained not only a unified form for
various extensions of the MSE clustering and the
k-means algorithm, but also criteria for selecting the
number of densities in a mixture and the number k
in the k-means algorithm. Moreover, a REM learn-
ing algorithm is given and shown to be more robust
than the EM algorithm.
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Discussion

Mao: I have a comment and a question. I agree with
you that the Ying–Yang machine is a very general
framework. I certainly see connections between the
minimal description length model and the Ying–
Yang machine. For example, the logarithm of the
clustering criterion which you presented can be de-
composed into two terms. One is the encoding length
of the data, given the model, and the other is the
description length of the model itself. So in that case,
the minimal description length is a special case of
the Ying–Yang machine.

Now my question: you claim that you can auto-
matically determine the number of clusters for given
data. I guess this is true if you are looking for
Gaussian clusters. In general, for many data sets, the
concept of clusters is not well-defined. For example,
for many perceptual patterns you can have many
different ways to form clusters. If you apply your
Ying–Yang machine, you will end up with a certain
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number of clusters. But, depending on how you view
the data, you may have another number of clusters.
Do you have any comments on that?

Xu: First, your comment is correct. The minimal
description length is a special case of the Ying–Yang
machine. Concerning your question: in general you
are right, if you do not have a model for the clusters,
then it is difficult to detect the number of clusters. It
should be based on some probabilistic model. You
can use a finite mixture of any probability densities,
not necessarily Gaussian.

Nagy: How do you plan to generalize your theory?

Xu: I have already generalized. What I claim here
has already been done. I have several conference
papers in the last three years. I also have some
Journal papers which will appear soon, for instance
in a special issue on Computational Learning Theory
of ‘‘Algorithmica’’. So, what I claim here has al-
ready been done.

Nagy: What I ask is, where do you move from here?

Kanal: In other words, what is your next step? Are
you going to retire now?

Xu: What I presented here is just for perception and
pattern recognition. It is a level lower than the
graphical models that have been presented. Actually
this is a graph with two nodes. Ying–Yang may
generalize to some graphical model. In the modelling
of time series, in the linear case, Ying–Yang is
equivalent to a Kalman filter. But in the non-linear
case, it can only be used for one-dimensional prob-
lems. If you have a time series in two dimensions in
state space, that cannot be handled yet, but that
should be even more useful. It is also successfully
related to a hidden Markov model. I have a paper on
that in a Chinese & IEEE joint conference, two years
ago. The hidden Markov model is o.k. but for a more
general case it is not successful yet.

Ž .Mardia: The quantity J k which you use in your
mixtures seems to be a particular case of the Akaki
criterion.

Xu: Yes it looks like it. Because Akaki is also
related to the Kullback divergence in the matching of

data to model densities. But the difference is that I
have two models. I have a Ying-model and a Yang-
model. But Akaki is more limited. It is originally
used for the linear model in time series.

Mardia: The Akaki criterion is again a family of
goodness of fit criteria, so it is not a particular case.

Xu: Yes, it is also of use in a neural network. But I
just mentioned that it is used for a model of a
mixture density, but not for two models. Ying–Yang
are two models which are marching together. It has
some relationship, it looks quite similar, but details
are different.

References

Dempster, A.P., Laird, N.M., Rubin, D.B., 1997. Maximum-likeli-
hood from incomplete data via the EM algorithm. J. Roy.
Statist. Soc. Ser. B 39, 1–38.

Devroye, L., 1987. A Course in Density Estimation. Birhhauser,
Boston, MA.

Jain, A.K., Dubes, R.C., 1988. Algorithm for Clustering Data.
Prentice-Hall, Englewood Cliffs, NJ.

Xu, L., 1995. YING-YANG machine: A Bayesian-Kullback
scheme for unified learnings and new results on vector quanti-
zation, Keynote talk. In: Proc. Internat. Conf. on Neural

Ž .Information Processing ICONIP95 , pp. 977–988.
Xu, L., 1996. How many clusters?: A YING-YANG machine

based theory for a classical open problem in pattern recogni-
tion. Invited Talk. In: Proc. 1996 IEEE Internat. Conf. on
Neural Networks, Vol. 3, pp. 1546–1551.

Xu, L., 1997a. Bayesian Ying–Yang system and theory as a
Ž .unified statistical learning approach: I For unsupervised and

Ž .semi-unsupervised learning. In: Amari, S., Kassabov, N. Eds. ,
Brain-like Computing and Intelligent Information Systems.
Springer, Berlin.

Xu, L., 1997b. Bayesian ying-yang system and theory as a unified
Ž .statistical learning approach: II Supervised learning. In: Proc.

Internat. Workshop on Theoretical Aspects of Neural Compu-
tation, Hong Kong, 26–28 May. Lecture Notes in Computer
Science. Springer, Berlin.

Xu, L., 1997c. New advances on Bayesian ying-yang learning
system with Kullback and non-Kullback separation function-
als. In: Proc. 1997 IEEE Internat. Conf. on Neural Networks,
Vol. III, pp. 1942–1947.

Xu, L., Krzyzak, A., Oja, E., 1993. Competitive learning for
clustering analysis, RBF net and curve detection. IEEE Trans.

Ž .Neural Networks 4 4 , 636–649.


