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A Lagrange multiplier and Hopfield-type barrier function method is pro-
posed for approximating a solution of the traveling salesman problem.
The method is derived from applications of Lagrange multipliers and
a Hopfield-type barrier function and attempts to produce a solution of
high quality by generating a minimum point of a barrier problem for a
sequence of descending values of the barrier parameter. For any given
value of the barrier parameter, the method searches for a minimum point
of the barrier problem in a feasible descent direction, which has a desired
property that lower and upper bounds on variables are always satisfied
automatically if the step length is anumberbetween zero and one. Ateach
iteration, the feasible descent direction is found by updating Lagrange
multipliers with a globally convergent iterative procedure. For any given
value of the barrier parameter, the method converges to a stationary point
of the barrier problem without any condition on the objective function.
Theoretical and numerical results show that the method seems more ef-
fective and efficient than the softassign algorithm.

1 Introduction

The traveling salesman problem (TSP) is an NP-hard combinatorial opti-
mization problem and has many important applications. In order to solve
it, a number of classic algorithms and heuristics have been proposed. We
refer to Lawler, Lenstra, Rinnooy, and Shmoys (1985) for an excellent survey
of techniques for solving the problem.

Since Hopfield and Tank (1985), combinatorial optimization has become
apopular topicin the literature of neural computation. Many neural compu-
tational models for combinatorial optimization have been developed. They
include Aiyer, Niranjan, and Fallside (1990); van den Bout and Miller (1990);
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Durbin and Willshaw (1987); Gee, Aiyer, and Prager (1993); Gee and Prager
(1994); Gold, Mjolsness, and Rangarajan (1994); Gold and Rangarajan (1996);
Peterson and Soderberg (1989); Rangarajan, Gold, and Mjolsness (1996);
Simic (1990); Urahama (1996); Wacholder, Han, and Mann (1989); Waugh
and Westervelt (1993); Wolfe, Parry, and MacMillan (1994); Xu (1994); and
Yuille and Kosowsky (1994). A systematic investigation of such neural com-
putational models for combinatorial optimization can be found in van den
Berg (1996) and Cichocki and Unbehaunen (1993). Most of these algorithms
are of the deterministic annealing type, which is a heuristic continuation
method that attempts to find the global minimum of the effective energy at
high temperature and trackit as the temperature decreases. There is no guar-
antee that the minimum at high temperature can always be tracked to the
minimum at low temperature, but the experimental results are encouraging
(Yuille & Kosowsky, 1994).

We propose a Lagrange multiplier and a Hopfield-type barrier function
method for approximating a solution of the TSP. The method is derived from
applications of Lagrange multipliers to handle equality constraints and a
Hopfield-type barrier function to deal with lower and upper bounds on
variables. The method is a deterministic annealing algorithm that attempts
to produce a high-quality solution by generating a minimum point of a
barrier problem for a sequence of descending values of the barrier parame-
ter. For any given value of the barrier parameter, the method searches for a
minimum point of the barrier problem in a feasible descent direction, which
has the desired property that the lower and upper bounds on variables are
always satisfied automatically if the step length is a number between zero
and one. At each iteration, the feasible descent direction is found by updat-
ing Lagrange multipliers with a globally convergent iterative procedure.
For any given value of the barrier parameter, the method converges to a sta-
tionary point of the barrier problem without any condition on the objective
function. Theoretical and numerical results show that the method seems
more effective and efficient than the softassign algorithm.

The rest of this paper is organized as follows. We introduce the Hopfield-
type barrier function and derive some properties in section 2. We present
the method in section 3. We report some numerical results in section 4. We
conclude in section 5.

2 Hopfield-Type Barrier Function

The problem we consider is as follows. Given # cities, find a tour such
that each city is visited exactly once and that the total distance traveled is
minimized. Let

1 if City i is the kth city to be visited in a tour,
Oik =
o 0 otherwise,
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wherei=1,2,...,n,k=1,2,...,n,and v = (011, V12, .. ., V1n» - - . » U1, Un2,
e Uan) T In Hopfield and Tank (1985), the problem was formulated as

min Y7, 2}11 > b1 difVikvj k1
subjectto Y vj=1, i=12...,n,
Srivi=1, j=12...,n,
vje{0,1}, i=12....n j=12,...,n,

@.1)

where dj; denotes the distance from city i to city j and vj 1 = vj1 fork = n.
Clearly, for any given p > 0, equation 2.1 is equivalent to

min eo(©) = X0y YLy (X dioutin — 3p03)

subjectto Y i vj=1 i=12...,n,

/ (22)
Yiqvi=1j=12...,n,
vje{0 1}, i=12,....,n, j=12,...,n
The continuous relaxation of equation 2.2 yields
s n n n . 1 .2
min eg(v) = Zi:l Z]':1 Zk:l dz]UikUj,k+1 — 2PYj
subject to Z}il vi=1 i=12...,n 2.3)

2?2101']'=1, j=1,2,...,1’l,
0<wv <1, i=12,....,n, j=12,...,n

When p is sufficiently large, one can see that an optimal solution of equa-
tion 2.3 isan integer solution. Thus, when p is sufficiently large, equation 2.3
is equivalent to equation 2.1. The term — % Py 2}1:1 01-2]- was introduced in
Rangarajan et al. (1996) to obtain a strictly concave function e (v) on the null
space of the constraint matrix for convergence of their softassign algorithm
to a stationary point of a barrier problem. We note that the size of p affects
the quality of the solution produced by a deterministic annealing algorithm,
and it should be as small as possible. However, when p is a small, positive
number but still satisfies that equation 2.3 is equivalent to equation 2.1, the
softassign algorithm may not converge to a stationary point of the barrier
problem since ep(v) may not be strictly concave on the null space of the
constraint matrix. Numerical tests demonstrate that it indeed occurs to the
softassign algorithm.
Following Xu (1995), we introduce a Hopfield-type barrier term,

d(Ui]') = Ul']' 11’101']' + (1 - Ul']') 11’1(1 - Ul']'), (2.4)
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to incorporate 0 < x;; < 1 into the objective function of equation 2.3 and
obtain

min  e(v; B) = eo(v) + Y1, YI d(vy)
subjectto > v;=1 i=12....n, (2.5)
Yiivi=1 j=12,...,n

where B is a positive barrier parameter. The barrier term, equation 2.4,

appeared first in an energy function given by Hopfield (1984) and has been

extensively used in the literature. Instead of solving equation 2.3 directly,

we consider a scheme that obtains a solution of it from the solution of

equation 2.5 at the limit of g8 | 0.

Letb(®) = Y14 Z]'-il d(vj). Then e(v; B) = eo(v) + Bb(v). Let

Z]’?:lvij:l, i=1,2,...,1’l,

P=qov| Yi0=1 j=12....n

O<v;<1, i=12,...,n, j=12,....n
and
B={v|0=<v;=<1, i=12...,n j=12,...,n}

Then P is the feasible region of equation 2.3. Let us define d(0) = d(1) = 0.
Since limg, 0+ d(©;) = limg, 1~ d(vij) = 0; hence, b(v) is continuous on B.
From b(v), we obtain

ob vjj
©) = Inv; — In(1 — Uij) =In 1 A

avi]- — Uij-
Then
ob(0) . 0b(v)
im =—-00 and Ilim = 00
v; —>0* avi]- v;i—>1- avij
Observe
deo(v)
o = > (divrj1 + digvi j1) — poy,
Y% 4

where vgj1 = vy, for j = 1, and vgj;1 = vk for j = n. Thus, aﬁé% is
bounded on B. From
de(v; B)  09eo(0) N ob(v)
avl-]- avi]- avl-]- ’

we obtain

de(v: .
¢@: p) =—-00 and lim de(@: ) = 00
U,‘,‘—)OJr avlj Z),‘,'—)l’ avlj
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Lemma 1. Forany given 3 > 0, if v* is a local minimum point of equation 2.5,
v* is an interior point of P, that is, 0 < v;.“]. <1l,i=12,....nj= 1,2,...,n!

Let

n n n n
L@, A\, A°) =e(v; B) + ZM Zvif —-1]+ ijc (Z vjj — 1).
i=1 j=1 j=1 i=1

Lemma 1 indicates that if v* is a local minimum point of equation 2.5, then
there exist A™ and A“* satisfying

VoL (0", A7, A7) = 0,

Z?:lv?}= 1, i=12,...,n,
Yiivp=1 j=12...n

where

OL(v, A", %) 0L(v, A", 1Y) OL(v, A", A°)
oo ’ dvp 7 001,

dL(v, 2", 2°) dL(v, A", A°) oL (v, A, xﬂ))T

VoL(v, A", A°) = (

U1 ’ 0T T 0Ty

with
OL(v, M, \°)  0ep(v)
avi]- - avij

Vi
+ A A+ pin< —]v--’
i

i= 1,2,...,1’1,j= 1,2,...,1’1.
Let Br, k= 1,2, ..., be a sequence of positive numbers satisfying

ﬁ1>ﬁ2>...

and limg_, o Br = 0. For k = 1,2, ..., let v(Bx) denote a global minimum
point of equation 2.5 with g = Sk.

Theorem 1. Fork=1,2,...,

eo@(Br)) = eo (0 (Br+1)),

and any limit point of v(Br), k = 1,2, ..., is a global minimum point of equa-
tion 2.3.

L All the proofs of lemmas and theorems in this article can be found on-line at
www.cityu.edu.hk/meem/mecdang.
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This theorem indicates that a global minimum point of equation 2.3 can
be obtained if we are able to generate a global minimum point of equation 2.5
for a sequence of descending values of the barrier parameter with zero limit.

Theorem 2. Fork = 1,2,..., let o be a local minimum point of equation 2.5
with B = PBy. For any limit point v* of o, k = 1,2,..., if there are no ' =
WA AT and 26 = (WS, A8, ..., A8) T satisfying

deq (v*)
avij

+A+2A =0,

i=1,2,...,nj=1,2,...,n, then v* is a local minimum point of equation 2.3.

This theorem indicates that at least a local minimum point of equation 2.3
can be obtained if we are able to generate a local minimum point of equa-
tion 2.5 for a sequence of descending values of the barrier parameter with
zero limit.

3 The Method

Stimulated from the results in the previous section, we propose in this sec-
tion a method for approximating a solution of equation 2.3. The idea of the
method is as follows: Choose S to be a sufficiently large, positive number
satisfying that e(v; fo) is strictly convex. Let 5, 4 = 0.1, ..., be a sequence
of positive numbers satisfying

ﬁ0>ﬁ1>...

and limy_,« B; = 0. Choose v*? to be the unique minimum point of equa-
tion 2.5 with B = fo. For g = 1,2,..., starting at v*77!
minimum point v™9 of equation 2.5 with 8 = ;.

Given any 8 > 0, consider the first-order necessary optimality condition
for equation 2.5:

, we search for a

VoL (@, A7, 1°) = 0,
2;1:1017=1$ i=1,2,...,1’l,
Yiqvi=1 j=12,....n

From

3L (v, kr’ AC ) vji
© ) _ 60(0)+7J+7f+ﬁ1n J_ _ o,
0; 0vjj 1—wj
we obtain
1
Ui]'

1+ exp((aﬁ’— + M+ kc)/ﬁ)-
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Let r; = exp (%’r) and ¢j = exp (#) Then,
1
1 +ric exp(aﬁb/ﬁ)

Vi =

For convenience of the following discussions, let ¢;(v) = exp (aﬁ’— / ﬁ)
Then,

1

_ 3.1
1+ TiC]'ai]'(Z)) 1)

Z)i]' =

Substituting equation 3.1into 3. v = 1,i=1,2,...,m,and 3/ vy = 1,
j= 1,2,---,1’1,W80btain
n 1 .
ijlm=l, i=1,2...,n,
n 1 1 : 1.2 (32)
Zi:1m= , J=L1L2 ...,

Based on the above notations, a conceptual algorithm was proposed in Xu
(1995) for approximating a solution of equation 2.3, which is as follows:

¢ Fix r and c. Use equation 3.1 to obtain v.
¢ Fix v. Solve equation 3.2 for r and c.
Let

1

hii(o, r,¢) = —
l]( ) 1+ TiC]'ai]'(U)

and
h(v$ 7, C) = (hll (U$ 7, C)$ hlz (U$ 7, C)$ e hln (U’ 7, C)$
. hnl (U$ r$ C)$ hnZ(U, r$ C)’ LR hnn(v, r$ C))T

If v is an interior point of B, the following lemma shows that (v, 7, ¢) — v is
a descent direction of L(v, A", 7).

Lemma 2 Assume0<v;<1,i=12,...,nj=12,...,n

1. LR S 0if (o, 1, ) — vy < 0.

2. REEL) < 0if hy(v, 1, c) — v > 0,

3. —aL(Z)a,;»i:,kv) =0 lf”lij((), 1, C) - Ui]' =0.
4. (h(@,1.c) =) VoL(v, M, 1) < 0if (v, 1,¢) — v # 0.
5. (h(v,1,¢) —v) " Vye(v; B) < 0ifh(v,r,c) —v = 0and Y j_ (hix(v, 7, ¢) —

viR) = Y p . 10) —v) = 0,i=1,2,...,n,j=1,2,...,n
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Proof. We only need to show that M > 0if hij(v, 1, c) — v;; < 0. The
rest can be obtained similarly orin a stra1ghtforward manner. From

1

hii(v, 1, ¢) — 0 = —o— —1v;; < 0,
l]( ) ! 1+ 7iCj ot (v) Y
we obtain
Ui]'
1 < ricjoji () ——. 3.3
1]%]( )1_017 (3.3)

Applying the natural logarithm, In, to both sides of equation 3.3, we get

vjj
0<In (rlc]aq(v)—)
Ujj

Vi
=Ing;(@®) +1In7; + Incj + In ljv
—

1 degp(v 1 1 Vi oL(v, A, AS
0() + =\ + =i+ In—— = ( )_

1
ﬁ 0vjj gt B 1-v; P 0vjj

Thus,

0L (v, A", 1Y)
— > 0.
avij

The lemma follows.

Since 0 < h;i(v, 1, ¢) < 1, we note that the descent direction h(v, 7, c) — v
has a desired property that any point generated along h(v, 1, ¢) — v satisfies
automatically the lower and upper bounds if v € B and the step length is a
number between zero and one.

For any given point v, we use (r(v), c(v)) to denote a positive solution
of equation 3.2. Let v be an interior point of P. In order for h(v, 7, c) — v to
become a feasible descent direction of equation 2.5, we need to compute a
positive solution (r(v), c(v)) of equation 3.2. Let

2
n n 1

1
fra=2[X ;m_

i=1

2
" Z Z 1+ rlc]alj(v) 1)
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Observe that the value of f(r, ¢) equals zero only at a solution of equation
32.Fori=1,2,...,n,let

< 1
xi(r,c) =1 Z— 1],

ia 1 + ricjoi (v)

andforj=1,2,...,n,let
1 1
i(r,c) =c¢ _ 1)
y]( ) ](§1+ricjaij(v) )
Let

x(r,¢) = (1(r,¢), x2(r,¢), ..., x,(r,0)) T
y(rno) = i(ne),ya(ro),....yn(ro)’.

One can easily prove that

Gmd)

y(r. c)

is a descent direction of f(r, ¢). For any given v, based on this descent direc-
tion, the following iterative procedure is proposed for computing a positive

solution (7(v), ¢(v)) of equation 3.2.
Take (%, ¢°) to be an arbitrary positive vector, and for k = 0,1, ..., let

™+ (%, ),

‘{
Il

34
K+ iy, ), G4

Q
Il

where py is a number in [0, 1] satisfying

fEL T = min £ it . &+ O ).
ety

Observe that (rk, ck) > 0,k=0,1,.... There are many ways to determine
uk (Minoux, 1986). For example, one can simply choose px to be any number
in (0, 1] satisfying Zfzoﬂl — oo and uy — 0as k — oo. We have found in
our numerical tests that when p is any fixed number in (0, 1], the iterative
procedure, equation 3.4, converges to a positive solution of equation 3.2.

Theorem 3. Forany given v, every limit point of (¥, c¥), k = 0,1, ..., generated
by the iterative procedure, equation 3.4, is a positive solution of equation 3.2.
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Based on the feasible descent direction, 1 (v, 7(v), ¢(v)) —v, and the iterative
procedure, equation 3.4, we have developed a method for approximating a
solution of equation 2.3, which can be stated as follows:

Step 0: Lete > Obe a given tolerance. Let 8¢ be a sufficiently large, positive
number satisfying that e(v; Bo) is convex. Choose an arbitrary interior
point? € B,and twoarbitrary positive vectors, 7’ and . Take an arbitrary
positivenumbern € (0, 1) (in general, nshould be close to one). Givenv =
0, use equation 3.4 to obtain a positive solution (7(9), c(9)) of equation 3.2.
Let r* = r(9) and ¢° = ¢(D). Let

0 0 .0 0 0 .0 0\T
U = (011, Uns s Vs -+ 5 Vs U -+ + 2 Uy)
with
UQ = 1
T 1+ 1i(0)6 (9) o (0)

wherei=1,2,...,n,j=1,2,...,n.Letqg = 0Oand k = 0, and go to step 1.

Step 1: Givenv = vk, use equation 3.4 to obtain a Fositive solution (r(vk),
c(v")) of equation 3.2. Let ¥ = r(v¥) and ¢ = ¢(v¥). Go to step 2.

Step 2: Let

h@*, r@"), c@"))
= (hn @, r@"), @), o @F, r @), c@)), ...,
hn @5, 1 @), c @), . .. i @F, r(@F), @), B @F, 7 (05), c(@")),
e @8, P (0F), @) T

with
1
h--vk,rvk,cvk = s
i@ @), @) = 7 ri (0%)¢; (0%) i (0)
wherei=1,2,...,n,j=1,2,...,nIf IR (W, r (@), c(@) — 0¥ < €, do
as follows:

¢ If B, is sufficiently small, the method terminates.

e Otherwise, let v*7 = of, v = o¥, g1 = nBy, g =g+ 1,and k= 0,
and go to step 1.

If |h(@F, r (@), c(@)) — o¥|| > €, do as follows: Compute
o = of 4 (0, (@Y, @) = o), (3.5)

where 6 is a number in [0, 1] satisfying

e@ 1 By) = min e@ + 0(h@", r@"), c(@")) —ob); By).

Letk =k + 1, and go to step 1.
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Note that an exact positive solution (@), ¢ (@) of equation 3.2 forv = vk

and an exact solution of mingeo,1] e@* + o(h(@X, r@"), c@)) — vb); By) are
not required in the implementation of the method, and their approximate
solutions will do. There are many ways to determine 6 (Minoux, 1986).
For example, one can simply choose 6 to be any number in (0, 1] satisfying

ZLO 6 — ooand 6y — 0as k — oo. The method is insensitive to the starting
point since e(v, Bo) is convex over B.

Theorem 4. For B = B, every limit point of ok, k = 0,1,..., generated by
equation 2.5 is a stationary point of equation 3.5.

Although it is difficult to prove that for any given g > 0, a limit point of
ok, k= 0,1, ..., generated by equation 3.5 is at least a local minimum point
of equation 2.5, in general, it is indeed at least a local minimum point of
equation 2.5. Theorem 2 implies that every limit point of v*9,4 = 0,1, ...,
is at least a local minimum point of equation 2.3 if 74 is a minimum point
of equation 2.5 with g = g,.

For B = By, our method can be proved to converge to a stationary point
of equation 2.5 for any given p; however, the softassign algorithm can be
proved to converge to a stationary point of equation 2.5 only if p is sulffi-
ciently large so thateg (v) is strictly concave on the null space of the constraint
matrix (Rangarajan, Yuille, & Mjolsness, 1999). Numerical tests also show
that the softassign algorithm does not converge to a stationary point of
equation 2.5 if the condition is not satisfied. Thus, for the softassign algo-
rithm to converge, one has to determine the size of p through estimating the
maximum eigenvalue of the matrix of the objective function of equation 2.1,
which requires some extra computational work. As we pointed out, the size
of p affects the quality of a solution generated by a deterministic annealing
algorithm, and it should be as small as possible. Since our method con-
verges for any p, one can start with a smaller positive p and then increase
p if the solution generated by the method is not a near integer solution. In
this respect, our method is better than the softassign algorithm. Numerical
results support this argument.

4 Numerical Results

The method has been used to approximate solutions of a number of TSP
instances. The method succeeds in finding an optimal or near-optimal tour
for each of the TSP instances. In our implementation of the method,

1. € = 0.01 and By = 200.

2. Wetake " = (9,79, ..., 797 and ¢ = (¢, cg, .97 to be two ran-

dom vectors satisfying 0 < 1) < land 0 < ¢ <1,i=1,2,...,n.
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3. pur = 0.95, and for any given v, the iterative procedure, equation 3.4,

terminates as soon as 4/ f (, c¥) < 0.001.

4. We replace e(x; B) with L(v, A", 1) in the method since (r(@"), c(@¥)) is
an approximate solution of equation 3.2.

5. 6 is determined with the following Armijo-type line search: 6 = £,
with mj being the smallest nonnegative integer satisfying

L@ + &M (@, r(0"), c(0F)) — oF), a7, ask)
< L(Uk, kr,k, kc,k)
+ &My (1@, r @), c@h)) — oF) TV,L(F, 37K, 00F),

where & and y are any two numbers in (0,1) (we set & = 0.6 and

y =0.8),

A = By(Inr (0F), Inra (09), ..., Inry (09) T,
and

2K = By(Inc (09), Incr (@), ..., Inc, (0F) T

The method terminates as soon as f8; < 1. To produce a solution of higher
quality, the size of p should be as small as possible. However, a small p may
lead to a fractional solution v*7. To make sure that an integer solution will
be generated, we continue the following procedure:

Step 0: Let =1, 0 = v*9, and k = 0. Go to step 1.
Step 1: Let 0* = (v}, 0}y, ..., Uf, ..o, Uhyu 0, oo, 00,) T with
1 ifof>009,
v = ek
0 ifvy <09,

i=1,2,...,nj=12,...,nIf v* € P, the procedure terminates. Other-
wise, let p = p + 2, and go to step 2.

Step 2: Givenv = ¥, use equation 3.4 to obtain a positive solution (r (©5), c(0))

of equation 3.2. Let ¥ = r(vF), ¢* = c(v%),

AR = (Inr (09), Inr @), ... Inr, @F) 7T,
and

2K = (Ine1 (09, Inc2 (@), ..., Inc, @) 7.

Go to step 3.
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Step 3: Let

h(@, r@"), c @)
= (1 (@, r@"), (@), h12 (&, r @), c@h)), ...,
hin (@05, r@F), c@), ..., b @F, r(@5), c @),

h2 (05, 1(@F), c@)), ..., B (@5, (@), € (@) T

with
1
1 + 1 (0%)c; (0F) o5 (0F)”

hij @, r(@"), c(@0")) =

wherei =1,2,....n, j=1,2,...,n.If Ih@F, (), c@k)) — ok|| < €, let
0" = vFand k = 0, and go to step 1. Otherwise, compute

o = 0 4 O (h (@, (@), @) — o),
where 6y is a number in [0, 1] satisfying

LE™L 2059 = min LE°+ 00" 1@, e(0) = 1), 275,259,
0€l0,

Let k= k + 1, and go to step 2.

The method is programmed in MATLAB. To compare the method with
the softassign algorithm proposed in Gold et al. (1994) and Rangarajan
et al. (1996, 1999) and the softassign algorithm modified by introducing
line search, the softassign algorithm and its modified version are also pro-
grammed in MATLAB. All our numerical tests are done on a PC computer.
In the presentations of numerical results, DM stands for our method, SA the
softassign algorithm, MSA the modified version of the softassign algorithm,
CT the computation time in seconds, OPT the length of an optimal tour, OBJ
the length of a tour generated by an algorithm, OBJD the length of the tour
generated by our method, OBJSA the length of the tour generated by the
softassign algorithm or its modified version, and RE = %. Numerical
results are as follows.

Example 1. These ten TSP instances are from a well-known web site,
TSPLIB. We have used the method, the softassign algorithm, and the mod-
ified softassign algorithm to approximate solutions of these TSP instances.
Numerical results are presented in Figures 1, 2, 3,and 4 and Table 1, where
the softassign algorithm fails to converge when p = 30.

Example 2. These TSP instances have 100 cities and are generated ran-
domly. Every city is a point in a square with integer coordinates (x,y)



316

90

Chuangyin Dang and Lei Xu

80

70 1

50

Relative error (%)

20 +

10

60 1

40 +

30 1

[a]. SA p= 80, [b]. DM p = 80, [c]. DM p = 30 BRE [a]
n=0.9 ORE {b]
DIRE [c]

/

/

/

/

/

/

/

' /

01 W P

07

7 0t H [

s s Uiy L ¢
1 2 3 4 5 6 7 8 9 10

TSP problem

Figure 1: Relative error to optimal tour. 1. bays29, 2. att48, 3. eil51, 4. berlin52,
5. st70, 6. €il76, 7. pr76, 8. rd100, 9. eil101, 10. lin105.
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Figure 4: Computation time for different algorithms. 1. bays29, 2. att48, 3. eil51,
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satisfying 0 < x < 100 and 0 < y < 100. We have used the method, the
softassign algorithm, and the modified softassign algorithm to approximate
solutions of a number of TSP instances. Numerical results are presented in
Table 2, where the softassign algorithm fails to converge when p = 30.

From these numerical results, one can see that our method seems more
effective and efficient than the softassign algorithm. Comparing our method
with the softassign algorithm modified by introducing line search, one can
find that our method is significantly superior to the modified softassign
algorithm in computational time, although the quality of solutions gener-
ated by our method on average is only slightly better than those generated
by the modified softassign algorithm. The reason that our method is faster
than the softassign algorithm and its modified version lies in the procedures
for updating Lagrange multipliers. Our procedure for updating Lagrange
multipliers is much more efficient than Sinkhorn’s approach adopted in
the softassign algorithm for updating Lagrange multipliers. Although our
method has advantages over the softassign algorithm and its modified ver-
sion, it still may not compete with the elastic net and nonneural algorithms
for TSP. The idea presented here for constructing a procedure to update La-
grange multipliers can also be applied to solving more complicated prob-
lems.

5 Conclusion

We have developed a Lagrange multiplier and Hopfield-type barrier func-
tion method for approximating a solution of the TSP. Some theoretical re-
sults have been derived. For any given barrier parameter, we have proved
that the method converges to a stationary point of equation 2.5 without
any condition on the objective function, which is stronger than the con-
vergence result for the softassign algorithm. The numerical results show
that the method seems more effective and efficient than the softassign al-
gorithm. The method would be improved with a faster iterative proce-
dure to update Lagrange multipliers for obtaining a feasible descent di-
rection.

Acknowledgments

We thank the anonymous referees for their constructive comments and re-
marks, which have significantly improved the quality of this article. The
preliminary version of this article was completed when C.D. was on leave
at the Chinese University of Hong Kong from 1997 to 1998. The work was
supported by SRG 7001061 of CityU, CUHK Direct Grant 220500680, Ho
Sin-Hang Education Endowment Fund HSH 95/02, and Research Fellow
and Research Associate Scheme of the CUHK Research Committee.



321

Traveling Salesman Problem

(panurjuo0)
90 L0 990 780 890 960 90 €80 090 890 Lslag
998 LSOT  ILEL 018  GIOL gzl 688 TSl 66CL 08  LSUL  L6EL 18 &6 19€L  [40
0.6 99 ¥6 8V W €Ll €1y 18 809 LV 6Lt 998 s W8T 9%be 1D
0t 6 8 Z 9
. . . . . . . . . . vslg0
690  ¥80 090 L0 €50 790 L0 980 090 €60 ol
698 €501 ¥sel 808 S66  LPEL £98 686  98G1 968 8801 79Tl ¥I8  Toel  esel 40
0%  00F  0€9 887 e 8e6l L6/ 0Te  096F 08k 98¢ ¥e8 v 98 06 1D
< v € z 1 60
€90 780 890 680 890 760 0 €60 850 690 Leldo
968 QUL 99€L 018 650  96IL 688 00Tl POEL 0/8 95l S¥El 128 96  T¥L (O
vy L6l €78 v.€ 061 66EL w€e  L6T 159 L8 ST €€9 L6€  €9€ €959 1D
0t 6 8 Z 9
. . . . . . . . . . vslg0
L9080 860 L0 190 690 w0 /80 190 880 ol
698  6TIL  G6CL 808  0FOL  96€L £98 /86 0¥l 98  ¥8OL 0BTl vI8 Il el 90
e 0S¢ 86L 81y 6bc  1LEL €1e  9¢e  €90€ 60y ST <68 €e  e0C 6101 1D
< v € z 1 60
0c=d 08=9d 08=9d oc=9d 08=d 08=d oe=d 08=Jd 08=9d oc=9 08=d 08=d oe=d 08=J 0g=d
nwWa - wa Vs Wa Wa Vs Wa Wa Vs Wa mWa Vs Wa mWa Vs L

‘ATwopuey] pajeIausn) sadue)su] JS 1, I0J SINSIY [edLWnN :g d[qel,



Chuangyin Dang and Lei Xu

322

180 ws Tl 001 768 678 £610 0S8 T8 S60 8L $28 €60 908 G698  [dO
L% G279 $8S $59 Yo 999 1Ly 00Z g6¥ w9 1D
0T 6 8 L 9
860 698 £88 001 868 768 660 198 698 €60 9%8 806 860 $48 068 [4O
19% (474 9L¥ 16Z 118 6£9 1% 9€9 0T¥ 09 1D
S ¥ € 4 1 S60
S0'1 688 98 01T /28 I8 60'T 106 128 160 6.8 $06 860 688 W6 (4O
9¢¢ 61 £9¢ 209 048 W47 16T ££8 S0% L% 1D
0T 6 8 L 9
660 682 S6L 760 $48 1€6 88°0 (43 w6 960 6 056 60 718 /88 [4O
SI¥ 98 549 €19 008 18¢ 60% L19 $9¢ S 1D
S ¥ € 4 1 60
vsldO 0e=9 0e=9 vsO o0e=9 0e=9 vsldo 0e=9 0¢=9 vs[dO o0c=9 o0e=9 vsO o0c=9 o0g=9
algo Wa VSW dfdo Wa VSW dldo Wa VSW aldo Wa VSW dfdo Wa VS

“(panujuoo) g dqer,



Traveling Salesman Problem 323

References

Aiyer, S., Niranjan, M., & Fallside, F. (1990). A theoretical investigation into the
performance of the Hopfield model. IEEE Transactions on Neural Networks, 1,
204-215.

Cichocki, A., & Unbehaunen, R. (1993). Neural networks for optimization and signal
processing. New York: Wiley.

Durbin, R., & Willshaw, D. (1987). An analogue approach to the traveling sales-
man problem using an elastic network method. Nature, 326, 689—-691.

Gee, A., Aiyer, S., & Prager, R. (1993). An analytical framework for optimizing
neural networks. Neural Networks, 6, 79-97.

Gee, A., & Prager, R. (1994). Polyhedral combinatorics and neural networks.
Neural Computation, 6, 161-180.

Gold, S., Mjolsness, E., & Rangarajan, A. (1994). Clustering with a domain-
specific distance measure. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.),
Advances in neural information processing systems, 6 (pp. 96-103). San Mateo,
CA: Morgan Kaufmann.

Gold, S., & Rangarajan, A. (1996). Softassign versus softmax: Benchmarking
in combinatorial optimization. In D. Touretzky, M. Mozer, & M. Hasselmo
(Eds.), Advances in neural information processing systems, 8 (pp. 626—632). Cam-
bridge, MA: MIT Press.

Hopfield, J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the National Academy
of Sciences of the USA, 81, 3088-3092.

Hopfield, J., & Tank, D. (1985). Neural computation of decisions in optimization
problems. Biological Cybernetics, 52, 141-152.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1985). The
traveling salesman problem. New York: Wiley.

Minoux, M. (1986). Mathematical programming: Theory and algorithms. New York:
Wiley.

Peterson, C., & Soderberg, B. (1989). A new method for mapping optimization
problems onto neural networks. International Journal of Neural Systems, 1, 3—
22.

Rangarajan, A., Gold, S., & Mjolsness, E. (1996). A novel optimizing network
architecture with applications. Neural Computation, 8, 1041-1060.

Rangarajan, A., Yuille, A., & Mjolsness, E. (1999). Convergence properties of
the softassign quadratic assignment algorithm. Neural Computation, 11, 1455—
1474.

Simic, P. (1990). Statistical mechanics as the underlying theory of “elastic” and
“neural” optimizations. Networks, 1, 89-103.

Urahama, K. (1996). Gradient projection network: Analog solver for linearly
constrained nonlinear programming. Neural Computation, 6, 1061-1073.

van den Berg, J. (1996). Neural relaxation dynamics. Unpublished doctoral disser-
tation, Erasmus University of Rotterdam, Rotterdam, Netherlands.

van den Bout, D., & Miller, T., III (1990). Graph partitioning using annealed
networks. IEEE Transactions on Neural Networks, 1, 192-203.


http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2911L.1455[aid=1883598]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^291L.204[aid=591625]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29326L.689[aid=216333]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^296L.161[aid=1883597]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2981L.3088[aid=214562]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2952L.141[aid=214725]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2911L.1455[aid=1883598]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^291L.204[aid=591625]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2981L.3088[aid=214562]

324 Chuangyin Dang and Lei Xu

Wacholder, E., Han, J., & Mann, R. (1989). A neural network algorithm for the
multiple traveling salesman problem. Biological Cybernetics, 61, 11-19.

Waugh, F., & Westervelt, R. (1993). Analog neural networks with local competi-
tion: I. Dynamics and stability. Physical Review E, 47, 4524—4536.

Wolfe, W., Parry, M., & MacMillan, J. (1994). Hopfield-style neural networks and
the TSP. In Proceedings of the IEEE International Conference on Neural Networks,
7 (pp-. 4577-4582). Piscataway, NJ: IEEE Press.

Xu, L. (1994). Combinatorial optimization neural nets based on a hybrid of
Lagrange and transformation approaches. In Proceedings of the World Congress
on Neural Networks (pp. 399—-404). San Diego, CA.

Xu, L. (1995). On the hybrid LT combinatorial optimization: New U-shape
barrier, sigmoid activation, least leaking energy and maximum entropy.
In Proceedings of the International Conference on Neural Information Processing
(ICONIP’95) (pp. 309-312). Beijing: Publishing House of Electronics Industry.

Yuille, A., & Kosowsky, J. (1994). Statistical physics algorithms that converge.
Neural Computation, 6, 341-356.

Received March 29, 1999; accepted April 27, 2001.


http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2961L.11[aid=1883602]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2947L.4524[aid=217269]

