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Abstract

In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the

traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange

multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier

problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for

a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are

always satis®ed automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by

updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm

converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show

that the algorithm seems more effective and ef®cient than the softassign algorithm. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The traveling salesman problem (TSP) is an NP hard

combinatorial optimization problem and has a variety of

important applications. In order to solve it, several classic

algorithms and heuristics have been proposed. An excellent

survey of techniques for solving the TSP can be found in

Lawler, Lenstra, Rinnoy Kan and Shmoys (1985).

In Hop®eld and Tank (1985), the ®rst combinatorial opti-

mization neural network was proposed, which minimized an

energy function in quadratic form and solves a system of

ordinary differential equations. Since then, many combinator-

ial optimization neural networks have been developed. One of

them we would like to mention here is an elastic network

combinatorial optimization algorithm given by Durbin and

Willshaw (1987). An extension of the neural network algo-

rithm to solving the multiple TSP can be found in Wacholder,

Han and Mann (1989). A systematic investigation of combi-

natorial optimization neural networks was carried out in van

den Berg (1996). Some other optimization neural networks

were studied in Cichocki and Unbehaunen (1993).

Instead of solving a system of ordinary differential equa-

tions, a Lagrange and barrier function iterative algorithm

was proposed in Xu (1994) for combinatorial optimization

problems of assignment type. It treats linear equality

constraints with Lagrange multipliers and nonnegativity

constraints with an entropy-type barrier function, respec-

tively. Although the separate treatments of the linear equal-

ity constraints and the nonnegativity constraints with

Lagrange multipliers and a barrier function can also be

found in van den Berg (1996) and Fang and Tsao (1995),

the algorithm (Xu, 1994) bears an interesting feature of the

alternative minimization iterative procedure. Firstly, an

iterative formula was proposed to generate an interior

point within binary bounds. The interior point can be inter-

preted as the expectation of a binary distribution implicitly

speci®ed by the value of a Lagrange and barrier function,

which is related to the statistical physics algorithms for

optimization given by Yuille and Kosowsky (1994).

Secondly, at the interior point, another iterative formula

was proposed to obtain Lagrange multipliers that satisfy a

system of special nonlinear equations induced from the

linear equality constraints. It was shown experimentally in

Lau, Chan and Xu (1995) that the algorithm (Xu, 1994) is

frequently superior to the algorithm (Hop®eld & Tank,

1985) with a doubled convergence speed and a higher rate

of ®nding valid and better quality solutions. However,
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whether the algorithm (Xu, 1994) converges still remains

unknown. In Rangarajan, Gold and Mjolsness (1996), a soft-

assign algorithm based on Sinkhorn's formula for updating

Lagrange multipliers was proposed for the combinatorial

optimization problems of assignment type. The softassign

algorithm is the same as Xu's algorithm except that the

objective function in Rangarajan et al. (1996) has an addi-

tional negative quadratic term. Under the assumption that

the objective function is strictly concave on the null space of

the constraint matrix, it was proved in Rangarajan, Yuille

and Mjolsness (1999) that for any given value of the barrier

parameter, the softassign algorithm converges to a station-

ary point of a barrier problem.

In this paper we propose a globally convergent

Lagrange and barrier function iterative algorithm for

approximating a solution of the TSP. The algorithm

employs an entropy-type barrier function to deal with

nonnegativity constraints and Lagrange multipliers to

handle linear equality constraints, and attempts to produce

a solution of high quality by generating a minimum point

of a barrier problem for a sequence of descending values

of the barrier parameter. For any given value of the barrier

parameter, the algorithm searches for a minimum point of

the barrier problem in a feasible descent direction, which

has a desired property that the nonnegativity constraints

are always satis®ed automatically if the step length is a

number between zero and one. At each iteration the

feasible descent direction is found by updating Lagrange

multipliers with a globally convergent iterative procedure.

For any given value of the barrier parameter, the algorithm

converges to a stationary point of the barrier problem

without any condition on the objective function.

Theoretical and numerical results show that the algorithm

seems more effective and ef®cient than the softassign

algorithm.

The rest of this paper is organized as follows. We intro-

duce the entropy-type barrier function and derive some

important properties in Section 2. We present the algorithm

and show its convergence to a stationary point of the barrier

problem for any given value of the barrier parameter in

Section 3. We prove global convergence of the iterative

procedure for updating Lagrange multipliers to ®nd a feasi-

ble descent direction in Section 4. We report some numer-

ical results in Section 5. We conclude the paper with some

remarks in Section 6.

2. Entropy-type barrier function

Given n cities, we consider the problem of ®nding a tour

such that each city is visited exactly once and that the total

distance traveled is minimized. Let vik� 1 if city i is the kth

city to be visited in a tour, 0 otherwise, i� 1, 2, ¼, n,

k� 1, 2, ¼, n, and

v � �v11; v12;¼; v1n;¼; vn1;¼; vn2;¼; vnn�T:

In Hop®eld and Tank (1985), the problem was formulated

as

min
Xn

i�1

Xn

j�1

Xn

k�1

dijvikvj;k11

subject to
Xn

j�1

vij � 1; i � 1; 2;¼; n;
Xn

i�1

vij � 1;

j � 1; 2;¼; n; vij [ {0; 1}; i � 1; 2;¼; n;

j � 1; 2;¼; n;

�1�

where dij denotes the distance from city i to city j, and

vj;k11 � vj1 for k � n. Clearly, for any given r > 0, (1) is

equivalent to

mine0�v� �
Xn

i�1

Xn

j�1

Xn

k�1

dijvikvj;k11 2
1

2
rv2

ij

 !
subject to

Xn

j�1

vij � 1; i � 1; 2;¼; n;
Xn

i�1

vij � 1;

j � 1; 2;¼; n; vij [ {0; 1}; i � 1; 2;¼; n;

j � 1; 2;¼; n;

�2�
where the negative quadratic term was employed in the

energy function given by Rangarajan et al. (1996). The

continuous relaxation of (2) yields

mine0�v� �
Xn

i�1

Xn

j�1

Xn

k�1

dijvikvj;k11 2
1

2
r2

ij

 !
subject to

Xn

j�1

vij � 1; i � 1; 2;¼; n;
Xn

i�1

vij � 1;

j � 1; 2;¼; n; 0 # vij; i � 1; 2;¼; n;

j � 1; 2;¼; n:

�3�
When r is suf®ciently large, one can see that an optimal

solution of (3) is an integer solution. Thus, when r is

suf®ciently large, (3) is equivalent to (1). We remark that

the size of r affects the quality of a solution produced by a

deterministic annealing algorithm and it should be as small

as possible.

Following Xu (1994), we introduce an entropy-type

barrier term,

d�vij� �
Zvij

0
lntdt � vijlnvij 2 vij;

to incorporate 0 < xij into the objective function of (3), and
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obtain

mine�v;b� � e0�v�1 b
Xn

i�1

Xn

j�1

d�vij� subject to

Xn

j�1

vij � 1; i � 1; 2;¼; n;
Xn

i�1

vij � 1;

j � 1; 2;¼; n;

�4�

where b is a positive barrier parameter. Note that the barrier

term can also be found in Eriksson (1980) and Erlander

(1981). Instead of solving (3) directly, we consider a

scheme, which obtains a solution of (3) from the solution

of (4) at the limit of b # 0.

Let

b�v� �
Xn

i�1

Xn

j�1

d�vij�:

Then, e�v;b� � e0�v�1 bb�v�: Let

P �

8>>>>>>><>>>>>>>:
v [ Rn2

���������������

Xn

j�1

vij � 1; i � 1; 2;¼; n;

Xn

i�1

vij � 1; j � 1; 2;¼; n;

0 # vij; i � 1; 2;¼; n; j � 1; 2;¼; n

9>>>>>>>=>>>>>>>;
:

Then, P is the feasible region of (3) and bounded. Let us

de®ne d(0)� 0. Since limvij!01 d�vij� � 0; hence, b(v) is

continuous on Rn2

1 � {v [ Rn2 ��0 # v}: From b(v), we obtain

2b�v�=2vij � lnvij and limvij!01 �2b�v�=2vij� � 21: From

e0(v) we get

2e0�v�
2vij

�
Xn

k�1

�dkivk;j21 1 dikvk;j11�2 rvij;

where vk;j21 � vkn for j� 1, and vk;j11 � vk1 for j� n.

Clearly, 2e0�v�=2vij is bounded on P. Due to 2e�v;b�=2vij �
2e0�v�=2vij 1 b2b�v�=2vij; we have limvij!012e�v;b�=2vij �
21:

Lemma 1. For any given b . 0, if vp is a local minimum

point of (4), vp is an interior point of P, i.e.

0 , vp
ij; i � 1; 2;¼; n; j � 1; 2;¼; n:

Proof. Let v0 be an interior point of P. Suppose that some

component of vp, say vp
ij, equals 0. For any given number

e [ (0, 1], let yp � vp 1 e�v0 2 vp�: Then yp is an interior

point of P. For any given d [ (0, 1] satisfying e 1 d < 1,

let zp � yp 1 d�v0 2 vp� � vp 1 �e 1 d��v0 2 vp�: Then zp is

an interior point of P, which can be made arbitrarily close to

vp through decreasing e 1 d . From the Taylor's expansion,

we obtain

e�zp;b� � e�yp;b�1 d�v0 2 vp�T7ve�yp 1 hd�v0 2 vp�;b�; �5�

where h [ [0, 1] and 7ve�yp 1 hd�v0 2 vp�;b� is the

gradient of e(v; b ) at v � yp 1 hd�v0 2 vp�: Consider

�v0 2 vp�T7ve�yp 1 hd�v0 2 vp�;b�

�
Xn

k�1

Xn

l�1

�v0
kl 2 vp

kl� 2e�yp 1 hd�v0 2 vp�;b�
2vkl

:

Let u � e 1 hd . Then,

yp 1 hd�v0 2 vp� � vp 1 �e 1 hd��v0 2 vp�

� vp 1 u�v0 2 vp�:
1. If vp

kl � 0; then v0
kl 2 vp

kl . 0 and

lim
u!0

2e�yp 1 hd�v0 2 vp�;b�
2vkl

� lim
u!0

2e0�yp 1 hd�v0 2 vp��
2vkl

1 bln�u�v0
kl 2 vp

kl�� � 21:

2. If 0 , vp
kl, then limu!0

2e�yp 1 hd�v0 2 vp�;b�
2vkl

is

bounded.

Since there is a component of vp, vp
ij; satisfying vp

ij � 0;

the above results imply

lim
u!0
�v0 2 vp�T7ve�yp 1 hd�v0 2 vp�;b� � 21:

Thus, when e and d are suf®ciently small, from (5) we

obtain

e�zp;b� , e�yp;b�

since �v0 2 vp�T7ve�yp 1 hd�v0 2 vp�;b� , 0: Therefore,

using lime!0e�yp;b� � e�vp;b�; we get e�zp;b� , e�vp;b�
when e and d are suf®ciently small. It contradicts that vp

is a local minimum point of (4). Hence, no component of vp

equals 0. The lemma follows.A

Let

L�v; lr
; lc� � e�v;b�1

Xn

i�1

lr
i

Xn

j�1

vij 2 1

0@ 1A 1
Xn

j�1

lc
j

Xn

i�1

vij 2 1

 !
:

Lemma 1 indicates that if vp is a local minimum point of (4)

then there exist l rp and l cp satisfying

7vL�vp
;lrp

; lcp � � 0;
Xn

j�1

vp
ij � 1; i � 1; 2;¼; n;

Xn

i�1

vp
ij � 1; j � 1; 2¼; n;
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where

7vL�v;lr
; lc�

�
 
2L�v; lr

;lc�
2v11

;
2L�v; lr

;lc�
2v12

;¼;
2L�v; lr

;lc�
2v1n

;

¼;
2L�v; lr

;lc�
2vn1

;
2L�v;lr

;lc�
2vn2

;¼;
2L�v; lr

;lc�
2vnn

!T

with

2L�v; lr
;lc�

2vij

� 2e0�v�
2vij

1 lr
i 1 lc

j 1 blnvij;

i � 1; 2;¼; n; j � 1; 2;¼; n:

Let b k, k� 1, 2, ¼, be a sequence of positive numbers

satisfying b1 . b2 . ¼ and limk!1bk � 0: For

k� 1, 2, ¼, let v(b k) denote a global minimum point of

(4) with b � b k. Following a standard argument (Minoux,

1986), one can readily obtain the next therorem.

Theorem 1. e0�v�bk�� $ e0�v�bk11��; k� 1, 2, ¼, and

every limit point of v�bk�, k� 1, 2, ¼, is a global minimum

point of (3).

This theorem indicates that a global minimum point of (3)

can be obtained if we are able to generate a global minimum

point of (4) for a sequence of descending values of the

barrier parameter with zero limit.

Theorem 2. For k� 1, 2, ¼, let vk be a local minimum

point of (4) with b � b k. For any limit point vp of vk,

k� 1, 2, ¼, if there are no lr � �lr
1; l

r
2;¼;lr

n�T and

lc � �lc
1;l

c
2;¼; lc

n�Tsatisfying

2e0�vp�
2vij

1 lr
i 1 lc

j � 0;

i� 1, 2, ¼, n, j� 1, 2, ¼, n, then vp is a local minimum

point of (3).

Proof. Since vk, k� 1, 2, ¼, are contained in the bounded

set P, we can extract a convergent subsequence. Let

vkq ; q � 1; 2;¼; be a convergent subsequence of vk,

k� 1, 2, ¼. Assume limq!1vkq � vp
:

Since vkq is a local minimum point of (4) with b � bkq
;

using Lemma 1 and the ®rst-order necessary optimality condi-

tion, we obtain that there arelr;kq � �lr;kq

1 ; l
r;kq

2 ;¼;l
r;kq
n �T and

lc;kq � �lc;kq

1 ; l
c;kq

2 ;¼;l
c;kq
n �T satisfying

2e0�vkq�
2vij

1 l
r;kq

i 1 l
c;kq

j 1 bkq
lnv

kq

ij � 0;

i� 1, 2, ¼, n, j� 1, 2, ¼, n. Thus,

2e0�vp�
2vij

� lim
q!0

2e0�vkq�
2vij

� 2limq!1�lr;kq

i 1 l
c;kq

j 1 bkq
lnv

kq

ij �;

�6�

i� 1, 2, ¼, n, j� 1, 2, ¼, n. Let v be an interior point

of P. Then

Xn

i�1

Xn

j�1

�vij 2 v
kq

ij �
2e0�vkq�
2vij

� 2

 Xn

i�1

l
r;kq

i

Xn

j�1

�vij 2 v
kq

ij �1
Xn

j�1

l
c;kq

j

Xn

i�1

�vij 2 v
kq

ij �

1 bkq

Xn

i�1

Xn

j�1

�vij 2 v
kq

ij �lnv
kq

ij

!

� 2bkq

Xn

i�1

Xn

j�1

�vij 2 v
kq

ij �lnv
kq

ij :

Let K � {�i; j���vp
ij � 0}: Then, for any (i, j) Ó K,

lim
q!1bkq

�vij 2 v
kq

ij �Inv
kq

ij � 0:

Consider (i, j) [ K. We have vij 2 vp
ij . 0 and

limq!1v
kq

ij � 0: Then, when q is suf®ciently large,

bkq
�vij 2 v

kq

ij �lnv
kq

ij , 0:

From (6) and the assumption, we obtain that K ± 0 and

at least one of

lim
q!1bkq

lnv
kq

ij ; �i; j� [ K;

is not equal to zero. Thus, at least one of

�vij 2 vp
ij� lim

q!1
bkq

lnv
kq

ij ; �i; j� [ K;

is negative, and all of them are not positive. Therefore,

Xn

i�1

Xn

j�1

�vij 2 vp
ij� 2e0�vp�

2vij

� lim
q!1

Xn

i�1

Xn

j�1

�vij 2 v
kq

ij �
2e0�vkq�
2vij

� 2 lim
q!1

bkq

Xn

i�1

Xn

j�1

�vij 2 v
kq

ij �lnv
kq

ij

� 2 lim
q!1

bkq

X
�i;j�[K

�vij 2 v
kq

ij �lnv
kq

ij

� 2
X
�i;j�[K

�vj 2 vp
ij�limq!1bkq

lnv
kq

ij . 0:

�7�

Observe that e0(v) is a quadratic function and can be

rewritten in a matrix form as e0�v� � �1=2�vTQv: From
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this matrix form, we get 7e0�v� � Qv and

e0�v�2 e0�vp� � 1

2
vTQv 2

1

2
�vp�TQvp

� �v 2 vp�TQvp 1
1

2
�v 2 vp�TQ�v 2 vp�:

Then, when v is an interior point of P suf®ciently close

to vp, using (7), we obtain

e0�v�2 e0�vp� . 0

since �v 2 vp�TQvp � Pn
i�1

Pn
j�1�vij 2 vp

ij��2e0�vp�=2vij� .
0 and �1=2��v 2 vp�TQ�v 2 vp� goes to zero twice as

fast as (v 2 vp)TQvp if v approaches vp. It implies that

vp is a local minimum point of (3). The theorem

follows.A

This theorem indicates that at least a local minimum

point of (3) can be obtained if we are able to generate

a local minimum point of (4) for a sequence of

descending values of the barrier parameter with zero

limit.

3. The algorithm

In this section we develop an algorithm for approximating

a solution of (3). Given any b . 0, consider the ®rst-order

necessary optimality condition for (4),

7vL�v; lr
;lc� � 0;

Xn

j�1

vij � 1; i � 1; 2;¼; n;

Xn

i�1

vij � 1; j � 1; 2;¼; n:

From

2L�v;lr
; lc�

2vij

� 2e0�v�
2vij

1 lr
i 1 lc

j 1 blnvij � 0;

we obtain

vij � 1

exp � 2e0�v�
2vij

1 lr
i 1 lc

j �=b
 ! :

Let ri � exp�lr
i =b� and cj � exp�lc

j =b�: Then,

vij � 1

ricjexp
2e0�v�
2vij

=b

 ! :

For convenience of the following discussions, let

aij�v� � exp
2e0�v�
2vij

=b

 !
:

Then,

vij � 1

ricjaij�v� : �8�

Substituting (8) into
Pn

j�1 vij � 1; i � 1; 2;¼; n; andPn
i�1 vij � 1; j � 1; 2;¼; n; we obtainXn

j�1

1

ricjaij�v� � 1; i � 1; 2;¼; n;

Xn

i�1

1

ricjaij�v� � 1; j � 1; 2;¼; n:

�9�

Based on the above notations, an algorithm was proposed by

Xu (1994) for approximating a solution of (3) without the

negative quadratic term.

Let

hij�v; r; c� � 1

ricjaij�v� ; i � 1; 2;¼; n; j � 1; 2;¼; n;

and

h�v; r; c� � �h11�v; r; c�; h12�v; r; c�;

¼; h1n�v; r; c�;¼; hn1�v; r; c�; hn2�v; r; c�;¼; hnn�v; r; c��T:
When v . 0, the next lemma shows that h�v; r; c; �2 v is a

descent direction of L�v; lr
;lv�:

Lemma 2. Assume 0 , v.

1.
2L�v;lr

; lv�
2vij

. 0 if hij�v; r; c�2 vij , 0:

2.
2L�v;lr

; lv�
2vij

, 0 if hij�v; r; c�2 vij . 0:

3.
2L�v;lr

; lv�
2vij

� 0 if hij�v; r; c�2 vij � 0:

4. �h�v; r; c�2 v�T7vL�v;lr
;lc� , 0 if h�v; r; c�2 v ± 0:

5. �h�v; r; c�2 v�T7ve�v;b� , 0 if h�v; r; c�2 v ± 0 andPn
k�1 �hik�v; r; c�2 vik� �

Pn
k�1 �hkj�v; r; c�2 vkj� � 0;

i � 1; 2;¼; n; j � 1; 2;¼; n:

Proof. We only need to show that 2L�v; lr
;lv�=2vij . 0 if

hij�v; r; c�2 vij , 0: The rest can be obtained similarly or

straightforward. From

hij�v; r; c�2 vij � 1

ricjaij�v� 2 vij , 0;

we obtain

1 , ricjaij�v�vij: �10�
Applying the natural logarithm, ln, to both sides of (10), we
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get

0 , ln�ricjaij�v�vij� � lnaij�v�1 lnri 1 lncj 1 lnvij

� 1

b

2e0�v�
2vij

1
1

b
lr

i 1
1

b
lc

j 1 lnvij � 1

b

2L�v;lr
; lc�

2vij

:

Thus,

2L�v; lr
;lc�

2vij

. 0:

The lemma follows.A

Since 0 , hij�v; r; c�; we remark that the descent direction

h�v; r; c�2 v has a desired property that any point generated

along h�v; r; c�2 v is always positive automatically if v . 0

and the step length is a number between zero and one.

For any given point v, we use �r�v�; c�v�� to denote a

positive solution of (9). Let v be an interior point of P. In

order for h�v; r; c�2 v to become a feasible descent direc-

tion of (4), we need to compute a positive solution

�r�v�; c�v�� of (9). Let

f �r; c� � 1

2

Xn

i�1

Xn

j�1

1

ricjaij�v� 2 1

0@ 1A2

1
Xn

j�1

Xn

i�1

1

ricjaij�v� 2 1

 !2
0@ 1A:

Then, f(r, c) equals zero only at a solution of (9). For

i� 1, 2, ¼, n, let

xi�r; c� � ri

Xn

j�1

1

ricjaij�v� 2 1

0@ 1A;
and for j� 1, 2, ¼, n, let

yj�r; c� � cj

Xn

i�1

1

ricjaij�v� 2 1

 !
:

Let

x�r; c� � �x1�r; c�; x2�r; c�;¼; xn�r; c��T

and

y�r; c� � �y1�r; c�; y2�r; c�;¼; yn�r; c��T:
It is proved in the next section that

x�r; c�
y�r; c�

 !

is a descent direction of f(r, c). For any given v, based on this

descent direction, the following iterative procedure is

proposed for computing a positive solution �r�v�; c�v�� of (9).

Take (r0, c0) to be an arbitrary positive vector, and for

k� 0, 1, ¼, let

rk11 � rk 1 mkx�rk
; ck�; ck11 � ck 1 mky�rk

; ck�; �11�

where m k is a number in [0, 1] satisfying

f �rk11
; ck11� � min

m[�0;1�
f �rk 1 mkx�rk

; ck�; ck 1 mky�rk
; ck��:

Clearly, (rk, ck) . 0, k� 0, 1, ¼. There are many ways to

determine m k (Minoux, 1986). For example, one can simply

choose m k to be any number in (0, 1] satisfying
Pk

l�0 m! 1
and m k! 0 as k! 0. We have found in our numerical tests

that when m k is any ®xed number in (0, 1], the iterative

procedure (11) converges to a positive solution of (9).

Global convergence of the iterative procedure (11) will be

given in the next section.

Based on the feasible descent direction, h�v; r�v�; c�v��2
v; and the iterative procedure (11), we have developed an

algorithm for approximating a solution of (3), which is as

follows.

Step 0: Let e . 0 be a given tolerance. Let b 0 be a

suf®ciently large positive number satisfying that e(v; b 0)

is convex. Choose an arbitrary point �v satisfying 0 , �vij ,
1; i � 1; 2;¼; n; j � 1; 2¼; n; and two arbitrary positive

vectors, r0 and c0. Take an arbitrary positive number

h [ (0, 1) (in general, h should be close to one). Given v �
�v; use (11) to obtain a positive solution �r� �v�; c� �v�� of (9). Let

r0 � r� �v� and c0 � c� �v�: Let

v0 � �v0
11; v

0
12;¼; v0

1n;¼; v0
n1; v

0
n2;¼; v0

nn�T

with

v0
ij � 1

ri� �v�cj� �v�aij� �v� ;

i� 1, 2, ¼, n, j� 1, 2, ¼, n. Let q� 0 and k� 0. Go to

Step 1.

Step 1: Given v� vk, use (11) to obtain a positive solu-

tion �r�vk�; c�vk�� of (9). Let r0 � r�vk� and c0 � c�vk�: Go to

Step 2.

Step 2: Let h�vk
; r�vk�; c�vk�� � �h11�vk

; r�vk�; c�vk��;
h12�vk

; r�vk�; c�vk��;¼; h1n�vk
; r�vk�; c�vk��;¼; hn1�vk

; r�vk�;
c�vk��; hn2�vk

; r�vk�; c�vk��;¼; hnn�vk
; r�vk�; c�vk���T with

hij�vk
; r�vk�; c�vk�� � 1

ri�vk�cj�vk�aij�vk� ;

i� 1, 2, ¼, n, j� 1, 2, ¼, n. If
����h�vk

; r�vk�; c�vk��2 vk ����
, e; do as follows:

² If b q is suf®ciently small, the algorithm terminates.

² Otherwise, let vp,q� vk, v0� vk, bq11 � hbq; q � q 1 1,

and k� 0. Go to Step 1.

If
����h�vk

; r�vk�; c�vk��2 vk ���� $ e; do as follows: Compute

vk11 � vk 1 uk�h�vk
; r�vk�; c�vk��2 vk�; �12�

where u k is a number in [0, 1] satisfying

e�vk11;bq� � min
u[�0;1�

e�vk 1 u�h�vk
; r�vk�; c�vk��2 vk�;bq�:

Let k� k 1 1 and go to Step 1.
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We remark that an exact positive solution �r�vk�; c�vk�� of

(9) for v� vk and an exact solution of minu[�0;1�e�vk 1
u�h�vk

; r�vk�; c�vk��2 vk�;bq� are not required in the imple-

mentation of the algorithm, and their approximate solutions

will do. There are many ways to determine u k (Minoux,

1986). For example, one can simply choose u k to be any

number in (0, 1] satisfying
Pk

i�0 ui ! 1 and uk ! 0 as k !
1: In our implementation of the algorithm, u k is deter-

mined with the Armijo-type search. Since e(v; b 0) is

convex, hence, the algorithm is insensitive to the start-

ing point.

Theorem 3. For b � b q, every limit point of vk,

k� 0, 1, ¼, generated by (12) is a stationary point of (4).

Proof. Let amax � max1#i#n;1#j#nmaxv[Paij�v�ri�v�cj�v�:
Since {2e0�v�=2vij

��v [ P} and {ri�v�cj�v�
��v [ P} are

bounded, hence, amax is ®nite. Let

vmin � �vmin
11 ; vmin

12 ;¼; vmin
1n ;¼; vmin

n1 ; vmin
n2 ;¼; vmin

nn �T

with vmin
ij � 1=amax; i� 1, 2, ¼, n, j� 1, 2, ¼, n. Then, for

any v [ P, 0 , vmin
ij # hij�v; r�v�; c�v��; i� 1, 2, ¼, n,

j� 1, 2, ¼, n, and vmin # vk, k� 0, 1, ¼. Therefore, no

limit of vk
ij; k� 0, 1, ¼, is equal to 0 for i� 1, 2, ¼, n,

j� 1, 2, ¼, n. From Lemma 2, we obtain that

h�vk
; r�vk�; c�vk��2 vk is a feasible descent direction of (4).

Let X � {v [ P
��vmin # v} and

V � {v [ X h�v; r�v�; c�v��2 v � 0}:j
For any v [ X, let

A�v� �

8>><>>:v 1 u p�h�v; r�v�; c�v��2 v�

��������
up [ �0; 1�
e�v 1 up�h�v; r�v�; c�v��2 v�;b�
� minu[�0;1�e�v 1 u�h�v; r�v�; c�v��2 v�;b�

9>>=>>;
In the following we prove that A(v) is closed at every point

v [ X\V:

Let �v be an arbitrary point of X\V . Let vq [ X\V ,

q� 1, 2, ¼, be a sequence convergent to �v, and y q [
A�vq�; q� 1, 2, ¼, a sequence convergent to �y. To prove

that A� �v� is closed, we only need to show �y [ A� �v�: From

vq [ X\V and �v [ X\V; we have h�v q
; r�vq�; c�vq��2 vq ±

0 and h� �v; r� �v�; c� �v��2 �v ± 0: Due to continuity of h�v; r�v�;
c�v��; h�vq

; r�vq�; c�vq�� converges to h� �v; r� �v�; c� �v� as q!
1: Since yq [ A(vq), hence, there is some number up

q [
�0; 1� satisfying yq � vq 1 up

q�h�vq
; r�vq�; c�vq��2 vq�: From

h�vq
; r�vq�; c�vq��2 vq ± 0; we obtain that

up
q � yq2k vqk

h�vq; r�vq�; c�vq��2k vqk ;

and as q!1,

up
q ! �u p � �y2k �vk

h� �v; r� �v�; c� �v��2k �vk
with �u p [ �0; 1�: Therefore, �y � �v 1 �u p�h� �v; r� �v�; c� �v��2 �v�:
Furthermore, since yq [ A�vq�; we have e�yq;b� #
e�vq 1 u�h�vq

; r�vq�; c�vq��2 vq�;b� for any u [ [0, 1]. It

implies that e� �y;b� # e� �v 1 u�h� �v; r� �v�; c� �v��2 �v�;b� for

any u [ [0, 1], which proves that

e� �y;b� � minu[�0;1�e� �v 1 u�h� �v; r� �v�; c� �v��2 �v�;b�:
According to the de®nition of A(v), it follows that �y [ A� �v�:

Since X is bounded and vk [ X, k� 1, 2, ¼, we can extract

a convergent subsequence from the sequence, vk, k� 1, 2, ¼.

Let vkj ; j� 1, 2, ¼, be a convergent subsequence of the

sequence, vk, k� 1, 2, ¼. Let vp be the limit point of the

subsequence. We show vp [ V in the following. Clearly, as

k!1, e�v k;b� converges to e(vp; b) since e(v; b) is

continuous and e�vk11;b� , e�vk;b�, k� 1, 2, ¼. Consider

the sequence, vkj ; j� 1, 2, ¼. Note that vkj11 � vkj 1
ukj
�h�vkj ; r�vkj�; c�vkj��2 vkj � and

e�vkj11;b� � minu[�0;1�e�vkj 1 u�h�vkj ; r�vkj �; c�vkj ��2 vkj�;b�:

According to the de®nition of A(v), we have vkj [ A�vkj�:
Since vkj11

; j� 1, 2, ¼, are bounded, we can extract a conver-

gent subsequence from the sequence vkj11
; j� 1, 2, ¼. Let

vkj11
; j [ K, be a convergent subsequence extracted from the

sequence, vkj11
; j� 1, 2, ¼. Let v# be the limit point of the

subsequence, vkj11
; j [ K. Suppose that vp Ó V . Since A(vp) is

closed, we have v# [ A(vp). Thus, e�v #;b� , e�vp;b�; which

contradicts that e�vk;b� converges as k!1. Therefore,

vp [ V . The theorem follows.A

Although it is dif®cult to prove that for any given

b . 0, a limit point of vk, k� 0, 1, ¼, generated by

(12) is at least a local minimum point of (4), in general,

it is indeed at least a local minimum point of (4).

Theorem 2 implies that every limit point of vp,q,

q� 0, 1, ¼, is at least a local minimum point of (3)

if vp,q is a minimum point of (4) with b � b q.

We remark that for b � b q, our algorithm converges to a

stationary point of (4) for any given r , however, the softas-

sign algorithm proposed in Rangarajan et al. (1996)

converges to a stationary point of (4) only if r is suf®ciently

large so that e0(v) is strictly concave on the null space of the

constraint matrix. Thus, for the softassign algorithm to

converge, one has to determine the size of r through esti-

mating the maximum eigenvalue of the matrix of the

objective function of (1), which requires some extra

computational work. As we pointed out before, the size of

r affects quality of a solution generated by a deterministic

annealing algorithm and it should be as small as possible.

Since our algorithm converges for any r , hence, one can

start with r being a smaller positive number and then

increase r if the solution generated by the algorithm is not
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a near integer solution. In this aspect, our algorithm is better

than the softassign algorithm. Numerical results will further

support this argument.

4. Global convergence of the iterative procedure

In this section we prove that for any given v, the iterative

procedure (11) converges to a positive solution (rp, cp) of

(9).

We verify ®rst that �x�r; c�; y�r; c�� is a descent direction

of f(r, c). Let

ui�r; c� �
Xn

j�1

1

ricjaij�v� 2 1;

i� 1, 2, ¼, n, and u�r; c� � �u1�r; c�; u2�r; c�;¼; un�r; c��T:
Let

wj�r; c� �
Xn

i�1

1

ricjaij�v� 2 1;

j� 1, 2, ¼, n, and w�r; c� � �w1�r; c�;w2�r; c�;¼;wn�r; c��T:
Computing the partial derivative of f(r, c) with respect to rl,

we obtain

2f �r; c�
2rl

� 2
Xn

h�1

chalh�v�
�rlchalh�v��2

 Xn

p�1

1

rlcpalp�v� 2 1

1
Xn

p�1

1

rpchaph�v� 2 1

!

� 2
Xn

h�1

chalh�v�
�rlchalh�v��2

�ul�r; c�1 wh�r; c��:

Computing the partial derivative of f(r, c) with respect to ch,

we obtain

2f �r; c�
2ch

� 2
Xn

l�1

rlalh�v�
�rlchalh�v��2

 Xn

p�1

1

rlcpalp�v� 2 1

1
Xn

p�1

1

rpchaph�v� 2 1

!

� 2
Xn

l�1

rlalh�v�
�rlchalh�v��2

�ul�r; c�1 wh�r; c��:

Let 7f �r; c� � �2f �r; c�=2r1; 2f �r; c�=2r2;¼; 2f �r; c�=2rn;

2f �r; c�=2c1; 2f �r; c�=2c2;¼; 2f �r; c�=2cn�T: The next lemma

shows that �x�r; c�; y�r; c�� is a descent direction of

f(r, c).

Lemma 3. If (r, c) . 0 and �x�r; c�; y�r; c�� ± 0 then

7f �r; c� T
x�r; c�
y�r; c�

 !
, 0:

Proof. Note that

xl�r; c� � rl

Xn

p�1

1

rlcpalp�v� 2 1

0@ 1A � rlul�r; c�;

l� 1, 2, ¼, n, and

yh�r; c� � ch

Xn

p�1

1

rpchaph�v� 2 1

0@ 1A � chwh�r; c�;

h� 1, 2, ¼, n. Then,

7f �r; c� T
x�r; c�
y�r; c�

 !
� 2

Xn

l�1

Xn

h�1

rlchalh�v�
�rlchalh�v��2

��ul�r; c��2

1 2ul�r; c�wh�r; c�1 �wh�r; c��2�

� 2
Xn

l�1

Xn

h�1

rlchalh�v�
�rlchalh�v��2

�ul�r; c�1 wh�r; c��2:

�13�
We show in the following that if ul�r; c�1 wh�r; c� � 0;

l� 1, 2, ¼, n, h� 1, 2, ¼, n, then ul�r; c� � 0;

l� 1, 2, ¼, n, and wh�r; c� � 0, h � 1; 2; ¼; n. From

ul�r; c�1 wh�r; c� � 0, h� 1, 2, ¼, n, we obtain that

wh�r; c�; h� 1, 2, ¼, n, are equal. From ul�r; c�1 wh

�r; c� � 0, l� 1, 2, ¼, n, we get that ul�r; c�; l� 1, 2, ¼, n,

are equal. Let ul�r; c� � f; l� 1, 2, ¼, n, and wh�r; c� � w;
h� 1, 2, ¼, n. Then, f 1 w � 0: Note that

Xn

l�1

ul�r; c� �
Xn

l�1

Xn

p�1

1

rlcpalp�v� 2 1

0@ 1A
�
Xn

p�1

Xn

l�1

1

rlcpalp�v� 2 1

 !

�
Xn

h�1

Xn

p�1

1

rpchaph�v� 2 1

0@ 1A � Xn

h�1

wh�r; c�:

Thus, f � w . From f 1 w � 0 and f � w , we obtain

f � w � 0. Therefore, when �x�r; c�; y�r; c�� ± 0; at least

one of ul�r; c�1 wh�r; c�; l� 1, 2, ¼, n, h� 1, 2, ¼, n, is

not equal to zero. Thus, from (13), we get

7f �r; c� T
x�r; c�
y�r; c�

 !
, 0:

The lemma follows.A

We show next that for any i, no subsequence of rk
i ;

k� 0, 1, ¼, approaches zero or in®nity and that for
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any j, no subsequence of ck
j , k� 0, 1, ¼, approaches

zero or in®nity. Let �v be an interior point of P.

Then,Xn

j�1

�vij � 1; i � 1; 2;¼; n;
Xn

i�1

�vij � 1; j � 1; 2;¼; n;

0 , �vij; i � 1; 2;¼; n; j � 1; 2;¼; n:

Thus, for any r . 0 and c . 0,Xn

i�1

lnri 1
Xn

j�1

lncj �
Xn

i�1

lnri

Xn

j�1

�vij 1
Xn

j�1

lncj

Xn

i�1

�vij

�
Xn

i�1

Xn

j�1

�vij�lnri 1 lncj�:
�14�

Consider

s�r; c� � 2
Xn

i�1

Xn

j�1

Zlnri1lncj

0

1

etaij�v� dt 1
Xn

i�1

lnri 1
Xn

j�1

lncj:

�15�
We have

7s�r; c� � 2�Q�r; c��21
u�r; c�
w�r; c�

 !
;

where

Q�r; c� �

r1

]

rn

c1

]

cn

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

Using

x�r; c�
y�r; c�

 !
� Q�r; c�

u�r; c�
w�r; c�

 !
we obtain that

7s�r; c� T
x�r; c�
y�r; c�

 !
� 2�u�r; c�Tu�r; c�1 w�r; c�Tw�r; c�� , 0

when �u�r; c�;w�r; c�� ± 0: Thus, �x�r; c�; y�r; c�� is a desc-

ent direction of s�r; c�: Therefore, s�rk
; ck� is not increasing

as k is increasing since rk11 � rk 1 mkx�rk
; ck� and ck11 �

ck 1 mky�rk
; ck�:

From the mean-value integration theorem, we getZlnri1lncj

0

1

etaij�v� dt � 1

etij�r;c�aij�v�
�lnri 1 lncj�; �16�

where tij�r; c� is a number between zero and ln ri 1 ln cj satis-

fying that tij�r; c� ! 1 as lnri 1 lncj ! 1 and that tij�r; c� !

21 as lnri 1 lncj ! 21: Substituting (14) and (16) into

(15), we obtain

s�r; c� � 2
Xn

i�1

Xn

j�1

1

etij�r;c�aij�v�
2 �vij

 !
�lnri 1 lncj�: �17�

Suppose that there is a pair of i and j, say (i0, j0), for

which a subsequence of rk
i0

ck
j0
; k� 0, 1, ¼, approaches

zero or in®nity. Let r
kq

i0
c

kq

i0
; q� 0, 1, ¼ be the subsequence.

From (17), we get that s�rkq ; ckq � ! 1 as q!1. It contra-

dicts that s�rk
; ck� is not increasing as k is increasing. Thus,

for any i and j, no subsequence of rk
i ck

j ; k� 0, 1, ¼,

approaches zero or in®nity.

Suppose that there is some index l for which a subse-

quence of rk
l ; k� 0, 1, ¼, approaches zero. Let r

kq

l ;

q� 0, 1, ¼, be the subsequence. Using the above results,

we derive that as q!1, r
kq

i ! 0 for i� 1, 2, ¼, n, and

c
jq
j ! 1 for j� 1, 2, ¼, n. Consider

g�r; c� �
Xn

i�1

lnri 2
Xn

j�1

lncj:

Clearly, g�rkq ; ckq � ! 1 as q!1. From g�r; c�; we obtain

7g�r; c� � � 1

r1

;
1

r2

;¼;
1

rn

;2
1

c1

;2
1

c2

;¼;2
1

cn

�T:

Note that

7g�r; c� T
x�r; c�
y�r; c�

 !
�
Xn

i�1

Xn

p�1

1

ricpaip�v� 2 1

0@ 1A

2
Xn

j�1

Xn

p�1

1

rpcjapj�v� 2 1

0@ 1A� 0:

Then, �x�r; c�; y�r; c��T is perpendicular to the gradient of

g�r; c�: Thus, g�rkq ; ckq� cannot approach minus in®nity as

q!1 since rk11 � rk 1 mkx�rk
; ck� and ck11 �

ck 1 mky�rkck�; which yields a contradiction. Therefore,

for any i, no subsequence of rk
i ; k� 0, 1, ¼, approaches

zero. In the same way, one can prove that for any j, no

subsequence of ck
j ; k� 0, 1, ¼, approaches zero, for any i,

no subsequence of k� 1, 2, ¼, approaches in®nity.

Note that f �r; c� $ 0 and f �rk
; ck� decreases strictly and

monotonically. From Lemma 3 and the boundedness of ln ri
k

and ln cj
k, we derive that

7f �r k
; ck�T x�rk

; ck�
y�rk

; ck�

 !
! 0

as k!1. Then, from (13), we obtain that for any i and j,

ui�rk
; ck�1 wj�rk

; ck� ! 0 as k!1. Thus, u�rk
; ck� ! 0

and w�rk
; ck� ! 0 as k!1. Therefore, every limit point

of �rk
; ck�; k� 0, 1, ¼, is a positive solution of (9).

Hence, the next theorem follows.

Theorem 4. For any given v, every limit point of �rk
; ck�;
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k� 0, 1, ¼, generated by the iterative procedure (11) is a

positive solution of (9).

5. Numerical results

The algorithm has been used to approximate solutions of

a number of TSP instances. The algorithm succeeds in ®nd-

ing a tour of high quality for each of the TSP instances. In

our implementation of the algorithm,

1. b 0� 200 (b 0 can be any positive number satisfying that

e�v;b0� is convex);

2. r0 � �r0
1 ; r

0
2 ;¼; r0

n�T and c0 � �c0
1; c

0
2;¼; c0

n�T are two

random vectors satisfying 0 , r0
i , 1 and 0 , c0

i , 1;

i� 1, 2, ¼, n;

3. m k� 0.95 (m k can be any number in (0, 1)), and for any

given v, the iterative procedure (11) terminates as soon as����������
f �rk; ck�p

, d;
4. we replace e(x; b ) with L�v;lr

;lc� in the algorithm since

�r�vk�; c�vk�� is an approximate solution of (9);

5. u k is determined with the following Armijo-type line

search:

uk � jmk

with mk being the smallest nonnegative integer satisfying

L�vk 1 jmk �h�vk
; r�vk�; c�vk��2 vk�; lr;k

; lc;k�

# L�vk
; lr;k

; lc;k�1 jmkg�h�vk
; r�vk�; c�vk��

2 vk�T7vL�vk
;lr;k

;lc;k�;

where

lr;k � bq�lnri�vk�; lnr2�vk�;¼; lnrn�vk��T ;

lc;k � bq�lnc1�vk�; lnc2�vk�;¼; lncn�vk��T ;
and j and g can be any numbers in (0, 1) (we

set j � 0.6 and g � 0.8, but there is no rule for

selecting j and g ).

The algorithm terminates as soon as b q , 1. To

produce a solution of higher quality, the size of r
should be as small as possible. However, a small r
may lead to a fractional solution vp,q. To make sure

that an integer solution is generated, we continue

the following procedure,

Step 0: Let b � 1, v0� vp,q, and k� 0. Go to Step 1.

Step 1: Let v p � �vp
11; v

p
12;¼; vp

1n;¼; vp
n1; v

p
n2;¼; vp

nn�T with

vp
ij �

1 if vk
ij $ 0:9;

0 if vk
ij , 0:9;

8<:
i� 1, 2, ¼, n, j� 1, 2, ¼, n. If vp [ P, the procedure termi-

nates. Otherwise, let r � r 1 2 and go to Step 2.

Step 2: Given v� vk, use (11) to obtain a positive solu-

tion �r�vk�; c�vk�� of (9). Let r0 � r�vk�; c0 � c�vk�;
lr;k � �lnr1�vk�; lnr2�vk�;¼; lnrn�vk��T;
and

lc;k � �lnc1�vk�; lnc2�vk�;¼; lncn�vk��T:
Go to Step 3.
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Fig. 1. Relative error to optimal tour: 1, bays29; 2, att48; 3, eil51; 4, berlin52; 5, st70; 6, eil76; 7, pr76; 8, rd100; 9, eil101; and 10, lin105.



Step 3: Let

h�vk
; r�vk�; c�vk��
� �h11�vk

; r�vk�; c�vk��; h12�vk
; r�vk�; c�vk��;¼; h1n�vk

; r�vk�;

c�vk��;¼; hn1�vk
; r�vk�; c�vk��; hn2�vk

; r�vk�; c�vk��;¼; hnn

�vk
; r�vk�; c�vk���T

with

hij�vk
; r�vk�; c�vk�� � 1

ri�vk�cj�vk�aij�vk� ;

i� 1, 2, ¼, n, j� 1, 2, ¼, n. If
����h�vk

; r�vk�; c�vk��2 vk ����
, e, let v0� vk and k� 0, and go to Step 1. Otherwise, do

as follows: Compute

vk11 � vk 1 uk�h�vk
; r�vk�; c�vk��2 vk�;

where u k is determined with the Armijo-type line search.

Let k� k 1 1 and go to Step 2.

The algorithm is programmed in MATLAB. To compare

the algorithm with the softassign algorithm proposed in

Rangarajan et al. (1996, 1999), the softassign algorithm is

also programmed in MATLAB. All our numerical tests are

done on a PC. In the presentations of numerical results, DA

stands for our algorithm, SA the softassign algorithm, CT

the computation time in seconds, OPT the length of an

optimal tour, OBJ the length of a tour generated by an

algorithm, OBJD the length of the tour generated by our

algorithm, OBJSA the length of the tour generated by the

softassign, and

RE � OBJ 2 OPT

OPT
:

To show the robustness of our algorithm, we have taken two

different values for each of h , e and d . Numerical results are

as follows.

Example 1. These ten TSP instances are from a well-

known website, TSPLIB. We have used our algorithm and

the softassign algorithm to approximate solutions of these

TSP instances. Note that the softassign algorithm fails to

converge when r � 20. For h � 0.95, e � 0.01 and

d � 0.001, the computation time and the relative errors

to the optimal tours of the tours generated by our

algorithm and the softassign algorithm are compared

in Figs. 1 and 2.

1. It is shown in Fig. 1 that the tour generated by our algo-

rithm is closer to the optimal tour than that generated by

the softassign algorithm. The maximum relative error in

the optimal tour for our algorithm (r � 20) is 16%,

whereas that for the softassign algorithm is 69%. Espe-

cially for bays29, the relative error to the optimal tour for

our algorithm (r � 20) is only 1%, whereas the relative

error to the optimal tour for the softassign algorithm is 50

times larger than that for our algorithm.

2. It is clearly indicated in Fig. 2 that our algorithm is much

more ef®cient than the softassign algorithm. Considering

the computation time of our algorithm and the softassign

algorithm for eil101, one can see that the computation

time of our algorithm (r � 20) is 802 s, whereas the

computation time of the softassign algorithm is twice

that of our algorithm.
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Fig. 2. Computation time for different algorithms: 1, bays29; 2, att48; 3, eil51; 4, berlin52; 5, st70; 6, eil76; 7, pr76; 8, rd100; 9, eil101; and 10, lin105.
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3. For two different values of h , e and d , the numerical

results are similar to those mentioned above, which

are presented in Table 1. This clearly shows that our

algorithm is robust and outperforms the softassign

algorithm.

Example 2. These (TSP) instances have 100 cities and

are generated randomly. Every city is a point in a square

with integer coordinates (x, y) satisfying 0 # x # 100 and

0 # y # 100. We have used our algorithm and the softas-

sign algorithm to approximate solutions of 20 (TSP)

instances (10 for h � 0.9 and 10 for h � 0.95). For two

different values of h , the computation time and the qual-

ity of a tour generated by our algorithm and the softassign

algorithm are compared in Table 2. Note that the softas-

sign algorithm fails to converge when r � 20. Numerical

results further con®rm that our algorithm outperforms the

softassign algorithm.

6. Conclusions

We have developed a globally convergent Lagrange

multiplier and barrier function iterative algorithm for

approximating a solution of the TSP. Some theoretical

results have been derived. For any given value of the barrier

parameter, we have proved that the algorithm converges to a

stationary point of (4) without any condition on the objec-

tive function, which is stronger than the convergence result

for the softassign algorithm. We have reported some numer-

ical results, which show that our algorithm seems more

effective and ef®cient than the softassign algorithm. The

algorithm would be improved if one could propose a faster

iterative procedure for updating Lagrange multipliers to

obtain the feasible descent direction.
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Table 2

Numerical results (e � 0.01 and d � 0.001)

Algorithm TSP h � 0.9 TSP h � 0.95
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