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Abstract. In this paper a barrier function method is proposed for approximating a solution of the
nonconvex quadratic programming problem with box constraints. The method attempts to produce
a solution of good quality by following a path as the barrier parameter decreases from a sufficiently
large positive number. For a given value of the barrier parameter, the method searches for a min-
imum point of the barrier function in a descent direction, which has a desired property that the box
constraints are always satisfied automatically if the step length is a number between zero and one.
When all the diagonal entries of the objective function are negative, the method converges to at least
a local minimum point of the problem if it yields a local minimum point of the barrier function for
a sequence of decreasing values of the barrier parameter with zero limit. Numerical results show
that the method always generates a global or near global minimum point as the barrier parameter
decreases at a sufficiently slow pace.
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1. Introduction

The nonconvex quadratic programming problem with box constraints is to min-
imize a nonconvex quadratic function subject to box constraints. It is an NP-hard
problem (Murty and Kabadi, 1987) and has many diverse applications (Pardalos
and Rosen, 1987). A special case of the problem is the quadratic zero-one pro-
gramming problem. In order for a solution of the quadratic zero-one program-
ming problem, many exact algorithms have been developed, such as ones given in
Barahona et al. (1989), Carter (1984), Gulati et al. (1984), Hammer and Simeone
(1987), Hansen (1979), Pardalos (1991), Pardalos and Jha (1992), Pardalos and
Rogers (1990), etc. Most of these algorithms are of the branch-and-bound type or
use some type of linearization techniques. In addition a differentiable exact penalty
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function for the general quadratic programming problem can be found in Grippo
and Lucidi (1991). We refer to Floudas and Visweswaran (1995) for an excellent
survey of quadratic optimization.

Due to its computational complexity, the nonconvex quadratic programming
problem with box constraints is, in general, difficult to solve to optimality. Sev-
eral approximation algorithms have been proposed, such as ones given in Poljak
and Wolkowicz (1995), Vavasis (1992), Ye (1991), etc. A recent survey of al-
gorithms for the nonconvex quadratic programming problem with box constraints
can be found in De Angles et al. (1997). For some NP-hard combinatorial op-
timization problems, numerical results show that deterministic annealing seems
effective (Yuille and Kosowsky, 1994). The approach is a heuristic continuation
method, which attempts to find the global minimum of the effective energy at high
temperature and track it as the temperature decreases. There is no guarantee that
the minimum at high temperature can always be tracked to the minimum at low
temperature, but the experimental results are encouraging (Durbin and Willshaw,
1987; Peterson, 1990). The nonconvex quadratic programming problem with box
constraints is an NP-hard problem. The deterministic annealing approach may
provide an alternative solution procedure for the problem.

In this paper we adapt the idea of deterministic annealing for approximating a
solution of the nonconvex quadratic programming problem with box constraints. A
barrier function method is proposed, which attempts to produce a solution of good
quality by following a path as the barrier parameter decreases from a sufficiently
large positive number satisfying that the barrier function is strictly convex. For a
given value of the barrier parameter, the method searches for a minimum point of
the barrier function in a descent direction, which has a desired property that the box
constraints are always satisfied automatically if the step length is a number between
zero and one. When all the diagonal entries of the objective function are negative,
the method converges to at least a local minimum point of the problem if it yields
a local minimum point of the barrier function for a sequence of decreasing values
of the barrier parameter with zero limit. Numerical results show that the method
always generates a global or near global minimum point as the barrier parameter
decreases at a sufficiently slow pace.

The rest of this paper is organized as follows. We describe the barrier function
and derive some properties in Section 2. We introduce the method in Section 3. We
present some numerical results in Section 4 to show that the method is effective
and efficient. We conclude the paper with some remarks in Section 5.

2. Barrier Function

The problem we intend to solve is as follows: Find a minimum point of

min f (x) = 1
2x
>Qx + c>x

subject to li 6 xi 6 ui, i = 1,2, · · · , n,
(2.1)
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where

Q =


q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
. . .

...

qn1 qn2 · · · qnn


is symmetric and indefinite or negative semidefinite, andli < ui , i = 1,2, · · · , n.
Let l = (l1, · · · , ln)>, u = (u1, · · · , un)>, and

B = {x | l 6 x 6 u}.
We assume thatli andui , i = 1,2, · · · , n, are finite. ThenB is bounded.

To approximate a solution of (2.1), we introduce a barrier term,

(xi − li) ln(xi − li )+ (ui − xi) ln(ui − xi), (2.2)

to incorporateli 6 xi 6 ui into the objective function, and obtain a barrier
function,

e(x, β) = f (x)+ β
n∑
i=1

((xi − li ) ln(xi − li)+ (ui − xi) ln(ui − xi)), (2.3)

whereβ is the barrier parameter that behaves as temperature in the deterministic
annealing approach and varies from a positive number to zero. The initial value of
β should be sufficiently large so thate(x, β) is strictly convex overl 6 x 6 u. Ob-
serve that the barrier term (2.2) comes from the entropy function (Fang, Rajasekera
and Tsao, 1997), and is well defined atxi = li andxi = ui since

lim
xi→l+i

(xi − li) ln(xi − li ) = lim
xi→u−i

(ui − xi) ln(ui − xi) = 0.

Whenli = 0 andui = 1, the barrier term (2.2) appears implicitly as a term of the
energy function defined in Hopfield (1984).

Instead of solving (2.1) directly, let us consider a scheme, which obtains a
solution of (2.1) from the solution of

min
x∈B

e(x, β)

at the limit ofβ ↓ 0. Frome(x, β), we obtain

∂e(x, β)

∂xi
= ∂f (x)

∂xi
+ β ln

xi − li
ui − xi .

Observe that

lim
xi→l+i

∂e(x, β)

∂xi
= −∞ and lim

xi→u−i

∂e(x, β)

∂xi
= +∞.
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The Hessian matrix ofe(x, β) atx with l < x < u is given by

∇2e(x, β) = Q+ β((X − L)−1+ (U −X)−1),

whereX is the diagonal matrix formed by the components ofx, L the diagonal
matrix formed by the components ofl, andU the diagonal matrix formed by
the components ofu. Whenβ is sufficiently large, clearly,∇2e(x, β) is positive
definite for anyx with l < x < u. Therefore,e(x, β) is strictly convex over
l 6 x 6 u whenβ is sufficiently large.

Since∇f (x) = Qx + c is bounded onB, one can readily derive the following
result.

LEMMA 1. For any givenβ > 0, if x∗ is a minimum point of

min
l6x6u

e(x, β)

then

l < x∗ < u.

Proof.Suppose that some component ofx∗, sayx∗i , equalsli . Let ε be a positive
number arbitrarily close to zero. We definey∗ = (y∗1, · · · , y∗n)> by

y∗j =

x∗j if j 6= i,

x∗i + ε if j = i,
j = 1, · · · , n. Then, whenε is sufficiently small,

∂e(y∗,β)
∂xi

= ∂f (y∗)
∂xi
+ β ln

x∗i +ε−li
ui−x∗i −ε

= ∂f (y∗)
∂xi
+ β ln ε

ui−li−ε < 0

since∂f (y
∗)

∂xi
is bounded. Thus, adding to theith component ofy∗ an arbitrarily small

positive number, one can obtain a point ofB arbitrarily close toy∗, at whiche(x, β)
is less thane(y∗, β). Becausee(x, β) is continuous onB, e(y∗, β) is arbitrarily
close toe(x∗, β) if ε is arbitrarily close to zero. Therefore, there exists a point of
B arbitrarily close tox∗, at whiche(x, β) is less thane(x∗, β). This contradicts
thatx∗ is a minimum point, which implies that no component ofx∗ equals lower
bound. Similarly, one can show that no component ofx∗ equals upper bound. The
lemma follows. 2

This lemma indicates that ifx∗ is a minimum point of

min
l6x6u

e(x, β)

then

∇xe(x∗, β) = 0,
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where∇xe(x, β) = ( ∂e(x,β)∂x1
, · · · , ∂e(x,β)

∂xn
)>.

Let βk, k = 1,2, · · · , be a sequence of positive numbers such that

β1 > β2 > · · ·
and limk→∞ βk = 0. Letx∗ be a global minimum point of (2.1) and

x(βk) = argmin{e(x, βk) | x ∈ B},
k = 1,2, · · · .
THEOREM 1. For k = 1,2, · · · ,

f (x(βk)) > f (x(βk+1)),

and

lim
k→∞

f (x(βk)) = f (x∗).

Proof.Let

p(x) =
n∑
i=1

((xi − li ) ln(xi − li )+ (ui − xi) ln(ui − xi)).

Then, for anyx ∈ B,

n∑
i=1

(ui − li ) ln
ui − li

2
6 p(x) 6

n∑
i=1

(ui − li ) ln(ui − li).

Let

b(x) = p(x)−
n∑
i=1

(ui − li ) ln
ui − li

2
.

Then,b(x) ≥ 0 for anyx ∈ B. Let

ψ(x, β) = f (x)+ βb(x).
Then,

e(x, β) = ψ(x, β) + β
n∑
i=1

(ui − li ) ln
ui − li

2
.

Thus,

x(βk) = argmin{ψ(x, βk) | x ∈ B}.
By the definitions ofx(βk) andx(βk+1), we have

f (x(βk))+ βkb(x(βk)) 6 f (x(βk+1))+ βkb(x(βk+1))
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and

f (x(βk+1))+ βk+1b(x(βk+1)) 6 f (x(βk))+ βk+1b(x(βk)).

Then,

(βk − βk+1)b(x(βk)) 6 (βk − βk+1)b(x(βk+1)).

Thus,

b(x(βk)) 6 b(x(βk+1))

sinceβk > βk+1. Therefore,

f (x(βk)) ≥ f (x(βk+1)).

For anyk, we can write

f (x∗) 6 f (x(βk)) 6 f (x(βk))+ βkb(x(βk)) = ψ(x(βk), βk). (2.4)

Note that for anyε > 0, there exists̄x ∈ B such that

f (x̄) 6 f (x∗)+ ε.
It follows that for anyk,

f (x∗)+ ε + βkb(x̄) ≥ f (x̄)+ βkb(x̄) ≥ ψ(x(βk), βk).
Then,

lim
k→∞ψ(x(βk), βk) 6 f (x

∗)+ ε.

From (2.4), we obtain

lim
k→∞ψ(x(βk), βk) ≥ f (x

∗).

Thus,

lim
k→∞ψ(x(βk), βk) = f (x

∗).

Observe that limk→∞ βkb(x(βk)) = 0. Therefore,

lim
k→∞

f (x(βk)) = f (x∗).

This completes the proof of the theorem. 2
This theorem indicates that every limit point ofx(βk), k = 1,2, · · · , is a global
minimum point of (2.1).
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THEOREM 2. When every diagonal entry ofQ is negative, (2.1) has a vertex
global minimum point.

Proof. Let x(βkj ), j = 1,2, · · · , be a convergent subsequence ofx(βk), k =
1,2, · · · . Assume that limj→∞ x(βkj ) = v∗. From Theorem 1, we obtainf (v∗) =
f (x∗). In the following we show thatv∗ is a vertex ofB. Sincex(βkj ) is a minimum
point of minx∈B e(x, βkj ), hence, the Hessian matrix ofe(x, βkj ) atx(βkj ),

Q+ βkj ((X(βkj )− L)−1+ (U −X(βkj ))−1),

is positive semidefinite, whereX(βkj ) is the diagonal matrix formed by the com-
ponents ofx(βkj ). Thus, for anyi with 16 i 6 n,

0 6 (ui)>Qui + βkj (ui)>((X(βkj )− L)−1+ (U −X(βkj ))−1)ui

= qii + βkj ( 1
xi(βkj )−li +

1
ui−xi(βkj ) ),

(2.5)

whereui is the ith unit vector ofRn. Fromqii < 0 and (2.5), we derive that as
j →∞, xi(βkj )must approach eitherli or ui becauseβkj goes to zero. Therefore,
v∗ is a vertex ofB. The theorem follows. 2
THEOREM 3. For k = 1,2, · · · , let xk be a local minimum point of

min
l6x6u

e(x, βk).

Assume thatQv+c 6= 0 at any limit pointv of xk , k = 1,2, · · · . If all the diagonal
entries ofQ are negative, every limit point ofxk , k = 1,2, · · · , is a local minimum
point of (2.1).

Proof. Sincexk, k = 1,2, · · · , are contained in the bounded setB, we can
extract a convergent subsequence. Letxkq , q = 1,2, · · · , be a convergent sub-
sequence ofxk, k = 1,2, · · · . Assume that limq→∞ xkq = v. Let Xkq be the
diagonal matrix formed by the components ofxkq . Sincexkq is a local minimum
point of minl6x6u e(x, βkq ), hence, the Hessian matrix ofe(x, βkq ) atxkq ,

Q+ βkq ((Xkq − L)−1+ (U −Xkq )−1),

is positive semidefinite. Thus, for anyi with 16 i 6 n,

06 (ui)>Qui + βkq (ui)>((Xkq − L)−1+ (U −Xkq )−1)ui

= qii + βkq ( 1

x
kq

i −li
+ 1

ui−xkqi
),

(2.6)

whereui is the ith unit vector ofRn. From qii < 0 and (2.6), we obtain that as
q →∞, x

kq
i must approach eitherli or ui becauseβkq goes to zero. Therefore,v is

an extreme point ofB.
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Sincexkq is a local minimum point of

min
l6x6u

e(x, βkq ),

from the first-order necessary optimality condition, we obtain

Qxkq + c = −βkq
(

ln
x
kq
1 − l1
u1− xkq1

, ln
x
kq
2 − l2
u2− xkq2

, · · · , ln x
kq
n − ln
un − xkqn

)>
.

Hence,

lim
q→∞−βkq (ln

x
kq
1 − l1
u1− xkq1

, ln
x
kq
2 − l2
u2 − xkq2

, · · · , ln x
kq
n − ln
un − xkqn

)> = Qv + c 6= 0.

(2.7)

Let x be an arbitrary interior point ofB. Then,

(x − xkq )>(Qxkq + c) = −
n∑
i=1

βkq (xi − xkqi ) ln
x
kq
i − li
ui − xkqi

.

Note thatv is an extreme point ofB. Considervi = li. We havexi − vi > 0 and
limq→∞ x

kq
i = li . Thus, whenq is sufficiently large,

βkq (xi − vi) ln
x
kq
i − li
ui − xkqi

< 0.

Considervi = ui . We havexi − vi < 0 and limq→∞ x
kq
i = ui . Thus, whenq is

sufficiently large,

βkq (xi − vi) ln
x
kq
i − li
ui − xkqi

< 0.

From (2.7), we obtain that at least one of

lim
q→∞ βkq ln

x
kq
i − li
ui − xkqi

,

i = 1,2, · · · , n, is not equal to zero. Therefore, at least one of

(xi − vi) lim
q→∞ βkq ln

x
kq
i − li
ui − xkqi

,
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i = 1,2, · · · , n, is negative, and all of them are not positive. Hence,

(x − v)>(Qv + c) = limq→∞(x − xkq )>(Qxkq + c)

= −∑n
i=1 limq→∞ βkq (xi − xkqi ) ln

x
kq

i −li
ui−xkqi

= −∑n
i=1(xi − vi) limq→∞ βkq ln

x
kq

i −li
ui−xkqi

> 0.

We have obtained that for any interior pointx of B,

0< (x − v)>(Qv + c). (2.8)

Observe that

f (x)− f (v) = 1
2x
>Qx + c>x − 1

2v
>Qv − c>v

= (x − v)>(Qv + c)+ 1
2(x − v)>Q(x − v).

Then, whenx is sufficiently close tov, from (2.8), we obtain that

f (x)− f (v) > 0

since1
2(x − v)>Q(x − v) goes to zero two times as fast as(x − v)>(Qv + c) if x

approachesv. This implies thatv is a local minimum point of (2.1). The theorem
follows. 2
This theorem means that at least a local minimum point of (2.1) can be obtained if
we are able to generate a local minimum point of the barrier function for a sequence
of decreasing values of the barrier parameter with zero limit.

In the following we demonstrate through a two-dimensional example that the
barrier term may help us obtain a global or near global optimal solution.

EXAMPLE 1. Consider

min f (x) = 1
2(x1, x2)

( −83.75 28.34
28.34 −48.28

)(
x1

x2

)
+ (17.72,15.22)

(
x1

x2

)
s/t 0≤ x1 ≤ 1, 0≤ x2 ≤ 1,

(2.9)

which is generated randomly. From Figure 2, one can see that (2.9) has four local
minimum points, which are(1,1), (1,0), (0,1), and (0,0). The unique global
minimum point is(1,0). Using (2.3), we obtain

e(x, β) = 1
2(x1, x2)

( −83.75 28.34
28.34 −48.28

)(
x1

x2

)
+ (17.72,15.22)

(
x1

x2

)
+β(x1 ln x1 + (1− x1) ln(1− x1)+ x2 ln x2+ (1− x2) ln(1− x2)).
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Figure 1. The surface off (x) over[0≤ x1 ≤ 1, 0≤ x2 ≤ 1]

Figure 2. The surface ofe(x, 50) over[0< x1 < 1, 0< x2 < 1]
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Figure 3. The surface ofe(x, 25) over[0< x1 < 1, 0< x2 < 1]

Figure 4. The surface ofe(x, 15) over[0< x1 < 1, 0< x2 < 1]
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Figure 5. The surface ofe(x, 5) over[0< x1 < 1, 0< x2 < 1]

Figures 2–5 are the surfaces ofe(x, β) with β = 50, β = 25, β = 15, and
β = 5, respectively. Whenβ equals25 and15, one can see from Figures 3 and 4
that e(x, β) has only one local minimum point, which is near the global minimum
point (1,0).

This example show thate(x, β) deforms from a strictly convex function to the
objective function asβ decreases from a sufficiently large positive number to zero
and that there seemingly exists an interval ofβ such that each local minimum point
of e(x, β) is in a neighborhood of a global or near global minimum point whenβ is
in the interval. Effectiveness of the barrier function method depends on existence
of such an interval.

3. The Method

For any givenβ > 0, consider the first-order necessary optimality condition,

∂e(x, β)

∂xi
= 0, (3.10)

i = 1,2, · · · , n. From (3.10), we obtain

xi =
ui + li exp( 1

β

∂f (x)

∂xi
)

1+ exp( 1
β

∂f (x)

∂xi
)
,
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i = 1, · · · , n. For convenience of the following discussions, let

di(x) = ui + liγi(x)
1+ γi(x) ,

i = 1, · · · , n, and

d(x) = (d1(x), · · · , dn(x))>,
where

γi(x) = exp(
1

β

∂f (x)

∂xi
).

The following lemma shows that for any givenβ > 0, whenl < x < u, d(x) − x
is a descent direction ofe(x, β).

LEMMA 2. Assumel < x < u. For i = 1, · · · , n,
whendi(x)− xi > 0,

∂e(x, β)

∂xi
< 0,

whendi(x)− xi < 0,

∂e(x, β)

∂xi
> 0,

and whendi(x)− xi = 0,

∂e(x, β)

∂xi
= 0.

Whend(x) − x 6= 0,

∇xe(x, β)>(d(x)− x) < 0.

Proof.
1. Considerdi(x)− xi < 0. We have

ui + liγi(x)
1+ γi(x) < xi.

Thus we obtain

1< γi(x)
xi − li
ui − xi . (3.11)

Taking the natural logarithm to both sides of (3.11), we get

0<
1

β

∂f (x)

∂xi
+ ln

xi − li
ui − xi . (3.12)
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Multiplying β > 0 to both sides of (3.12), we obtain

0<
∂f (x)

∂xi
+ β ln

xi − li
ui − xi =

∂e(x, β)

∂xi
.

Therefore, whendi(x)− xi < 0,

∂e(x, β)

∂xi
> 0.

2. Considerdi(x)− xi > 0. We have

ui + liγi(x)
1+ γi(x) > xi.

Thus we obtain

1> γi(x)
xi − li
ui − xi . (3.13)

Taking the natural logarithm to both sides of (3.13), we get

0>
1

β

∂f (x)

∂xi
+ ln

xi − li
ui − xi . (3.14)

Multiplying β > 0 to both sides of (3.14), we obtain

0>
∂f (x)

∂xi
+ β ln

xi − li
ui − xi =

∂e(x, β)

∂xi
.

Therefore, whendi(x)− xi > 0,

∂e(x, β)

∂xi
< 0.

3. Considerdi(x)− xi = 0. We have

ui + liγi(x)
1+ γi(x) = xi.

Thus we obtain

1= γi(x) xi − li
ui − xi . (3.15)

Taking the natural logarithm to both sides of (3.15), we get

0= 1

β

∂f (x)

∂xi
+ ln

xi − li
ui − xi . (3.16)

Multiplying β > 0 to both sides of (3.16), we obtain

0= ∂f (x)

∂xi
+ β ln

xi − li
ui − xi =

∂e(x, β)

∂xi
.

Therefore, whendi(x)− xi = 0,

∂e(x, β)

∂xi
= 0.
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Observe that

∇xe(x, β)>(d(x)− x) =
n∑
i=1

∂e(x, β)

∂xi
(di(x)− xi).

The lemma follows. 2
Note that for anyx with l < x < u, d(x) − x = 0 if and only if∇xe(x, β) = 0.
We remark thatd(x)− x has a desired property that when searching for a point in
d(x) − x, the box constraints are always satisfied automatically if the step length
is a number between zero and one.

Based on the descent direction,d(x) − x, we have developed a method for
approximating a solution of the problem (2.1). The idea of the method is as follows:

Let βq , q = 1,2, · · · , be any given sequence of positive numbers such that
β1 > β2 > · · · and limq→∞ βq = 0. The value ofβ1 should be sufficiently large
so thate(x, β1) is strictly convex overl 6 x 6 u. Letx0 be an arbitrary interior
point ofB. For q = 1,2, · · · , starting atxq−1, we employd(x) − x as the descent
direction to search for an interior pointxq ∈ B satisfyingd(xq)− xq = 0.

The method can be stated as follows.

Step 0: Letθ be a number in(0,1), which should be close to one. Choosex0 to be
an arbitrary point satisfyingl < x0 < u, andβ to be an arbitrary positive
number satisfying thate(x, β) is strictly convex overl 6 x 6 u. Let k = 0
and go to Step 1.

Step 1: Compute

di(x
k) = ui + liγi(xk)

1+ γi(xk) ,

i = 1, · · · , n. Go to Step 2.

Step 2: If‖d(xk)−xk‖ is less than some given tolerance, either the method termin-
ates whenβ is small enough (e.g., a vertex minimum point can be recovered
from xk if (2.1) has a vertex solution), or letβ = θβ and go to Step 1.
Otherwise, do as follows: Compute

xk+1 = xk + µk(d(xk)− xk), (3.17)

whereµk is a number in[0,1] satisfying

e(xk+1, β) = min
µ∈[0,1] e(x

k + µ(d(xk)− xk), β).

Letk = k + 1 and go to Step 1.

Note that an exact solution of

min
µ∈[0,1]

e(xk + µ(d(xk)− xk), β)
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is not required in the implementation of the method, and an approximate solution
will do. One can find several ways to determineµk in Minoux (1986). We remark
that the method is insensitive to the starting pointx0 since the barrier function is
strictly convex at the beginning of the method. The following theorem shows that
whenβ is a given positive value, the method converges to a stationary point of
e(x, β).

THEOREM 4. For a givenβ > 0, every limit point ofxk , k = 1,2, · · · , generated
by the iterative procedure (3.17) is a stationary point ofe(x, β).

Proof.Recall thatγi(x) = exp( 1
β

∂f (x)

∂xi
). Let

γmin
i = min

x∈B γi(x) andγmax
i = max

x∈B
γi(x).

Since∂f (x)
∂xi

is continuous onB, we obtain that 0< γmin
i <∞ and 0< γmax

i <∞.
Consider

h(w) = s + tw
1+ w

with s > t . We have

h′(w) = t − s
(1+ w)2 < 0.

Thus,h is a decreasing function ofw. Lettingw = γi(x), we get

di(x) = ui + liγi(x)
1+ γi(x) =

ui + liw
1+ w ,

which has the same form ash(w). Therefore, for anyx ∈ B,

li <
ui + liγmax

i

1+ γmax
i

6 di(x) 6
ui + liγmin

i

1+ γmin
i

< ui.

Let

xmin
i = min{x0

i ,
ui + liγmax

i

1+ γmax
i

} andxmax
i = max{x0

i ,
ui + liγmin

i

1+ γmin
i

}.

Becauseli < x0
i < ui , we haveli < xmin

i andxmax
i < ui. Let

xmin = (xmin
1 , · · · , xmin

n )> andxmax= (xmax
1 , · · · , xmax

n )>.

Usingxk+1 = xk +µk(d(xk)− xk) and 06 µk 6 1, one can easily obtain thatxk ,
k = 1,2, · · · , satisfy

l < xmin 6 xk 6 xmax< u.
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Thus, according to Lemma 2,d(xk) − xk is a descent direction ofe(x, β) when
d(xk)− xk 6= 0.

Let X = {x | xmin 6 x 6 xmax} and� = {x ∈ X | ∇xe(x, β) = 0}. For any
x ∈ X, let

A(x) =
x + µ∗(d(x)− x)

∣∣∣∣∣∣
µ∗ ∈ [0,1], e(x + µ∗(d(x)− x), β)

= minµ∈[0,1] e(x + µ(d(x)− x), β)

 .
In the following we prove thatA(x) is closed at every pointx ∈ X\�.

Let x̄ be an arbitrary point ofX\�. Letxq ∈ X\�, q = 1,2, · · · , be a sequence
convergent tōx, andyq ∈ A(xq), q = 1,2, · · · , a sequence convergent toȳ. To
prove thatA(x̄) is closed, we only need to show̄y ∈ A(x̄). Since∇xe(xq, β) 6= 0
and∇xe(x̄, β) 6= 0, we obtain from Lemma 2 thatd(xq)−xq 6= 0 andd(x̄)− x̄ 6=
0. Observe thatd(x) is continuous. Thus,d(xq) converges tod(x̄) asq → ∞.
Sinceyq ∈ A(xq), hence, there is some numberµ∗q ∈ [0,1] satisfying

yq = xq + µ∗q(d(xq)− xq).
Fromd(xq)− xq 6= 0 we obtain that

µ∗q =
‖yq − xq‖
‖d(xq)− xq‖ ,

and asq →∞,

µ∗q → µ̄∗ = ‖ȳ − x̄‖
‖d(x̄)− x̄‖

with µ̄∗ ∈ [0,1]. Therefore,

ȳ = x̄ + µ̄∗(d(x̄)− x̄).
Furthermore, sinceyq ∈ A(xq), we have

e(yq , β) 6 e(xq + µ(d(xq)− xq), β)
for anyµ ∈ [0,1]. It implies that

e(ȳ, β) 6 e(x̄ + µ(d(x̄)− x̄), β)
for anyµ ∈ [0,1], which proves that

e(ȳ, β) = min
µ∈[0,1]

e(x̄ + µ(d(x̄)− x̄), β).

According to the definition ofA(x), it follows thatȳ ∈ A(x̄).
SinceX is bounded andxk ∈ X, k = 1,2, · · · , we can extract a convergent

subsequence from the sequence,xk , k = 1,2, · · · . Let xkj , j = 1,2, · · · , be a
convergent subsequence of the sequence,xk , k = 1,2, · · · . Let x∗ be the limit
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point of the subsequence. We showx∗ ∈ � in the following. Clearly, ask → ∞,
e(xk, β) converges toe(x∗, β) sincee(x, β) is continuous onB ande(xk+1, β) <

e(xk, β), k = 0,1, · · · . Consider the sequence,xkj+1, j = 1,2, · · · . Note that
xkj+1 = xkj + µkj (d(xkj )− xkj ) and

e(xkj+1, β) = min
µ∈[0,1]

e(xkj + µ(d(xkj )− xkj ), β).

According to the definition ofA(x), we havexkj+1 ∈ A(xkj ). Sincexkj+1, j =
1,2, · · · , are bounded, we can extract a convergent subsequence from the sequence,
xkj+1, j = 1,2, · · · . Letxkj+1, j ∈ K, be a convergent subsequence extracted from
the sequence,xkj+1, j = 1,2, · · · . Let x# be the limit point of the subsequence,
xkj+1, j ∈ K. Suppose thatx∗ /∈ �. SinceA(x∗) is closed, we havex# ∈ A(x∗).
Thus,

e(x#, β) < e(x∗, β),

which contradicts thate(xk, β) converges ask → ∞. Therefore,x∗ ∈ �. The
theorem follows. 2
4. Numerical Results

In this section we use the method to approximate solutions of a number of non-
convex quadratic programming problems with box constraints. The method is pro-
grammed in MATLAB. To determineµk in the method, we employ the Armijo-
type rule, which can be stated as follows:
Let δ and ν be any two given numbers in(0,1). Choosemk to be the smallest
nonnegative integer satisfying

e(xk + νmk (d(xk)− xk), β) 6 e(xk, β)+ νmkδ(d(xk)− xk)>∇xe(xk, β).
Letµk = νmk .

In our implementation of the method,δ = 0.6 andν = 0.4. Numerical results
are as follows.

EXAMPLE 2. Find a global minimum point of

min f (x) = c>x − 1
2x
>AA>x

subject to 06 xi 6 1, i = 1, · · · , n,
(4.18)

whereA is ann × m matrix with entries being random numbers in[−1,1] andc
is a vector with components being random numbers in[−1,1]. Initially, β = 200,
and is decreased by a factorθ = 0.95 when‖d(xk) − xk‖2 < 0.01. The method
terminates whenβ < 0.1. A vertex solution is given byz∗ = round(xk). Starting
at an arbitrary pointx0 satisfying0 < x0

i < 1, i = 1, · · · , n, the method always
generates a global minimum point for our tests generated randomly.
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Figure 6. Numerical results

Figure 7. Numerical results

For n = 20 andm = 25, ten randomly generated problems have been solved.
Numerical results are given in Figure 6.

For n = 20 andm = 30, ten randomly generated problems have been solved.
Numerical results are given in Figure 7.

EXAMPLE 3. Find a global minimum point of

min f (x) = c>x + 1
2x
>Qx

subject to−16 xi 6 1, i = 1, · · · , n,
(4.19)

whereQ is a symmetric matrix andc = −(Q − µI)z∗ with µ being the smal-
lest eigenvalue ofQ and z∗ = (1,−1, · · · ,1,−1)>. The way of generating this
problem is given in Pardalos (1991). It is easy to see thatz∗ is a global minimum
point of (4.19). Initially,β = 100, and is decreased by a factorθ = 0.95 when
‖d(xk)−xk‖2 < 0.01. The method terminates whenβ < 5. Starting at an arbitrary
point x0 satisfying0 < x0

i < 1, i = 1, · · · , n, the method always generates the
global minimum point for our tests generated randomly.

When the entries of the upper triangular part ofQ are numbers taken randomly
from [−5,5], numerical results are given in Figure 8.

Figure 8. Numerical results
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Figure 9. Numerical results

Figure 10. Numerical results

When the entries of the upper triangular part ofQ are numbers taken randomly
from [−15,15], numerical results are given in Figure 9.

EXAMPLE 4. Find a global minimum point of

min f (x) = −(n− 1)
∑n

i=1 xi − 1
n

∑ n
2
i=1 xi + 2

∑
i<j xixj

subject to 06 xi 6 1, i = 1, · · · , n,
(4.20)

wheren is an even positive integer. This problem is given in Pardalos (1991) and
has an exponential number of local minimum points. The unique global minimum
point isz∗ = (1, · · · ,1,0, · · · ,0)>, which hasn/2 components of one. This prob-
lem has been considered as a benchmark problem for testing effectiveness and
efficiency of algorithms for quadratic zero-one programming problems. We have
used the method to solve (4.20) up ton = 300. Initially, β = 100, and is decreased
by a factorθ = 0.95 when‖d(xk) − xk‖2 < 0.01. The method terminates when
β < 0.1. Starting at an arbitrary pointx0 satisfying0< x0

i < 1, i = 1, · · · , n, the
method always generates the global minimum point. Numerical results are given
in Figure 10.

EXAMPLE 5. LetG = (V ,E) be an undirected graph, whereV = {1,2, · · · , n}
is the node set ofG andE is the edge set ofG. Let (i, j) denote an edge between
nodei and nodej . Let

AG =


a11 a12 · · · an1

a21 a22 · · · an2
...

...
. . .

...

an1 an2 · · · ann
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represent the adjacency matrix ofG, whereaii = 0 for i = 1, · · · , n, and

aij =
 1 if (i, j) ∈ E,

0 otherwise,

for any i 6= j . Observe that a graph is completely determined by its adjacency
matrixAG.

A complement graph ofG, denoted byḠ, is the graphḠ = (V , Ē) with

Ē = {(i, j) | (i, j) /∈ E andi 6= j}.
Let

AḠ =


ā11 ā12 · · · ān1

ā21 ā22 · · · ān2
...

...
. . .

...

ān1 ān2 · · · ānn


represent the adjacency matrix ofḠ, whereāii = 0 for i = 1, · · · , n, and āij =
1− aij for anyi 6= j .

LetS be a subset ofV . A subgraph ofG with the node setS, denoted byG(S),
is the graphG(S) = (S,E(S)) with

E(S) = {(i, j) | (i, j) ∈ E andi, j ∈ S}.
A graphG is complete if(i, j) ∈ E for any i 6= j . A clique ofG is a subset
C of V such thatG(C) is complete. A maximum clique ofG is a clique that has
the maximum cardinality. The maximum clique problem seeks for a clique of the
maximum cardinality.

It can be found in Pardalos and Rodgers (1992) that finding a maximum clique
of a graphG = (V ,E) is equivalent to solving

min f (x) = x>Qx

subject to 06 x 6 1,
(4.21)

whereQ = AḠ − I with I being the identity matrix. Observe that the problem has
a vertex global minimum point since all the diagonal entries ofQ are negative. The
method has been used to find a maximum clique of a graphG = (V ,E), whose
adjacency matrixAG is randomly generated with the following procedure:

Letp be a number in(0,1). For i = 1, · · · , n, andj = i + 1, · · · , n, choose
a numberα ∈ (0,1) according to the uniform probability distribution, and let
aij = 1 andaji = 1 if α 6 p, andaij = 0 andaji = 0 if α > p.

Initially, β = 100, and is decreased by a factorθ = 0.95when‖d(xk)−xk‖2 <
0.005. The method terminates whenβ < 0.1. Let z∗ = round(xk). A clique is
given by{i | z∗i = 1}. Starting at an arbitrary pointx0 satisfying0 < x0

i < 1,
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Figure 11. Numerical results

Figure 12. Numerical results

i = 1, · · · , n, the method always generates a maximum or near maximum clique
for our tests generated randomly.

Whenp = 0.7, the method has successfully found a maximum clique forn =
20,40,60,80,100,120. To verify the cliques generated by the method are the
maximum cliques, we have used the branch and bound algorithm proposed in
Carraghan and Pardalos (1990) to solve the same problems. Numerical results
are given in Figure 11.

Whenp = 0.8, the method has successfully found a maximum clique forn =
20,40,60,80,100,120. To verify the cliques generated by the method are the
maximum cliques, we have used the branch and bound algorithm proposed in
Carraghan and Pardalos (1990) to solve the same problems. Numerical results
are given in Figure 12.

From these numerical results, one can see that the method seems effective and
efficient. Although these numerical results show that the method always generates
a global or near global minimum point, it is difficult to theoretically prove that the
method converges to a global or near global minimum point even when the barrier
parameter decreases at a sufficiently slow pace.
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5. Conclusions

In this paper we have developed a barrier function method for approximating a
solution of the nonconvex quadratic programming problem with box constraints.
The preliminary numerical results show that the method seems effective and effi-
cient. We have also presented a two-dimensional example to show that the barrier
term may help us obtain a global or near global optimal solution. Although all the
preliminary numerical results show that the method always finds a global or near
global minimum point when the barrier parameter decreases at a sufficiently slow
pace, it is difficult to theoretically prove that the method always generates a global
or near global optimal solution. We remark that combining the barrier function
method and a branch-and-bound algorithm may provide an efficient approach to
solving the maximum clique problem.
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