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Abstract

Ever since the inception of Markowitz’s modern portfolio theory, static portfolio optimization techniques were gradually

phased out by dynamic portfolio management due to the growth of popularity in automated trading. In view of the intensive

computational needs, it is common to use machine learning approaches on Sharpe ratio maximization for implementing

dynamic portfolio optimization. In the literature, return-based approaches which directly used security prices or returns to

control portfolio weights were often used. Inspired by the arbitrage pricing theory (APT), some other efforts concentrate on

indirect modelling using hidden factors. On the other hand, with regard to the proper risk measure in the Sharpe ratio, downside

risk was considered a better substitute for variance. In this paper, we investigate how the Gaussian temporal factor analysis

(TFA) technique can be used for portfolio optimization. Since TFA is based on the classical APT model and has the benefit of

removing rotation indeterminacy via temporal modelling, using TFA for portfolio management allows portfolio weights to be

indirectly controlled by several hidden factors. Moreover, we extend the approach to some other variants tailored for investors

according to their investment objectives and degree of risk tolerance.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction plementation. Unlike dynamic portfolio optimization
Portfolio management has evolved as a core deci-

sion-making activity for investors and practitioners in

the financial market nowadays. Prior to the inception

of Markowitz’s modern portfolio theory [11], theoret-

ical research on investments has concentrated on

modelling expected returns [2].

During the early stage of its development, portfolio

optimization was often constrained by its static im-
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by which the optimal portfolio weights were tracked

over time based on updated market information, the

weights determined using static optimization tech-

niques could not adapt to market changes within the

investment horizon.

Despite dynamic portfolio optimization being pow-

erful, it turned out to be a problem that required

intensive computation. Recall that the most natural

technique for solving dynamic portfolio optimization

problems was stochastic dynamic programming.

However, this approach was often compromised by

several factors such as the curse of dimensionality

when too many state variables were involved [7]. In
d.
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general, practical considerations such as taxes and

transactions costs also increased the number of state

variables in the objective function.

In fact, this problem could be better solved via

some popular machine learning approaches [3,12,13,

21] which required the optimal parameters to be adapt-

ively learned over time, and consequently, we have

the term adaptive portfolio management. Among the

various methodologies suggested, the most popular

one is based on maximizing the well-known Sharpe

ratio [17]. In implementation, trading could be based

on training a trading system on labelled data [12] or

directly maximizing the expected profit via the so-

called adaptive supervised learning decision networks

[8,21]. In this paper, these approaches were generally

referred to as return-based portfolio management be-

cause they either explicitly treated the weights as con-

stants or depend directly on the security price or returns.

Inspired by the arbitrage pricing theory (APT) in

finance, which assumes that the cross-sectional

expected returns of securities is linearly related to k

hidden economic factors, typical statistical techniques

such as principal component analysis (PCA), inde-

pendent component analysis (ICA) [1,22] and maxi-

mum likelihood factor analysis [10] have been used.

However, should we adopt either PCA or ICA for

estimating the hidden factors, we have to compromise

on the terms of zero noise. Likewise, we have to make

a compromise on rotation indeterminacy if we use

conventional factor analytic techniques.

In fact, many researchers also realized that variance

was not appropriate for quantifying risk in the Sharpe

ratio because it counted positive returns as risk. For

instance, Fishburn used the lower partial moment

(LPM) [5] of returns called downside risk to replace

the traditional variance measure. Moreover, similar

ideas were adopted for implementing portfolios opti-

mization [8,9].

In this paper, we aim to investigate using the

technique temporal factor analysis (TFA) [18] for

portfolio optimization. Since TFA is based on the

classical APT model and has the benefit of removing

rotation indeterminacy via temporal modelling, using

TFA for portfolio management allows portfolio

weights to be indirectly controlled by several hidden

factors. Moreover, we can extend the approach to

some other variants tailored for investors according to

their risk and return objectives.
The rest of the paper is organized in the following

way. Sections 2 and 3 briefly review the APT and the

Gaussian TFA models, respectively. Section 4 illus-

trates how the APT-based adaptive portfolio manage-

ment can be effected with algorithms proposed in this

paper. Three variants of the APT-based Sharpe ratio

maximization technique are studied in Section 5.

Section 6 concludes the paper.
2. Review on arbitrage pricing theory

The APT begins with the assumption that the n� 1

vector of asset returns, Rt, is generated by a linear

stochastic process with k factors [14–16]:

Rt ¼ R̄þ Aft þ et ð1Þ

where ft is the k� 1 vector of realizations of k

common factors, A is the n� k matrix of factor

weights or loadings and et is an n� 1 vector of

asset-specific risks. It is assumed that ft and et have

zero expected values so that R̄ is the n� 1 vector of

mean returns. The model addresses how expected

returns behave in a market with no arbitrage oppor-

tunities and predicts that an asset’s expected return is

linearly related to the factor loadings or

R̄ ¼ Rf þ Ap ð2Þ

where Rf is an n� 1 vector of constants representing

the risk-free return, and p is k� 1 vector of risk

premiums. Similar to the derivation of CAPM, Eq.

(2) is based on the rationale that unsystematic risk is

diversifiable and therefore should have a zero price in

the market with no arbitrage opportunities.
3. Overview of temporal factor analysis

Suppose the relationship between a state ytaRk and

an observation xtaRd is described by the first-order

state-space equations as follows [18,19]:

yt ¼ Byt�1 þ et; ð3Þ

xt ¼ Ayt þ et; t ¼ 1; 2; . . . ;N ð4Þ

where et and et are mutually independent zero-

mean white noises with E(eiej
T) =Redij, E(eiej

T) =Redij,
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E(eiej
T) = 0, Re and Re are diagonal matrices and dij is

the Kronecker delta function:

dij ¼
1; if i ¼ j;

0; otherwise

:

8<
: ð5Þ

We call et the driving noise upon the fact that it

drives the source process over time. Similarly, et is

called measurement noise because it happens to be

there during measurement. The above model is gen-

erally referred to as the TFA model.

In the context of APT analysis, Eq. (1) can be ob-

tained from Eq. (4) by substituting (R̃t� R̄) for xt and

ft for yt. The only difference between the APT model

and the TFA model is the added Eq. (3) for modelling

temporal relation of each factor. The added equation

represents the factor series y={ yt}t = 1
T in a multichan-

nel autoregressive process, driven by an i.i.d. noise

series {et}t = 1
T that are independent of both yt� 1 and et.

Specifically, it is assumed that et is Gaussian distrib-

uted. Moreover, TFA is defined such that the k sources

yt
(1), yt

(2),. . ., yt
(k) in this state-space model are statisti-

cally independent. The objective of TFA is to estimate

the sequence of yt’s with unknown model parameters

H={A,B,Re,Re} through available observations.

3.1. A learning algorithm

In implementation, an adaptive algorithm has been

suggested. At each time unit, factor loadings are esti-

mated by cross-sectional regression, and factor scores

are estimated by maximum likelihood learning. Xu

proposed an algorithm in Ref. [19] as shown below.

Step 1: Fix A, B, Re and Re, estimate the hidden

factors yt by

ŷt=(Re
� 1 +ATRe

� 1A)� 1(ATRe
� 1xt+Re

� 1Bŷt� 1),

et= yt�Bŷt� 1,

et= xt�Aŷt.

Step 2: Fix yt, update A, B, Re and Re by the

gradient ascent approach as follows:

Bnew =Bold + g0diag[et yt� 1
T ],

Anew =Aold + g0etyt
T,

Re
new=(1� g)Re

old + g0diag[etet
T],

Re
new=(1� g)Re

old + g0diag[etet
T].

where g0 denotes the learning rate.
3.2. TFA driven by ARCH( p) process

In the finance literature, effects of autoregressive

conditional heteroscedasticity (ARCH) were consid-

ered in modelling unobserved components [6] as well

as hidden factors [4]. In fact, the TFA model can be

directly extended so as to explicitly consider the

presence of ARCH effect. For example, we may just

assume that each factor series has ARCH( p) effect.

Mathematically, we have

eð jÞt ¼ mð jÞt wð jÞ
t ; mð jÞt fNð0; 1Þ

wð jÞ2
t ¼ a

ð jÞ2
0 þ

Xp
s¼1

að jÞ
2

s eð jÞ
2

t�s

To accommodate for the learning of ARCH effect,

updating of Re at time t can be alternatively done via

updating a0
( j) and {as

( j)}s = 1
p as shown below:

a
ð jÞnew
0 ¼ a

ð jÞold
0 þ gað jÞ0

a
ð jÞ2
0 þ

Xp
s¼1

að jÞ
2

s eð jÞ
2

t�s

� eð jÞ
2

t

a
ð jÞ2
0 þ

Xp
s¼1

að jÞ
2

s eð jÞ
2

t�s

� 1

0
BBBB@

1
CCCCA ð6Þ

að jÞnews ¼ að jÞolds þ gað jÞs eð jÞ
2

t�s

a
ð jÞ2
0 þ

Xp
s¼1

að jÞ
2

s eð jÞ
2

t�s

� eð jÞ
2

t

a
ð jÞ2
0 þ

Xp
s¼1

að jÞ
2

s eð jÞ
2

t�s

� 1

0
BBBB@

1
CCCCA ð7Þ

Re ¼

wð1Þ2 0 : : : 0

0 wð2Þ2 : : : 0

] O : : : 0

0 : : : 0 wðkÞ2

0
BBBBBBBB@

1
CCCCCCCCA

wð jÞ2 ¼ a
ð jÞ2
0 þ

Xp
að jÞ

2

s eð jÞ
2

t�s ; j ¼ 1; 2;: : :; k

s¼1
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4. Gaussian TFA for adaptive portfolio

management

When the APT-based Gaussian TFA model is

adopted for portfolio management, portfolio weights

adjustment can be made under the control of indepen-

dent hidden factors that affect the portfolio. In the

sequel, we illustrate how this can be achieved under

the following four scenarios:
Transaction

cost

Short sale

permission

Scenario I no no

Scenario II yes no

Scenario III no yes

Scenario IV yes yes
4.1. Scenario I: No transaction cost and short sale

not permitted

The assumptions underlying this scenario are no

transaction cost and short sale not permitted. Conse-

quently, we consider the return of a typical portfolio

which is given by Ref. [19]

Rt ¼ ð1� atÞr f þ at
Xm
j¼1

bð jÞ
t x

ð jÞ
t ;

subject to

at > 0;

0VbtV1;

Xm
j¼1

bð jÞ
t ¼ 1

: ð8Þ

8>>>>>><
>>>>>>:

where r f denotes the risk-free rate of return, xt
denotes returns of risky securities, at the proportion

of total capital to be invested in risky securities and

bt
( j) the proportion of at to be invested in the jth

risky asset.

Instead of focussing on the mean variance efficient

frontier, we seek to optimize the portfolio Sharpe
ratio (Sp) [8] with Sp ¼ MðRT Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðRT Þ

p
given by

Ref. [19]. In other words, the objective function to

maximize is:

max
w;/

Sp ¼
MðRT Þffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðRT Þ

p

subject to

at ¼ expðftÞ;

ft ¼ gðyt;wÞ;

bð jÞ
t ¼ exp

�
nð jÞt

� Xm
r¼1

exp
�
nðrÞt

�
;

nt ¼ f ðyt;/Þ:

ð9Þ
,

8>>>>>>>>>><
>>>>>>>>>>:

where MðRT Þ ¼ 1
T

PT
t¼1 Rt is the conditional expected

return and V ðRT Þ ¼ 1
T

PT
t¼1½Rt �MðRT Þ�2 is a mea-

sure of risk or volatility, { yt}t = 1
N is the time series of

independent hidden factors that drives the observed

return series {xt}t = 1
N , g( yt,w) and f (yt,/) are some

nonlinear functions that map yt to, respectively, ft and
nt which, in turn, adjusts the portfolio weights at and
bt
( j), respectively.

Maximizing the portfolio Sharpe ratio in effect

balances the trade-off between maximizing the

expected return and at the same time minimizing the

risk. In implementation, we can simply use the gradi-

ent ascent approach. The time series { yt}t = 1
N can be

estimated via the Gaussian TFA algorithm in Ref.

[19]. Although the functions g( yt,w) and f( yt,/) are
not known a priori, it may be approximated via the

adaptive extended normalized radial basis function

(ENRBF) algorithm in Ref. [20].

Like radial basis function (RBF) network, ENRBF

is one of the popular models adopted for function

approximation. The general form of RBF is

fkðxÞ ¼
Xk
j¼1

wjuð½x� lj�TR�1
j ½x� lj�Þ ð10Þ
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ENRBF is an improved modification of RBF by

replacing wj with a linear vector function Wj
Tx + cj and

dividing the term u([x� lj]
TRj

� 1[x� lj]) over the

aggregate of all terms to arrive at

fkðxÞ ¼

Xk
j¼1

ðWT
j xþ cjÞuð½x� lj�

TR�1
j ½x� lj�Þ

Xk
j¼1

uð½x� lj�TR�1
j ½x� lj�Þ

ð11Þ

where Wj is a parameter matrix.

Basically, each Wj
Tx+ cj represents a local linear

segment. The ENRBF network approximates a glob-

ally nonlinear function by joining all piecewise linear

segments weighted by probability. The set of param-

eters to be estimated is H={lj, Rj, Wj, cj}j = 1
k .

Specifically, g( yt,w) and f( yt,/) can be modelled

by the ENRBF shown below.

gðyt;wÞ ¼
Xk
p¼1

ðWT
p yt þ cpÞuðlp;Rp; kÞ ð12Þ

f ðyt;/Þ ¼
Xk̂
p¼1

ðŴ T
p yt þ ĉpÞuðl̂p; R̂p; k̂Þ ð13Þ

where

uðlp;Rp; kÞ ¼
expð�0:5ðyt � lpÞTR�1

p ðyt � lpÞÞXk
r¼1

expð�0:5ðyt � lrÞTR�1
p ðyt � lrÞÞ

:

The set of parameters in Eqs. (12) and (13) to be

estimated is H where H =w[/, w={lp,Rp,Wp,cp}p = 1
k

and /={l̂p,R̂p,Ŵp,ĉp}p = 1
k̂ . In general, for each haH,

updating takes place adaptively in the following

form:

hnew ¼ hold þ g0rhSp ð14Þ
where g0 is the learning step size, jhSp denotes the

gradient with respect to h in the ascent direction of

Sp. Typically, the adaptive algorithm shown in Table

1 can be adopted for implementation.

4.2. Simulation

4.2.1. Data considerations

All simulations in this paper are based on the

past average fixed deposit interest rate, stock and

index data of Hong Kong. Daily closing prices of

the 1-week bank average interest rate, 3 major

stock indices as well as 86 actively trading stocks

covering the period from January 1, 1998 to

December 31, 1999 are used. The number of

trading days throughout this period is 522. The

three major stock indices are, respectively, Hang

Seng Index (HSI), Hang Seng China-Affiliated

Corporations Index (HSCCI) and Hang Seng China

Enterprises Index (HSCEI). Of the 86 equities, 30

of them are HSI constituents, 32 are HSCCI con-

stituents and the remaining 24 are HSCEI constit-

uents. The index data are directly used for adaptive

portfolio management while the stock prices are

used by Gaussian TFA for recovering independent

hidden factors yt.

4.2.2. Methodology

We consider the task of managing a portfolio

which consists of four securities, the average fixed

deposit interest rate and the three major stock

indices in Hong Kong. The fixed deposit interest

rate is used as the proxy for the risk-free rate of

return r f. The first 400 samples are used for training

and the last 121 samples for testing. In the test

phase, we first make prediction on ŷt and x̂t with

ŷtcByt � 1 and x̂tcAŷt. Moreover, learning is

carried out in an adaptive fashion such that the

actual value of xt at time t is used to extract yt and

modify the parameters once it is known (i.e., once

the current time t is passed into t+ 1). The APT-

based algorithm in Table 1 is adopted that uses

hidden independent factors extracted by TFA for

controlling portfolio weights. We refer to this ap-

proach APT-based portfolio management. Both TFA

algorithms with or without ARCH effect consider-

ation could be used for this purpose. For simplicity,

in the following experiments, we only adopt the one



Table 1

An adaptive algorithm for implementation of the APT-based portfolio management

Updating rules for the parameter set w

lp
new = lp

old + g(jfTSp)u(lp,Rp,k)s(lp,Rp,Wp,cp,k)( yT� lp)
Rp
new =Rp

old + g(jfTSp)u(lp,Rp,k)s(lp,Rp,Wp,cp,k)j(lp,Rp)

Wp
new =Wp

old + g(jfTSp)yTu(lp,Rp,k)

cp
new = cp

old + g(jfTSp)u(lp,Rp,k)

Updating rules for the parameter set /

l̂p
new = l̂p

old + ĝ(jnT
( j)Sp)( yT� l̂p)u(l̂p,R̂p,k̂)v(l̂p,R̂p,Ŵp,q,ĉp,q,k̂)

R̂p
new = R̂p

old + ĝ(jnT

( j)Sp)j(l̂p,R̂p)u(l̂p,R̂p,k̂)v(l̂p,R̂p,Ŵp,q,ĉp,q,k̂)

Ŵp,q
new = Ŵ p,q

old + ĝ(jnT

( j)Sp)yTu(l̂p,R̂p,k̂)

ĉp,r
new = ĉp,r

old + ĝ(jnT
( j)Sp)u(l̂p,R̂p,k̂)

where g and ĝare learning rates,

M(RT) = 1/TRt = 1
T Rt, V(RT) = 1/TRt = 1

T [Rt�M(RT)]
2

rfT Sp ¼
V ðRT Þ �MðRT Þ RT �MðRT Þ �

1

T

XT
t¼1

ðRT �MðRtÞÞ
 !" #

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V ðRT Þ�3

q
Xm
r¼1

expðnðrÞT ÞxðrÞT

Xm
r¼1

expðnðrÞT Þ
� r f

0
BBBB@

1
CCCCAexpðfT Þ;

r
nð jÞ
T

Sp ¼
V ðRT Þ �MðRT Þ RT �MðRT Þ �

1

T

XT
t¼1

ðRt �MðRtÞÞ
 !" #

expðfT Þxð jÞT

Xm
r¼1

expðnðrÞT Þ � expðnð jÞT Þ
 !

expðnð jÞT Þ

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V ðRT Þ�3

q Xm
r¼1

expðnðrÞT Þ
 !2

;

uðlp;Rp; kÞ ¼
expð�0:5ðyT � lpÞTR�1

p ðyT � lpÞÞXk
r¼1

expð�0:5ðyT � lrÞTR�1
r ðyT � lrÞÞ

;

j(lp,Rp) =Rp
�1( yT� lp)( yT� lp)

TRp
�1� 0.5diag [Rp

�1( yT� lp)( yT�lp)
TRp

�1],

sðlp;Rp;Wp; cp; kÞ ¼
ðWT

p yT þ cpÞ �
Xk
r¼1

ðWT
r yT þ crÞuðlr;Rr; kÞ

Xk
r¼1

expð�0:5ðyT � lrÞTR�1
r ðyT � lrÞÞ

;

vðlp;Rp;Wp;q; cp;q; kÞ ¼
ðWT

p;qyT þ cp;qÞ �
Xk
r¼1

ðWT
p;ryT þ crÞuðlr;Rr; kÞ

Xk
r¼1

expð�0:5ðyT � lrÞTR�1
r ðyT � lrÞÞ

;

Wp,q denotes the pth column of the qth matrix, diag[M] denotes a diagonal matrix that takes the diagonal part of a matrix M, fT= g( yT,w) as
defined in Eq. (6) and nT

( j) is the jth output of f ( yT,/) as defined in Eq. (7).
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without ARCH consideration. For each yt under test,

we can adaptively get ft = g( yt,w) and nt = f( yt, /t),

and then the portfolio weights at= exp (ft) and bðjÞ
t

¼ expðnðjÞt Þ=
Pm

r¼1 exp(nt
(r)). Finally, returns can be

computed via Eq. (8). For the sake of comparison,

we also implement a traditional approach that di-

rectly uses stock returns xt instead of hidden factors
yt [8]. We refer to this approach return-based

portfolio management.

4.2.3. Results

Fig. 1 shows the returns of individual securities

that make up the portfolio during the test phase, with

relevant risk-return statistics given in Table 2. Graph-



Fig. 1. Returns of individual securities in the portfolio.
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ical comparison of profit gain between the two

approaches using test data is shown in Fig. 2. Daily

risk-return statistics of the portfolios are given in

Table 3.

4.3. Scenario II: has transaction cost but short sale

not permitted

Scenario II differs from Scenario I in taking into

account the effect of transaction cost. Since any
Table 2

Daily risk-return statistics of constituents of portfolios

Component name Mean return

(%)

Risk

(%)

Average interest

rate

0.0148 0.00

HSI 0.18 1.48

HSCCI 0.03 2.51

HSCEI � 0.20 2.55
Fig. 2. Comparative profit gain of APT-based and return-based

portfolios for Scenario I.



Table 3

Daily risk-return statistics of the portfolio for Scenario I

Return-based

portfolio

APT-based

portfolio

Change in

Sharpe

ratio DSp

Mean return 0.06% 0.14% –

Risk 0.48% 0.81% –

Sharpe ratio 0.1250 0.1728 z38.24%

Fig. 3. Comparative profit gain of APT-based and return-based

portfolios for Scenario II.
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change on bt
( j) leads to a transaction that incurs a cost

on return ct given by

ct ¼ �at
Xm
j¼1

rcAbðjÞ
t � bðjÞ

t�1Ap
ðjÞ
t =p

ðjÞ
t�1

¼ �at
Xm
j¼1

rcAbðjÞ
t � bðjÞ

t�1Að1þ x
ðjÞ
t Þ ð15Þ

where rc is a constant denoting the rate of transac-

tion cost. Consequently, we consider the portfolio

return adjusted for transaction cost given by Ref.

[19]

Rt ¼ ð1� atÞr f þ at
Xm
j¼1

½bðjÞ
t x

ðjÞ
t � rcAbðjÞ

t

� bðjÞ
t�1Að1þ x

ðjÞ
t Þ�;

subject to

at > 0;

0VbtV1;

Xm
j¼1

bðjÞ
t ¼ 1

:

8>>>>>><
>>>>>>:

ð16Þ

The APT-based algorithm in Table 1 could still be

adopted in this case, except that the two terms jfTSp
and jnT

( j)Sp become, respectively,

rfT Sp ¼
V ðRT Þ �MðRT Þ RT �MðRT Þ �

1

T

XT
t¼1

ðRt �MðRtÞÞ
 !" #

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V ðRT Þ�3

q

�
Xm
j¼1

expðnðjÞT ÞxðjÞTXm
r¼1

expðnðrÞT Þ
� rc

expðnðjÞT ÞXm
r¼1

expðnðrÞT Þ

���������

2
6664

0
BBB@

� expðnðjÞT�1ÞXm
r¼1

expðnðrÞT�1Þ

���������
ð1þ x

ðjÞ
T Þ

3
7775� r f

1
CCCCAexpðfT Þ;
r
nðjÞ
T

Sp ¼
"
V ðRT Þ �MðRT Þ

 
RT �MðRT Þ
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4.3.1. Simulation

For the purpose of simulation, we fix the rate

of transaction cost at rc = 0.1%. Graphical compar-

ison of profit gain between the two approaches

using test data is shown in Fig. 3, while daily

risk-return statistics of the portfolios are given in

Table 4.

4.4. Scenario III: no transaction cost but short sale is

permitted

Scenario III differs from Scenario I in that

short sale is now permitted. By removing the



 
 

Fig. 4. Comparative profit gain of APT-based and return-based

portfolios for Scenario III.

Table 4

Risk-return statistics of the portfolio for Scenario II

Return-based

portfolio

APT-based

portfolio

Change in

Sharpe ratio

DSp

Mean return 0.04% 0.12% –

Risk 0.42% 0.73% –

Sharpe ratio 0.0952 0.1644 z72.69%
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nonnegative constraints on at and bt in Eq. (8),

we get

Rt ¼ ð1� atÞr f þ at
Xm
j�1

bðjÞ
t x

ðjÞ
t

� rcAbðjÞ
t � bðjÞ

t�1Að1þ x
ðjÞ
t Þ

subject to
Xm
j¼1

bðjÞ
t ¼ 1 ð17Þ

and the new objective function

max
w;/

Sp ¼
MðRT Þffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðRT Þ

p

subject to

at ¼ ft ¼ gðyt;wÞ;

bðjÞ
t ¼ nðjÞt

,Xm
r¼1

nðrÞt ;

nt ¼ f ðyt;/Þ

:

8>>>>><
>>>>>:

ð18Þ

In implementation, the algorithm in Table 1 could

be adopted, except the two terms jfTSp and jnT( j)
Sp

become, respectively,

rfT Sp ¼
V ðRT Þ�MðRT Þ RT �MðRT Þ�

1

T

XT
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ðRt �MðRtÞÞ
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q Xm
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nðrÞT

 !2
4.4.1. Simulation

For the purpose of simulation, short selling is not

applicable to the return-based approach. Graphical

comparison of profit gain between the two approac-

hes using test data is shown in Fig. 4, while daily

risk-return statistics of the portfolios are given in

Table 5.

4.5. Scenario IV: has transaction cost and short sale

is permitted

Scenario IV differs from Scenario I in that the

effects of both transaction cost and short sale on

portfolio selection have to be treated appropriately.

As a result, we have

Rt ¼ ð1� atÞr f þ at
Xm
j¼1

½bðjÞ
t x

ðjÞ
t � rcAbðjÞ

t

�bðjÞ
t�1Að1þ x

ðjÞ
t Þ�;

subject to
Xm
j¼1

bðjÞ
t ¼ 1 ð19Þ

Here, we have the objective function the same as

Eq. (18). The APT-based algorithm in Table 1 could



 
 

Fig. 5. Comparative profit gain of APT-based and return-based

portfolios for Scenario IV.

Table 5

Risk-return statistics of the portfolio for Scenario III

Return-based

portfolio

APT-based

portfolio

Change in

Sharpe ratio

DSp

Mean return 0.06% 0.19% –

Risk 0.48% 0.92% –

Sharpe ratio 0.1250 0.2065 z65.20%
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still be adopted in this case, except that the two terms

jfTSp and jnT

( j)Sp become, respectively,

rfT Sp ¼
V ðRT Þ�MðRT Þ RT �MðRT Þ�

1

T

XT
t¼1

ðRt �MðRtÞÞ
 !" #

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V ðRT Þ�3

q
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4.5.1. Simulation

In simulation, we fix the rate of transaction cost at

rc = 0.1%, and short selling is not applicable to the

return-based approach. Graphical comparison of profit

gain between the two approaches using test data is

shown in Fig. 5, while daily risk-return statistics of the

portfolios are given in Table 6.
4.6. Performance evaluation

To summarize the experimental results of the above

four scenarios, we have noted the following two

phenomena. First, the APT-based portfolio in general

performs better than the return-based portfolio if the

scope of comparison is limited to within each scenar-

io, as evidenced by higher Sp attained in Tables 3–6.

It should be noted that higher Sp may arise as a

consequence of one of the following situations: (i)

higher expected return, lower overall volatility; (ii)

higher expected return, same overall volatility; (iii)

same expected return, lower overall volatility; (iv)

both expected return increase or decrease, with

expected return increases (decreases) at a faster (low-

er) rate than overall volatility. Second, if we compare

the performance of APT-based portfolios across all the

four scenarios, especially the portfolio Sharpe ratio of

scenario III against I (z19.50%) and scenario IV

against II (z10.58%), we may conclude that perfor-

mance may be further improved whenever short sale

is permitted.

The first phenomenon reveals the fact that indepen-

dent hidden factors may be more effective in control-

ling portfolio weights. Possible rationales include

dimensionality reduction, as there are usually only a

few hidden factors for a large number of securities.

What seems to be a more important revelation is that

the classical APT [16] model is still helpful here.



Table 6

Risk-return statistics of the portfolio for Scenario IV

Return-based

portfolio

APT-based

portfolio

Change in

Sharpe ratio

DSp

Mean return 0.04% 0.16% –

Risk 0.42% 0.88% –

Sharpe ratio 0.0952 0.1818 z90.97%
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Although short selling is expensive for individual

investors and not generally permissible for most

institutional investors [2] in many markets, relevant

experimental results reveal the hypothetical potential

benefit such facility might add to the portfolio

returns. The benefit mainly arises from the exploi-

tation of downside trend in market price in addition

to upward movement. This, in turn, reduces the

chance that the fund is left idle due to declining

stock prices for most stocks, which is more or less a

phenomenon when the general market atmosphere is

gloomy.
5. APT-based portfolio management by modified

portfolio Sharpe ratio

In this section, we consider three variants of the

portfolio Sharpe ratio. Specifically, we consider port-

folio expected downside risk VT
� which is represented

by

V�
T ¼ 1

T

XT
t¼1

Xm
i¼1

Xm
j¼1

bðiÞ
t bðjÞ

t

Z 0

�l

Z 0

�l
x
ðiÞ
t x

ðjÞ
t p

ðxðiÞt ; x
ðjÞ
t ÞdxðiÞt dx

ðjÞ
t

¼ 1

T

XT
t¼1

Xm
i¼1

Xm
j¼1

bðiÞ
t bðjÞ

t D
ði;jÞ
t

ð20Þ

where bi and xi denote the portfolio weight and return

of the ith risky security, respectively, and Dt
(i,j) is a

constant.
In addition to considering the downside risk, the

so-called portfolio expected upside volatility VT
+ can

be defined similarly as

Vþ
T ¼ 1

T

XT
t¼1

Xm
i¼1

Xm
j¼1

bðiÞ
t bðjÞ

t

Z l

0

Z l

0

x
ðiÞ
t x

ðjÞ
t p

ðxðiÞt ; x
ðjÞ
t ÞdxðiÞt dx

ðjÞ
t

¼ 1

T

XT
t¼1

Xm
i¼1

Xm
j¼1

bðiÞ
t bðjÞ

t U
ði;jÞ
t ð21Þ

where bi and xi denote the portfolio weight and return

of the ith risky security, respectively, and Ut
(i, j) is a

constant.

5.1. Modified Sharpe ratio with minimum downside

risk and maximum upside volatility

Given that portfolio variance can be broken down

into portfolio downside risk and upside volatility, it is

desirable to consider the maximization of the upside

volatility and minimization of the downside risk at the

same time in calculating the optimal portfolio. In other

words, we can consider maximization of the following

improved Sharpe ratio SpV

max
w;/

SpV¼
MðRT Þ þ Vþ

T

V�
T

subject to

at ¼ expðftÞ;

ft ¼ gðyt;wÞ;

bðjÞ
t ¼ expðnðjÞt Þ

,Xm
r¼1

expðnðrÞt Þ;

nt ¼ f ðyt;/Þ

:

8>>>>>>>>><
>>>>>>>>>:

ð22Þ
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Fig. 6. Comparative profit gain under original and modified Sharpe

ratio.
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In implementation, the algorithm in Table 1 could

be adopted, except the two terms jfTSp and jnT

( j)Sp
become, respectively,

rfT SpV¼

Xm
j¼1

expðnðjÞT Þ
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 !
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r
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5.1.1. Simulation

We implement the modified Sharpe ratio simula-

tion using the same set of data described before and

the APT-based approach in Scenario I as benchmark

for comparison. Graphical comparison of profit gain

between the two approaches using test data is shown

in Fig. 6, while daily risk-return statistics of the

portfolios are given in Table 7.
5.2. Risk minimization with control of expected return

Some conservative investors are more concerned

about risk than return. Therefore, a more appropriate

investment strategy may be to minimize risk while

controlling the expected return. Particularly, this can

be achieved by setting the expected return in Eq.

(30) to be a constant specified by the investor, and

the optimization essentially becomes a minimization

of downside risk and a maximization of upside

volatility.

max
w;/

SpV¼
r þ Vþ

T

V�
T

subject to

at ¼ expðftÞ;

ft ¼ gðyt;wÞ;

bðjÞ
t ¼ expðnðjÞt Þ

!Xm
r¼1

expðnðrÞt Þ;

nt ¼ f ðyt;/Þ;

MðRT Þ ¼ r

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð23Þ

To solve the above optimization problem with

equality constraints, we adopt the augmented La-



Table 7

Daily Risk-return statistics of portfolio under original and modified

Sharpe ratio

Original Sharpe

ratio

Modified Sharpe

ratio

Mean return 0.14% 0.24%

Risk 0.81% 1.13%

Upside volatility – 0.43%

Downside risk – 0.35%

Sharpe ratio Sp 0.1728 1.9143
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grangian method. Specifically, for the equality con-

strained problem,

maximize f ðxÞ with respect to x

subject to hðxÞ ¼ 0;
ð24Þ

the augmented Lagrangian function can be written as

Lðx; kÞ ¼ f ðxÞ � khðxÞ � 1

2
c½hðxÞ�2 ð25Þ

where k is the Lagrange multiplier, c is the penalty

parameter. Then, a sequence of minimizations of the

form

maximize Lck ðx; kkÞ with respect to x

subject to xaRn
ð26Þ

is performed, where {ck} is a sequence of positive

penalty parameters sequence satisfying

0 < ck < ckþ1 bk

ck ! l as k ! l
: ð27Þ

The multiplier sequence {kk} is generated by the

iteration

kkþ1 ¼ kk þ ckhðx̂Þ ð28Þ

where x̂ is the solution of Eq. (26).
Here, the augmented Lagrangian is given by

L ¼
r þ 1

T

XT
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Xm
i¼1

Xm
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bðiÞ
t bðjÞ
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 !2

ð29Þ

In implementation, the algorithm in Table 1

could be adopted, except the two terms jfTSp and

jnT

( j)Sp are replaced by jfTL and jnT

( j)L, respective-

ly, where

rfT L ¼ expðfT Þ
T

rf �
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Table 8

Risk-return statistics of portfolio with control of expected return

Modified

Sharpe ratio

Modified Sharpe

ratio with control

of expected return

Mean return 0.24% 0.17%

Risk 1.13% 0.79%

Upside volatility 0.43% 0.30%

Downside risk 0.35% 0.23%

Sharpe ratio Sp 1.9143 2.0435
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� expðfT ÞxðjÞT
T

ðk þ cðMðRT Þ � rÞÞ

3
77775

�

Xm
r¼1

expðnðrÞT Þ � expðnðjÞT Þ
 !

expðnðjÞT Þ

Xm
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expðnðrÞT Þ
" #2

5.2.1. Simulation

We simulate the modified Sharpe ratio with

control of expected return approach and use the

modified Sharpe ratio approach in the previous

subsection as benchmark. The predetermined ex-

pected return used for the simulation is r = 0.15%.

Graphical comparison of profit gain between the

two approaches using test data is shown in Fig. 7,

while daily risk-return statistics of the portfolios are

given in Table 8.

5.3. Return maximization with control of expected

downside risk

Some aggressive investors are more concerned

about return than risk. Therefore, a strategy that
 
 

Fig. 7. Comparative profit gain of portfolio with control of expected

return.
may better serve them is to maximize the expected

return while controlling the expected downside risk.

In particular, this can be achieved by setting the

expected downside risk in Eq. (30) to be a constant

specified by the investor, and the optimization es-

sentially becomes a maximization of expected return

and upside volatility.

max
w;/

SpV¼
MðRT Þ þ Vþ

T

v

subject to

at ¼ expðftÞ;

ft ¼ gðyt;wÞ;

bðjÞ
t ¼ expðnðjÞt Þ

!Xm
r¼1

expðnðrÞt Þ;

nt ¼ f ðyt;/Þ;

V�
T ¼ v

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð30Þ

Here, the augmented Lagrangian is given by

L ¼ 1
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XT
t¼1

Rt þ
XT
t¼1

Xm
i¼1

Xm
j¼1

bðiÞ
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In implementation, the algorithm in Table 1

could be adopted, except the two terms jf Sp and

T



Table 9

Risk-return statistics of portfolio with control of expected downside

risk

Modified

Sharpe ratio

Modified Sharpe

ratio with control

of downside risk

Mean return 0.24% 0.15%

Risk 1.13% 0.71%

Upside volatility 0.43% 0.23%

Downside risk 0.35% 0.19%

Sharpe ratio Sp 1.9143 0.2000
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jnT

( j)Sp are replaced by jfTL and jnT

( j)L, respective-

ly, where

rfT L ¼ expðfT Þ
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5.3.1. Simulation

We simulate the modified Sharpe ratio with control

of expected downside risk approach and use the

modified Sharpe ratio approach in the previous sub-

section as benchmark. The predetermined expected

downside risk used for the simulation is v = 0.20%.
 
 

Fig. 8. Comparative profit gain of portfolio with control of expected

downside risk.
Graphical comparison of profit gain between the two

approaches using test data is shown in Fig. 8, while

daily risk-return statistics of the portfolios are given

in Table 9.

5.4. Performance evaluation

The investment strategy with control of expected

return is well suited for risk-averse investors. By

comparing the statistics shown in Table 8 with that

of Table 7, we can see that not only is the expected

return under control, but also is risk lowered. As a

result, Sp remains more or less constant. This obser-

vation agrees with the tenet in finance that risk and

return go hand in hand with each other. Similar

reasoning could also be extended to include the case

of aggressive profit-seeking investors by comparing

the statistics shown in Table 9 with that of Table 7.
6. Conclusion

In this paper, we introduce how to utilize the APT-

based Gaussian TFA model for adaptive portfolio

management. Since TFA is based on the classical

APT model and has the benefit of removing rotation

indeterminacy via temporal modelling, using TFA for

portfolio management would allow portfolio weights

to be indirectly controlled by several hidden factors.

Moreover, the approach is extended to tailor for

investors according to their risk and return objectives.

Simulation results reveal that APT-based portfolio

management in general excels return-based portfolio

management and portfolio returns may be somehow

enhanced by short selling, especially when the general

market climate is not that favorable.
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