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Dual Multivariate Auto-Regressive Modeling in
State Space for Temporal Signal Separation

Yiu-ming Cheung, Member, IEEE,and Lei Xu, Fellow, IEEE

Abstract—Many existing independent component analysis
(ICA) approaches result in deteriorated performance in temporal
source separation because they have not taken into consideration
of the underlying temporal structure of sources. In this paper, we
model temporal sources as a general multivariate auto-regressive
(AR) process whereby an underlying multivariate AR process
in observation space is obtained. In this dual AR modeling, the
mixing process from temporal sources to observations is the same
as the mixture from the nontemporal residuals of the source AR
(SAR) process to that of the observation AR (OAR) process. We
can therefore avoid the source temporal effects in performing ICA
by learning the demixing system on the independently distributed
OAR residuals rather than the time-correlated observations. Par-
ticularly, we implement this approach by modeling each source
signal as a finite mixture of generalized autoregressive conditional
heteroskedastic (GARCH) process. The adaptive algorithms are
proposed to extract the OAR residuals appropriately online, to-
gether with learning the demixing system via a nontemporal ICA
algorithm. The experiments have shown its superior performance
on temporal source separation.

Index Terms—Blind signal separation, dual auto-regressive
processes, generalized autoregressive conditional heteroskedastic
(GARCH) model, independent component analysis.

I. INTRODUCTION

B LIND signal separation (BSS) has recently received wide
attention in the literature of signal processing and neural

networks due to its attractive applications in many fields. For
example, in medical signal processing, Makeiget al. [21]
and Junget al. [16] have shown that the BSS technique can
extract electroencephalogram (EEG) activations and linearly
decompose EEG artifacts such as line noise, eye blinks, and
cardiac noise into independent components with sub-Gaussian
and super-Gaussian distributions. Actually, Mckeownet al.
[22] have used the BSS algorithms to investigate task-related
human brain activity in functional magnetic resonance imaging
(fMRI) data. Moreover, in wireless communications and speech
recognition, Torkkola [28] has shown that the BSS technique
can successfully separate the radio signals in fading channels
of CDMA mobile system. Leeet al. [19] showed that the
recognition rate of an automatic speech recognition system
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was increased after separating the speech signals. Apart from
these applications, the BSS techniques are also applicable to
unsupervised data classification [20], image feature extractions
[5], time series analysis [3], [18], data mining [13], and so on.
Hence, the exploration of BSS has been greatly attracting the
researchers in the community during the past decade.

The blind signal separation with an instantaneous linear mix-
ture can be formulated into the independent component analysis
(ICA) problem: Suppose channels of non-Gaussian source
signals that are statistically independent each other are sam-
pled at discrete time, denoted as with

. The sources are instantaneously and linearly
mixed by an unknown full-column matrix and observed as

:

(1)

The objective of an ICA approach is to recovers up to a
constant scale and any permutation of indices through the ob-
servations s by finding out a demixing matrix such that

(2)

where is a permutation matrix, is a diagonal
matrix, and is the recovered signal of .

In the literature, a lot of ICA approaches based on different
methodologies and theories have been proposed. Roughly,
these methods can be separated into two categories:one-step
ICA approachesand two-step ICA approaches. One-step
approaches include maximum likelihood [27], negentropy
maximization [14], INFOMAX [4], minimizing mutual in-
formation (MMI) [1], and learned parametric mixture (LPM)
[32], [33], which perform independent component analysis
upon the observed signalss without any preprocessing. In
contrast, two-step ICA approaches, e.g., nonlinear principal
component analysis (PCA) [24], [17] and cumulants-based
methods [11], perform independent component analysis with
two steps. The first step is to prewhiten the observations such
that the second-order redundancy in theis removed. Then,
the second step uses higher order statistics to further reduce the
remaining redundancy within the prewhitened observations.
In general, these two-category approaches perform source
separation without considering the internal time correlations
in each source, thus resulting in deteriorated performance
in separating temporal sources. Hereafter, we also call them
nontemporalICA approaches.

Recently, some ICA works have been done toward temporal
sources. For example, considering the time delayed correlation
matrix of observations with a preassigned delay parameter,
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Fig. 1. Invariant mixing process in the ASSA approach, either between the
sourcey and the observationx or between their residuals.

Molgedeyet al. [23] formulated the ICA problem as an eigen-
value analysis which involves the simultaneous diagonalization
of two symmetric matrices whose elements are measurable
time delayed correlation functions. Attias [2] modeled each
source as a linear combination of non-Gaussian white signals
with the coefficients learned together with the demixing
matrix by minimizing a Kullback–Leibler (KL) error function.
Moreover, Pearlmutteret al. [25], [26] modeled the density
function of a source as a mixture of logistic densities with the
source mean being a linear function of the recent values of
that source and tuned the density parameters by the maximum
likelihood (ML) approach while learning by the natural
gradient descent method [1]. In recent years, Xu [30], [31] has
developed a temporal Bayesian Ying–Yang (TBYY) learning
theory that models temporal sources and observations in
general state-space equations. Not only does the TBYY theory
present a unified point of view on Kalman filter, hidden Markov
model (HMM), and ICA with some extensions provided [31]
but also solves: 1) temporal binary BSS problem via a higher
order independent HMM and 2) temporal real BSS problem via
temporal ICA (TICA) and temporal factor analysis developed
from the TBYY learning theory. Particularly, it has been
shown that not only non-Gaussian but also Gaussian process
sources can be separated by the TICA through exploring the
internal temporal dependence of each source. Furthermore,
a degenerated case of the TICA becomes equivalent to the
method proposed by Pearlmutteret al. [25], [26].

All the above studies belong to the one-step approach. In
our preliminary papers [9], [10], we have proposed a specific
two-step temporal approach called theautoregressive-based
signal separation approach(ASSA). This method models
independent channels in state space (or calledsource space)
as a -order multivariate autoregressive (AR) process, which
results in obtaining a corresponding multivariate AR process
in observation space. For convenience, we denote the AR
processes in source and observation spaces by SAR and OAR,
respectively. As shown in Fig. 1, in this dual AR modeling,
the OAR residual is exactly the mixture of component-wise
independent SAR residual by the same mixing matrix. Since
the OAR residuals are also statistically independent in time

domain, we can still apply a nontemporal ICA algorithm to
learn from OAR residuals. Hence, this two-step approach
has actually provided a straightforward way to extend the
power of nontemporal ICA algorithms to temporal source
separation. The preliminary results in [9] and [10] have shown
that the ASSA can successfully separate the temporal sources.
The similar idea that estimates based on observation inno-
vations rather than s was also proposed in [15]. Generally,
the performance of such an innovation-based method much
depends on the estimation of the innovation process. However,
[15] has not conducted the studies on how to appropriately
estimate the innovation process, particularly on that such a
process is nonstationary.

In this paper, we will elaborate a two-step approach in a
broad view, which includes the extraction of OAR residuals,
the learning of residual parameter, and the learning of the
demixing matrix . Particularly, we study its specific case as
a generalization of the ASSA approach [9], [10] with further
improvements on two-fold. On the one hand, we generalize
the AR source model to be a finite mixture of generalized
autoregressive conditional heteroskedastic (GARCH) process
[6]. The GARCH models the noise variance of each source
varying over time. It is therefore believed that GARCH model
is better to model nonstationary source signals. On the other
hand, we present a ML learning algorithm, which includes
the generalized least-mean-square (LMS) algorithms in [10]
as a special case, to tune the parameters such that the OAR
residuals are appropriately extracted online. The experiments
have shown that the proposed method has a robust performance
in separating nonstationary sources and outperforms an existing
nontemporal ICA approach.

This paper is organized as follows. Section II gives out a
general two-step approach to temporal signal separation, where
the residual definition and the basic procedure of this method
are both described. Section III studies this approach in a spe-
cific case in detail. We model each source as a finite mixture of
GARCH process and, therefore, obtain a detailed ML learning
algorithm to tune the parameters such that the OAR residuals are
appropriately extracted on line. Furthermore, LPM, an existing
nontemporal ICA algorithm used in this paper, is also briefly
introduced in Section IV. We experimentally compare the per-
formance of our proposed approach with the individual LPM
algorithm in Section V and make a discussion in Section VI.
Last, we draw a conclusion in Section VII.

II. GENERAL TWO-STEP TEMPORAL APPROACH

A. General Principle of a Two-Step Temporal Approach

Suppose source signals with
are statistically independent, and each of them can be gener-

ally modeled as an AR process

(3)

where with is a

deterministic function of with the parameter set , and
is zero-mean SAR residual that is independent over time.
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Here, we suppose that s are generally non-Gaussian dis-
tributed with at most one being Gaussian. For simplicity, we can
also express (3) in matrix form as

(4)

where , ,
, , and

.
Through the ICA model of (1), we then have

(5)

Since the mixing matrix in (1) is full-column rank, there must
exist at least a such that (2) is held. Therefore, the term

in (5) can also be re-expressed as

(6)

with

where is also a deterministic function of the past
observations. Consequently, (5) becomes

(7)

which is actually an underlying AR process existing in observa-
tion space. We define the OAR residualby

(8)

and following from (7), we then have

(9)

It shows that the residual is the linear instantaneous mix-
ture of independent s with the same mixing matrix .
Since and , for any and are statistically inde-
pendent without temporal dependence, we can therefore esti-
mate the demixing matrix based on via a nontemporal
ICA algorithm. Consequently, at each time step, we perform
two steps as follows.Step 1)Extract according to (8), and
Step 2)based on (9), use a nontemporal ICA algorithm such
as LPM one [32], [33] to adjust by a small-step size with

as its input while adjusting by a small step as well. Here,
two points should be noted. One is the selection of a nontem-
poral ICA algorithm invoked in this two-step approach. In gen-
eral, we should choose an ICA algorithm with the computing
complexity as small as possible, but it can separate any com-
bination of sub-Gaussian and super-Gaussian source signals. In
this paper, we will choose the existing LPM algorithm as an ex-
ample, whose details will be described in Section IV. The other
point is that this two-step approach much depends on the appro-
priate extraction of the OAR residualss. In (8), the residual
extraction involves two unknowns. One is the function form of

, and the other is the unknown parameter set. In general,

the former can be determined after a source modelis explic-
itly specified. Therefore, the remaining critical task is how to
appropriately estimate . In the following subsection, we will
give a general ML procedure to estimateadaptively.

B. General Procedures for OAR Residual Parameter Learning

To estimate the OAR residual parameterin (8) via an ML
algorithm, we need to determine the probability density function
(pdf) of based on that of through (9). Although we know
nothing about the pdf of except for non-Gaussianity, it can be
approximated by a universal density estimator. Here, we use a
finite mixture of Gaussian densities, i.e.,

with

(10)
where denotes the Gaussian density of the vector

with mean and covariance matrix , and is a density
mixture number. Since the components ofare statistically
independent, we let be a diagonal matrix hereafter without
loss of generality.

Intuitively, it can be understood from (10) that each individual
component is the pdf of a dummy variable ,

equals with the probability . That is, is equal to
with the probability . Since is also Gaussian distributed
with the pdf , according to (9), we can
therefore model the probability density function (pdf) ofby

(11)

By (8), we then have

(12)

where consists of the parameters, , s, s, and s.
Given a series of observationss with , the

average log-likelihood function of the observed signals is

(13)

where , and . The ML
estimate of can therefore be obtained by maximizing
through a constrained optimization algorithm in view of the lim-
itation on s, as shown in (10). Alternatively, here, we let

(14)
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in which the constraints of s are automatically satisfied, but
the new variables s are totally free. Consequently, instead
of s, we can learn s as well as other parameters in by
using an unconstrained optimization procedure such that
is maximized. In this paper, we use a gradient ascent method to
tune the parameters. That is, at each time step, we tune the pa-
rameters by a small-step size along the direction of maximizing

(15)

That is, we update

(16)

where s, s, s , and is a small posi-
tive learning rate. Under the circumstances, the detailed imple-
mentation of the previousSteps 1and2 can be summarized, as
shown in Table I.

III. SPECIFICTWO-STEP APPROACH

As an example, this section will investigate the proposed ap-
proach by specifying the source model of (4) asa finite mixture
of GARCH process. Consequently, a specific ML adaptive algo-
rithm is obtained to realizeStep 1in the previous section.

A. GARCH Process and Source Modeling

Consider a scalar-order AR model

(17)

where denotes the zero-mean white residual with variance.
Traditionally, is regarded as a constant over time. However,
[12], [6] has shown that a time-varied over time instead of a
constant is more useful in modeling nonstationary phenomena
such as economic series. Particularly, Bollerslev [6] suggested
that

(18)

where , , , s, and s are coefficients that
need to be determined. Such a series ofis called a generalized
autoregressive conditional heteroskedastic process, denoted as
GARCH( , ).

When the pdf of is modeled as a finite mixture of Gaus-
sians, i.e.,

(19)

TABLE I
IMPLEMENTATIONS OF THE DUAL AR MODELING APPROACH

AT EACH TIME STEP t

with

(20)

we obtain a finite mixture of GARCH( , ) process [29].
In this paper, we further extend the above finite mixture of

GARCH process to multivariate case. We model each source by
a -order AR process

(21)

with . Hence, (4) is explicitly specified as

(22)

where is a diagonal matrix with , as its
diagonal elements due to the fact that thesources are statis-
tically independent. The pdf of in (22) is also given by (10),
but the th element of , which is denoted as , is
described by (20). That is

(23)

Hereafter, we also simply call this multivariate source modela
finite mixture of GARCH( , ) processwithout further dis-
tinction.

B. Parameter Estimation in a Finite GARCH Model

Using the source model in (22) and comparing with (4), it
follows that

(24)

Consequently, in (6) is specified as

(25)
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Hence, the OAR residual in (8) becomes

(26)

To adaptively extract by (26), we need to estimate online
as well as other parameters. From (2), we know thatcan be
estimated by , which, however, needs extensive computing
costs to calculate the inverse of a matrix. Alternatively, we have
noticed that each time we estimatewith being fixed, we
can learn by regarding and as two constants. As a result,
we further let (25) be

(27)

where , and
with . in (26) then

becomes

(28)

and in (15) becomes

(29)

where , and . We therefore di-
rectly learn , s and s to avoid estimating . Please
notice that under the circumstances, consists of the param-
eters: { , s, s, , s, and s}. Consequently, the
term in Step 2of Table I is explicitly given as
follows:

(30)

with

(31)

where denotes a diagonal matrix whose th element
is either the th one of the square matrix , or the th one
as is a vector, and is the Kronecker delta function with

if
otherwise.

(32)

We list the detailed derivation of (30) in the Appendix. Here,
two points should be noted. One point is that we just need to
estimate by , where can be easily cal-
culated because is a diagonal matrix as described in (23).
The other point is that the source process in (3) becomes a sta-
tionary process as and are all zero. In this
case, degenerates to that is irrelevant
to the time, and (11) actually becomes a classical finite mixture
of Gaussian densities. Consequently, in (30) can
be further simplified as

(33)

If we further let

(34)

from (28), we then have

(35)

(36)

(37)

where is the square root of the inverse ofs covari-
ance, , and . In this way, the
components of s are decorrelated with unit variance. Since
each component of is a linear combination of s, it can
therefore be approximately regarded as a Gaussian variable by
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the law of large number when the dimensionof is suf-
ficiently large. Consequently, maximizing log-likelihood func-
tion of the observed signals in (13) is simplified to minimize the
cost function

(38)

In this case, the extraction of OAR residuals is determined by
the parameter and only, which can be estimated by a gen-
eralized LMS method. That is, at time step, and are
adaptively updated by

(39)

In (39), we only need to use in updating . To save com-
puting cost and calculation stability, we can directly estimate

instead of with

(40)

where is the identity matrix.

IV. LPM A LGORITHM

We choose the LPM algorithm [33], [32] among a variety of
existing nontemporal ICA algorithms because it has the advan-
tage of being capable of separating any combination of sub-
Gaussian and super-Gaussian signals. Here, we briefly intro-
duce the LPM concept and main implement steps only. See [32]
and [33] for other details.

Suppose independent sources in (1)
are each independently and identically distributed. We there-
fore omit the time subscript in the remaining part of this section.
LPM algorithm is to find out an appropriate in (2) by mini-
mizing the mutual information betweenand its components

(41)

where is the entropy of irrelevant to , and
is an estimate of the marginal density of . LPM lets
be a mixture of densities

(42)

TABLE II
DETAILED IMPLEMENTATION STEPS OFLPM ALGORITHM AT EACH TIME STEPt

with

(43)

where is a density function, is the number of compo-
nents in the mixture, is the weight of the component,
controls the variant of theth density, and is the bias or lo-
cation of the center of theth density. In particular, if

with

we have

(44)

with

(45)

Given a series of inputss, the LPM algorithm adaptively
tunes as well as , to-
ward minimizing the cost function in (41). Consequently, at
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each time step, LPM performs three steps, as summarized in
Table II.

It should be noted that when the LPM algorithm is used in
Step 2of Section II for (9), the inputs of LPM are actuallys
but not s.

V. EXPERIMENTS

We conducted two experiments to show the performance of
our proposed two-step approach, where the LPM was used to
implement itsStep 2. In addition, we showed the performance
of individual LPM algorithm with the observations as its inputs
for comparison. In both experiments, we simply let the learning
rate and arbitrarily choose the number of Gaussian
density mixtures with .

A. Experiment 1

We used three GARCH(1,1) source signals generated, respec-
tively, by

(46)

where , , and were all zero-mean uniformly dis-
tributed with variance

(47)

In the experiments, we set the true mixing matrix

(48)

while randomly assigning the initial values of, , and other
estimated parameters. We measured an algorithm performance
by signal-to-noise ratio (SNR), defined by

SNR
MSE

(49)

where , is the variance of source signal ,

and MSE is the mean square error between source
signal and its recovered signal . Since is irrelevant
to the algorithm performance, we can further ignore it and use
a simplified SNR with

SNR MSE (50)

Since the observations were sequentially observed without re-
peat, we calculated the MSE values on line once every 10 000
observation points and normalized the variances of both the
sources and the recovered signals to be 1 to avoid the scaling
problem in SNR calculations.

Fig. 2. (a) Learning curve of the parameterB. (b) Curve of the demixing
matrixW.

Fig. 3. (a) Performance of the proposed approach in Experiment 1. (b) That
of the individual LPM algorithm. In (a) and (b), the dotted curve represents the
SNR of each individual recovered signal, and the solid curve is their average
SNR.

Fig. 2(a) and (b) show the learning curves of two major pa-
rameters and , respectively. It can be seen thatquickly
tends to converge after scanning about 5000 data points, al-
though the learning rate is very small. In contrast, con-
verges after scanning about 80 000 data points. The reason that

converges slower than is that is tuned based on the
extracted observation residuals, which, however, much depend
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Fig. 4. (a), (b) Slide window of three source signals and their mixed signals, respectively, in Experiment 1. (c) and (d) Recovered signals obtained from the
proposed approach and the individual LPM algorithm, respectively.

on the value of . After convergence, a snapshot value of
learned by the proposed approach is

(51)

while by the individual LPM is

(52)

Since a correct solution of should satisfy that is equal
to , as described in (2), we therefore further investigated
the values of . We found that the proposed approach
gives

(53)

while the individual LPM gives

(54)

It can be seen that the former has successfully converged to a
correct solution, but the latter is not. Actually, a snapshot of

average SNR SNR

for the proposed approach is 34.69 dB, whereas the individual
LPM is 15.74 dB only. Fig. 3 shows the learning curves of
their performance, and Fig. 4 presents a slide window to show
the separation results by these two algorithms. We found that
the proposed approach has successfully separated the temporal
sources, but the LPM has not.

B. Experiment 2

We further investigated the performance of these two algo-
rithms on real-world signals. We let the sources be three music
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sound signals recorded at a 22-kHz sampling rate. After sequen-
tially scanning 800 000 observation points, a snapshot value of

by the proposed approach is

(55)

while that by the individual LPM is

(56)

where we found that the proposed approach has given a cor-
rect solution of , but the individual LPM does not. Actually,
(56) has indicated that the latter cannot successfully separate
the first audio signal and the third one. To clearly show this,
we further chose the first audio source signal as an example to
show its frequency spectrum as well as the separated results in
Fig. 5, from which we can see that the separated signals given
by the proposed approach has a similar frequency spectrum with
the original one but that from the LPM is not. Fig. 6 gives out
the separation results of these two algorithms on music sounds,
respectively, and Fig. 7 shows their comparative performance
graphs. It can be seen that the proposed approach again outper-
forms the LPM in this real-data case study.

VI. DISCUSSION

The proposed two-step approach as described in the pre-
vious sections supposes that the residualss of the source
process are generally non-Gaussian distributed with at most
one being Gaussian. However, when two or more ofs are
or near Gaussian distributed, this approach will be not work
any more because the independence property among a set of
independently and identically distributed Gaussian variables is
invariant in a rotation transformation (i.e., multiply an orthog-
onal matrix). In view of this, our recent paper [7] has further
studied dual AR modeling on the case thatis multivariate
Gaussian distributed. Although we have presented a learning
algorithm in [7] and further analyzed it in [8], the situation that
some of are Gaussian distributed but not
all has yet to be investigated.

Furthermore, this two-step approach uses the gradient-ascent
learning rule to adjust the parameters, resulting in simple im-
plementation but linear parameter convergent rate. Although
the latter can be further improved by using second-order sta-
tistics information in updating the parameters at each time step,
it needs the large amount of computing cost in calculating Hes-
sian matrices, especially when the parameter dimension is large.
Hence, one better way is to find an appropriate learning rule
with convergent rate between 1 and 2 such that the algorithm
is qualitatively similar to quadratic convergence, but only com-
putes first derivative. We leave it for future studies.

VII. CONCLUSION

We have systematically presented a general two-step ap-
proach for temporal signal separation. This approach adaptively
extracts the OAR residuals with their parameters learned by

(a)

(b)

(c)

Fig. 5. (a) Frequency spectrum of an audio source signal. (b) Frequency
spectrum of the corresponding recovered signal via our proposed approach.
(c) Recovered signal from the individual LPM algorithm.

a ML algorithm, together with learning the demixing matrix
on the OAR residuals by a nontemporal ICA algorithm.
Particularly, we have implemented the two-step approach in
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Fig. 6. (a) and (b) Slide window of three source signals and their mixed signals respectively in Experiment 2. (c) Recovered signals obtained from the proposed
approach. (d) That from the individual LPM algorithm.

Fig. 7. Average SNR curves of our proposed approach (solid line) and the
individual LPM (dotted line) on music sounds, respectively.

detail by modeling the sources as a finite mixture of GARCH
process. We have therefore obtained an adaptive ML algorithm,
which includes generalized LMS method as a special case. The
experiments have shown that this new approach outperforms a
nontemporal ICA algorithm in temporal source separation.

APPENDIX

DERIVATION OF IN EQ. (30)

In the following, we denote as the differential of function
with respect to . We will give the detailed derivations of (30)

as follows.
From (29), we have

(57)

(58)

(59)

(60)

(61)
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(62)

where .
Since

Tr

(63)

with , by using thetraceproperty that Tr
Tr if and only if both of and are square matrix,
we then further simplify (63) to

Tr

Tr (64)

Similarly, we can also obtain

Tr

Tr (65)

Tr

Tr (66)

Tr (67)

where , and .
From (23), we know that

(68)

(69)

(70)

with

(71)

where , , and
. Putting (68)– (70) into (66) and

(67), we then have

Tr (72)

Tr (73)

Tr (74)

where . Furthermore, based
on (14), we have the following:

i) If :

(75)

ii) If :

(76)

By combining (75) and (76), we therefore obtain

(77)

Consequently, by putting (64), (65), (72)– (74), and (77) into
(57)– (62), we therefore obtain

Tr

Tr (78)

Tr

Tr (79)

and

Tr

Tr

Tr

Tr

Tr

Tr (80)
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Tr

Tr

Tr

Tr

Tr

Tr

Tr

(81)

Tr

Tr

Tr

Tr

Tr

Tr (82)

with

(83)

where

(84)

Based on the result that if Tr , then ,
from (78)–(83), we therefore have

(85)
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