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Dual Multivariate Auto-Regressive Modeling in
State Space for Temporal Sighal Separation
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Abstract—Many existing independent component analysis was increased after separating the speech signals. Apart from
(ICA) approaches result in deteriorated performance in temporal  these applications, the BSS techniques are also applicable to
source separation because they have not taken into Cons'derat'onunsupervised data classification [20], image feature extractions

of the underlying temporal structure of sources. In this paper, we . . . i
model temporal sources as a general multivariate auto-regressive [5], ime series analysis [3], [18], data mining [13], and so on.

(AR) process whereby an underlying multivariate AR process Hence, the exploration of BSS has been greatly attracting the
in observation space is obtained. In this dual AR modeling, the researchers in the community during the past decade.

mixing process from temporal sources to observations is the same  The blind signal separation with an instantaneous linear mix-
as the mixture from the nontemporal residuals of the source AR ,ra can be formulated into the independent component analysis

(SAR) process to that of the observation AR (OAR) process. We . .
can therefore avoid the source temporal effects in performing ICA (ICA) problem: Supposé channels of non-Gaussian source

by learning the demixing system on the independently distributed Signals that are statistically independent each other are sam-
OAR residuals rather than the time-correlated observations. Par- pled at discrete time, denoted ag; = [yt(l), N y,S’“)]T with
ticularly, we implement this approach by modeling each source ; — 0,1, 2, ....The sources are instantaneously and linearly

signal as a finite mixture of generalized autoregressive conditional ... ~ :
heteroskedastic (GARCH) process. The adaptive algorithms are mixed by an unkr(lcg\]/\;n full-column matriA. and observed as
, Ty :

1
proposed to extract the OAR residuals appropriately online, to- Xt = [z, .-
gether with learning the demixing system via a nontemporal ICA
algorithm. The experiments have shown its superior performance x; = Ay;. 1)

on temporal source separation. o )
] . _ , The objective of an ICA approach is to recoyes up to a
Index Terms—8lind signal separation, dual auto-regressive .qnqiant scale and any permutation of indices through the ob-

rocesses, generalized autoregressive conditional heteroskedastic . L . .
?GARCH) m%del, independent ?:omponent analysis. Servations;s by finding out a demixing matriXV such that

y: = Wx; = WAy, = PDy; )

|. INTRODUCTION . . L :
whereP is ak x k permutation matrixD is ak x k diagonal

LIND signal separation (BSS) has recently received wid@atrix, andy, is the recovered signal of;.
attention in the literature of signal processing and neural|n the literature, a lot of ICA approaches based on different
networks due to its attractive applications in many fields. F(Pﬁethodok_)gies and theories have been proposed. Roughly,
example, in medical signal processing, Makeig al. [21] these methods can be separated into two categaiesstep
and Junget al. [16] have shown that the BSS technique caca approachesand two-step ICA approachesOne_Step
extract electroencephalogram (EEG) activations and lineagyproaches include maximum likelihood [27], negentropy
decompose EEG artifacts such as line noise, eye blinks, afglximization [14], INFOMAX [4], minimizing mutual in-
cardiac noise into independent components with sub-Gaussigfmation (MMI) [1], and learned parametric mixture (LPM)
and Super-Gaussian distributions. Actually, Mckeoemal. [32], [33]’ which perform independent component ana|ysis
[22] have used the BSS algorithms to investigate task-relatgglon the observed signalss without any preprocessing. In
human brain activity in functional magnetic resonance imagir@ntrast, two-step ICA approaches, e.g., nonlinear principal
(fMRI) data. Moreover, in wireless communications and speegbmponent analysis (PCA) [24], [17] and cumulants-based
recognition, Torkkola [28] has shown that the BSS techniqyfethods [11], perform independent component analysis with
can successfully separate the radio signals in fading chann@ls steps. The first step is to prewhiten the observations such
of CDMA mobile system. Leeet al. [19] showed that the that the second-order redundancy in theis removed. Then,
recognition rate of an automatic speech recognition syst@Re second step uses higher order statistics to further reduce the
remaining redundancy within the prewhitened observations.
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Source Space domain, we can still apply a nontemporal ICA algorithm to

Source Space
Vo= Yty Yoy oo Vo) + & \:> Resdt & =¥~ (0o Voo o o) learn W from OAR residuals. Hence, this two-step approach
Co eIl has actually provided a straightforward way to extend the

power of nontemporal ICA algorithms to temporal source
Y, ) & separation. The preliminary results in [9] and [10] have shown
Mising Matrix A that the ASSA can successfully separate the temporal sources.
The similar idea that estimatd¥ based on observation inno-
vations rather thax;s was also proposed in [15]. Generally,
the performance of such an innovation-based method much
Observation Space depends on the estimation of the innovation process. However,
<: Residual: 2, = X, = (X0, Xy ooy Xip) [15] has not conducted the studies on how to appropriately
= Ag estimate the innovation process, particularly on that such a
process is nonstationary.
Fig. 1. Invariant mixing process in the ASSA approach, either between t eIn thl$ paper: We_ will elaborate a tWO-Step approaqh n a
sourcey, and the observatior, or between their residuals. road view, which includes the extraction of OAR residuals,
the learning of residual parameter, and the learning of the
demixing matrixW. Particularly, we study its specific case as
a generalization of the ASSA approach [9], [10] with further
Molgedeyet al.[23] formulated the ICA problem as an eigenimprovements on two-fold. On the one hand, we generalize
value analysis which involves the simultaneous diagonalizatigiie AR source model to be a finite mixture of generalized
of two symmetric matrices whose elements are measurablgtoregressive conditional heteroskedastic (GARCH) process
time delayed correlation functions. Attias [2] modeled eadd]. The GARCH models the noise variance of each source
source as a linear combination of non-Gaussian white signaigying over time. It is therefore believed that GARCH model
with the coefficients learned together with the demixing better to model nonstationary source signals. On the other
matrix by minimizing a Kullback—Leibler (KL) error function. hand, we present a ML learning algorithm, which includes
Moreover, Pearlmutteet al. [25], [26] modeled the density the generalized least-mean-square (LMS) algorithms in [10]
function of a source as a mixture of logistic densities with th&s a special case, to tune the parameters such that the OAR
source mean being a linear function of the recent values rekiduals are appropriately extracted online. The experiments
that source and tuned the density parameters by the maximave shown that the proposed method has a robust performance
likelihood (ML) approach while learnind¥V by the natural in separating nonstationary sources and outperforms an existing
gradient descent method [1]. In recent years, Xu [30], [31] hasntemporal ICA approach.
developed a temporal Bayesian Ying—Yang (TBYY) learning This paper is organized as follows. Section Il gives out a
theory that models temporal sources and observations gigneral two-step approach to temporal signal separation, where
general state-space equations. Not only does the TBYY thedg residual definition and the basic procedure of this method
present a unified point of view on Kalman filter, hidden Markoware both described. Section Il studies this approach in a spe-
model (HMM), and ICA with some extensions provided [31tific case in detail. We model each source as a finite mixture of
but also solves: 1) temporal binary BSS problem via a high&/ARCH process and, therefore, obtain a detailed ML learning
order independent HMM and 2) temporal real BSS problem vidgorithm to tune the parameters such that the OAR residuals are
temporal ICA (TICA) and temporal factor analysis developedppropriately extracted on line. Furthermore, LPM, an existing
from the TBYY learning theory. Particularly, it has beemontemporal ICA algorithm used in this paper, is also briefly
shown that not only non-Gaussian but also Gaussian procgggoduced in Section IV. We experimentally compare the per-
sources can be separated by the TICA through exploring tfeemance of our proposed approach with the individual LPM
internal temporal dependence of each source. Furthermaiigorithm in Section V and make a discussion in Section VI.
a degenerated case of the TICA becomes equivalent to thst, we draw a conclusion in Section VII.
method proposed by Pearimuttral. [25], [26].

All the above studies belong to the one-step approach. In II. GENERAL TWO-STEP TEMPORAL APPROACH
our preliminary papers [9], [10], we have proposed a specific o
two-step temporal approach called thatoregressive-based”: General Principle of a Two-Step Temporal Approach
signal separation approacfASSA). This method modelé Suppose: source signal@fl), y§2)7 ygk) with 0 < ¢ <
independent channels in state space (or callegice space N are statistically independent, and each of them can be gener-
as ap-order multivariate autoregressive (AR) process, whichilly modeled as an AR process
results in obtaining a corresponding multivariate AR process
in observation space. For convenience, we denote the AR yt(i) = f (Yf(_J)1
processes in source and observation spaces by SAR and OAR, '
respectively. As shown in Fig. 1, in this dual AR modeling, : _ ; ; ; N
the OAR residual is exactly the mixture of component-wis\é(herefi(yt@l|9i) with Yt(i)l = (w2 s u) IS @
independent SAR residual by the same mixing ma&ixSince deterministic function ot} with the parameter set;, and
the OAR residuals are also statistically independent in tinaé’) is zero-mean SAR residual that is independent over time.

X = Ayt - L= AE;

Observation Space

X = F(Xep, X, oo Xip) + A

o))+, 1<i<k @
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Here, we suppose thaﬁj)s are generally non-Gaussian disthe former can be determined after a source médglexplic-
tributed with at most one being Gaussian. For simplicity, we caify specified. Therefore, the remaining critical task is how to
also express (3) in matrix form as appropriately estimat®. In the following subsection, we will
give a general ML procedure to estim&eadaptively.

ve =f(Y_1]®) 4+ & 4)
wherey, = [ytu)? y§2)7 o yt(k)]T, £ = [f1, for s Sl B. General Procedures for OAR Residual Parameter Learning
Yoo =yl yE, o yET,© = {60, 05, ..., 0}, and  To estimate the OAR residual parame®iin (8) via an ML
e =M, P, T, algorithm, we need to determine the probability density function
Through the ICA model of (1), we then have (pdf) of z; based on that of, through (9). Although we know
nothing about the pdf aof, except for non-Gaussianity, it can be
X = Ay approximated by a universal density estimator. Here, we use a
=A[f(Y: 1|®) + &) finite mixture of Gaussian densities, i.e.,
=Af(Y:_1|®) + Ae,. (5) n n
Since the mixing matriA in (1) is full-column rank, there must plee) = ; viGEddmi, Be, o), with v 2 0, ; m=1
exist at least aW such that (2) is held. Therefore, the term (10)

Af(Y; 1]|©) in (5) can also be re-expressed as whereG(s|m, X) denotes the Gaussian density of the vector
s with meanm and covariance matri¥;, andn is a density
Af(Y: 1|®) = Af(ye-1, yi-2, .., ¥0|©) mixture number. Since the componentsepfare statistically
=Af(Wx;_1, Wx;_, ..., Wx(|O) independent, we |€E, ; be a diagonal matrix hereafter without
=F(X;_1|®) (6) loss of generality.
Intuitively, it can be understood from (10) that each individual
componeni(e;|m;, X, ;) is the pdf of a dummy variablg;,
F(X;_1/0) = Af(Wx,_1, Wx;_o, ..., Wx(|O) € equalsp; with the probabilityy;. That is,z; is equal toA ,
with the probabilityy;. SinceAp, is also Gaussian distributed
with the pdfG(e;|Am;, AX, ;AT), according to (9), we can
whereF(X;_1|®) is also a deterministic function of the pastherefore model the probability density function (pdfizefoy
observations. Consequently, (5) becomes n
xi = F(X, 1]®) + Aey % p(zi) =Y 7G(z:|Am;, AS, ;AT). (11)
=1
vyhich is actually an underlying AR process existing in observ%—y (8), we then have
tion space. We define the OAR residualby

with

X1 = [leh X31727 sy Xg]T

X 1; ©
z; :Xt—F(Xt_1|®) (8) p(Xt| t 1in )
and following from (7), we then have = > %G(x|F(X,-1|0) + Am;, AZ, ;AT)  (12)
=1
Z = Ast- (9)

where® consists of the paramete®, A, v;s,m;s, and; ;s.
It shows that the residual; is the linear instantaneous mix- Given a series of observatiorss witht =1, 2, ..., N, the
ture of & independent!”’s with the same mixing matris.. average log-likelihood function of the observed signals is
Sincee; ande;_, for anyt and7 > 1 are statistically inde-

pendent without temporal dependence, we can therefore esti- Q(®) = % Inp(x1, X2, ..., Xy; O)

mate the demixing matri®W based ore,; via a nontemporal

ICA algorithm. Consequently, at each time stepve perform _1 Inp(x1]Xo; ©) - p(xn|Xn_1; O)

two steps as followsStep 1) Extractz, according to (8), and N ’

Step 2)based on (9), use a nontemporal ICA algorithm such 1 X R

as LPM one [32], [33] to adjusW by a small-step size with =N > Inp(xe|Xi-1; ©)

z; as its input while adjustin® by a small step as well. Here, t=1

two points should be noted. One is the selection of a nontem- 1 X

poral ICA algorithm invoked in this two-step approach. In gen- =— Z Jt((:)) (13)
eral, we should choose an ICA algorithm with the computing N o

complexity as small as possible, but it can separate any com-_ J1(©) = Inp(x,|Xs_1; ©), andXy = xo. The ML
bination of sub-Gaussian and super-Gaussian source signals. |{?I £ : S X
estimate of® can therefore be obtained by maximizi@g®)

this paper, we will choose the existing LPM algorithm as an ex- . o . L .
o . . . rough a constrained optimization algorithm in view of the lim-
ample, whose details will be described in Section IV. The Othﬁétion onvss, as shown in (10). Alternatively, here, we let
point is that this two-step approach much depends on the appro- ViSs ' Y '
priate extraction of the OAR residuatss. In (8), the residual __exp()
extraction involves two unknowns. One is the function form of 7
) exp(fr)

F, and the other is the unknown parameter®etin general,

1<i<n (14)

?

&
|
3

T
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in which the constraints of;s are automatically satisfied, but TABLE |

the new variableg;s are totally free. Consequently, instead IMPLEMENTATIONS oF g:CEHD;’l’:ALEASFT*E’;"fDE“NG APPROACH

of v;s, we can learr;s as well as other parameters@ by

using an unconstrained optimization procedure such@é) Step 1 | Given O and W9, let

is maximized. In this paper, we use a gradient ascent method ! e, = WOz, and y, = Weldx,

tune the parameters. That is, at each time step, we tune the . where the OAR residual z; is extracted by

rameters by a small-step size along the direction of maximizing 2 = x; — F(X¢ |@§,1d).

~ Step 2 | Given &; and z;, update:

Ji(©1) = J:(©) (i) W€V is given by a non-temporal ICA
= Inp(x;|X;_1; ©1) algorithm \&;iith ztans gs input;

(ii) @ = @3 + n22 BV | oo

=In|> %G(x[F(X;-1|®)+Am;, A%, ;A”T)|.

That iS, we update UQ,i = Vz ot Z Vz rgt r T Z 1/}1 rat i (20)
e = @9 4 9J:(©1) (16) we obtain a finite mixture of GARCHY,, n,,) process [29].
00, RS In this paper, we further extend the above finite mixture of

) ~ GARCH process to multivariate case. We model each source by
where®; = {@, A, f;s,m;s, X, ;s}, andn is a small posi- g ,order AR process

tive learning rate. Under the circumstances, the detailed imple-
mentation of the previouSteps land2 can be summarized, as () i OO

shown in Table I. Yi—r (1)
. SPECIFIC TWO-STEP APPROACH with 1 < 5 < k. Hence, (4) is explicitly specified as

As an example, this section will investigate the proposed ap- _ P A 9
proach by specifying the source model of (4paite mixture yt = Z rYi—r 1 €t (22)
of GARCH processConsequently, a specific ML adaptive algo- =1
rithm is obtained to realiz8tep 1in the previous section. whereA, is a diagonal matrix with) j=1,2 ... kasits

_ diagonal elements due to the fact that theources are statis-

A. GARCH Process and Source Modeling tically independent. The pdf af, in (22) is also glven by (10),

Consider a scalgr-order AR model but the(j, j)th element o, ;, which is denoted a@r, ; )2 is

described by (20). That is

4

Y = ; MeYt—r + €t a7 (05,13)2 = (1/1(’]3) Z ( (])) (Et r)2

wheres,; denotes the zero-mean white residual with variarfce A\ 2 2
Traditionally, o7 is regarded as a constant over time. However, + Z (1/%(]2) (Ut( )1“ z) . (23)
[12], [6] has shown that a time-varied over time instead of a r=1

constant is more useful in modeling nonstationary phenomeRrareafter, we also simply call this multivariate source medel
such as economic series. Particularly, Bollerslev [6] suggestatite mixture of GARCHKh,, n,) processwithout further dis-

that tinction.
Uf _ Vg n Z y 61‘ ¥ Z 1/} Ut i (18) B. Parameter Estimation in a Finite GARCH Model
Using the source model in (22) and comparing with (4), it
follows that
wheren, > 0,n, > 0, 13, v2s, andy)?s are coefficients that
need to be determined. Such a series, @ called a generalized £(Y,_1|®) = Z Avyios. (24)

autoregressive conditional heteroskedastic process, denoted as
GARCH(nq, np).
When the pdf of:, is modeled as a finite mixture of Gaus-ConsequentlyF(X,_;|®) in (6) is specified as

sians, i.e.,
F(Xt—l |@) - A.f(Yt_l |@)

n P
= %G(ei|mi, o7 ;) (19) => AAWx . (25)

r=1
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Hence, the OAR residual, in (8) becomes

p
zZi=x—» AAWX, . (26)

r=1

To adaptively extract; by (26), we need to estimatk online
as well as other parameters. From (2), we know thatan be

estimated byW —!, which, however, needs extensive computing
costs to calculate the inverse of a matrix. Alternatively, we have

noticed that each time we estima@ewith W being fixed, we

can learr® by regardingA andW as two constants. As aresult,

we further let (25) be

p p
F(X;110) =) AAWx,_, =) B.xi,
r=1 r=1
=BX|} (27)
where Xﬁ:zl) = I xt, ....xt,)f, and B =
(B1, By, ..., B,) with B, = AA,W. z in (26) then

becomes

7, = x; — BX|_} (28)
and.J;(®;) in (15) becomes
J(©1) = Inp(x,|X!72 Zp5 O1)
=1In li %G (x:[BX}~} + Am;, AEMAT)]
i=1

=In [Z 7iG(x:|BX]Z, + 10y, 34 ;) (29)

whererm; = Am;, andY, ; = A%, ;AT. We therefore di-
rectly learnB, m;s and2t7is to avoid estimatingA.. Please
notice that under the circumstancé, consists of the param-
eters: B, 8;s, m;s, uf’()), (J)s andz,/;(J s}. Consequently, the
termd.J;(©41)/00O; in Step 20f Table | is explicitly given as
follows:

0J, (@1) - > - 1T
:‘)B = ; htvlztj(zt mi)Xﬁ_Il)
G
atrhi =hy, ;3 }(Zt —1m;)
0.J1(®1)
=h i Vi
og, 7
o0J,(® _
51571,01) = he,idg(u, uy ; Etj)”i,o
0J,(®
00Oy, sdglua, il — 5, Hdgler—re? v
alliﬂ» ! ’
0.J1(®1)

=hy idg[(uy, uf ; — S; DT, ;. (30)

8¢i,r
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with
h G(Xt|BX1 : +m1721 L)
t, 1 —
p(xtIXt_p-, 0.)
u,; =3, T W(z, — ;)
T
Vio= [1/1(713 1(237 ey I/Z'(7k8:|
T
Vi = [1/,571) L(ZT),...,VZ(;’CT)} , 1<r<n,
W @ Ol
o= [0 0P B 1<r<e, @Y

wheredg(X) denotes a diagonal matrix whogg j)th element
is either the(j, j)th one of the square matriX, or thejth one
asX is a vector, and;, is the Kronecker delta function with

51'7‘:{

We list the detailed derivation of (30) in the Appendix. Here,
two points should be noted. One point is that we just need to
estimateX; ! by W7S; W, whereX; ! can be easily cal-
culated becausEt iisa d|agonal matnx as described in (23).
The other point is that the source process in (3) becomes a sta-
tionary process afv;, e ., and{s; . }or | are all zero. In this
case Ef ; degenerates t&; WTE 1W that is irrelevant

to the time, and (11) actually becomes a classical finite mixture
of Gaussian densities. Consequeriily;(®;)/900; in (30) can

be further simplified as

L,
0,

ifi=r

otherwise. (32)

n

07(01) =3 i — ) Xi1T
d.J,(® _
(;I(ﬁl) —ht i (Zf ml)
d.J,(® 5 5 -
&;(5) ) = hy,i[(z: — m;)(z; — m;) — 3]
d.J,(®
5(/3,. D _ he i — ;. (33)
If we further let
& =3, (34)
from (28), we then have
£, =3, 1%, (35)
=3, (/2BX(Z + 2,1/, (36)
=CX|Z) + v, (37)

Where2;(1/2) is the square root of the inverse mfs covari-
ance,C = 3;Y¥B, andv, = 2;%?z,. In this way, the
components of;s are decorrelated with unit variance. Since
each component of; is a linear combination oﬂ”s, it can
therefore be approximately regarded as a Gaussian variable by
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the law of large number when the dimensibrof ¢; is suf-

391

TABLE 1l

ficiently large. Consequently, maximizing log-likelihood funC_DETAILED IMPLEMENTATION STEPS OFLPM ALGORITHM AT EACH TIME STEP?

tion of the observed signals in (13) is simplified to minimize th

cost function

]\T
QB, %) =+ 3" (6~ CXIZT(E - OXiZ)). (39)
t=1

In this case, the extraction of OAR residuals is determined |
the parameteB andX, only, which can be estimated by a gen Step 3

eralized LMS method. That is, at time stepB and X, are
adaptively updated by

Brew — Bold + nzz—lti::;T
S = (L) B+ e (39)

In (39), we only need to usg_ ! in updatingB. To save com-

puting cost and calculation stability, we can directly estima

31 instead of¥, with

_qold qold

EZ
1—mn

B nzzl B
1—-n+ nztEglol(l Z4

(40)

wherel is thek x k identity matrix.

IV. LPM ALGORITHM

We choose the LPM algorithm [33], [32] among a variety of
existing nontemporal ICA algorithms because it has the advan-

Step 1
Step 2

Given W°l calculate y = W°ldx,

Update W by

Wrew — Weld L nAW with

AW = (I+ ¢(3)yT)Weld

where ¢(¥) = [01(9M), #(5®), ..., ok (FM)]7,

(7 dlng; (5
and ¢;(§) = 253G

Update the parameters
withi=1,...,n;,1 <35 <k by:

AR

by ne by 1d o
al(]) Yo aEJ)O +77Aa1(.]),
with

(3) _ Xy 8K (k5o (55 —a”)
AQ. - (’V)l gj(gJ(j)) A A
AN = o (D) 1 )0
2a? = 2 1 a0 602 ()

with
k) = b (g(j) _ agﬂ)

i NONIPIENON anp (<) (43)
i=1 mzzjl exp (%))

tage of being capable of separating any combination of sub-

Gaussian and super-Gaussian signals. Here, we briefly intfd2ereq(.)

is a density functionp; is the number of compo-

duce the LPM concept and main implement steps only. See [$#nts in the mixturen’ is the weight of the componert”’

and [33] for other detalils.

Supposek independent sourceg”, @, ..., 4™ in (1)

controls the variant of thgth density, andzgj) is the bias or lo-
cation of the center of thith density. In particular, i@(mﬁj ))

are each independently and identically distributed. We therg?) (1) with
fore omit the time subscript in the remaining part of this section.

LPM algorithm is to find out an appropria¥ in (2) by mini-
mizing the mutual information betwegnand its components

Lw) = [
1;[1 gj (g(i))
[ o P
gj (g(j))

x>~

J

k
- Z /p(x) Ing, (g)(j)) dx—In|det(W)|— H(x)
=1
(41)
where H (x) is the entropy ofk irrelevant toW, andg; (7))

is an estimate of the marginal densityj6f). LPM letsg; (97))
be a mixture of densities

9; (g(j)) _ nz o (ngj))
i=1

(42)

exp (—ngj))

[1+exp (—mE”)]Q

_ dlng; (59)

we have

b; (Q(j))

oy
Ty (;fj)) n; i (ng)) o
with
q ("E])) —n (“Ej)) b,gj)
w (n0) == (2e) —esn () (45)

[1 +exp (—m,ﬁ”)r

Given a series of inputss, the LPM algorithm adaptively
tunesW as well as{yf’), bgj), a@}"»” j=1,2,..., k to-

7 =1

ward minimizing the cost function in (41). Consequently, at
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Learning Curve of Parameter B

each time step, LPM performs three steps, as summarized i °®
Table II. ,

It should be noted that when the LPM algorithm is used i
Step 20of Section Il for (9), the inputs of LPM are actualtys
but notx;s.

0.4l -

0.2

of -

V. EXPERIMENTS i

We conducted two experiments to show the performance oaf ]
our proposed two-step approach, where the LPM was used ..
implement itsStep 2 In addition, we showed the performance

o 50 100 150 350 400 450 500

201 300
No. of data points scanned (x 10)

(a)
of individual LPM algorithm with the observations as its inputs - Loaring Curve of Parameter W

for comparison. In both experiments, we simply let the learnin T T ]

raten = 0.0001 and arbitrarily choose the number of Gaussia M
density mixtures: = n; =9withj =1,2, ..., k. oS e

We used three GARCH(1,1) source signals generated, resp *°[ i
e, by )P S S

1 1 1 15
yD 0.8y, 4 e e ———————ts

No. of data points scanned (x 10%

(b)

ny) _ _0.7yt(3)1 + 552)

3) 3) (3) Fig. 2. (a) Learning curve of the paramef8r (b) Curve of the demixing
Yy =09y, + & (46) matrix W.

wheree", ¢ ande!® were all zero-mean uniformly dis- . ertormance Graph

tributed with variance
(at(l))2 =0.1+0.2 (551)1)2 +0.5 (05?1)2
(052))2 —0.240.1 (ggz)z 0.3 (aﬁ)l>2

(o§3>)2 —0.140.1 (6531)1)2 0.6 (0—91)2 . @)

Signal-to-Noise Ratio (0B)

In the experiments, we set the true mixing matrix % © = s W e e 7o 20
1 . 5 0 . 5 0 . 7 a0 Pe"'m:'ance Graph
A=107 -1 05 (48) .
1.2 08 20 1

while randomly assigning the initial values Bf W, and other
estimated parameters. We measured an algorithm performaz
by signal-to-noise ratio (SNR), defined by

Noise Ratio (dB)

Signal-to

2
SNR(y(j) 2,;(j)) — 10log Ty (49)
’ ** MSE (49, 5) e
No. of data points scanned (x 10%)
where 1< j <k, o2, is the variance of source signgl), ®

and MSEZ/U)7 @(j)) is the mean square error between sourggy. 3. (a) Performance of the proposed approach in Experiment 1. (b) That

signaly(j) and its recovered signﬁfj). Since02(7) isirrelevant of the individual LPM algorithm. In (a) and (b), the dotted curve represents the
to the algorithm performance, we can furthéf ignore it and ug%s of each individual recovered signal, and the solid curve is their average

a simplified SNR with

SNR(y(j), g(j)) — —10log,, MSE (y(j)7 Q(j)) . (50)  Fig. 2(a) and (b) show the learning curves of two major pa-
rametersdB andW, respectively. It can be seen tHatquickly
Since the observations were sequentially observed without terds to converge after scanning about 5000 data points, al-
peat, we calculated the MSE values on line once every 10 0G@ugh the learning rate is very small. In contrastW con-
observation points and normalized the variances of both therges after scanning about 80 000 data points. The reason that
sources and the recovered signals to be 1 to avoid the scalWWgconverges slower thaB is thatW is tuned based on the
problem in SNR calculations. extracted observation residuals, which, however, much depend
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a5

50

(a), (b) Slide window of three source signals and their mixed signals, respectively, in Experiment 1. (c) and (d) Recovered signals mhtéieed fr
proposed approach and the individual LPM algorithm, respectively.

on the value ofB. After convergence, a snapshot valueWwf while the individual LPM gives

learned by the proposed approach is

1.2296 0.2439
W = 0.4698 —1.2394
—0.8828 0.3018

while W by the individual LPM is

0.8188 —0.1074
W = 0.0739 —0.7627
—0.6309 0.2179

—0.5218
0.1388
0.9256

—0.2554
0.1526
0.6650

(51)

(52)

0.8465 0.3125 0.0087
W x A= | -0.2400 0.9217 —0.0245 (54)
0.0042 —0.0014 0.9972

It can be seen that the former has successfully converged to a
correct solution, but the latter is not. Actually, a snapshot of

% i SNR(ym’ g(a’))
j=1

for the proposed approach is 34.69 dB, whereas the individual
LPM is 15.74 dB only. Fig. 3 shows the learning curves of

average SNR=

Since a correct solution &V should satisfy thaW x A is equal their performance, and Fig. 4 presents a slide window to show
to P x D, as described in (2), we therefore further investigatdfie separation results by these two algorithms. We found that

the values ofW x A. We found that the proposed approackhe proposed approach has successfully separated the temporal
sources, but the LPM has not.

gives
1.5539  0.0085  0.0160 B. Experiment 2
W x A= 0.0037 1.5854 —0.0132 (53) We further investigated the performance of these two algo-
—0.0023 —0.0028 1.3841 rithms on real-world signals. We let the sources be three music
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sound signals recorded at a 22-kHz sampling rate. After seque e R il T R
tially scanning 800 000 observation points, a snapshot value ¢ ™°f = = = s . e = —m =
W x A by the proposed approach is Paali= - m g gty LR
27.4976  0.1043 0.2997 000 Ll et ity - Py
W x A= —0.7287 10.9048 0.0188 (55) e il e T Eonss B¢
0.3337  0.0292 2.8709 R e s - i e
ng.eooo— = ____'_.._;._ T alem - & #
while that by the individual LPM is H o il v Rl T gy o e W
4.1800 —0.0035 1.6341 4000F ~ i _' o
W xA=| —-0.2535 4.6206 —0.0689 (56) = -
—-1.2230 0.0855 1.3361
2000 = - = 4
where we found that the proposed approach has given a cc H & -
rect solution ofW, but the individual LPM does not. Actually,

(56) has indicated that the latter cannot successfully separa
the first audio signal and the third one. To clearly show this,
we further chose the first audio source signal as an example to
show its frequency spectrum as well as the separated results
Fig. 5, from which we can see that the separated signals give oo
by the proposed approach has a similar frequency spectrum wi

the original one but that from the LPM is not. Fig. 6 gives out

the separation results of these two algorithms on music sound
respectively, and Fig. 7 shows their comparative performanc
graphs. It can be seen that the proposed approach again outpz sl
forms the LPM in this real-data case study.

Freque

4000

VI. DISCUSSION

The proposed two-step approach as described in the pr
vious sections supposes that the residuéﬂ&s of the source 2000 8
process are generally non-Gaussian distributed with at mo:
one being Gaussian. However, when two or moregé)fs are
or near Gaussian distributed, this approach will be not worl
any more because the independence property among a set of
independently and identically distributed Gaussian variables ie
invariant in a rotation transformation (i.e., multiply an orthog- | |
onal matrix). In view of this, our recent paper [7] has further - ; -
studied dual AR modeling on the case thkatis multivariate el S = a
Gaussian distributed. Although we have presented a learnir swop = _— .
algorithm in [7] and further analyzed it in [8], the situation that
some ofe{", c? ..., ) are Gaussian distributed but not - .
all has yet to be investigated.

Furthermore, this two-step approach uses the gradient-asce:
learning rule to adjust the parameters, resulting in simple im 4o} -
plementation but linear parameter convergent rate. Althoug
the latter can be further improved by using second-order ste
tistics information in updating the parameters at each time ste} ¢
it needs the large amount of computing cost in calculating Hes
sian matrices, especially when the parameter dimension is larg .
Hence, one better way is to find an appropriate learning rule o m m pas 02 0B D 0k o

Time

with convergent rate between 1 and 2 such that the algorithm ©

is qualitatively similar to quadratic convergence, but only ConIq—'_ig. 5. (a) Frequency spectrum of an audio source signal. (b) Frequency

putes first derivative. We leave it for future studies. spectrum of the corresponding recovered signal via our proposed approach.
(c) Recovered signal from the individual LPM algorithm.

3
8

‘equency

VIl. CONCLUSION

We have systematically presented a general two-step apML algorithm, together with learning the demixing matrix
proach for temporal signal separation. This approach adaptively the OAR residuals by a nontemporal ICA algorithm.
extracts the OAR residuals with their parameters learned Burticularly, we have implemented the two-step approach in
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approach. (d) That from the individual LPM algorithm.

Comparative Performance Graph
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Fig. 7. Average SNR curves of our proposed approach (solid line) and the

individual LPM (dotted line) on music sounds, respectively.
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APPENDIX
DERIVATION OF 9.J;(©1)/900O1 IN EQ. (30)

10000

395

(a) and (b) Slide window of three source signals and their mixed signals respectively in Experiment 2. (c) Recovered signals obtainecbjposethe p

In the following, we denotdy f as the differential of function
f with respect td. We will give the detailed derivations of (30)

as follows.
From (29), we have

detail by modeling the sources as a finite mixture of GARCH

process. We have therefore obtained an adaptive ML algorithm, d,, , J:(®1) =
which includes generalized LMS method as a special case. The
experiments have shown that this new approach outperforms a
nontemporal ICA algorithm in temporal source separation.

dBJt(gl) = m ds LE:; %‘Gt,i
diin, J,(©1) :mdmﬁm
dy, o J(©1) = m dy. oG
dy, ,J1(©1) = > dy, Gh.i

p(Xt|Xt_1' 9,)

t—p>

(57)

(58)

(59)

(60)

(61)
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Z Gt,r d/ii Tr

r=1
9,)

dp, J1(©1) = (X
t

(62)

tp

whereG,, ; = G(x¢[BX|Z} + m;, 3¢ ;).
Since
dBGt,i = Gt,idB [—% (Zt - Yhz)Ti)t_i(Zt - ﬁlz)}

=1 G, T(dBX|2})) 3 17 i+ 2], 3, 1dBX] )]

t—p

(63)

withz, ; = z, —1m;, by using theéraceproperty that TfCD) =

Tr(DC) if and only if both of CD andDC are square matrix,

we then further simplify (63) to

dpGh,i =Gy Tz, X, | dBX{,]
=Gy, TIX|2,z{, %} dB]. (64)
Similarly, we can also obtain
dm; Gy,
=1 G, Ti[dm]S, 12, i +2; 3, di]
= Gy,iTr[z] ;5] | dimy] (65)
dllq'_LGt,i
= Gt,idvi,b [_%11’1 |§~:t,i| - % ;int }Zt z:|
—3 Gy idy, 0[] + 27,5712, ]
Gt z[Tr( ;16[,,1 Lit z)
Z? Et 1dyl th ZEt lzt Z]
—3 G T[S — 201202 3 dy, 33} (66)
dy, . Gt,i
= — 3G T[S - 207,071 2 ildy, S} (67)
where. =0, 1,2, ..., ng,andr =1, 2, ..., n,.
From (23), we know that
dy, ,Zt,i =Ady, ;3¢ ;AT
=2AQ; (AT (68)

dw. r2t7i = Ad”i. r Et iAT
= Adg[dl/“nuzr +v; Tduzr]dg(et_rs;‘r_r)AT

= 2AI‘1-7TAT (69)
dy, Xt =Ady B, AT
= 2A‘ri,r2t—r,iAT (70)
with
T
Vi, = [ 1(12, 1/5,22, V,i(’kg} , 1<r<ng
T
o= [0l el 1sr<m, )
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whereQ; , = dq(dVL i), Yie = dg(dip; qut ~), and
r,, = Q, rdg(er— el T,) Putting (68)- (70) into (66) and
(67) we then have

dvi,oGt,i = —Gt’ iTr{‘I’t,iAQi,oAT} (72)
dy, .Gy =Gy ;Tr{¥, ;AT; , AT} (73)
dy, Gii =—GyTr{®, ;AY; 2, A"}  (74)

where®, ; = 371 — 5), 177 ] 2 1. Furthermore, based

on (14), we have the foIIowmg

)Ifi=r:
exp(Br) 32 exp(m)—exp(B) exp(f)
dg, ¥ = e . dp;
[ Z_:l exp(ﬂm)]
= ('71“ - 'Vr'yi) dp;
=71 — i) dB;. (75)
i)y If ¢ #£7:
4y = SR EDB)
@ 1T T n 2 1
|3 exp(sn)]
==Y df;. (76)
By combining (75) and (76), we therefore obtain
dg,vr = Yr(6ir — i) dfi. (77)

Consequently, by putting (64), (65), (72)- (74), and (77) into
(57)- (62), we therefore obtain

1=zl %] dB)

tptz

0,)

m=

71 GT 1Tr(
dpJi(®1) =

p(xe| X))

tp7

3

’Yi

den, J1(O1) = X
t

t— p’
=hy,;iTr(z] ,L.z;j di;)
and
dVi,o‘]t(@l)
fint LTr(‘I’f LAQi,OAT)
p(x:|X3Z,; ©1)

= _ht ZTI’[A Et L(Et i Zt ZZt Z)E AQZ 0]

fp’

= —hy iTr[E;%W(Et,,; — 7,2, ) W'S[1Q; o]

= —}Lt ZTI’[(

— Uy, zufz) 7, 0]

= hy, iTr[dg(ut,iufi — X)) dvi ov] ]

= hy, Tt[w] o dg(uy, ul ; — B;1) dv o] (80)
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dy, . J(©® 9.J¢(©1) -
v J1(©1) T = dg(u,, uf ; — S i o
YiGri Tr(®y, iAFi ~AT) Vi
B x| X}2); Oy 0J4(©1) ~1
pxIXiZy: ©1) . = h, i dg(ay,in) ; — 277) dg(er—rei_, Vi s
1,7
= —hy TIATS] NSy — 2,2 ()8, [AT; ] o) (é |
GIANFY) g, uwl vl b
— _ht,iTr[Eth(zt,i — %t,iZ ?z)WthiI‘Z,T] a’(/)Z R = ht71 dg[(ut,zut7z Et, ’L)Et—r,’l«]’(pl,r' (85)
= —ht,iTr(zginm -, Wz, .z, ,WI'S[ T ;)
— T
= —he T35 — wg iug )T ] ACKNOWLEDGMENT
= hy, iTr[dg(Etfre;‘tIWf'r*) dg(u uf; — B, 1) dvi wv], The authors would like to thank the Editor, Associate Ed-
itor, and anonymous reviewers for their valuable comments and
T — ’
= hy, T} rdg(e- rEi_r) dg(uy, vy ; — Et,i) dvi,r] suggestions.
(81)
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