
Neurocomputing 50 (2003) 87–103
www.elsevier.com/locate/neucom

Further studies on temporal factor analysis:
comparison and Kalman %lter-based algorithm

Yiu-ming Cheunga ;∗, Lei Xub
aDepartment of Computer Science, Hong Kong Baptist University, Hong Kong

bDepartment of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong

Received 20 October 2000; accepted 23 November 2001

Abstract

A temporal extension of the classical factor analysis (FA) (Proceedings of the Berkeley Sym-
posium on Mathematical Statistics and Probability, May 3, Berkeley, University of California,
1956, pp. 111–150.) has been made under the framework of temporal Bayesian Ying–Yang sys-
tem (Proceedings of the International Conference on Neural Information Processing (ICONIP’98),
Vol. 2, 1998, pp. 877–884; IEEE Trans. Signal Process. 48 (7) (2000) 2132 and Proceedings
of the 1999 International Joint Conference on Neural Networks, Vol. 2, Washington, DC, July
1999, pp. 1071–1076). This temporal FA (TFA) not only extends the independent component
analysis to Gaussian process, but also provides a new way for state-space identi%cation without
knowledge of the model parameters. In this paper, we implement the TFA algorithm provided in
Xu (1998, 2000), and compare it with non-temporal one to show the importance of considering
temporal relationship in factor analysis. Furthermore, we set up a connection between the TFA
and traditional %ltering problems in control theory, and present an alternative TFA algorithm.
This new algorithm estimates the factors (also called states) and its variance by Kalman %lter
as an alternative to the gradient method used in that algorithm of Xu (1998, 2000), resulting in
better performance in general. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Temporal Bayesian Ying–Yang system; Temporal factor analysis; Independent component
analysis; State-space identi%cation; Kalman %lter

1. Introduction

As a tool of data analysis, factor analysis [2] has been extensively used in many %elds
such as psychology, business %elds, social and biological sciences. The factor analysis

∗ Corresponding author.
E-mail addresses: ymc@comp.hkbu.edu.hk (Y.-m. Cheung), lxu@cse.cuhk.edu.hk (L. Xu).

0925-2312/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925 -2312(01)00699 -3

88 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

formulates multivariate observations as a linear mixture of independently and identically
distributed (i.i.d.) unobservable factors. This technique may therefore deteriorate when
the factors are time series, rather than i.i.d.
Recently, a temporal extension of factor analysis, named temporal factor analysis

(TFA), has been proposed under the temporal Bayesian Ying–Yang (TBYY) system
[5,6]. The TFA describes the relations between an observation xt = [x(1)t ; x

(2)
t ; : : : ; x

(d)
t]T

and a factor vector (also called a state) yt=[y(1)t ; y
(2)
t ; : : : ; y

(k)
t]T by the following linear

state-space equations:

yt = �yt−1 + Ut ; (1)

xt = Ayt + et ; t = 1; 2; : : : ; N; (2)

where yt is Gaussian distributed, Ut and et are zero-mean Gaussian white noises with
covariances �U and �e, respectively. In the TFA, the probability density function (pdf)
of yt needs to be component-wise independent. That is,

p(y0) =
k∏
j=1

p(y(j)0) and

p(yt |yt−1) =
k∏
j=1

p(y(j)t |yt−1)

=
k∏
j=1

p(y(j)t |y(j)t−1) (3)

with

p(y(j)t |yt−1) = p(y
(j)
t |y(j)t−1);

where y0 is the initial state. The TFA objective is to estimate the states up to any
constant scales through the observations without any knowledge of the model param-
eters {�;A;�U;�e}. Not only does the TFA include the classical FA [2] as a special
case, but also extends the independent component analysis to Gaussian process, and
provides a new way for state-space identi%cation without knowledge of the model
parameters.
Papers [5,6] have proposed a simple TFA algorithm (denoted as TFA-A hereafter)

through minimization of one Kullback-divergence cost function in the TBYY. The
algorithm models the posteriori pdf of yt in a parametric form with its parameters, as
well as the model parameters, tuned by the stochastic gradient method.
This paper further studies the TFA problem. We implement the TFA-A algorithm,

and compare it with non-temporal one to show the importance of considering state
temporal relationship in factor analysis. Furthermore, we build a connection between
the TFA and traditional %ltering problems in control theory, and present an alternative
TFA algorithm (denoted as Alt-TFA-A hereafter). The new algorithm uses Kalman
%lter [1,3] to estimate the state and its variance. The experiments have shown that

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 89

the new algorithm outperforms the TFA-A algorithm in the measure of mean-square-
error (MSE) values.
This paper is organized as follows: Section 2 overviews the general TBYY system. In

particular, the TFA implementation within this system is described whereby the TFA-A
algorithm is introduced. Section 3 shows the advantage of using states’ internal temporal
dependence in TFA through the comparison of TFA-A algorithm with its degenerate
one that does not consider the state temporal relationship. In Section 4, we present the
Alt-TFA-A algorithm, and make a comparative performance analysis on the Alt-TFA-A
and TFA-A algorithms accompanied by the experimental supports. Lastly, we draw a
conclusion in Section 5.

2. General TBYY system and TFA implementation

2.1. General framework of TBYY system

In the following, we will brieMy introduce the TBYY system. Readers interested in
it please refer to [5,6] for details.
Papers [5,6] formulate the joint pdf of the whole series of observations {xt}Nt=1 and

states {yt}Nt=0 into two Bayesian representation forms:

pM1 (XN ;YN) = pMy|x(YN |XN)pMx(XN);

pM2 (XN ;YN) = pMx|y(XN |YN)pMy(YN);
(4)

where XN = [xTN ; x
T
N−1; : : : ; x

T
1]

T, and YN = [yTN ; y
T
N−1; : : : ; y

T
0]

T. On one hand, pM1 is
called Yang model, which consists of two components: pMx representing the observa-
tion (or called Yang) space, and pMy|x representing the Yang (or forward) pathway
from X to Y. On the other hand, we have Ying model pM2 that consists of the other
two components: pMy is the invisible state (or called Ying) space, and pMx|y is the
Ying (or backward) pathway from Y to X. Such a pair of Ying–Yang models is called
temporal Bayesian Ying–Yang (TBYY) learning system.
As shown in [5–7], pMx ; pMy|x ; pMx|y ; pMy are four designable pdf components. After

specifying their structures, i.e., let them be some appropriate density functions with a
%nite number of unknown parameters, denoted as �x; �y|x; �x|y and �y, respectively,
the remaining task is to determine two unknowns. One is the component parameter set
� = {�x, �y|x, �x|y, �y}. The other one is the complexity of yt , denoted as k, which
is actually either the dimension of yt when yt is a real-value vector, or the number
of values that yt takes in discrete case. The TBYY system determines the parameter
set � and the complexity k based on the fundamental Ying–Yang harmony principle:
The parameter set � and the complexity k are decided such that the Ying model
pM2 and the Yang model pM1 are the best harmony in a sense that we minimize
both the mismatch between the two models and the diversi8cation of the resulted

90 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

Ying–Yang system. In implementation, a harmony measure is proposed for specifying
both K and � [6,7], which can be implemented in parallel or in a sequential way.
In the sequential implementation, we %rst enumerate K for certain values, and at each
K value, the corresponding � is determined. Then, we determine K∗ = argmink J (K)
with a criterian J (K) obtained from the harmony measure. This paper only considers
the problem of learning � at a %xed K in the sequential implementation.
Speci%cally, we have two choices to solve this problem. One is to make learning

under the harmony measure, and details are referred to [6,7]. In the following, we
focus on the other choice, that is, to minimize the Kullback divergence between Yang
model and Ying model:

KL(�) =
∫
pM1 (XN ;YN) ln

pM1 (XN ;YN)
pM2 (XN ;YN)

dXN dYN : (5)

To simplify Eq. (5), papers [5,6] have made two general assumptions:

• Suppose xt’s are causal. That is, xt only depends on those past x�’s with �¡ t.
Furthermore, the causal assumptions are also imposed on

pMy|x(yt | NXN ;Yt−1) = pMy|x(yt | NXt ;Yt−1);

pMx|y(Nxt |YN ; NXt−1) = pMx|y(Nxt |Yt ; NXt−1):
(6)

• Let pMx(XN) be modeled by

pMx(XN) =
N∏
t=2

pMx(xt |Xt−1);

pMx(xt |Xt−1) =

{
�(xt − Nxt) at xt = Nxt ;

unde%ned otherwise;

(7)

where � is the Dirac delta function, and Nxt is a sample point of xt .
• In the derivation, we encounter a term

Ft(Yt−1) = ln
pMy|x(yt | NXt ;Yt−1)

pMx|y(Nxt |yt ; NXt−1;Yt−1)pMy(yt |Yt−1)
; (8)

which is approximated by its %rst-order Taylor expansion at the mean point
Ŷt−1 = E(Yt−1| NXt−1).

With some mathematical computation, papers [5,6] have shown that the learning of �
to minimize KL(�) can be stochastically implemented by tuning � in a small step
size along the direction to minimize

KLt(�) =
∫
pMy|x(yt | NXt ; Ŷt−1)Ft(Ŷt−1) dyt (9)

at each time step t.
Furthermore, it follows from Eqs. (1)–(3) that we have

pMy|x(yt | NXt ;Yt−1) =pMy|x(yt | NXt ; yt−1)

=G(yt |ŷt ;�V); (10)

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 91

pMx|y(Nxt |yt ; NXt ; Ŷt−1) =pMx|y(Nxt |yt)
=G(xt |Ayt + ce;�e); (11)

pMy(yt |Ŷt−1) = G(yt |�ŷt−1 + c”;�”); (12)

where � is a diagonal matrix, G(x|\;) denotes the Gaussian pdf of x with mean \
and co-variance , and ŷt = E(yt | NXt ; Ŷt−1) is a posteriori state estimate of yt . Putting
Eqs. (10)–(12) into Eq. (9), with some mathematical computation, we then obtain a
general TFA cost function:

KLt(�) =
1
2

{
ln

|�e�”|
|�V| + Tr(�−1

e A�VAT + �V�
−1
”)

+ êTt �
−1
e êt + ”̂

T
t �

−1
” ”̂t

}
+ C (13)

with

êt = Nxt − (Aŷt + ce);

”̂t = ŷt − ŷ−t ;

ŷ−t = �ŷt−1 + c”;

(14)

where C is a constant, êt represents the reconstruction error to the observation, and ”̂t
is the diPerence between a priori state estimate ŷ−t and a posteriori state estimate ŷt .

2.2. A gradient-based TFA algorithm (TFA-A)

In papers [5,6], the term G(yt |ŷt ;�V) in Eq. (10) is explicitly expressed as a para-
metric density form

G(yt |ŷt ;�V) = G(yt |K Nxt +Hŷt−1 + cV;�V) (15)

with

ŷt = K Nxt +Hŷt−1 + cV; (16)

where K and H are two independent parameters. Papers [5,6] have proposed a
gradient-based TFA algorithm (TFA-A) as follows:

1. Fix �Yang and �Ying, calculate ŷt by Eq. (16) as an estimate of yt .
2. Update �Yang and �Ying by the gradient-based method with

�new
Yang =�old

Yang − �Q�Yang|�old
Yang
;

�new
Ying =�old

Ying − �Q�Ying|�old
Ying
; (17)

where � is a small positive learning rate, �=�Yang∪�Ying with �Yang={K;H; cV;�V}
and �Ying ={�;�”; ce; c”}. The Q�Yang and Q�Ying are either the gradient descents
@KLt(�)=@�Yang and @KLt(�)=@�Ying as given in Table 1 and Table 2, respectively,

92 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

Table 1
The gradient descent direction @KLt(�)=@�Yang of �Yang at time step t

@KLt(�)
@�Yang

=

{
@KLt(�)
@K

;
@KLt(�)
@H

;
@KLt(�)
@cV

;
@KLt(�)
@�V

}

@KLt(�)
@K

= (�−1
” ”̂t − AT�−1

e êt)NxTt

@KLt(�)
@H

= (�−1
” ”̂t − AT�−1

e êt)ŷTt−1

@KLt(�)
@cV

= �−1
” ”̂t − AT�−1

e êt

@KLt(�)
@�V

= �−1
” + AT�−1

e A − �−1
V

Table 2
The gradient descent direction @KLt(�)=@�Ying of �Ying at time step t

@KLt(�)
@�Ying

= { @KLt(�)
@A

;
@KLt(�)
@�j

;
@KLt(�)
@�e

;
@KLt(�)
@ce

;
@KLt(�)
@c”

}

@KLt(�)
@A

= �−1
e (A�V − êt ŷTt)

@KLt(�)
@�j

=−(”̂t ŷTt−1)j; j

@KLt(�)
@�e

= �−1
e [�e − (A�VAT + êt êTt)]�

−1
e

@KLt(�)
@ce

=−�−1
e êt

@KLt(�)
@c”

=−�−1
” ”̂t

where �j is the jth diagonal element of �; 16 j6 k;

and Bj; j denotes the (j; j)th element of matrix B.

or the modi%cations by multiplying the gradient descents and a positive-de%nite
matrix, e.g., �V@KLt(�)=@A and �e(@KLt(�)=@�e)�e.

Please note that the scale of the state yt in Eq. (2) is not identi%able because it can
be absorbed by the unknown parameter A. Without loss of generality, we therefore set
�” at the identity matrix I in tuning � by Eq. (17).

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 93

Furthermore, Eq. (17) should be noted that the learning of � will generally lead to
the non-stationary process of ŷ−t in the model of pMy(yt |Ŷt−1). If we further assume
that the process of yt in Eq. (1) is stationary, i.e., each diagonal element �j of �
satis%es |�j|¡ 1, we can let � be the function of another new diagonal matrix Z such
that the constraints on � can be automatically satis%ed when Z is tuned in the learning
without any constraint. Here, we let

�j = f(zj) =
2

1 + ezj
− 1; (18)

where zj is the jth diagonal element of Z. In implementation, we therefore learn Z
rather than � by

Qzj =Q�j × d�j
dzj

(19)

with

d�j
dzj

=−1
2
ezj (1 + �j)2: (20)

3. Comparison of the TFA-A algorithm with non-temporal one

When yt is i.i.d. Gaussian variable and xt is modeled by Eq. (2), it is well known
that ŷt can be arbitrarily rotated without destroying the component-wise independence
requirement, thus it is impossible to identify yt up to any constant scales and permu-
tation indices from the observations [4].
Moreover, Conclusion 3 in [6] has shown that a Gaussian process yt can be still

successfully identi%ed when the observed samples are time-correlated. This implies
that it is important to consider the observation internal time relationship in performing
Gaussian process identi%cation.
To illustrate this point, we demonstrate the performance of two algorithms for com-

parison. One is the TFA-A presented in the previous section, and the other is an
algorithm for the conventional factor analysis, which is actually equivalent to a degen-
erate case of the TFA-A algorithm with � =H = 0, and thus no consideration on the
internal state time dependence. We use Dg-TFA-A to denote this algorithm hereafter.

In the experiment, we let the observations {xt}Nt=1 be generated by

yt =




0:7 0:0 0:0

0:0 −0:3 0:0

0:0 0:0 0:5


 yt−1 + Ut ; (21)

xt =




1:5 0:8 0:7

0:7 −1:0 0:6

1:2 0:8 2:0


 yt + et ; 16 t6N:

94 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

Without loss of generality, we suppose E(y0) = 0, and thus have cV = ce = c” = 0. We
initialize y0 = 0; �V = 0:3I; �e = 0:2I, and let ”t be distributed with pdf G(U|0; 0:8I)
while et is Gaussian distributed with G(e|0; 0:1I).
We measure the performance of the algorithms by MSE value, de%ned by

MSE(y(j); ŷ (j)) =
1
N

N∑
t=1

(y(j)t − ŷ(j)t)2; (22)

where y(j) and ŷ(j)t are the jth component of true state yt and corresponding state esti-
mate ŷt , respectively. Since the observations are sequentially observed without repeat,
we calculate the MSE values on-line once every 10,000 data points, and normalize
both y(j)t and ŷ(j)t to variance 1 in order to calculate MSE values invariant to scaling.
After scanning 500,000 observation points, a snapshot of MSE values obtained

from the TFA-A algorithm were 0.0906, 0.0761 and 0.1208, whereas those from the
Dg-TFA-A algorithm were 0.3175, 0.3445 and 0.1317. Fig. 1 shows the performance
graph of the TFA-A and Dg-TFA-A, respectively, and Fig. 2 gives a slide window
of state identi%cation by these two algorithms. It can be seen that the performance
of TFA-A algorithm considerably outperforms the Dg-TFA-A, although the latter con-
verges faster than the former because of the reduced number of free parameters.

4. New Kalman .lter-based TFA algorithm from TBYY system (Alt-TFA-A)

The TFA-A algorithm presented in [5,6] explicitly expresses the posteriori state
estimate ŷt via parameters K and H as shown in Eq. (16). Alternatively, the ŷt and
�V can also be indirectly indicated through Bayesian inversion. That is, we let

pMy|x(yt | NXt ;Yt−1) =G(yt |ŷt ;�V)

=
pMx|y(Nxt |yt ; NXt−1;Yt−1)pMy(yt | NXt−1;Yt−1)∫
pMx|y(Nxt |yt ; NXt−1;Yt−1)pMy(yt | NXt−1;Yt−1) dyt

:

Under the circumstances, as �Ying is %xed, the posteriori estimation of yt becomes the
traditional %ltering problem. We therefore can estimate ŷt and �V via Kalman %lter
(see [1, pp. 36–89]).
Consequently, we can obtain an alternative TFA-A algorithm, shortly denoted as

Alt-TFA-A algorithm, as follows:

1. Fixing �, we estimate

ŷt = ŷ−t + Kt(Nxt − Aŷ−t) (23)

with

Kt = �”AT(A�”AT + �e)−1; (24)

where ŷ−t is given by Eq. (14).
2. Fixing �ying, we calculate

�V = [I − KtA]�”: (25)

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 95

0 5 10 15 20 25 30 35 40 45 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Performance Graph (Measured by Mean_Square_Error (MSE) value)

No. of data points scanned (x 104)

(b)

(a)

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Performance Graph (Measured by Mean_Square_Error (MSE) value)

No. of data points scanned (x 104)

Fig. 1. The MSE performance graph of (a) TFA-A algorithm and (b) Dg-TFA-A algorithm.

96 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

5 10 15 20 25 30 35 40 45 50

_ 4

_ 2

0

2

4

5 10 15 20 25 30 35 40 45 50

_ 4

_ 2

0

2

4

5 10 15 20 25 30 35 40 45 50

_ 4

_ 2

0

2

4

5 10 15 20 25 30 35 40 45 50

_ 4

_ 2

0

2

4

5 10 15 20 25 30 35 40 45 50

_ 4

_ 2

0

2

4

5 10 15 20 25 30 35 40 45 50

_ 4

_ 2

0

2

4

(a)

(b)

Fig. 2. A slide window of three-dimensional state identi%cation (a) by TFA-A algorithm and (b) by
Dg-TFA-A algorithm. In each sub-%gure, row j with 16 j6 3 shows the identifying results of y(j)t , where
‘*’ denotes the value of y(j)t , and ‘o’ denotes the value of ŷ(j)t .

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 97

3. Fixing ŷt and �V, we estimate �ying by Eq. (17), which is the same as the TFA-A
algorithm given in Table 2.

The Alt-TFA-A algorithm estimates ŷt and �V by Kalman %lter with the use of the
second-order statistics. Actually, we can also tune �ying by using the second-order
information, which however, involves to calculate the complicated Hessian matrix of
�ying. We have to make a trade-oP between the state estimate error and the computing
costs, and thus tune �ying by the gradient-based method with the %rst-order information
used only.

4.1. Performance analysis

During the learning of Alt-TFA-A and TFA-A algorithms, Alt-TFA-A uses Kalman
%lter to analytically calculate the posteriori state estimate ŷt and the variance �V at each
time step t. However, the TFA-A algorithm lets ŷt be the function of two independent
parameters K and H, and uses the gradient-based method to tune them as well as �V in
one small step-size each time along the direction of minimizing KLt(�). Consequently,
the TFA-A algorithm is faster to reduce the MSE values than the Alt-TFA-A one.
Moreover, the Alt-TFA-A algorithm gives the same form of posteriori state estima-

tion as that in TFA-A algorithm, where ŷt is the linear function of current observation
Nxt and the priori state estimate ŷ−t . However, in the Alt-TFA-A algorithm, the two
coeUcients of this linear function are all dependent on the parameter Kt , which is
optimally calculated at each time step. In comparison, the TFA-A algorithm regards
that the coeUcients K and H are independent parameters, and tunes them by the
gradient-based method. As a result, K and H gradually converge after the convergence
of Ying model parameters. Therefore, the convergent performance of Alt-TFA-A algo-
rithm should generally be better than the TFA-A one.

4.2. Experimental demonstration

To justify the analysis in the previous sub-section, we demonstrate the performance
of Alt-TFA-A algorithm as follows:

4.2.1. Experiment 1
The experimental environment is the same as that in Section 3. Fig.3 shows the

performance graph of the Alt-TFA-A algorithm. Compared to the TFA-A performance
in Fig. 1(a), we found that the Alt-TFA-A algorithm always keep the smaller MSE
values during the algorithm learning. That is, the latter reduces the estimation error
faster than the former. After performance convergence, a snapshot of Alt-TFA-A MSE
values at time step t=500; 000 were 0.0561, 0.0633 and 0.0681, and Fig. 4 shows a slide
of the estimation errors at each individual state point, where we found that the error
curve of the Alt-TFA-A algorithm is lower than that of the TFA-A one in most cases.
That is, the state estimates given by the Alt-TFA-A has a smaller MSE on average. In
Fig. 5, we give a performance comparison between the Alt-TFA-A algorithm and the

98 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3
Performance Graph (Measured by Mean_Square_Error (MSE) value)

No. of data points scanned (x 104)

Fig. 3. The MSE performance graph of Alt-TFA-A algorithm.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
he

 M
ea

n_
S

qu
ar

e_
E

rr
or

 (
M

S
E

)
V

al
ue

s

The Error Curve of State Estimation

Data Points

Fig. 4. The error curves of state estimation at individual points, where the solid line is obtained from the
Alt-TFA-A algorithm, and the dotted line is from the TFA-A algorithm. In this %gure, the value of each
discrete point denoted by ‘+’ is the average state estimation error, calculated by 1

3

∑3
j=1 |y(j)t − ŷ(j)t |.

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 99

0.0000

0.0500

0.1000

0.1500

Mean-Square-
Error (MSE)

Values

Performance Comparison

Alt-TFA-A 0.0561 0.0633 0.0681

TFA-A 0.0906 0.0761 0.1208

1 2 3

Fig. 5. The performance comparison between the Alt-TFA-A and the TFA-A under the MSE measure.

TFA-A one. It can be seen that the former has signi%cantly improved the estimation
accuracy with the average of about 26% on each y(j).

4.2.2. Experiment 2
We further investigate the performance of the Alt-TFA-A and TFA-A algorithms

in real %ltering problem. We use three real-world music sounds recorded at 22 kHz
sampling rate, which is noisily observed as

xt = st + et ; (26)

where st = [s(1)t ; s
(2)
t ; s

(3)
t]T with s(j)t denoting the jth sound signal, and et is Gaussian

white noise with �e = 0:01I. Since the actual states in this experiments are unknown,
we use an alternative formula of Eq. (22):

MSE(s(j); ŝ(j)) =
1
N

N∑
t=1

(s(j)t − ŝ(j)t)2 (27)

with

ŝt = Aŷt (28)

to measure the performance of the Alt-TFA-A and TFA-A algorithms, respectively.
After scanning 800,000 observation points, the average MSE value of Alt-TFA-A

algorithm is 0.0054. The %ltering results obtained from them are shown in Fig. 6,
where we found that the noise has been signi%cantly %ltered out. In comparison, the
average MSE of TFA-A algorithm is 0.0065. Fig. 7 gives the comparison of their
performance. It can be seen that the result is consistent with the analysis conclusions
in Section 4.1. Actually, in this case, the Alt-TFA-A algorithm is better to %lter out
the noise with about 17% noise-reduced improvements in contrast with the TFA-A.

100 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1
s1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

s2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

s3

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

x1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

x2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

x3

(a)

(b)

Fig. 6. Sub-%gures (a) and (b) show a slid window of the music sounds and the noisy observations,
respectively. Sub-%gure (c) shows the sounds identi%ed through the Alt-TFA-A algorithm.

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 101

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1
y1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

y2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

_ 1

_ 0.5

0

0.5

1

y3

(c)

Fig. 6. (continued).

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06
Performance Graph

No. of data points scanned (x 104)

Fig. 7. The performance comparison between the Alt-TFA-A algorithm and the TFA-A, where the solid line
is the average performance of the Alt-TFA-A algorithm on three diPerent sounds, whereas the dotted line
is that of the TFA-A one.

102 Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103

5. Conclusion

We have further studied the TFA problem. On the one hand, we have implemented
the TFA algorithm presented in [5,6], and have shown that it is really useful to take
into consideration the serial relations in the states. On the other hand, we have pro-
vided a new alternative algorithm, which uses the Kalman %lter to make the posteriori
estimation of the states and its variance matrix. The experiments have shown that the
new algorithm outperforms the TFA-A algorithm.

Acknowledgements

The authors would like to thank the anonymous reviews for their valuable comments
and suggestions. The work described in this paper was supported by a grant from the
Research Grant Council of the Hong Kong SAR (Project No: CUHK 4169/00E).

References

[1] B.D.O. Anderson, J.B. Moore, in: T. Kailath (Ed.), Optimal Filtering, Information and System Sciences
Series, Prentice-Hall, Inc., Engelwood CliPs, NJ, 1979.

[2] T.W. Anderson, H. Rubin, Statistical Inference in Factor Analysis, Proceedings of the Berkeley
Symposium on Mathematical Statistics and Probability, May 3, Berkeley, University of California, 1956,
pp. 111–150.

[3] R.G. Brown, Y.C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 2nd Edition,
Wiley, New York, 1992.

[4] L. Tong, Y. Inouye, R.W. Liu, Waveform-preserving blind estimation of multiple independent sources,
IEEE Trans. Signal Process. 41 (7) (1993) 2461–2470.

[5] L. Xu, Bayesian Ying–Yang system and theory as a uni%ed statistical learning approach: (V) temporal
modeling for temporal perception and control, Invited Paper, Proceedings of the International Conference
on Neural Information Processing (ICONIP’98), Vol. 2, Fukuoka, Japan, 1998, pp. 877–884.

[6] L. Xu, Temporal BYY learning for state space approach, hidden Markov model and blind source
separation, IEEE Trans. Signal Process. 48 (7) (2000) 2132–2144. A preliminary version has been
published on Proceedings of the 1999 International Joint Conference on Neural Networks, Vol. 2,
Washington DC, July 1999, pp. 1071–1076.

[7] L. Xu, BYY harmony learning, independent state space and generalized APT %nancial analysis. IEEE
Trans. Neural Networks 12 (4) (2001) 822–849.

Yiu-ming Cheung received Ph.D. degree in Computer Science and Engineering from the Chinese University
of Hong Kong, Hong Kong, in 2000. Currently, he is an assistant professor of the Department of Computer
Science in Hong Kong Baptist University. His research interests include machine learning, signal processing,
data mining, %nancial modeling and portfolio management.

Lei Xu (IEEE Fellow) is currently a professor in the Department of Computer Science and Engineering at
Chinese University, Hong Kong where he joined in 1993 as a senior lecturer %rst and then attained the
current position in 1996. He has been a professor at Peking University since 1992, where he started as
a postdoc in the Department of Maths in 1987 and then became one of the 10 exceptionally promoted
young associate professors of the Peking University in 1988. During 1989–1993, he worked as a postdoc
or a senior research associate in several universities in Finland, Canada and the USA, including Harvard
and MIT. He is currently a governor on the Board of Governors, international Neural Networks Society,

Y.-m. Cheung, L. Xu /Neurocomputing 50 (2003) 87–103 103

the chair elected of Computational Finance Technical Committee of IEEE Neural Networks Council, a
past president of Asian-Paci%c Neural Networks Assembly, and an associate editor for six international
journals on neurocomputing, including Neural Networks, and IEEE Transactions on Neural Networks. He
was an associate editor of IEEE Transactions on Neural Networks during 1994–1998. Also, served as
a general chair of 1998, 2000 International Conference on Intelligent Data Engineering and Automated
Learning (IDEAL, Hong Kong), a program committee chair of 1996 International Conference on Neural
Information Processing and the chairs of two NIPS Workshops, as well as served as program=organizing
committee members on major world conferences on Neural Networks in recent years, including NIPS, IJCNN,
ICANN, IEEE WCCI and International Conference on Computational %nance. He has received an 1995
international Neural Networks Society Leadership Award and several Chinese national prestigious academic
awards, including Chinese National Nature Science Award, Chinese State Education Council Fok Ying Tung
Award, and the second of the 10 winners of the 1988 Beijing Young Scientists Prize.

	Further studies on temporal factor analysis: comparison and Kalman filter-based algorithm
	Introduction
	General TBYY system and TFA implementation
	General framework of TBYY system
	A gradient-based TFA algorithm (TFA-A)

	Comparison of the TFA-A algorithm with non-temporal one
	New Kalman filter-based TFA algorithm from TBYY system (Alt-TFA-A)
	Performance analysis
	Experimental demonstration
	Experiment 1
	Experiment 2

	Conclusion
	Acknowledgements
	References

