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Abstract

In this paper, we present a detailed theoretical analysis on the information-theoretic Indepen-
dent Component Analysis (IT-ICA) approach. We "rst provide a number of lemmas and
theorems on properties of the corresponding cost function in the general n-channel case with
di!erentiable, odd, monotonic decreasing nonlinearity. A theorem on behaviour of the cost
function along a radially outward line is given for characterizing the global con"guration of the
cost function in the parameter space. Furthermore, on the 2-channel IT-ICA system with cubic
nonlinearity, we not only exhaustively solve out all equilibrium points and the condition for
stability, but also give a global convergence theorem. ( 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Independent component analysis; Nonlinearity; Information theoretic; Global
convergence; High-order statistics

1. Introduction

The Blind Source Separation (BSS) problem has been a popular problem in this
decade because it not only has many applications but also involves interesting
problems in high-order statistics and nonlinear systems. A number of di!erent
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Fig. 1. The problem de"nition and network used.

approaches have been proposed to solve the problem. The literature is so vast that
only a few are cited [12,7,9,1}3,13,23,24,11,21]. The noiseless instantaneous linear
source separation problem (also known as the ICA problem) with equal number of
sources and mixed signals is considered in this paper and de"ned as follows. Suppose
there are n channels of statistically independent source signals s"[s

1
,2, s

n
]T with

zero mean. They are instantaneously and linearly mixed by a static non-singular n]n
mixing matrix A to give the observed signals x"[x

1
,2, x

n
]T"As. The ICA problem

is to tune the n]n de-mixing matrix W"[w
1
,2, w

n
]T so as to give the recovered

signals y"[y
1
,2, y

n
]T"Wx"Vs which are desired to be as similar as possible as

s (Fig. 1). Theoretically, the source signals can only be determined up to arbitrary
permutation of channels and scaling factors. Therefore, if we obtain V"WA"PD,
where P is a permutation matrix and D is a diagonal matrix, then source separation is
said to be successful.

Among di!erent approaches, the maximum likelihood (ML) approach [17] and
information-theoretic approaches like the information maximization (INFORMAX/
ME) [2], and the minimum mutual information (MMI) [1], all essentially involve the
minimization of the following cost function:
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1 In [20], g
i
( . ) is only restricted to be positive and integrable. However, the restriction of integral being

one adds convenience and more intuitive understanding of g
i
( . ) being &model pdf 's' for the sources.

where the functions Mg
i
(y

i
)N are a set of &model pdf 's' satisfying

g
i
(r)'0, r3R, and P

`=

~=

g
i
(r) dr"1 (2)

[20]1 from which the nonlinearity Mh
i
(y

i
)N of the algorithm is derived and discussed. In

[20], the same cost function is rederived from the Bayesian}Kullback Ying}Yang
learning scheme. A gradient descent algorithm is used in [2] to minimize J but later
the stochastic natural gradient descent algorithm [1,24] is found to be much faster and
bearing good convergence properties:

*W"!e(t)[+W J(W)]W TW

"e(t)[I#h(y) yT]W, (3)

where h(y)"[h
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(y

1
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(y

n
)]T and h

i
(y

i
)"g@

i
(y

i
)/g

i
(y

i
), e(t) is the learning rate

commonly set as a su$ciently small constant. The choice of nonlinearity h
i
(y

i
) is

crucial to the separation capability of the algorithm. In [2], a &reversed sigmoid'
function like

h
i
(y

i
)"1!2 logsig(y

i
)"

exp(!y
i
)!1

exp(!y
i
)#1

(4)

or
h
i
(y

i
)"!2 tanh(y

i
) (5)

is used and it is experimentally found that they can separate super-Gaussian signals.
In [1], the following polynomial is used:

h
i
(y

i
)"!

3

4
y11!

25

4
y9#

14

3
y7#

47

4
y5!

29

4
y3. (6)

The relation between the nonlinearity used and the separation capability is further
discussed in [5,21}23]. Flexible nonlinearity that is adaptable on-line is proposed
[23]. As the cost function J is an information-theoretic quantity, for convenience, we
regard all the algorithms featured by Eq. (3) as the &information-theoretic ICA
(IT-ICA) approach'.

In this paper, we "rst investigate the properties of the cost function J in the
parameter space, with h

i
(y

i
) being any di!erentiable, odd, monotonic decreasing

function. We prove several theorems and lemmas on its singularity, continuity,
absence of local maximum, behaviour of the cost function along a radially outward
line, scale of the equilibrium points, etc. Then we specialize to the 2-channel sources
with a cubic h

i
(y

i
) as follows:

h
i
(y

i
)"!c

i
y3
i
, c

i
'0. (7)
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We exhaustively solve all separating and non-separating equilibrium points of the
cost function, "nd out the condition for stability, and "nally, with the help of results
proved above, give a global convergence theorem.

The cubic nonlinearity or control of fourth-order cross-moments E[y3
i
y
j
] appeared

in various literature in the past [4,10,8,12,14,16,18], in either feedback HJ network or
direct (feedforward) networks. The condition of stability of the separating states in our
work (Theorem 23 in Section 3.3) turns out to be the same as those obtained in the
previous works [4,14,16,18]. However, our works di!er from these previous works at
least in two aspects. First, in [4,14,16,18], the diagonal elements of W were set as 1,
and thus, there were only two tunable variables in the 2-channel case. In our work, the
whole de-mixing matrix is to be tuned and thus the parameter space is four-
dimensional in the 2-channel case. The learning equation (3) of the o!-diagonal
elements of W is coupled with the diagonal elements, and the algorithm cannot be
trivially reduced to a form equivalent to those in the mentioned literature. Hence, the
analysis in this work and the mentioned literature are on di!erent network structures
and di!erent algorithms. Second, and most important of all, a global convergence
theorem is proved in our work while only local convergence is proved in the men-
tioned literature. In particular, Theorem 5 in this paper, which is on the behaviour of
the cost function along a radially outward line in the parameter space, clearly depicts
the global con"guration of the cost function in the parameter space and is of great
importance. It provides a direct tool for global convergence analysis, while investiga-
tion on stability of each equilibrium point can only prove local convergence within its
basin of attraction.

This paper is organized as follows. Section 2 presents theoretical results on the
properties of the cost function and algorithm. Section 3 investigates the 2-channel
cubic nonlinearity case and arrives at a global convergence theorem. Section 4
presents experimental veri"cation on the 2-channel cubic nonlinearity case. Section 5
gives the conclusions.

2. Properties of the cost function and algorithms

In this section, we shall present some theoretical results on the properties of the cost
function J(V) in the n2-dimensional V-parameter space. The analysis of the informa-
tion-theoretic ICA approach follows an idea proposed by Xu and Amari in [20] that
investigates the cost function J in the V-parameter space (v

11
,2, v

1n
, v

21
,2, v

nn
)

rather than in the W-parameter space (w
11

,2, w
1n

, w
21

,2, w
nn

). This is because
V"WA bears a one-to-one mapping to W and is a set of parameters that completely
characterizes the system. The mathematical analysis using V is simpler since it does
not explicitly involve A and x. Any result obtained in terms of V can by transformed to
that in terms of W by W"VA~1.

In particular, the analysis often involves determination of equilibrium points of the
cost function J. A standard method to do so is to solve the equilibrium equation for W:

+WJ(W)"Ex[I#h(Wx)(Wx)T][WT]~1"0. (8)
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However, this equation is di$cult to be solved directly due to the involvement of
mixture x. On the other hand, it is equivalent to solving the equilibrium equation
for V:

+VJ(V)"Es[I#h(Vs)(VsT)][VT]~1"0 (9)

since +WJ(W)"+VJ(V)AT and A is non-singular [20]. This equation is easier to solve
since sources s are independent. Hence, it is more appropriate to investigate the
J scalar "eld in the V-parameter space rather than in the W-parameter space.

In [20], it is pointed out that after associating the CDF-like transformation
function

f
i
(y

i
)"P

yi

~=

g
i
(r) dr (10)

to obtain the transformed vector z"[ f
1
(y

1
),2, f

n
(y

n
)]T with Jacobian of

transformation

detC
Ly
LzTD"

n
<
i/1

g
i
(y

i
), (11)

the negative (di!erential) entropy of z, !H(z) in the INFORMAX approach [2], is
equivalent to the cost function J:

J"Py

py(y)ln
py(y)

<n
i
g
i
(y

i
)
dy"Pz

pz(z)ln pz(z) dz"!H(z). (12)

This equivalence provides good intuitive understanding of some properties of the cost
function to be introduced.

The following lemmas and theorem investigate the information-theoretic ICA
approach with any di!erentiable, odd, monotonic decreasing nonlinearity h

i
(y

i
) (some

lemmas even have less restrictions on h
i
(y

i
)). This broad class includes, but is not

restricted to:

f the cubic nonlinearity equation (7), and other h
i
(y

i
)"!c

i
yp
i
, c

i
'0, p being a pos-

itive odd integer,
f h

i
(y

i
) being reversed sigmoids like Eqs. (4) and (5)

f h
i
(y

i
)"!c

i
y1@p
i

, c
i
'0, p being a positive odd integer,

2.1. Singularity and continuity of J(V)

Lemma 1 (Singularity). For the information-theoretic ICA approach with any g
i
( . )

satisfying Eq. (2) on any number of channels, J(V)P#R as det VP0.

Proof. If det V"det W"0, there is a deterministic linear dependence on the re-
covered signals, that is, any y

i
can be written as y

i
"¸

i
(y

1
,2,y

i~1
, y

i`1
,2, y

n
) where

¸
i
( . ) is a linear function. Hence, z

i
"f

i
(y

i
) also bears a deterministic relationship with
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Mz
1
,2, z

i~1
, z

i`1
,2, z

n
N and the di!erential conditional entropy H(z

i
Dz
1
,2, z

i~1
,

z
i`1

,2, z
n
)P!R. As the joint entropy H(z)"H(z

i
)#H(z

i
Dz
1
,2, z

i~1
, z

i`1
,2, z

n
),

we have H(z)P!R, and J(V)P#R. h

The (n2!1)-dimensional subspace de"ned by det V"0 (det W"0) in
the n2-dimensional V-parameter space (W-parameter space) is called the &singular
subspace'.

Remark 2. For the natural gradient algorithm, Eq. (3), if W is initialized as a singular
matrix, it will subsequently be trapped in the singular subspace det W"0 because

detW
t`1

"(det[I#e(t)[I#h(y)yT]])(detW
t
)"0. (13)

Surely, it cannot perform source separation.

Lemma 3 (Continuity). For the information-theoretic ICA approach with odd,
monotonic decreasing h

i
(y

i
) nonlinearity on any number of channels of signals,

J(V) is continuous at any non-singular V.

Proof. J(V) is continuous at some "nite point VH if and only if the gradient +
V
J(V)

exists and is "nite at VH. Consider

+
V
J(V)"!G

(adj V )T

det V
#Es[h(Vs)(s)T]H, (14)

where adj V denotes the adjoint of V. It is obvious that Es[hi
(*T

i
s)s

j
] at a "nite point

VH is "nite for odd, monotonic decreasing h
i
(y

i
). The magnitudes of the elements in the

"rst term are in"nitely large only when detV"0, hence +
V
J(V) exists and is "nite for

any non-singular V. Therefore, J(V) is continuous anywhere except on the singular
subspace. h

2.2. Absence of local maximum of J(V)

Lemma 4. For the information-theoretic ICA approach with diwerentiable, monotonic
decreasing h

i
(y

i
) nonlinearity, on any number of channels of signals, there is no local

maximum of J(V) in the whole V-parameter space.

Proof. The stability of equilibrium points are determined by checking the Hessian
matrix:

+2VJ(V)"Q"C
/2J
/v11/v11

2 /2J
/v11/v1n

/2J
/v11/v21

2 /2J
/v11/vnn

F } F F
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2 /2J
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F

/2J
/v21/v11

} F

F } F

/2J
/vnn/v11

2 2 2 2 /2J
/vnn/vnn

D. (15)
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If the Hessian is positive de"nite, the equilibrium point is a local minimum; if the
Hessian is negative de"nite, the equilibrium point is a local maximum; if the Hessian is
neither positive de"nite nor negative de"nite, i.e., some of the eigenvalues are/is
positive and some are/is negative, the equilibrium point is a saddle point.

The diagonal elements of the Hessian matrix of J(V) are

L2J
Lv

ij
Lv

ij

"

(cof v
ij
)2

(det V)2
#E

s
[!h@

i
(*T

i
s)s2

j
] i, j"1,2,2, n. (16)

For any monotonic decreasing h
i
(y

i
), h@

i
(y

i
)(0, E

s
[!h@

i
(*T

i
s)s2

j
]'0, and hence

L2J/Lv
ij
Lv

ij
'0. The "rst leading principal minor of the Hessian matrix is a diagonal

element, and hence is positive. Therefore, the Hessian matrix cannot be negative
de"nite at any V and there is no local maximum in the whole V-parameter space. h

2.3. Behaviour of J(V) along a radially outward line

Theorem 5. For the information-theoretic ICA approach with diwerential, odd, mono-
tonic decreasing h

i
(y

i
) nonlinearity on any number of channels of signals, consider

a radially outward line V"NVK passing through a non-singular VK "[*(
1
,2, *(

n
]T, where

N"DDVDD"[(Vec(VT))T )Vec(VT)]1@2"J+n
i/1

+n
j/1

v2
ij

is the Euclidean norm of
V"NVK , and VK "V/N is a point on the sphere of unit norm. For any non-singular VK ,
the cost function along the line, written as JVK (N)"J(NVK ), N3[0,#R) is convex and
has a unique "nite local minimum N.*/VK .

Proof. The directional derivative of J(V) along the radially outward direction
Vec(VK T) is
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Fig. 2. An illustration of the behavior of J(V ) along a radially outward line.

where the factor

F(N)"!

n
+
i/1

M1#NEs[hi
(N*( T

i
s)(*( T

i
s)]N (18)

is a monotonic increasing function of N since Mh
i
(y

i
)N are odd and monotonic

decreasing. Noting that F(0)"!n and F(N)P#R as NP#R, we deduce that
F(N) must change sign at some unique, "nite N.*/VK . Hence J@VK (N.*/VK )"0.

Now consider

JAVK (N)"
dJ@VK (N)

dN
"

n

N2
#

n
+
i/1

Es[!h@
i
(N*L T

i
s)(*L T

i
s)2]. (19)

As h
i
( . ) are monotonic decreasing, h@

i
(y

i
)(0, and JAVK (N)'0 ∀N3[0,#R). Hence,

JVK (N) is convex and N.*/VK is a local minimum. h

Corollary 6 (Asymptotic behaviour). For the information-theoretic ICA approach with
diwerentiable, odd, monotonic decreasing h

i
(y

i
) on any number of channels of signals,

J(V)P#R as the norm DDVDDP#R.

Noting also that J(NVK )P#R as NP0, since V"0 is a singularity, We can
illustrate the behaviour of J(V) along a radially outward line in Fig. 2.

As the information-theoretic ICA algorithm performs descent (stochastically) in
J(V) while J(V)P#R as DDV DDP#R, the probability for V to continuously move
in any outward direction tends to zero. Hence we have the following corollary:

Corollary 7 (Impossibility of divergence). For the information-theoretic ICA algorithm
with diwerentiable, odd, monotonic decreasing h

i
(y

i
) nonlinearity acting on any number of

channels of signals, if W (V) is initialized at some non-singular point, then any
v
ij
, i, j"1,2, n of V will not diverge to $R.

Remark 8. The increase of J(V) in the outward direction of V can be understood
intuitively by considering entropy H(z). The CDF-like transformation function f

i
(y

i
) is

limiting to the lower bound as y
i
P!R and limiting to the upper bound as
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y
i
P#R. Both ends of f

i
(y

i
) tend to be more #at as y

i
P$R, that is, large ranges of

y
i
with large magnitudes are mapped into small ranges of z

i
"f

i
(y

i
). As DDV DD tends to be

large, the random variable y
i
generally becomes large and z

i
"f

i
(y

i
) is squeezed to be

more concentrated at the regions near the upper and lower bounds. Hence, there is
less randomness in z, the entropy H(z) decreases or equivalently, J(V) increases. In the
limit DDV DDP#R, some z

i
is squeezed to the discrete upper and lower bounds of f

i
( . )

and the (di!erential) entropy H(z)P!R or equivalently J(V)P#R.

2.4. Ewect of scale parameter of the nonlinearity

If a family of nonlinear functions g
i
(y

i
) can be written as (1/h

i
)g\

i
(y

i
/h

i
), h

i
is called the

scale parameter of g
i
(y

i
). The corresponding h

i
(y

i
)"(1/h

i
)h[

i
(y

i
/h

i
). We shall state that

this scale parameter only has the e!ect of controlling the scale of the equilibrium
points and does not a!ect the separation capability of the nonlinearity. As the proofs
are straightforward but tedious (refer to [5]), and they are not contained in this paper.

Lemma 9. Consider an information-theoretic ICA system A using g8
i
(y

i
) and another

information-theoretic ICA system B using g
i
(y

i
)"(1/h

i
)g8

i
(y

i
/h

i
), i"1,2, n. For any

VAH"[*AH
1

,2, *AH
n

]T, let VBH"[*BH
1

,2, *BH
n

]T such that *BH
i

"h
i
*AH
i

, i"1,2, n.
Then, VBH is an equilibrium point of system B if and only if VAH is an equilibrium point of
system A.

Corollary 10. For an information-theoretic ICA system using g
i
(y

i
) from a scale family

M(1/h
i
)g8

i
(y

i
/h

i
)N, i"1,2, n, the magnitude of *T

i
of the equilibrium points is controlled by

the scale parameter h
i
as v

ij
Jh

i
, j"1,2, n, and after the system has converged to some

equilibrium point, the magnitude of recovered signal E[Dy
i
D] is proportional to h

i
.

Corollary 11. For an information-theoretic ICA system using g
i
(y

i
) from a scale family

M(1/h
i
)g8

i
(y

i
/h

i
)N, i"1,2, n, the values of scale parameters Mh

i
N do not awect the number

and forms of the solutions of the equilibrium equation.

Lemma 12. Consider systems A and B in Lemma 9. The stability of VBH in system B is the
same as the stability of VAH in system A.

Corollary 13. The scale parameter cannot awect the stability of the equilibrium points.

A nonlinearity is said to be capable of separating some sources if V converge to
a correct solution PD. The separation capability hence depends on the number of
equilibrium points, forms (whether they are equal to some PD) of the equilibrium
points and the stability of the equilibrium points. Since the scale parameter can a!ect
none of the factors, we have the following corollary:

Corollary 14. The scale parameter cannot awect the separation capability and a family of
information-theoretic ICA systems using members of a scale family M(1/h

i
)g8

i
(y

i
/h

i
)N with

diwerent h
i

has the same separation capability.
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2.5. Comparison of cost function values of equilibrium points

Lemma 15. For the information-theoretic ICA algorithms with h
i
(y

i
)"!c

i
yp
i
, where

p is a positive integer greater than 1 or a fraction 1/q with positive integer q greater than
1 (p"3, 5,2 or p"1/3, 1/5,2), on any number of channels, if V

A
and V

B
are two

equilibrium points, the equation

J(V
A
)!J(V

B
)"ln

Ddet V
B
D

Ddet V
A
D

(20)

always holds.

Proof. From Eq. (1),

J(V
A
)!J(V

B
)"EsCln

ps(s)
Ddet V

A
D<n

i/1
g
i
(*T

Ai
s)D!EsCln

ps(s)
Ddet V

B
D<n

j/1
g
j
(*T

Bj
s)D

"ln
Ddet V

B
D

Ddet V
A
D
!

n
+
i/1

Es[ln g
i
(*T

Ai
s)]#

n
+
j/1

Es[ln g
j
(*T

Bj
s)]. (21)

For the mentioned nonlinearity, g
i
(y

i
)"C

i
exp(!c

i
yp`1
i

/(p#1)) where C
i

are
normalizing constants. Then,

J(V
A
)!J(V

B
)"ln

Ddet V
B
D

Ddet V
A
D
#

n
+
i/1

Es[ci
D*T
Ai

sDp`1]!
n
+
j/1

Es[cj
D*T

Bj
sDp`1]. (22)

However, we have E
s
[c

i
(D*T

i
sD)p`1]"1 for any equilibrium point by the self-coupling

equilibrium equations (equations for the diagonal elements of matrix equation (9), see
Eq. (29)). Hence, the second term in the above equation equals n and the third term
equals !n. They cancel each other and thus Eq. (20) holds. h

2.6. Number and stability of correct solutions in the 2-channel case

Lemma 16. For the information-theoretic ICA approach with odd, monotonic decreasing
h
i
(y

i
) on 2 channels of signals, the correct solutions have the form

Solutions A1!A4, V"C
$DvH

11
D 0

0 $DvH
22

DD (23)

or

Solutions A5!A8, V"C
0 $DvH

12
D

$DvH
21

D 0 D, (24)

where, for Solutions A1}A4, DvH
11

D and DvH
22

D are respectively the unique magnitudes of the
solutions for the self-coupling equilibrium equations

1#E
s1
[h

1
(v

11
s
1
)s
1
v
11

]"0, (25)

1#E
s2
[h

2
(v

22
s
2
)s
2
v
22

]"0 (26)
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and for Solutions A5}A8, DvH
12

D and DvH
21

D are respectively the unique magnitude of the
solutions for the self-coupling equilibrium equations:

1#E
s2
[h

1
(v

12
s
2
)s
2
v
12

]"0, (27)

1#E
s1
[h

2
(v

21
s
1
)s
1
v
21

]"0. (28)

There are totally 8 correct solutions in the 2-channel case.

Proof. The matrix equilibrium equation (9) can be explicitly written as
Self-coupling equilibrium equations:

Es[!h
i
(*T

i
s)*T

i
s]"1, i"1,2, n. (29)

Cross-coupling equilibrium equations:

Es[!h
i
(*T

i
s)*T

j
s]"0, i, j"1,2, n, iOj. (30)

Substituting v
12
"v

21
"0 for solutions A1}A4, it can be easily seen that the cross-

coupling equilibrium equations are automatically satis"ed. As h
i
(y

i
) are monotonic

decreasing and odd, the magnitudes DvH
11

D and DvH
22

D have unique solutions for the
self-coupling equations (25) and (26), respectively. The case for solutions A5}A8 is
similar. Counting the combination of signs of the elements, we conclude that there are
exactly eight correct solutions. h

This lemma can be easily extended to the n-channel case to give the number of
correct solutions that separate all the n sources as being equal to 2n]n!.

Remark 17. We can have some intuitive understanding on the functionality of the
self-coupling and cross-coupling equilibrium equations. The cross-coupling equilib-
rium equation restricts high-order cross-moments E[!h

i
(y

i
)y

j
], iOj, to be zero and

determines possible forms of equilibrium points. The self-coupling equations control
the magnitudes of the recovered signals and hence the magnitudes of the equilibrium
points. Note that there can also be non-separating V which satis"es the cross-coupling
equilibrium equations and hence a spurious solution can exist.

Lemma 18. For the information-theoretic ICA approach with diwerentiable, odd, mono-
tonic decreasing h

i
(y

i
) on 2 channels of signals, the suzcient and necessary condition for

Solutions A1!A4 in Eq. (23) to be stable is

E[s2
1
]E[s2

2
]E

s1
[!h@

1
(vH

11
s
1
)]E

s2
[!h@

2
(vH

22
s
2
)]!

1

vH2
11

vH2
22

'0. (31)

The suzcient and necessary condition for Solutions A5}A8 in Eq. (24) to be stable is

E[s2
1
]E[s2

2
]E

s2
[!h@

1
(vH

12
s
2
)]E

s1
[!h@

2
(vH

21
s
1
)]!

1

vH2
12

vH2
21

'0. (32)
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Proof. From Eq. (15), the Hessian matrix for Solutions A1}A4 is

+2VJ(V)"Q"

C
1
v
H2
11
#E

s1
[!h@

1
(vH

11
s
1
)s2
1
] 0 0 0

0 Es[!h@
1
(vH

11
s
1
)s2
2
] 1

v
H
11v

H
22

0

0 1
v
H
11v

H
22

Es[!h@
2
(vH

22
s
2
)s2
1
] 0

0 0 0 1
v
H2
22
#E

s2
[!h@

2
(vH

22
s
2
)s2
2
]D.
(33)

The su$cient and necessary condition for the Hessian to be positive de"nite is that all
leading principal minors must be positive. The elements q

11
, q

44
are always positive.

Hence, the condition for all leading principal minors to be positive is

detC
q
22

q
23

q
32

q
33
D"Es[!h@

1
(vH

11
s
1
)s2
2
]Es[!h@

2
(vH

22
s
2
)s2
1
]!

1

vH2
11

vH2
22

'0. (34)

By the independence assumption of source signals, condition (31) is reached. Similarly,
the condition for stability of Solutions A5}A8 can be found. h

Lemmas 16 and 18 are actually partial results. To apply them to a particular
nonlinearity, we have to solve Eqs. (25)}(28), (31) and (32), and get the condition of
stability in terms of the statistics or distribution of the sources only. However,
one di$culty is to pick the elements MvH

ij
N out of the expectation operation. Only in

simple cases like the cubic nonlinearity case can we pick MvH
ij
N out. For the reversed

sigmoid, as the expectation of terms involving h
i
(*

i
s) and h@

i
(*

i
s) are di$cult to be

broken down to separate *
i
from the expectation (at least, the Taylor expansion of

h
i
(y

i
) involves in"nite number of terms), the equilibrium equations and condition for

stability are di$cult to solve and study. Moreover, investigation on other non-
separating equilibrium points and stability of them are needed for global convergence
analysis.

3. Investigation in the 2-channel cubic nonlinearity case and
global convergence analysis

The global convergence behaviour of the information-theoretic ICA algo-
rithms with the cubic nonlinearity equation (7) is investigated through the following
three steps: (1) Explicitly and exhaustively determine all equilibrium points of
the cost function. (2) Determine, for each equilibrium point, whether or under what
condition it is a local minimum or saddle point. (3) Incorporate with the proved
global properties on the cost function scalar "eld to give the global convergence
theorem.
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3.1. Exhaustive determination of equilibrium points

Writing the set of equilibrium equations (29) and (30) out, we have

Self-coupling equilibrium equations:

E[y4
1
]"v4

11
k4
1
#2v2

11
v2
12

m#v4
12

k4
2
"

1

c
1

, (35)

E[y4
2
]"v4

21
k4
1
#2v2

21
v2
22

m#v4
22

k4
2
"

1

c
2

. (36)

Cross-coupling equilibrium equations:

E[y3
1
y
2
]"v

11
v
21

(v2
11

k4
1
#v2

12
m)#v

12
v
22

(v2
12

k4
2
#v2

11
m)"0, (37)

E[y3
2
y
1
]"v

11
v
21

(v2
21

k4
1
#v2

22
m)#v

12
v
22

(v2
22

k4
2
#v2

21
m)"0, (38)

where kp
i
"E[sp

i
] and m"3k2

1
k2
2
.

They are a system of four equations with four unknowns Mv
11

, v
12

, v
21

, v
22

N. A key
step to solve them is to write the cross-coupling equations (37) and(38) in the following
form (suggested by Jiong Ruan):

C
v2
11

v2
12

v2
21

v2
22
DC

k4
1

m

m k4
2
DC

v
11

v
21

v
12

v
22
D"0. (39)

Denote

M"C
v2
11

v2
12

v2
21

v2
22
DC

k4
1

m

m k4
2
D. (40)

Eq. (39) implies

C
v
11

v
21

v
12

v
22
D"0 or det M"0. (41)

We treat these two exhaustive possibilities in case A and case B, respectively.
Case A:

C
v
11

v
21

v
12

v
22
D"0. (42)

By self-coupling equilibrium equations (35) and(36), we "nd that elements in any row
of V cannot be all zeros simultaneously. Hence, putting v

12
"0 and v

21
"0 into the

self-coupling equations (35) and(36), we get:
Solutions A1}A4:

V"C
$(c

1
k4
1
)~1@4 0

0 $(c
2
k4
2
)~1@4D. (43)
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Putting v
11
"0 and v

22
"0 into Eqs. (35) and (36), we get:

Solutions A5 } A8:

V"C
0 $(c

1
k4
2
)~1@4

$(c
2
k4
1
)~1@4 0 D. (44)

Solutions A1}A8 are the eight and only eight solutions in case A and they are the
correct solutions that can perform source separation mentioned in Lemma 16.

Case B: Now we consider the case

det M"(v2
11

v2
22
!v2

12
v2
21

)(k4
1
k4
2
!m2)"0. (45)

Assume that

k4
1
k4
2
!m2"k4

1
k4
2
![3(k2

1
)2][3(k2

2
)2]O0, (46)

i.e., the two sources are not &globally Gaussian', Eq. (45) becomes

v2
11

v2
22
!v2

12
v2
21
"(v

11
v
22
#v

12
v
21

)(v
11

v
22
!v

12
v
21

)"0. (47)

Since det V"v
11

v
22
!v

12
v
21
O0 for equilibrium points (D+*J(V)DP#R if

det VP0), we have

v
11

v
22
#v

12
v
21
"0. (48)

Notice the possible combinations of the signs s
ij
"v

ij
/Dv

ij
D of v

ij
. From Eq. (48), we "nd

that three of the four v
ij

must be of the same sign, and the remaining one the opposite
sign. Hence we have the constraint

s
11

s
12

s
21

s
22
"!1. (49)

putting Eq. (48) back into Eqs. (35)}(38), we get:
Solutions B1}B8:

V"C
s
11

(2c
1
g
1
)~1@4 s

12
(2c

1
g
2
)~1@4

s
21

(2c
2
g
1
)~1@4 s

22
(2c

2
g
2
)~1@4D (50)

where

s
ij
"1 or!1 satisfying s

11
s
12

s
21

s
22
"!1, (51)

with totally eight combinations,

g
1
"k4

1
#3Jk4

1
/k4

2
k2
1
k2
2
, (52)

g
2
"k4

2
#3Jk4

2
/k4

1
k2
1
k2
2
. (53)

Solutions B1}B8 are the eight and only eight solutions in case B. However, for these
solutions VOPD. They are spurious solutions that cannot perform source separation
but still satisfy the four equilibrium equations.
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The exhaustive determination of the equilibrium points can be summarized in the
following lemma:

Lemma 19. The cost function of information-theoretic ICA approach J(V) with cubic
nonlinearity Eq. (7), has exactly sixteen equilibrium points, Solutions A1}A8 (Eqs. (43)
and (44)) and Solutions B1}B8 (Eq. (50)). Solutions A1}A8 (Group A) are correct
solutions that can perform source separation, while Solutions B1}B8 (Group B) are
spurious solutions that cannot perform source separation.

Remark 20. Note the scale of the equilibrium points are controlled by c~1@4
i

. It can be
easily seen that c

i
is related to the scale parameter by c~1@4

i
Jh

i
. Hence the lemmas

and corollary in Section 2.4 are veri"ed.

3.2. Stability of the equilibrium points

The condition for stability of correct Solution Group A is easily found by sub-
stituting Eq. (7) into Lemma 18. The condition for stability of spurious Solution
Group B is found in the Appendix. They are summarized in the following lemma:

Lemma 21. For source signals satisfying the following condition:

E[s4
1
]E[s4

2
]![3(E[s2

1
])2][3(E[s2

2
])2](0. (54)

Solutions A1}A8 are minima and Solutions B1}B8 are saddle points of J(V). For source
signals satisfying

E[s4
1
]E[s4

2
]![3(E[s2

1
])2][3(E[s2

2
])2]'0. (55)

Solutions B1}B8 are minima and Solutions A1}A8 are saddle points of J(V).

Remark 22. A signal s is called sub-Gaussian if the kurtosis E[s4]!3(E[s2])2
is negative, called super-Gaussian if the kurtosis is positive and called Gaussian
if the kurtosis is zero. A super-Gaussian signal has sharply peaked pdf with long
tail and a sub-Gaussian signal has a #at pdf with a short tail. The term
E[s4

1
]E[s4

2
]![3(E[s2

1
])2][3(E[s2

2
])2] in Eqs. (54) and (55) is de"ned as the &joint

kurtosis' for the two signals. Two signals that satisfy Eq. (54), i.e., with negative joint
kurtosis, are called &globally sub-Gaussian' [10]. Similarly, two signals that satisfy Eq.
(55), i.e. with positive joint kurtosis, are called &globally super-Gaussian', and two
signals with zero joint kurtosis are called &globally Gaussian'.

3.3. Global convergence analysis

By Corollary 7, V will not diverge to in"nity. By Lemmas 1, 3 and Corollary 6, the
singular subspace divides the whole parameter space into several semi-in"nite con-
tinuous regions. Hence, when the algorithm is running, V must converge to one of the
local minima in the region it is initialized in. Therefore, we have the following theorem
on the global convergence behaviour of the algorithm.
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Theorem 23. For the information-theoretic ICA algorithm, Eq. (3), with the cubic nonlin-
earity equation (7) acting on two channels of signals, W being initialized at some
non-singular point,

f If the two source signals satisfy Eq. (54), then V will converge to one of the
Solutions A1}A8, Eqs. (43) and (44).

f If the two source signals satisfy Eq. (55), then V will converge to one of the
Solutions B1}B8, Eq. (50).

In a word, Theorem 23 means that the information-theoretic ICA algorithms with
cubic nonlinearity can separate two globally sub-Gaussian sources but cannot separ-
ate two globally super-Gaussian sources.

Remark 24. The cross-coupling equilibrium condition, Eqs. (37) and (38), are equiva-
lent to controlling the fourth-order cross-moments E[y3

i
y
j
], iOj to be zero. Due to

their simplicity, cubic nonlinearity and cancellation of these fourth-order cross-
moments are popular in ICA approaches with di!erent network structures
[8,12,18,15,19,10,3,14,4]. From the theoretical analysis in this section, it can be seen
that for algorithms with cubic nonlinearity or fourth-order cross-moments
E[y3

i
y
j
], iOj, the conditions on successful separation naturally involve fourth order

statistics of the sources (e.g. the joint kurtosis). It is not surprising that the condition
for successful separation for these approaches have similar forms [19,3] or even
exactly the same form [18,4,10,14]. (However, this work is not equivalent to those
previous work as mentioned in Section 1.)

4. Experimental demonstration

The experiments are aimed at demonstrating the theoretical results. The natural
gradient descent algorithm, Eq. (3), with cubic nonlinearity, Eq. (7), is used. It is chosen
that c

1
"c

2
"1. For all experiments, the learning rate is kept at 0.0001. The following

mixing matrix is used:

A"C
1 0.6

0.7 1 D. (56)

The experiments are run for a number of scans through the data set long enough that
W seems to have converged to a stable point.

The performance of the separation is determined by how close to PD the matrix
V"WA is. The element v

ij
determines the amplitude of source signal s

j
goes into

recovered signal y
j
and v2

ij
determines the power. The greatest v2

ij
in a row in V is

regarded as the power of the &signal' and the sum of other v2
ij

of the row is regarded as
the power of the &interference'. Hence, we de"ne the interference-to-signal power ratio

94 C.C. Cheung, L. Xu/Neurocomputing 30 (2000) 79}102



of channel i in decibel (dB) units as

I/S
i
"10]log

10A
+

jEk
v2
ij

v2
ik
B, k"argmax

l
v2
il
. (57)

We use the mean of the interference-to-signal ratio over the channels as the
performance index of source separation.

It should be noted that for convergence to the correct solution, the performance
index depends on the mean magnitude of #uctuation around the solution, as a "xed
learning rate is used. Since the magnitude of #uctuation decreases as the magnitude of
the learning rate decreases, better performance (more negative performance index in
dB) can be obtained by using a smaller learning rate (with slower convergence).

4.1. Experiments on two sub-Gaussian sources

In this experiment, two channels of arti"cially generated independently and identi-
cally distributed (iid) source signals with uniform distribution in [!1, 1] are used.
Each channel consists of 100,000 data points. Statistics of the data set are

k2
1
"0.3326, k4

1
"0.1991, k2

2
"0.3337, k4

2
"0.2007. (58)

Both channels are sub-Gaussian, the standardized joint kurtosis k4
1
k4
2
/[(k2

1
)2(k2

2
)2]!9

is !5.756 and they are obviously globally sub-Gaussian. We tried two initializations
of W. The "rst one is the identity matrix, which is a natural choice when no
supplementary information is provided, and means V starts from the original
mixture A. The second initialization is at one of the spurious solutions B,
W

*/*5
"V

B
A~1, where

V
B
"C

!0.9851 0.9832

0.9851 0.9832D (59)

to test the stability of Solution Group B.
For the case W is initialized as an identity matrix, the system converges in about

30,000 data points. The performance graph, interference-to-signal ratio versus
number of data points scanned, is plotted in Fig. 3. For the case initialization is at the
Solution B, the system converges in about 200,000 data points. The four-dimensional
trajectories of the convergence are plotted in two two-dimensional graphs, Figs. 4(a)
and (b), each of which being the projection to two coordinates.

V in the two cases converges to two of the correct Solution A's:

V
A
"C

$1.4970 0

0 1.4941D. (60)

The interference-to-signal ratio reaches !40 dB in both case.
Hence it is experimentally veri"ed that Solution Group A is stable and Solution

Group B is not stable in this case.
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Fig. 3. The performance graph of the algorithm with cubic nonlinearity acting on uniformly distributed
sources.

4.2. Experiments on two super-Gaussian sources

In this experiment, two channels of human speech signals are used. The "rst channel
is recorded from a man telling a story and the second channel is recorded from
a woman reading news. Both signals are recorded at 8 kHz and consist of 100,000 data
points (12.5 s). The signals are randomly permuted to get rid of non-stationarity.
Statistics of the data set are

k2
1
"0.0625, k4

1
"0.0435, k2

2
"0.2500, k4

2
"0.3342. (61)

Both signals are super-Gaussian. The standardized joint kurtosis
k4
1
k4
2
/[(k2

1
)2(k2

2
)2]!9 is 50.55 and obviously the source is globally super-Gaussian.

We have also tried two initializations of W. The "rst one is the identity matrix. The
second initialization is at one of the correct Solution A's, W

*/*5
"V

A
A~1, where

V
A
"C

2.1897 0

0 1.3152D (62)

to test the stability of Solution Group A.
For the case W initialized as an identity matrix, the system converges in about

80,000 data points. For the case initialization is at the solution A, the system
converges in about 160,000 data points. The four-dimensional trajectories of the
convergence are plotted in two two-dimensional graphs, Figs. 5(a) and (b), each of
which being the projection to two coordinates.
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Fig. 4. The trajectories of convergence of V of the information-theoretic ICA algorithm with cubic
nonlinearity on uniformly distributed sources. Solid: W

*/*5
"I. Dashed: W

*/*5
"V

B
A~1. Solution A's and

B's are marked by &A' and &B', respectively. The convergence points are solution A's.
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Fig. 5. The trajectories of convergence of V of the information-theoretic ICA algorithm with cubic
nonlinearity on permuted speech signals. Solid: W

*/*5
"I. Dashed: W

*/*5
"V

A
A~1. The convergence points

are solution B.
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V in both cases happens to converge to one of the spurious Solution B's:

V
B
"C

1.6964 1.0187

!1.6964 1.0187D. (63)

Hence it is experimentally veri"ed that Solution Group B is stable and Solution
Group A is not stable in this case.

5. Conclusions

In addition to using standard techniques for determining equilibrium points and
their stability for proving local convergence, we put a great deal of e!ort in investigat-
ing the global behaviour of the cost function in the whole parameter space. We
successfully obtained theoretical results on global properties of the cost function of the
information-theoretic ICA approach with any di!erentiable, odd, monotonic decreas-
ing nonlinearity in the general n-channel case. In the simple 2-channel cubic non-
linearity case, we solve all equilibrium points with the condition on their stability
found, and give a global convergence theorem. The global convergence theorem is
veri"ed by computer simulation. This theoretical work provides a solid foundation to
investigate how nonlinearity a!ects separation capability in ICA algorithms [21}23].
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Appendix. Stability of solution group B

This part is to "nd out the condition for Solutions B1}B8 to be local minima of J(V)
in the 2-channel cubic nonlinearity case.

For Solution B1}B8,

(detV)2"D2"
2

cg
, (A.1)

where

g"Jg
1
g
2
"Jk4

1
k4
2
#m'0,

c"Jc
1
c
2
'0,

(A.2)

and g
1
, g

2
and m are de"ned in Section 3.1.
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From Eq. (15), the Hessian matrix is

+2
v
J(<)"Q"

1

2J2

C
Jc

1
p
1

!s
21

s
22

Jc
1
(Jn#4mJn

) !s
12

s
22

JcJg
1

s
12

s
21

JcJn

!s
21

s
22

Jc
1
(Jn#4mJn

) Jc
1
p
2

s
11

s
22

JcJg !s
11

s
21

JcJg
2

!s
12

s
22

JcJg
1

s
11

s
22

JcJg Jc
2
p
1

!s
11

s
12

Jc
2
(Jg#4m

Jg
)

s
12

s
21

JcJg !s
11

s
21

JcJg
2

!s
11

s
12

Jc
2
(Jg#4m

Jg
) Jc

2
p
2 D,

(A.3)
where

p
1
"Jg

1
#

6k4
1

Jg
1

#

2m

Jg
2

,

p
2
"Jg

2
#

6k4
2

Jg
2

#

2m

Jg
1

. (A.4)

After a great deal of tedious symbolic manipulation [5], the characteristic polynomial
is found to be

det(Q!jI)"j4#A
3
j3#A

2
j2#A

1
j#A

0

"j4

#j3G!
1

2J2
(Jc

1
#Jc

2
)
7Jk4

1
k4
2
#3m

Jg(g!m)
(Jk4

1
#Jk4

2
)H

#j2Gc
(2Jk4

1
k4
2
#m)(3Jk4

1
k4
2
#m)

g(g!m)
(Jk4

1
#Jk4

2
)2

#2(c
1
#c

2
)(3Jk4

1
k4
2
!m)H

#jG!2J2c(Jc
1
#Jc

2
)
5k4

1
k4
2
!m2

Jg(g!m)
(Jk4

1
#Jk4

2
)H

#32c2Jk4
1
k4
1
(Jk4

1
k4
1
!m). (A.5)

For globally super-Gaussian signals, k4
1
k4
2
!m2'0, we have A

3
(0, A

2
'0, A

1
(0

and A
0
'0. Hence, every eigenvalue, being the root of the characteristic polynomial,

must be positive. The Hessian matrix will be positive de"nite and therefore Solutions
B1}B8 are local minima.

For globally sub-Gaussian signals, k4
1
k4
2
!m2(0, we have A

0
(0. Noting that

A
0
"j

1
j
2
j
3
j
4
, where j

1
, j

2
, j

3
, j

4
are the eigenvalues, we must have three eigen-

values of the same sign and the remaining eigenvalues must be of the opposite sign.
Hence Solutions B1}B8 are saddle points. h
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