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a b s t r a c t

Binary Factor Analysis (BFA) uncovers the independent binary information sources from observations
with wide applications. BFA learning hierarchically nests three levels of inverse problems, i.e., inference
of binary code for each observation, parameter estimation and model selection. Under Bayesian Ying-
Yang (BYY) framework, the first level becomes an intractable Binary Quadratic Programming (BQP)
problem, while model selection can be conducted automatically during parameter learning. We conduct
extensive experiments to reveal that the performance order of four BQP methods is reversed from
making BQP optimization to making BYY automatic model selection, which implies that learning is
not merely optimization. Moreover, the BFA learning algorithm is further developed with priors over
parameters to improve the performance. Finally, based on BFA, we empirically compare BYY with
Variational Bayes (VB) and Bayesian information criterion (BIC).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Binary Factor Analysis (BFA) explores latent binary structures
of data. Unlike the conventional factor analysis where the latent
factor is assumed to be Gaussian, BFA traces the observation to
independent Bernoulli information sources. Research on BFA has
been focused on analysis of binary data, such as social research
questionnaires and market basket data, with the aid of Boolean
algebra [1], and also on the discovery of binary factors in
continuous data, [2–4], taking advantage of the representational
capacity of the underlying binary structure. When considering all
the random variables to be binary, factor analysis becomes the
restricted Boltzmann machine which is the building block of the
deep belief network [5]. This paper considers the same BFA model
as in [4,2], under Bayesian Ying-Yang (BYY) harmony learning
[6,7], in a comparison with Variation Bayes (VB) [8] and Bayesian
information criterion (BIC) [9]. Rissanen's Minimum Description
Length (MDL) stems from another viewpoint but coincides with
BIC when it is simplified to a simple computable criterion [10].

The hierarchy of all unknowns in a learning system makes the
learning process not just an optimization but a series of hierarchi-
cally nested continuous or discrete optimizations. As summarized
in [7], there are three levels of inverse problems, i.e., inverse
inference from observation to inner representation, parameter
learning, and model selection. In terms of BFA, the first level of
inverse problems in BFA is the inference of an m-bit inner binary

code yðxÞ or a 2m-point posterior distribution pðyjxÞ for each
observation x, given the parameters and the coding length of y,
i.e., m¼ dimðyÞ. It is difficult due to its combinatorial complexity.
Under BYY, maximizing the objective functional turns this problem
into a Binary Quadratic Programming (BQP) problem that searches
an optimal binary code yðxÞ for each training sample x. A
preliminary study in [11] compared four BQP methods and
suggested that some amount of error in BQP optimization is not
always a bad thing but instead provides a helpful regularization for
the learning process. Conventionally, the second and the third
level are implemented by a two-phase procedure, i.e., parameter
learning (usually maximum likelihood learning) is conducted for
each m in a candidate set M, one of which is then selected by a
model selection criterion, e.g., BIC [9]. However, this two-phase
implementation suffers from a huge computation, because it
requires parameter learning that is nested with a BQP for each
mAM. Moreover, a larger m often implies more unknown para-
meters, and thus parameter estimation becomes less reliable so
that the criterion evaluation reduces its accuracy, see Section 2.1 in
[12] for a detailed discussion.

This paper further investigates the four BQP methods in [11] used
for the BYY learning on BFA. One is the exact BQP solver by
enumeration (shortly denoted as enum). The other three are approx-
imate methods, i.e., the greedy method in [13], the cdual method
derived from the canonical duality theory [14], and the roundmethod
by relaxing the binary y to a continuous one and rounding the optimal
solution back to binary [15]. Their BQP optimization performances
follow an order: roundocdualogreedyoenum. Extensive experi-
ments show that cdual and round are fast and more effective in
discarding extra factors, and lead to much better model selection
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performances than greedy and enum. Actually, some amount of error
in BQP provides a helpful learning regularization with a gain on both
computational efficiency and model selection performance.

Moreover, automatic model selection is adopted to save the
computation of two-phase implementation by starting from a
large enough m and then discarding redundant binary factors
during parameter learning. We further develop BFA learning
algorithms by considering prior distributions over parameters,
which play a role of Bayesian regularization. With the help of
priors, enum and greedy improve their automatic model selection
performances, but are still inferior to cdual and round.

Finally, we empirically investigate the performance between
BYY, VB, and BIC. Such comparisons have been made on factor
analysis in [16] and Gaussian mixture model in [17], but not on
BFA yet. We simplify the VB-ICA algorithm [18,19] to obtain a VB
algorithm on BFA. The results reveal that BYY is the best for most
configurations, while BIC is more robust than VB. VB is good only
when both training sample size N is large and noise is small, and
declines drastically when N reduces and noise increases. Moreover,
applied to the problem of blind binary image separation, the
results again show that BYY outperforms VB.

The rest of this paper is organized as follows. BFA model is
introduced in Section 2. BYY harmony learning is briefly reviewed
in Section 3, and a BYY-BFA algorithm is derived with priors over
the parameters. Section 4 introduces VB and BIC for an empirical
analysis in Section 5, while concluding remarks are given in
Section 6.

2. Binary Factor Analysis

In Binary Factor Analysis (BFA), an n-dimensional observed
variable x is modeled as

x¼ Ayþcþε; ð1Þ

where the hidden factor vector yAf�1;1gm is an internal binary
code with each element being either �1 or 1 drawn from a
Bernoulli distribution, and y is independent of the Gaussian noise
ε. This model has been studied previously from different perspec-
tives [15,4,2].

The BFA can also be mathematically formalized by the follow-
ing probabilistic distributions:

qðyjΘÞ ¼ ∏
m

i ¼ 1
βð1þyiÞ=2
i ð1�βiÞð1�yiÞ=2; qðxjy;ΘÞ ¼ GðxjAyþc;ΣeÞ;

ð2Þ

where β¼ ½β1;…;βm�, 0oβio1, i¼ 1;2;…;m, Σe is a positive
definite diagonal matrix, and Gð�jμ;ΨÞ denotes a Gaussian dis-
tribution with mean μ and covariance Ψ, and Θ¼ fA;β; c;Σeg is
the set of parameters.

Similar to [20,18], we consider the joint prior distribution on
the parameters Θ¼ fA;Σe;β; cg to be a product of distributions on
each parameter independently:

qðΘjΞÞ ¼ qðAÞqðβÞqðcÞqðΣeÞ; ð3Þ

where Ξ is the set of hyperparameters. Each column ai of A is
independently distributed according to a Gaussian distribution
with its covariance controlled by a precision parameter αi which is
further assumed to follow a Gamma distribution

qðAÞ ¼ ∏
m

i ¼ 1
G aij0;

1
αi
In

� �
; qðαiÞ ¼Γðαijaα; bαÞ; ð4Þ

where Γðxja; bÞ ¼ ðba=ΓðaÞÞxa�1e�bx denotes the Gamma density. A
Dirichlet distribution is appropriate for each βi which satisfies

βA ½0;1�:

qðβÞ ¼ ∏
m

i ¼ 1
Dðβijλi; ξiÞ ¼ ∏

m

i ¼ 1

ΓðξiÞ � βξiλi1 �1
i ð1�βiÞξiλi2 �1

ΓðξiβiÞΓðξið1�βiÞÞ
: ð5Þ

Usually, qðμÞ is assumed to be a Gaussian with zero mean, i.e.,
Gðμjμ0; λ

μ
0InÞ. Moreover, the case of isotropic noise is considered, i.

e., Σe ¼φ�1In, and a Gamma distribution is imposed on the noise
precision parameter φ:

qðΣeÞ ¼ qðφÞ ¼Γðφjaφ; bφÞ: ð6Þ

3. Bayesian Ying-Yang (BYY) harmony learning

Firstly proposed in [6] and systematically developed over a
decade and half [12,21], the Bayesian Ying-Yang harmony learning
theory is a unified statistical learning framework under a best
harmony principle, which leads to a new family of algorithms that
performs automatic model selection during parameter learning.
The best harmony is mathematically to maximize the following
general harmony functional [12,7]:

HðpJqÞ ¼
Z

pðXÞpðRjXÞln½qðXjRÞqðRÞ�dR dX ð7Þ

HðpJqÞ ¼
Z

pðΘjXÞHðpJq;ΘÞdΘ; ð8Þ

HðpJq;ΘÞ ¼
Z

pðY jX;ΘÞpðXÞln½qðXjY ;ΘÞqðY jΘÞ�dY dXþ ln qðΘjΞÞ;

ð9Þ
where the observation X is regarded to be generated from its inner
representation R¼ fY ;Θg with latent variable Y and parametersΘ.
As interpreted in [7], maximizing HðpJqÞ forces qðXjRÞqðRÞ to
match pðRjXÞpðXÞ. Due to a finite sample size and practical
constraints on pðRjXÞ, this matching aims at but may not really
reach a perfect matching pðRjXÞpðXÞ ¼ qðXjRÞqðRÞ. Still, we get a
trend at this equality which turns HðpJqÞ into a negative entropy
that describes the complexity of system, and thus further max-
imizing it leads to a least complexity. Hence, this matching is not
in a maximum likelihood sense but with a promising model
selection nature. Readers are referred to not only a summary of
nine aspects on the novelty and favorable natures of BYY harmony
learning, made at the end of Section 4.1 in [12], but also the
roadmap shown in Fig. A2 in [12], as well as to a systematic outline
on the 13 topics about best harmony learning in Section 7 in [21].

The model selection performance of not only BYY criterion but
also BYY automatic model selection on BFA has been compara-
tively investigated in [4], in comparison with existing typical
model selection criteria, including Bayesian Information Criterion
(BIC) [9] etc., which are implemented in a two-phase procedure
that first trains a set of candidate models and then selects the one
with the minimum criterion value. This two-stage implementation
suffers from a huge computation because it requires parameter
learning for each candidate model scale. Moreover, a larger model
scale often implies more unknown parameters, and thus para-
meter estimation becomes less reliable so that the criterion
evaluation reduces its accuracy, see Section 2.1 in [12] for a
detailed discussion. This paper focuses on BYY based automatic
model selection, incorporated with appropriate prior distributions
on parameters.

Specifically, we consider the BFA model by Eq. (2) with indepen-
dently and identically distributed (i.i.d.) samples in XN ¼ fxtgNt ¼ 1,
from which we have

qðXjY ;ΘÞ ¼∏
t
qðxt jyt ;ΘÞ; qðY jΘÞ ¼∏

t
qðyt jΘÞ; ð10Þ
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where qðxt jyt ;ΘÞ and qðyt jΘÞ are given by Eq. (2). Moreover, we
consider the empirical density pðXÞ ¼ δðX�XNÞ and no constraints
for both pðY jX;ΘÞ and pðΘjXÞ, then maximizing HðpJqÞ in Eq. (8)
with respect to pðYjX;ΘÞ and pðΘjXÞ becomes

max
Θ

HðpJqÞ; HðpJqÞ � ∑
N

t ¼ 1
ln½qðxt jŷ t ;ΘÞqðŷ t jΘÞ�þ ln qðΘjΞÞ; ð11Þ

where ŷ t is obtained through the following binary quadratic
programming (BQP) problem:

ŷ t ¼ arg max
yA f�1;1gm

ln½qðxt jŷ t ;ΘÞqðyt jΘÞ� ¼ arg min
yA f�1;1gm

1
2
yTQ yy� f yy

� �
; ð12Þ

with

Q y ¼ ATΣ�1
e A; f y ¼ 1

2 ½ln β� lnð1�βÞ�þATΣ�1
e ðxt�cÞ; ð13Þ

and ln β¼ ½ln β1;…; ln βm� and lnð1�βÞ ¼ ½lnð1�β1Þ;…; lnð1�βmÞ�.
Iteratively implementing Eqs. (11) and (12) actually takes a

specific form of Ying-Yang alternative procedure with convergence
guaranteed [12]. The details of the obtained BYY-BFA algorithm are
given in Algorithm 1. It should be noted that the effects of qðΘÞ are
shut-off when the indicator τ¼ 0, at which BYY-BFA degenerates
back to the one in [11]. Moreover, Eq. (11) is merely a rough
approximation, while more advanced treatments on pðYjX;ΘÞ are
possible, e.g., see Eq. (20) and Section 4.3 in [12].

Algorithm 1. A BYY harmony learning algorithm for BFA with
automatic model selection (BYY-BFA).

4. BIC and Variational Bayes (VB)

Bayesian model selection is to compute the marginal likelihood
qðXN jm;ΞÞ ¼ R

qðXN jΘ;mÞqðΘjm;ΞÞ dΘ given a data set XN and
then to select the model scale by maximizing the likelihood, i.e.,
mn ¼ arg maxmqðXNjm;ΞÞ. Since the computation involves a
usually high dimensional integral over all parameters Θ, it is
difficult to obtain the exact value of qðXN jm;ΞÞ. Then, approxima-
tion plays important roles. BIC [9] is one widely used approxima-
tion by Laplace method, and it is simplified as follows:

J bicðΘ;mÞ ¼ � ln qðXN jΘ;mÞþ ln N
2

dm; ð14Þ

where N and dm denote the sample size and the number of free
parameters under model scale m, respectively. Since the last term
in Eq. (14) is irrelevant to Θ, parameter estimation based on

J bicðΘ;mÞ degenerates back to maximum likelihood (ML) learning,
which is not good for automatic model selection. Usually, BIC is
implemented via the following two-phase procedure:

mn ¼ arg min
m

J bicðΘ̂
ML

;mÞ; Θ̂
ML ¼ arg max

Θ
ln qðXNjΘ;mÞ: ð15Þ

Developed recently, Variational Bayes (VB) [8] tackles the integra-
tion by means of variation methods to approximate ln qðXN jm;ΞÞ
with a lower bound:

F ðpðΘÞ; pðYÞ;m;ΞÞ ¼
Z

pðΘÞpðYÞln qðXN ;Y jΘÞqðΘjm;ΞÞ
pðΘÞpðYÞ

� �
dY dΘ

¼ ln qðXNjm;ΞÞ�KLðpðΘÞpðYÞJqðY ;ΘjXN ;m;ΞÞÞ; ð16Þ
with Y representing hidden variables, where qðΘjm;ΞÞ is a prior
distribution over parameters Θ given hyperparameters Ξ and model
scalem. Moreover, KLðpJqÞ ¼ R

plnðp=qÞZ0 is the KL-divergence, and
qðY ;ΘjXN ;m;ΞÞp qðXN ;Y jΘÞqðΘjm;ΞÞ. The variational posterior
is usually assumed to be further factorized as pðΘÞpðYÞ ¼
∏ipðθiÞ∏tpðytÞ for a computable lower bound F . It is straightforward
to show [8] that the optimum form for each component of variational
posterior distribution is

pðϑiÞpexpf〈ln½qðXN ;Y jΘÞqðΘjm;ΞÞ�〉∏
ja i

pðϑjÞg; ð17Þ

where ϑiAΘ [ Y , and 〈 � 〉p denotes expectation with respect to p.
For BFA, by putting Eqs. (2), (3) and (10) into Eq. (16), a VB-BFA

algorithm is obtained to maximize F by iteratively computing
Eq. (17). Notice that the Bernoulli distribution qðyjΘÞ in Eq. (2) can
be regarded as a special case of

qðyjΘÞ ¼ ∏
m

i ¼ 1
∑
ki

ji ¼ 1
βi;ji

Gðyijμi;ji
;s2

i;ji
Þ; ð18Þ

under the conditions 8 i; ki ¼ 2, μi;1 ¼ �1, μi;2 ¼ 1, s2
i;1 ¼s2

i;2 ¼ 0.
Generally, Eq. (1) with qðyjΘÞ by Eq. (18) is called non-Gaussian factor
analysis (NFA) [22] or independent factor analysis (IFA) [23], which
relaxes the noise-free assumption of independent component analysis
(ICA) [20,18]. A VB algorithm for noisy ICA or actually NFA was
proposed in [20], but it did not consider priors on the parameters in
Eq. (18), while the parameters were treated with proper priors in
[18,19] where Eq. (5) is extended for general k1;…; km.

Actually, the VB-BFA algorithm discussed here can be regarded
a special implementation of the VB-ICA algorithm in [18,19].

5. Empirical analysis

5.1. How error in solving BQP affects model selection

In BFA learning, there are three levels of inverse problems [7],
including inferring y for every x, estimating the parameters, and
selecting an appropriate coding length m. Three problems are
corresponding to three types of optimization tasks, i.e., a discrete
optimization over f�1;1gm, a continuous optimization over the

Table 1
Algorithms for solving the BQP in Eq. (12).

Name Description

enum Exhaustively enumerate yAf�1;1gm , which was used in BFA [4]
greedy The greedy BQP algorithm on page 203 [13]
cdual The canonical dual approach to the BQP (see [14] or Algorithm 2

in [11])
round Round ~y ¼Q �1

y f yðxÞ to the nearest binary vector in f�1;1gm , which
was proposed [15, Table II, p. 836] for BFA learning under the name
“fixed posteriori approximation”, and was shown to be the least
accurate one of four BQP methods in [11]

S. Tu, L. Xu / Neurocomputing 134 (2014) 149–158 151
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parameter space, and a discrete optimization over a set of candidate
scales M¼ f1;…;minitg where minit is a positive integer given
beforehand. The three optimizations are hierarchically nested to
learn all the unknowns based on a set of observations fxtgNt ¼ 1.

Encoding a binary y for every x is formulated as an NP-hard
BQP problem in Eq. (12). A preliminary study in [11] investigated
the impact of four BQP solvers on BYY based automatic model
selection, and suggested that some amount of error in solving BQP
improves model selection performance. In this paper, the four
BQP methods, as restated in Table 1, are further investigated via
extensive experiments.

According to Eqs. (12) and (13), we devise and carry out a
synthetic experiment by varying the coding length dimðyÞ and the
relative size of J f yðxÞJ . Fig. 11 shows the accuracy and the
efficiency of the approximate BQP algorithms listed in Table 1.
round is the fastest but its accuracy degrades rapidly as dimðyÞ
increases; greedy is more accurate than round and cdual but
suffers from Oðdim3ðyÞÞ computation [13]. As J f yðxÞJ2 turns small,
round becomes slightly more accurate while the error of cdual
and greedy rises up significantly.

To examine how BQP accuracy affects parameter learning,
BYY-BFA is implemented without model selection (i.e., ignoring
lines 13–14 in Algorithm 1) by fixing dimðyÞ at a pre-specifiedminit.
A synthetic data set is randomly generated according to Eq. (2),
where dimðxÞ ¼ 10, the true dimðyÞ is mn ¼ 5, and y evenly
takes values from the 2mn

points in f�1;1gmn

, and A¼UΛ, U is
orthogonal, Λ¼ diag½λ1;…; λm�, λi ¼ 1ð8 iÞ, and Σe ¼s2In. Fig. 2
shows the learning trajectory of minimum norm of columns of A
with the same initialization and minit ¼ 6. When one extra binary
factor is added, the corresponding column of A is compressed
into a much smaller norm by using cdual or round. A stronger
shrinkage is better for automatic model selection, as will be
justified subsequently.

If dimðyÞ in BFA is also unknown to be determined, then model
selection problem is encountered. The central goal of model selection
is to obtain a compact model that minimizes generalization error.
Conventionally, model selection is tackled by a two-stage implemen-
tation like Eq. (15). To avoid the expensive enumeration for each
mAM, we activate lines 13–14 in Algorithm 1. Starting from a large
coding length minit, the gradient flow of HðpJqÞ will make the extra
binary factors discarded in lines 13–14 during learning.

In experiments, synthetic data are generated according to
Eq. (2) for BFA with each configuration ðmn;N;sÞ, where mn is
the underlying true dimðyÞ, N is the training sample size, and λi is

Fig. 1. Percentage of correct solutions (out of 100 runs) by (a) cdual, (b) greedy, and (c) round over a 10� 10 (dimðyÞ � J f yðxÞJ) configurations with trðQ Þ ¼ 1:0 by
Q’Q=tr½Q � and f y’f y=tr½Q � (where tr(M) denotes the trace of a matrix M); (d) computation cost in seconds with time axis in log-scale.

1 All experiments in this paper are implemented with GNU Octave 3.0.3 on a
Intel Core 2 Duo 2.13 GHz with 1 GB RAM running FreeBSD 7.0.
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uniformly randomly generated from the interval [1,2] so that the
scale Jai J2 corresponding to each binary factor varies, where ai is
the ith column of A. All configuration triples ðmn;N;sÞ are given in

fðmn;N;sÞjmnAf3g; NAVN ; sAVsg, where VN ¼ f200;150;100;
50;40;30;20g, and Vs ¼ f0:01;0:05;0:1;0:15;0:2;0:25;0:3; 0:35;
0:4;0:45;0:5;0:6;0:7;0:8;0:9;1:0g. In the experiments, Algorithm 1
is implemented with τ¼ 0, δ¼ 2, minit ¼ 2mn�1.

The model selection accuracies on all configurations are
reported in Figs. 3(a) and (b), and 4(a) and (b). Generally, the
accuracies decline as N reduces. From the aspect of noise levels s,
the accuracies first increase as s grows from 0.01 to around 0.25,
and then decrease when s proceeds to 1.0. Among all the
implementations of Algorithm 1 nested with one of the four BQP
based binary encoders, the model selection accuracy shows
an order of fcdual; roundg4greedy4enum, which reverses the
BQP optimization performance order. For a detailed comparison
between cdual and round, the differences of the accuracies by
cdual minus those by round are represented by a heatmap in
Fig. 5(a). round is superior in the configurations around s¼ 0:25,
i.e., fðmn;N;sÞjsAUδð0:25Þg where Uδð0:25Þ ¼ ð0:25�δ;0:25þδÞ,
δ40, and δ becomes small as N goes small. In contrast, cdual
has an advantage for very small or medium noise levels.

5.2. Priors over parameters affect model selection

BYY is capable of automatic model selection without any priors
over the parameters of BFA, as demonstrated in Figs. 3(a) and (b),
and 4(a) and (b). Moreover, according to Eqs. (8) and (9), proper

Fig. 2. Learning without dimension deduction on a synthetic data set from fdimðxÞ ¼
10; true dimðyÞmn ¼ 5;s¼ 0:3; sample size N ¼ 50g.

Fig. 3. Automatic model selection accuracies of BYY-BFA under various configurations: (a) enum without prior; (b) greedy without prior; (c) enum with prior; (d) greedy
with prior. A red ball indicates a higher accuracy by BYY-BFA with or without prior distributions over parameters, for each BQP method. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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priors can be incorporated under a general guideline of BYY
learning in [12]. Such efforts have been made on factor analysis
in [16], Gaussian mixture model in [17]. The prior term ln qðΘjΞÞ
in Eq. (11), which plays a regularization role, takes effect in

Algorithm 1 by setting τ¼ 1, and the hyperparameters Ξ are set
according to [18,19].

The model selection accuracies of BYY-BFA aided with priors on
parameters are reported in Figs. 3(c) and (d), and 4(c) and (d). The

Fig. 4. Automatic model selection accuracies of BYY-BFA under various configurations: (a) cdual, without prior (i.e., τ¼ 0 in Algorithm 1); (b) round, without prior; (c) cdual,
with prior (i.e., τ¼ 1 in Algorithm 1); (d) round, with prior.

noise levels

sa
m

pl
e 

si
ze

diff = cdual − round,   without prior

0.05 0.15 0.25 0.35 0.45 0.6 0.8 1.0

200

150

100

50

40

30

20

−15

−10

−5

0

5

10

15

20

25

30

35

noise levels

sa
m

pl
e 

si
ze

diff = cdual − round,   with prior

0.05 0.15 0.25 0.35 0.45 0.6 0.8 1.0

200

150

100

50

40

30

20

−15

−10

−5

0

5

10

15

20

25

30

35

Fig. 5. Comparison of model selection performances by BYY embedded with cdual or round, by the heatmap of differences (a) between Fig. 4(a) and (b), and (b) between
Fig. 4(c) and (d).

S. Tu, L. Xu / Neurocomputing 134 (2014) 149–158154



Author's personal copy

BYY-BFA algorithm becomes improved for each BQP method, espe-
cially when N is small. Some exceptions are located at the cases of
very large noise. Moreover, the gain from the incorporation of priors
improves enum and greey a lot in model selection by Fig. 3(c) and (d),
but still inferior to cdual and round by Fig. 4(c) and (d). As shown by
the heatmap in Fig. 5(b), the difference between cdual and round is
narrowed down by the benefits from priors, except when s is around

0.7, cdual/round has a relative advantage for a small/large sample size,
respectively.

5.3. Comparisons among BYY, VB, and BIC

As discussed in Section 4, the VB-BFA algorithm is a special case
of the VB-ICA algorithm proposed in [18,19]. In the experiments,

Fig. 6. Comparison of model selection performances: (a) automatic model selection by BYY with round; (b) automatic model selection by VB; (c) two-phase model selection
by BIC. A red ball is drawn to indicate a highest accuracy (450%) by BYY, VB, and BIC, and also contours of accuracies are given in the plane of (N, noise). The results
of success-selection (S), underestimation (U), and overestimation (O) are averaged along one axis and then projected to the other axis in (d), (e), and (f), respectively.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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we accordingly simplify the algorithm2 in [19] to implement
VB-BFA, and conduct automatic model selection according to lines
13–14 in Algorithm 1. For a reference, we also implement BIC in a
two-phase procedure by Eq. (15), where the well-known Expecta-
tion-Maximization (EM) algorithm is adopted to estimate the
parameters (see e.g., Eqs. (6)–(9) in [4] for the EM algorithm of
BFA). VB and BIC are implemented on the same synthetic data
used in Fig. 3.

The model selection results are presented in Fig. 6, where
BYY-BFA with round, i.e., Fig. 4(d), is selected for comparison
because it is fast and the best of all (or at least comparable to the
one with cdual) as shown in Figs. 3 and 4. Fig. 6(a)–(c) shows that
BYY is generally the best at most cases. BIC is more robust than VB,
while VB performs well only when N is large and noise is mall, and
deteriorates drastically as N reduces or noise increases.

Moreover, the results of underestimation (U) m̂omn, success-
selection (S) m̂ ¼mn and overestimation (O) m̂4mn, are sepa-
rately averaged along one axis and then projected to the other,
helping to explore the marginalized effect of either of noise level
and N, where m̂ is an estimate of the true factor number mn.
Fig. 6(d) confirms the above results that BYY is robust for a small

sample size whereas BIC is robust for a large noise. It can be observed
from Fig. 6(e) and (f) that BYY suffers from overestimation at high
noise levels, while VB and BIC mainly suffer from underestimation.

5.4. Recovering binary images

We apply BYY-BFA and VB-BFA to bind separation of binary
sources. The algorithms are demonstrated on the data set “Binary
Alphadigits”,3 which consists of binary images of size 20�16 of
handwritten digits “0” through “9” and capital “A” through “Z”
with 39 instances for each class.

Two binary images of handwritten digits “0” and “3”, as shown
in the top of Fig. 7(b) and (c), are selected for example. They are
mixed by a randomly generated 4�2 matrix A, and then added
by a Gaussian noise with variance 0.1. The noise corrupted mixed
images are shown in Fig. 7(a), which appears without evident
digital patterns.

Both BYY-BFA and VB-BFA are implemented in Fig. 7(a) by
initializing minit ¼ 3. As shown in Fig. 7(b) and (c), the two binary
digits can be correctly recovered with the extra binary dimension
automatically discarded during learning. However, if the estimated
number m̂ of digits is wrong, then the binary images cannot be
recovered accurately. An example of m̂ ¼ 1 in Fig. 8 demonstrates

Fig. 7. Results of recovering binary images. (a) Mixed images corrupted by noise; (b) the true (top) binary image of “0” and the recovered ones by BYY (middle) or VB
(bottom); (b) the true (top) binary image of “3” and the recovered ones by BYY (middle) or VB (bottom); (d) percentages of underestimation (U), success-selection (S),
overestimation (O) out of: (top) 100 independent runs when using image “0” and “3”, or (bottom) 104 runs when the images are randomly picked as binary sources.

2 In [19], two factorizations to approximate the posterior were considered with
two VB algorithms, “vbICA1” and “vbICA2”, derived correspondingly. Here,
“vbICA2” is simplified to implement VB-BFA, because it was shown in [19] to be
more robust. The matlab package is available from http://www.robots.ox.ac.uk/
�parg/projects/ica/riz/code.html.

3 The data set can be downloaded from http://www.cs.nyu.edu/�roweis/data.
html.
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that only the digit “3” is approximately detected, while an example
of m̂ ¼ 3 in Fig. 9 shows that the extra one may duplicate or even
disturb the reconstruction of the images “0” and ”3”.

We repeatedly generate 100 noise corrupted mixed images
from image “0” and “3”. The automatic model selection results,
given in the top table of Fig. 7(d), show that BYY is more accurate
than VB, which is consistent with the observations from Fig. 6.

For a fair selection on image classes, we randomly pick two
image classes, and then randomly pick an instance within each
class, and then mix them with noise in the same way as the above
process. The results in the bottom table of Fig. 7(d) again justify
that BYY outperforms VB.

6. Concluding remarks

This paper has investigated the performance of BYY based auto-
matic model selection which automatically discards extra binary
factors during parameter learning. A BQP optimization problem is
embedded in the BFA learning process to encode a binary code for
each observation. Experiments showed that some amount of error in
solving the BQP may produce a learning regularization with gains not
only computational efficiency but also model selection accuracy.
Moreover, the BFA learning algorithm has been developed with
appropriate prior distributions on parameters and it further improved

model selection performance. For comparisons, we also implemented
VB to perform automatic model selection, together with BIC in a two-
phase implementation as a reference. Empirical analysis indicated that
BYY is superior for most configurations with different training sample
sizes and noise levels. BIC is more robust than VB, while VB is good
only for a large sample size and low noise but declines quickly as the
sample size goes down and as the noise grows large.

The harmony functional by Eq. (11) is merely a rough approx-
imation of Eq. (8), and it ignores a term that involves the number
of free parameters as given in Eq. (29) in [24]. The term is not
helpful to automatic model selection but contributes to the model
selection criterion in a two-phase implementation similar to BIC
by Eqs. (14) and (15). With the help of this contribution, BYY may
improve the performance for the cases of large noise in Fig. 6(a).
Moreover, the performance may be further improved by exploring
the co-dimension nature of the matrix pair A and Y with a
composite indicator given in Eq. (36) of [24] to indicate whether
a hidden dimension should be discarded. All these possible
improvements are left for the future work.
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Fig. 9. An example of both BYY and VB detecting one extra image. It shows a case of overestimation (O) with m̂4mn ¼ 2, where m̂ is the estimate ofmn by BYY or VB. (a) BYY,
m̂ ¼ 3. (b) VB, m̂ ¼ 3.

Fig. 8. An example of both BYY and VB detecting only one image “3”. It shows a case of underestimation (U) with m̂omn ¼ 2, where m̂ is the estimate of mn by BYY or VB.
(a) BYY, m̂ ¼ 1. (b) VB, m̂ ¼ 1.
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