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a b s t r a c t

In this paper we propose a concavely regularized convex relaxation based graph matching algorithm. The
graph matching problem is firstly formulated as a constrained convex quadratic program by relaxing the
feasible set from the permutation matrices to doubly stochastic matrices. To gradually push the doubly
stochastic matrix back to be a permutation one, an objective function is constructed by adding a simple
weighted concave regularization to the convex relaxation. By gradually increasing the weight of the
concave term, minimization of the objective function will gradually push the doubly stochastic matrix
back to be a permutation one. A concave–convex procedure (CCCP) together with the Frank–Wolfe
algorithm is adopted to minimize the objective function. The algorithm can be used on any types of
graphs and exhibits a comparable performance as the PATH following algorithm, a state-of-the-art graph
matching algorithm but applicable only on undirected graphs.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graph matching plays a central role in many graph based
techniques. For instance, graph is frequently used as the structural
representation of objects in computer vision and pattern recogni-
tion, and consequently the graph matching algorithm is commonly
used to solve the object matching problem [5,1]. Graph matching
involves identifying each vertex pair between graphs in some
optimal way, or inherently finding a good permutation matrix
between the two adjacency matrices of both graphs.1 The problem
is in nature a NP-hard combinatorial optimization problem with a
factorial complexity, except for some graphs with special struc-
ture, such as the planar graphs, which has shown to be of
polynomial complexity [13]. Therefore, an exhaustive search algo-
rithm is computationally prohibited in practice, except for some
small scale problems.

To make the problem computationally tractable, many approx-
imate approaches have been proposed, trying to seek a good trade-
off between the complexity and matching accuracy. As summar-
ized in [4], approximate matching algorithms can be roughly
categorized into three groups, tree search based methods, spectral
methods and continuous optimization (relaxation techniques).
Tree search methods [22,6] are based on some simplifications of

the depth-first search, for instance. Their performances depend
largely on the problem nature, i.e., graph structure. The spectral
methods [23,25] have their roots in the fact that the eigenvalues of
the adjacency matrices of two isomorphic graphs are identical to
each other. Unfortunately, the converse conclusion may be quite
wrong, that is, two graphs with identical eigenvalues may be far
from isomorphic. This might make the spectral methods result in
a quite poor matching when the two graphs are not isomorphic.

Relaxation techniques involve relaxing the combinatorial
matching problem to be a continuous one. The key point lies in
the fact that optimization over a continuous set is usually easier to
be approximated than its discrete counterpart. Specifically, the
graph matching problem involves relaxing the set of permutation
matrices, denoted by P, to its convex hull, i.e., the set of doubly
stochastic matrices denoted by D. Typical relaxation techniques in
the literature include for instance relaxation labeling [7,17],
graduated assignment [9] and PATH following algorithm [28].
The relaxation labeling assigns each vertex of one graph with a
probabilistic discrete label, and updates the label based on some
measures, such as the vertex connectivity [7] or edit distance [17].
A common problem faced by the relaxation techniques is the
backprojection which involves projecting the continuous solution
found by the relaxed problem back to be a discrete one. Intuitively,
given a PdAD, the backprojection can be accomplished by a
maximal linear assignment schema as given in (7), which is
commonly employed by the relaxation labeling. However, such a
linear projection may introduce a significant additional error. A soft
assignment schema controlled by a parameter was introduced by
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the graduated assignment algorithm to control the non-convexity
of the problem [9]. As the parameter increases to be large enough, a
permutation matrix is expected to be obtained though usually a
clean-up step is further needed.

Different from the graduated assignment algorithm, the PATH
following algorithm introduces a weighted linear combination of
convex and concave relaxations to gradually get the discrete
solution. Specifically, given the two graphs GD ¼ ðVD; EDÞ and
GM ¼ ðVM ; EMÞ to be matched where V and E, respectively, denote
the sets of vertices and edges, it adopts the following square of
Frobenius matrix norm as the objective function:

f ðPÞ ¼ JAD�PAMP
T J2F ¼ trðAD�PAMP

T ÞT ðAD�PAMP
T Þ; PAP ð1Þ

where AD and AM denote the adjacency matrices of GD and GM,
respectively, P denotes the set of permutation matrix. By taking
advantage of PAP, a convex relaxation of (1) can be found as
follows [28]:

f vðPÞ ¼ vecðPÞTQ vecðPÞ; PAD; ð2Þ
where vecðPÞ creates a column vector from the matrix P by
stacking the column vectors of P, and Q ¼ ðI � AD�AT

M � IÞT ðI �
AD�AT

M � IÞARN2�N2
is a symmetric definite positive matrix. The

concave relaxation introduced by the PATH following algorithm is
given by

f cðpÞ ¼ �trðΔPÞ�2 vecðPÞT ðLTM � LTDÞ vecðPÞ; PAD; ð3Þ
where Δij ¼ ðDMði; iÞ�DDðj; jÞÞ2, with D and L denoting the degree
and Laplacian matrices of the graph, respectively. The concave
relaxation holds the same minima as the original matching
problem, but it is applicable only on undirected graphs without
self-loops. Based on the convex and concave terms above, the
objective function of the PATH following algorithm is given by

f pathðγ; PÞ ¼ γf vðPÞþð1�γÞf cðPÞ; PAD; ð4Þ
where γA ½0;1� controls the non-convexity of the objective: a large
γ means that f pathðP; γÞ tends to be convex; by contrast, a small γ
makes f pathðP; γÞ concave. Thus, by gradually decreasing γ from 1 to
0, the objective becomes finally a concave one, and its minimiza-
tion results in a permutation matrix. On equal-sized graph
matching problems the PATH following algorithm exhibited a
state-of-the-art performance in terms of both accuracy and com-
plexity [28].

However, the PATH following algorithm cannot be used to solve
the matching problem between directed graphs because the term
in Eq. (3) can no longer guarantee to be concave. In this paper we
introduce a much simpler concave term which can be applied on
both directed and undirected graphs. Though the simple concave
term is not a relaxation of the original matching problem, it is
shown that it has a comparable performance as Eq. (3) on
matching accuracy.2 Moreover, instead of directly using the
Frank–Wolfe algorithm, we firstly adopt the concave–convex
procedure (CCCP) [27] to decompose the objective into a sequen-
tial constrained convex quadratic program, which is then solved by
the Frank–Wolfe algorithm [8], avoiding the trouble of line search
on a non-convex function. Section 2 is devoted to the proposed
method, some experimental illustrations and discussions are given
in Section 3, and finally Section 4 concludes the paper.

2. Proposed method

The objective function for the graph matching problem is firstly
proposed, and then the CCCP together with Frank–Wolfe

algorithm is proposed to minimize the objective, followed by an
efficient initialization given by simplicial decomposition.

2.1. Objective function

The proposed objective function takes a similar form as Eq. (4),
with the same convex relaxation but with a different concave
term. To make the algorithm applicable for matching problems on
both directed and undirected graphs, we propose to use the
following concave term:

f cðPÞ ¼ �vecðPÞT vecðPÞ; PAD: ð5Þ
Then, similar to Eq. (4) an objective function of the graph matching
problem is formulated as follows:

min: f γðPÞ ¼ γ vecðPÞTQ vecðPÞ�ð1�γÞ vecðPÞT vecðPÞ; s:t: PAD:

ð6Þ
It is obvious that minimization of the concave term given by
Eq. (5) results in an extreme point of D, i.e., a permutation matrix.
Thus, by gradually decreasing γ from 1 to 0, minimization of the
objective will make P gradually converge to a permutation matrix.

At the beginning when γ¼1, the objective function (6) degen-
erates to the convex relaxation, whose global minimization
denoted by Pv can be obtained by the Frank–Wolfe algorithm
(here we adopt the simplicial decomposition as discussed below).
Actually, a permutation matrix can be directly obtained by an
optimal linear assignment procedure which casts the doubly
stochastic matrix Pv to be a permutation matrix Pp via

Pp ¼ arg max
PAP

tr PT
vP: ð7Þ

The assignment can be solved by the Hungarian algorithm [14],
with a computational complexity OðN3Þ. Such a hard-cut operation
based graph matching algorithm, named QCV (quadratic convex),
may however bring a big error into the final result, as to be
witnessed by the experimental results in Section 3. By contrast, as
γ gradually decreases, P is gradually pushed away from Pv in the
way that update of P is guided to approach a permutation matrix
with a smaller matching error. This point can be intuitively
understood in the following way. During the convergence process
the update direction of P comprises two parts, gv(P) and gc(P), the
directions provided by the convex and concave terms, respectively.
Guidance from gv(P) is to minimize the increase of the convex
term, which, if can be globally minimized during the whole
process, is equal to the difference between the best matching
error and the global minimization of the convex relaxation got by
Pv. On the other hand, gc(P) provides no informative search
direction since any permutation matrix gives the same global
minimum for the concave term. Thus, in the global minimization
sense it is under the guidance of gc(P) that P is expected to
approach a permutation matrix with a relatively small matching
error.

To get an intuitive feel about the process, a simple example on
matching two directed graphs with self-loops and with N¼3 is given
as shown in Fig. 1. P is parameterized as P ¼ ½b; a;1�a�b;
d; c;1�c�d;1�a�c;1�b�d; aþbþcþd�1� with the constraints
aA ½0;1�; dA ½0;1�; bA ½0;π�; cA ½0;π� where π ¼ 1�maxfa; dg. In
Fig. 1 the objective function is plotted by changing b and c with
fixed a and d at their current estimations. As γ ¼ 1, P converges from
the initial 13�3=3 to a¼ 0:462; d¼ 0:305; b¼ 0:374; c¼ 0:451, based
on which the QCV gets the result as PAP ¼ ½0;1;0;1;0;0;0;0;1�. As
the algorithm proceeds, it is illustrated by the figure how P gradually
approaches another solution with a smaller matching error, i.e.,
P ¼ I3, where AD ¼ ½0:496;0:302;0:826;0:179;0:390;0:876;0:037;
0:998;0:999� and AM ¼ ½0:652;0:505;0:498;0:117;0:936;0:839;
0:760; 0:403; 0:970�.

2 In our subsequent works we show theoretically that the simple concave term
realizes exactly a concave relaxation.

Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140–148 141



In contrast to the above simple concave term, the concave
relaxation given by Eq. (3) also provides a search direction gc(P)
which also provides a meaningful guidance for the update of P in
the global optimization sense. However, starting from Pv, the
search direction gc(P) provided by the concave relaxation is the
same as gv(P), i.e., the direction from Pv to the global optimal point.
Therefore, gc(P) is somewhat redundant to gv(P), and gc(P) just
strengthens gv(P) but does not provide additional useful guidance.
This is to some extent confirmed by the experimental comparisons
in Section 3 which witnesses that, on matching undirected graphs,
the simple concave term (5) has a comparable or even a slightly
better performance than the concave relaxation.

2.2. Algorithm

For each fixed γ, the objective function given by Eq. (6) is a
constrained quadratic program which is generally neither convex
nor concave. Unlike the PATH following algorithm which adopts
directly the Frank–Wolfe algorithm to minimize the objective
function, here we firstly utilize the concave–convex procedure
(CCCP) to decompose the objective function into a sequential
constrained convex quadratic program, which is then solved by
the Frank–Wolfe algorithm.

The CCCP algorithm consists of sequentially minimizing the
following constrained convex function:

f kþ1ðPkþ1Þ ¼ f vðPkþ1ÞþvecðPkþ1ÞT∇f cðPkÞ; Pkþ1AD; ð8Þ

where Pkþ1 denotes the P to be found in step k, and f v and f c the
convex and concave terms, respectively. Since ∇f cðPkÞ ¼
�2ð1�γÞ vecðPkÞ is a constant with respect to Pkþ1, Eq. (8) is
formulated as the following constrained convex quadratic pro-
gram:

min: f cccpðPÞ ¼ γvecðPÞTQvecðPÞ�2ð1�γÞvecðPkÞTvecðPÞ;
s:t: PAD:

ð9Þ

It showed [19] that the positive definite transformation matrix TM
(P) [24] of the CCCP algorithm takes the forms

TMðPkÞ � I� ∂2f cav
∂2P

� �
∂2f vex
∂2P

� ��1

P ¼ Pk

" #
½�HðPkÞ��1

¼ I��ð1�γÞQ �1

γ

" #
½�HðPkÞ��1 ð10Þ

where HðPkÞ denotes the Hessian matrix of the objective E. Because
Q is positive definite, all of the eigenvalues of Q �1 are also
positive, which implies that the CCCP algorithm used here is
expected to enjoy a superlinear convergence rate.

The Frank–Wolfe algorithm is then adopted to solve the
constrained convex quadratic program (9). Specifically, it com-
prises the following four steps:

Step 1: Initialize P0 ¼ Pn and let t¼0, where Pn denotes the result
obtained by the previous CCCP loop.

Step 2: Find an extreme point Xt (a permutation matrix) of D by
solving the linear program

min: tr ∇f cccpðPtÞTXt ; s:t: XtAD; ð11Þ

where ∇f cccpðPÞ is given by

∇f cccpðPÞ ¼ 2γðAT
DADP�AT

DPAM�ADPA
T
MþPAMA

T
MÞ

�2ð1�γÞPn: ð12Þ

Step 3: Find a step size αA ½0;1� to minimize f cccpðPtþαðXt�PtÞÞ,
and update Ptþ1 ¼ PtþαðXt�PtÞ.

Step 4: If j〈∇f cccpðPtÞ;Xt�Pt〉joɛjf cccpðPtÞþ 〈∇f cccpðPtÞ;Xt�Pt〉j
where ɛ is a small positive constant, return Ptþ1. Other-
wise, let t ¼ tþ1 and go back to step 2.

In the algorithm, the linear program in step 2 can be solved by
the Hungarian algorithm with a complexity OðN3Þ, and the line
search can be efficiently implemented by the backtracking algo-
rithm [3]. The stopping criterion in step 4 is applicable, thanks to
the convexity of the objective function fcccp.
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Fig. 1. Convergence illustration of the proposed algorithm on matching two directed graphs with self-loops with adjacency matrices. In each step n denotes the starting
point and ○ denotes the convergence point.
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Finally, the graph matching algorithm is summarized by
Algorithm 1.

Algorithm 1. GraphMatching ðAD;AMÞ:

Pn’1N�N=N;n’0; γ’1
while γZ0&P=2P

do Pnþ1’CCCPðPn; γÞ; γ’γ�δγ;n’nþ1
return ðPnÞ

In the algorithm δγ is the step size of γ, and once P becomes
a permutation matrix which implies that the current objective
becomes a concave one, the algorithm is terminated, even if γ has
not reached zero. Each main loop of the graph matching algorithm
is called as a CCCP algorithm, and each CCCP loop is further called
as a Frank–Wolfe algorithm. Thus, Pt and Pk in the Frank–Wolfe
and CCCP algorithms should be formally denoted as Pnkt and Pnk

with the three superscripts n, k, and t denoting the processes of
the main loop, CCCP loop and Frank–Wolfe loop, respectively.

2.3. An efficient initialization based on simplicial decomposition

It is well known that the Frank–Wolfe algorithm suffers a sub-
linear convergence rate due to the fact that the reduced search
direction of the Frank–Wolfe algorithm tends to be perpendicular
to the steepest descent direction as the iteration proceeds [15,10].
Below we adopt the simplicial decomposition to efficiently solve
the convex relaxation, i.e., initialization of the objective function as
γ¼1.

The constraint PAD can be written in the form of a linear
equality together with a inequality constraint as

C vecðPÞ ¼ 12N�1;

vecðPÞZ0N2 ; ð13Þ
where C is an appropriate constant matrix to constrain each
column and row of P a unit vector. Thus, the constrained program
in Eq. (9) satisfies the following three conditions: (1) the feasible
region is convex and compact; (2) the objective function is convex;
and (3) the constraints are linear. These cause the program to be
effectively solved by the simplicial decomposition algorithm
[12,21,15,10], which, as a generalization of the Frank–Wolfe algo-
rithm [8], is expected to converge in a much faster way. Specifi-
cally, the simplicial decomposition algorithm decomposes the
program into two parts, subproblem and master problem, and
solves the original program by iterating the two parts. Given the
current estimation of Pt at the tth iteration, the subproblem solves
exactly the same linear program given by (11).

The master problem involves solving the following quadratic
convex problem over a r�1 dimensional simplex:

min: hðβÞ ¼ f cccpðWβÞ; s:t: ∑
r

i ¼ 1
βi ¼ 1;βiZ0; i¼ 1;2;…; r; ð14Þ

where WARN2�r consists of a subset of extreme points of D that
have been found previously by the subproblem, together with the
current estimation Pt, i.e.,

W ¼ ½vecðX1Þ;…; vecðXtÞ; vecðPtÞ�:
More specifically, by defining SΔqWTQW we have

hðβÞ ¼ f cccpðWβÞ ¼ γβTSβ�2ð1�γÞ vecðPnÞTWβ ð15Þ
where SARr�r is a symmetric positive definite matrix. Then, Ptþ1

in the next iteration is given by

Ptþ1 ¼Wβ: ð16Þ
Each entry of S is simply given by

Sij ¼ Sji ¼WT
i QWj

¼ vecðAD uvecðWiÞ�uvecðWiÞAMÞT vecðAD uvecðWjÞ
�uvecðWjÞAMÞ; ð17Þ

where uvecð�Þ is a converse operator of vecð�Þ, and Wi denotes the
ith column vector of W. Just like Eq. (12), it does not involve the
big-size Q explicitly.

A key parameter in the simplicial decomposition algorithm is r,
the number of extreme points needed to be combined to get the
final solution. An upper bound of R was suggested for r [11], which
is usually much smaller than N2, and it was shown that there is a
tradeoff between R and the number of iterations to get the optimal
solution. R¼ 3

ffiffiffiffi
N

p
is suggested in all of our experiments.

A much smaller R implies that the master problem can be
efficiently solved by a second-order technique, such as the
projected Newton method [2,20]. By transferring the simplex
constraint to be a bound region, the global minimum of the master
problem can be efficiently reached by the projected Newton
algorithm with a super-linear convergence, usually needing only
3–5 iterations to converge. A detailed implementation of the
projected Newton method on the master problem is given in
Appendix A.

The simplicial decomposition algorithm is finally summarized
as follows:

Step 1: Let P0 ¼ Pn; ½Ws�0 ¼ |; ½Wx�0 ¼ fP0g; t ¼ 0.
Step 2: Get Xt by solving the subproblem in Eq. (11) by the

Hungarian algorithm.

Step 3.1: If j½Ws�t j ¼ R, remove the element with the minimal
weight (βi) in ½Ws�t .

Step 3.2: Let ½Ws�tþ1 ¼ ½Ws�t [ Xt ,
½Wx�tþ1 ¼ fPtg;Wtþ1 ¼ ½Ws�tþ1 [ ½Wx�tþ1.

Step 4: Get Ptþ1 by solving the master problem in Eq. (14) by the

projected Newton algorithm. If jvecðPtþ1�PtÞjoεP or

jf ðPtþ1Þ� f ðPtÞjoεf jf ðPtÞj, terminate the algorithm and

output Ptþ1 as the solution; otherwise, let t ¼ tþ1 and
go back to step 2.

In the algorithm εP and εf are two small positive constants to
control the precision of the algorithm.

3. Experimental illustrations

Two series of experiments on both synthetic data and real
feature correspondence were conducted to evaluate the proposed
algorithm. Five algorithms including Umeyama's algorithm (U for
short) [23], PATH following algorithm [28] (on undirected graphs
only), QCV algorithm given by Eq. (7), graduated assignment
algorithm [9] (GA for short), and the proposed algorithm (Ours)
were experimentally compared. All of the algorithms were imple-
mented by Matlab 2009b, with a MEX function to implement the
Hungarian algorithm.

3.1. On synthetic data

Two types of synthetic graphs, uniform graphs and scale-free
graphs, were synthetically generated for the comparison. For
problems with small scale (N¼8 for instance), an exhaustive
search was applied to get the optimal matching. The degree
distribution of a uniform graph follows a uniform distribution,
which is generated as follows: given a sparsity s, for each entry of
the adjacency matrix generate a random number r which is
uniformly distributed within ½0;1�; if r4s, randomly generate its
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weight Aij ¼wA ½0;1�, or otherwise Aij ¼ 0. The scale free graph
whose degree distribution follows a power law pðkÞpk�α is
generated in the same manner as that used in [28], by setting
α¼1.5. Each edge of the scale free graph is assigned a unit weight,
that is, its adjacency matrix comprises only 0 and 1.

The first experiment is to simulate the scenario of graph
matching without any prior. In the experiment, 100 pairs of graphs
with size N¼8 are randomly generated by the following procedure:
for each entry Aij (Aji ¼ Aij in the case of undirected graph) randomly
generate a uniformly distributed number rA ½0;1�; if r40:5 (mean-
ing that sparsity of the graph is around 0.5), randomly generate its
weight Aij ¼wA ½0;1�, or otherwise Aij ¼ 0. The first experimental
results are listed in Table 1 fromwhich it is witnessed that the PATH
(on only undirected graphs) and our algorithms have much better
performances on accuracy than the U, QCV and GA algorithms.
Besides, PATH and our algorithm have a comparable performance
on accuracy, as echoed by the discussions in Section 2.1.

The second experiment is to evaluate the noise robustness of
the algorithms. In the experiment, the second graph in a graph
pair was generated based on the first one by adding some noises
which are controlled by a noise level. Specifically, for uniform

graphs, given a noise level ρA ½0;1� and a randomly generated
adjacency matrix AD, AM is generated by the following steps:

1. Set AM’AD, and for each ðAMÞij, randomly generate two vari-
ables r1 and r2A ½0;1�.

2. If ðAMÞij40: if r1oρ, ðAMÞij’0; or otherwise, ðAMÞij’
ðAMÞijþρr2.

3. If ðAMÞij ¼ 0: if r1oρ, ðAMÞij’r2.
4. Randomly generate a permutation matrix P, and set

AM’PAMP
T .

For the scale free graphs, the noise is added by randomly adding
ρND edges into GD to get GM, where we denote by ND the number
of edges of GD.

The noise level ρ increases from 0 to 1 by a step size 0.1. On each
noise level, 100 graph pairs with N¼8 are generated according to the
above process. The experimental results on the four types of graphs
are shown in Fig. 2. Similar to the first experimental result, the PATH
and our algorithm outperform significantly the other three algorithms.

The third experiment is to evaluate the scalability of the five
algorithms with respect to the graph size, on both accuracy and

Table 1
Comparative experimental results on four types of graphs with N¼8, summarized from 100 random runs.

Graph types Error OPT U GA QCV PATH Ours

Undirected uniform Mean 3.229 8.255 6.476 8.741 3.776 3.737
Std 1.055 2.947 1.892 2.367 1.289 1.354

Directed uniform Mean 5.565 11.26 9.619 9.300 – 6.447
Std 0.948 2.573 1.833 2.095 – 1.258

Undirected scale-free Mean 10.20 23.66 13.13 21.13 10.73 10.60
Std 3.689 4.957 5.056 5.424 3.644 4.050

Directed scale-free Mean 12.23 24.83 18.96 21.43 – 13.76
Std 1.356 3.374 3.056 3.158 – 2.238
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Fig. 2. Changes of the matching error with respect to noise levels, summarized from 100 random runs. Left: undirected graphs without self-loops. Right: undirected graphs
with self-loops.
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complexity. In the experiment, 12 groups of graph pairs with different
sizes are included for comparisonwith the size increasing from 5 to 60
by a step size 5. In each group, 50 graph pairs are generated in the
same way as the second experiment with a noise level 0.2.

On accuracy, similar experimental results as the above two are
obtained on all of the 12 groups of graph pairs, as witnessed by
Fig. 3. On complexity, the time-cost of the five algorithms is shown
in Fig. 4 in which the slopes of the five curves corresponding to U,
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Fig. 3. Changes of the matching error with respect to graph sizes, summarized from 100 random runs. Left: undirected graphs without self-loops. Right: undirected graphs
with self-loops.
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Fig. 4. Changes of the matching error with respect to graph sizes, summarized from 100 random runs. Left: directed graphs without self-loops. Right: directed graphs with
self-loops.
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QCV, GA, PATH, and our algorithm are around 2.4127 0.032,
3.0337 0.06, 4.1357 0.19, 2.9627 0.08, and 2.93770.07, respec-
tively, which imply that the GA suffers the biggest complexity and
U is the simplest one. On the other hand, the complexity of QCV,
PATH and our algorithm is all around OðN3Þ.

3.2. On feature correspondence

Feature correspondence (or point pattern matching) is a funda-
mental problem in pattern recognition and computer vision. The
objective function of feature correspondence usually involves two
terms, the unary term related to the appearance cues and the pairwise
term related to the geometric relationship [16,26,18]. To evaluate the
proposed graph matching algorithm, we focus on the pairwise term,
which in the experiment is formulated by the normalized square of
the difference between the distances between two feature locations as
follows:

FðPÞ ¼ JAD�PAMP
T J2F ;

Aij ¼
0 if i¼ j;

J li� lj JF=max
mn

Amn otherwise;

8<
:

where li ¼ ðxi; yiÞT denotes the location of the feature i. It takes exactly
the same form as the graph matching problem in (1), and thus can be
solved by the proposed algorithm.

We adopt the CMU hotel sequence data for the comparison,
where we choose 6 frames, i.e., the frames 1, 21, 41, 61, 81 and 101
with a 20-frame interval, as shown in Fig. 5. For each frame we
manually marked the same 25 feature points (typically the corner
points), and totally perform C2

6 ¼ 15 matchings between the 6 frames
and take the number of mismatched feature pairs (the total number
is 375) as the evaluation criterion. The matching results are listed in

Table 2, and five typical matching results are shown in Fig. 5, which
shows similar results as on the synthetic data.

4. Conclusions

In this paper we showed that together with the convex
relaxation, a very simple concave function has a comparable
performance with the concave relaxation for the graph matching
problem. The point is that the simple concave function can be
utilized on matching different types of graphs, but by contrast, the
concave relaxation of PATH following algorithm can be used only
on undirected graphs. On four different types of graphs, our
algorithm showed a state-of-art performance on accuracy.
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Appendix A. Master problem: a projected Newton algorithm

To use the projected Newton method to solve the master
problem in Eq. (14), we first transform the simplex to a bound

U

QCV

GA

PATH

CCPRGGM

Fig. 5. Five feature correspondence results by the five graph matching algorithms, with 47, 19, 6, 4, and 2 mismatched pairs (out of 125), which are indicated by white
thicker lines.

Table 2
Comparative experimental results of the five algorithms on pairwise matching

Results U QCV GA PATH Ours

Average matching error 39.3772 4.1764 1.3976 0.9657 0.9627
# of mismatched feature pairs 137 49 13 8 8
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constraint [2]. Given a feasible β, find

l¼ arg max
i

fβiji¼ 1;2;…; rg: ðA:1Þ

Then, a variable λ is introduced in the following way:

λi ¼
βi if ia l
1 otherwise

(
or β¼ Tλ; ðA:2Þ

where Tij ¼ 1 if i¼ j, or otherwise,

Tij ¼
�1 if i¼ l;

0 otherwise:

�

With the above transformation, the master problem in Eq. (14) is
rewritten as

min: gðλÞ ¼ γλTΨλ�2ð1�γÞ vecðPnÞTWTλ
s:t: λiZ0; 8 ia l; λl ¼ 1; λl� ∑

ia l
λiZ0: ðA:3Þ

where ΨΔqTTST is a symmetric positive definite matrix with S
given by Eq. (17). Since the last constraint, i.e, λl�∑ia lλiZ0, is by
construction inactive at the point λ¼ T �1β, it will be ignored in
the iteration of the projected Newton algorithm. The algorithm
iterates the following two steps to convergence:

Step 1: Get λm by Eq. (A.2), and set λ
m
i ¼ ymi if ymi Z0; or λ

m
i ¼ 0

otherwise, where ym ¼ λm�αDm∇gðλmÞ.
Step 2: Update λmþ1

i ¼ 1 if i¼ lm; or λmþ1
i ¼ λmi otherwise, and

reconstruct βmþ1 by βmþ1 ¼ Tmλmþ1.
There are two terms in the algorithms needed to be specified, i.e.,
Dm and α in step 1.

In implementation, the elements of λ are divided into free and
restricted subsets. The restricted subset is defined as

Im ¼ fijλmi rς;∇gðλmi Þ40g; ðA:4Þ
and the free subset denoted by ℘m contains the remainders, where
ς is a small positive number. Then, Dm is defined as follows:

½Dm�ij ¼
0 ia j and either iAIm or jAIm

0 if i¼ lm or j¼ lm

½∇2gðλmÞ��1
ij else;

8><
>: ðA:5Þ

where the gradient and Hessian of the objective are given as
follows:

∇gðλmÞ ¼ 2γΨmλm�2ð1�γÞðTmÞTWT vecðPnÞ; ðA:6Þ

∇2gðλmÞ ¼ γΨm
: ðA:7Þ

By setting αΔqτsm for some τAð0;0:5Þ;sAð0;1Þ, α is found by
finding the smallest nonnegative integer m that satisfies both

1� ∑
ia l

λmþ1
i Z0 ðA:8Þ

and

gðλmþ1ÞrgðλmÞþτsm∇gðλmÞT ðλmþ1�λmÞ:

It is worth adding some discussions on step 1, where λ
m

is

actually got by λ
m ¼ arg minλAΩ ðλ�ymÞT ðλ�ymÞ ¼P½ym�, a pro-

jection of the unconstrained direction under the standard Eucli-
dean norm instead of being with the metric is defined by the
Hessian matrix. Each element by the projection P½ym� is simply
given by the componentwise median of P½ymi � ¼ fvmi ; ymi ;um

i g,
where vmi denotes the lower bound (0 for ia lm), and umi upper
bound (þ1 for ia lm). Moreover, as discussed in [20], as ε in
Eq. (A.4) is small enough, we can just ignore all of the elements in
Im that remain zero during the iterations, and consequently save
computational load.
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