Neurocomputing 134 (2014) 140-148

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

NEUROCOMPUTING

NEUROCOMPUTING
LETTERS

A graph matching algorithm based on concavely regularized

convex relaxation
Zhi-Yong Liu ** Hong Qiao?, Li-Hao Jia?, Lei Xu®

@ CrossMark

@ State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, N.T,, Hong Kong, China

ARTICLE INFO ABSTRACT

Article history:

Received 29 May 2012

Received in revised form

25 October 2012

Accepted 31 December 2012
Available online 23 January 2014

Keywords:

Graph matching
Concave-convex procedure
Concave regularization
Frank-Wolfe algorithm
Convex relaxation

In this paper we propose a concavely regularized convex relaxation based graph matching algorithm. The
graph matching problem is firstly formulated as a constrained convex quadratic program by relaxing the
feasible set from the permutation matrices to doubly stochastic matrices. To gradually push the doubly
stochastic matrix back to be a permutation one, an objective function is constructed by adding a simple
weighted concave regularization to the convex relaxation. By gradually increasing the weight of the
concave term, minimization of the objective function will gradually push the doubly stochastic matrix
back to be a permutation one. A concave-convex procedure (CCCP) together with the Frank-Wolfe
algorithm is adopted to minimize the objective function. The algorithm can be used on any types of
graphs and exhibits a comparable performance as the PATH following algorithm, a state-of-the-art graph
matching algorithm but applicable only on undirected graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graph matching plays a central role in many graph based
techniques. For instance, graph is frequently used as the structural
representation of objects in computer vision and pattern recogni-
tion, and consequently the graph matching algorithm is commonly
used to solve the object matching problem [5,1]. Graph matching
involves identifying each vertex pair between graphs in some
optimal way, or inherently finding a good permutation matrix
between the two adjacency matrices of both graphs.' The problem
is in nature a NP-hard combinatorial optimization problem with a
factorial complexity, except for some graphs with special struc-
ture, such as the planar graphs, which has shown to be of
polynomial complexity [13]. Therefore, an exhaustive search algo-
rithm is computationally prohibited in practice, except for some
small scale problems.

To make the problem computationally tractable, many approx-
imate approaches have been proposed, trying to seek a good trade-
off between the complexity and matching accuracy. As summar-
ized in [4], approximate matching algorithms can be roughly
categorized into three groups, tree search based methods, spectral
methods and continuous optimization (relaxation techniques).
Tree search methods [22,6] are based on some simplifications of

* Corresponding author.
E-mail address: zhiyong.liu@ia.ac.cn (Z.-Y. Liu).
! In this paper we consider only the equal-sized graph matching problem.

0925-2312/$ - see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.12.065

the depth-first search, for instance. Their performances depend
largely on the problem nature, i.e., graph structure. The spectral
methods [23,25] have their roots in the fact that the eigenvalues of
the adjacency matrices of two isomorphic graphs are identical to
each other. Unfortunately, the converse conclusion may be quite
wrong, that is, two graphs with identical eigenvalues may be far
from isomorphic. This might make the spectral methods result in
a quite poor matching when the two graphs are not isomorphic.
Relaxation techniques involve relaxing the combinatorial
matching problem to be a continuous one. The key point lies in
the fact that optimization over a continuous set is usually easier to
be approximated than its discrete counterpart. Specifically, the
graph matching problem involves relaxing the set of permutation
matrices, denoted by P, to its convex hull, i.e., the set of doubly
stochastic matrices denoted by D. Typical relaxation techniques in
the literature include for instance relaxation labeling [7,17],
graduated assignment [9] and PATH following algorithm [28].
The relaxation labeling assigns each vertex of one graph with a
probabilistic discrete label, and updates the label based on some
measures, such as the vertex connectivity [7] or edit distance [17].
A common problem faced by the relaxation techniques is the
backprojection which involves projecting the continuous solution
found by the relaxed problem back to be a discrete one. Intuitively,
given a P;eD, the backprojection can be accomplished by a
maximal linear assignment schema as given in (7), which is
commonly employed by the relaxation labeling. However, such a
linear projection may introduce a significant additional error. A soft
assignment schema controlled by a parameter was introduced by

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.12.065
http://dx.doi.org/10.1016/j.neucom.2012.12.065
http://dx.doi.org/10.1016/j.neucom.2012.12.065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.065&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.065&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.065&domain=pdf
mailto:zhiyong.liu@ia.ac.cn
http://dx.doi.org/10.1016/j.neucom.2012.12.065

Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148 141

the graduated assignment algorithm to control the non-convexity
of the problem [9]. As the parameter increases to be large enough, a
permutation matrix is expected to be obtained though usually a
clean-up step is further needed.

Different from the graduated assignment algorithm, the PATH
following algorithm introduces a weighted linear combination of
convex and concave relaxations to gradually get the discrete
solution. Specifically, given the two graphs Gp=(Vp,Ep) and
Gu = (V. Ey) to be matched where V and E, respectively, denote
the sets of vertices and edges, it adopts the following square of
Frobenius matrix norm as the objective function:

f(P)=lIAp — PAyP" % = tr(Ap — PAyP")' (Ap — PAyPT),P e P)

where Ap and Ay, denote the adjacency matrices of Gp and Gy,
respectively, P denotes the set of permutation matrix. By taking
advantage of Pe P, a convex relaxation of (1) can be found as
follows [28]:

fu(P)=vec(P)'Q vec(P), PeD,)

where vec(P) creates a column vector from the matrix P by
stacking the column vectors of P, and Q =(I ® AD—A{,, DI ®
Ap—Al @ I)e RV ¥ is a symmetric definite positive matrix. The
concave relaxation introduced by the PATH following algorithm is
given by

fe(p) = —tr(AP)—2 vec(P) (L}, ® LT) vec(P),P e D, 3)

where A;; = (Dy(, i)—Dp(j,j))?, with D and L denoting the degree
and Laplacian matrices of the graph, respectively. The concave
relaxation holds the same minima as the original matching
problem, but it is applicable only on undirected graphs without
self-loops. Based on the convex and concave terms above, the
objective function of the PATH following algorithm is given by

fpath(}l: P)= yfv(P)+(1 *Y)fc(P), PeD, 4)

where y € [0, 1] controls the non-convexity of the objective: a large
y means that f,q4(P,y) tends to be convex; by contrast, a small y
makes fp,q,(P,y) concave. Thus, by gradually decreasing y from 1 to
0, the objective becomes finally a concave one, and its minimiza-
tion results in a permutation matrix. On equal-sized graph
matching problems the PATH following algorithm exhibited a
state-of-the-art performance in terms of both accuracy and com-
plexity [28].

However, the PATH following algorithm cannot be used to solve
the matching problem between directed graphs because the term
in Eq. (3) can no longer guarantee to be concave. In this paper we
introduce a much simpler concave term which can be applied on
both directed and undirected graphs. Though the simple concave
term is not a relaxation of the original matching problem, it is
shown that it has a comparable performance as Eq. (3) on
matching accuracy.?> Moreover, instead of directly using the
Frank-Wolfe algorithm, we firstly adopt the concave-convex
procedure (CCCP) [27] to decompose the objective into a sequen-
tial constrained convex quadratic program, which is then solved by
the Frank-Wolfe algorithm [8], avoiding the trouble of line search
on a non-convex function. Section 2 is devoted to the proposed
method, some experimental illustrations and discussions are given
in Section 3, and finally Section 4 concludes the paper.

2. Proposed method

The objective function for the graph matching problem is firstly
proposed, and then the CCCP together with Frank-Wolfe

2 In our subsequent works we show theoretically that the simple concave term
realizes exactly a concave relaxation.

algorithm is proposed to minimize the objective, followed by an
efficient initialization given by simplicial decomposition.

2.1. Objective function

The proposed objective function takes a similar form as Eq. (4),
with the same convex relaxation but with a different concave
term. To make the algorithm applicable for matching problems on
both directed and undirected graphs, we propose to use the
following concave term:

fe(P)= —vec(P)T vec(P), PeD. 5)

Then, similar to Eq. (4) an objective function of the graph matching
problem is formulated as follows:

min. f,(P) =y vec(P)'Q vec(P)—(1—y) vec(P)" vec(P), s.t. PeD.
(6)

It is obvious that minimization of the concave term given by
Eq. (5) results in an extreme point of D, i.e., a permutation matrix.
Thus, by gradually decreasing y from 1 to 0, minimization of the
objective will make P gradually converge to a permutation matrix.

At the beginning when y=1, the objective function (6) degen-
erates to the convex relaxation, whose global minimization
denoted by P, can be obtained by the Frank-Wolfe algorithm
(here we adopt the simplicial decomposition as discussed below).
Actually, a permutation matrix can be directly obtained by an
optimal linear assignment procedure which casts the doubly
stochastic matrix P, to be a permutation matrix P, via

P, = arg max tr P/ P. (7
PeP

The assignment can be solved by the Hungarian algorithm [14],
with a computational complexity O(N*). Such a hard-cut operation
based graph matching algorithm, named QCV (quadratic convex),
may however bring a big error into the final result, as to be
witnessed by the experimental results in Section 3. By contrast, as
y gradually decreases, P is gradually pushed away from P, in the
way that update of P is guided to approach a permutation matrix
with a smaller matching error. This point can be intuitively
understood in the following way. During the convergence process
the update direction of P comprises two parts, g,(P) and g(P), the
directions provided by the convex and concave terms, respectively.
Guidance from g,(P) is to minimize the increase of the convex
term, which, if can be globally minimized during the whole
process, is equal to the difference between the best matching
error and the global minimization of the convex relaxation got by
P,. On the other hand, g.(P) provides no informative search
direction since any permutation matrix gives the same global
minimum for the concave term. Thus, in the global minimization
sense it is under the guidance of g (P) that P is expected to
approach a permutation matrix with a relatively small matching
error.

To get an intuitive feel about the process, a simple example on
matching two directed graphs with self-loops and with N=3 is given
as shown in Fig. 1. P is parameterized as P=[b,a,1—a—b;
d,c,1-c—d;1—a—c,1-b—d,a+b+c+d—1] with the constraints
ae[0,1],de[0,1],be[0,7],ce[0,7] where z=1-max{a,d}. In
Fig. 1 the objective function is plotted by changing b and ¢ with
fixed a and d at their current estimations. As y = 1, P converges from
the initial 13,3/3 to a=0.462,d = 0.305,b = 0.374,c = 0.451, based
on which the QCV gets the result as P.»=[0,1,0;1,0,0;0,0,1]. As
the algorithm proceeds, it is illustrated by the figure how P gradually
approaches another solution with a smaller matching error, i.e.,
P=1I3, where Ap=1[0.496,0.302,0.826;0.179,0.390,0.876;0.037,
0.998,0.999] and Ay =[0.652,0.505,0.498;0.117,0.936,0.839;
0.760, 0.403, 0.970].

142 Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148

n=1(=1)

objective

objective

n=4(y=0.85)

o 05
=
©
2,
g o
-0.5 -l
0.8
n=9(y=0.6)
1
0.5
)
=
‘g 0
b
<]

-0.5

- 0.6
b 02 0.4
00) ¢

Fig. 1. Convergence illustration of the proposed algorithm on matching two directed graphs with self-loops with adjacency matrices. In each step s denotes the starting

point and © denotes the convergence point.

In contrast to the above simple concave term, the concave
relaxation given by Eq. (3) also provides a search direction g.(P)
which also provides a meaningful guidance for the update of P in
the global optimization sense. However, starting from P,, the
search direction gP) provided by the concave relaxation is the
same as g,(P), i.e., the direction from P, to the global optimal point.
Therefore, g(P) is somewhat redundant to g,(P), and g(P) just
strengthens g,(P) but does not provide additional useful guidance.
This is to some extent confirmed by the experimental comparisons
in Section 3 which witnesses that, on matching undirected graphs,
the simple concave term (5) has a comparable or even a slightly
better performance than the concave relaxation.

2.2. Algorithm

For each fixed y, the objective function given by Eq. (6) is a
constrained quadratic program which is generally neither convex
nor concave. Unlike the PATH following algorithm which adopts
directly the Frank-Wolfe algorithm to minimize the objective
function, here we firstly utilize the concave-convex procedure
(CCCP) to decompose the objective function into a sequential
constrained convex quadratic program, which is then solved by
the Frank-Wolfe algorithm.

The CCCP algorithm consists of sequentially minimizing the
following constrained convex function:

fk+1(Pk+]) :fv(Pl<+])+Vec(Pk+l)TVfC(Pk), Pk+1 eD, (8)

where P¥*1 denotes the P to be found in step k, and f, and f. the
convex and concave terms, respectively. Since VfC(P"):
—2(1—y)vec(P¥) is a constant with respect to Pt Eq. (8) is
formulated as the following constrained convex quadratic pro-
gram:

min. f ., (P) = yvec(P)’ Qvec(P)—2(1 —y)vec(P*) vec(P),

9
s.t. PeD. ©)

It showed [19] that the positive definite transformation matrix TM
(P) [24] of the CCCP algorithm takes the forms

-1
TM(P’() ~ |:I— (lﬂfcuv) <62fvex> :| [_H(Pk)]—l
P =Pt

9’P 9*P

—1
- {1__(1 _;)Q [—HP 1 (10)

where H(P¥) denotes the Hessian matrix of the objective E. Because
Q is positive definite, all of the eigenvalues of Q! are also
positive, which implies that the CCCP algorithm used here is
expected to enjoy a superlinear convergence rate.

The Frank-Wolfe algorithm is then adopted to solve the
constrained convex quadratic program (9). Specifically, it com-
prises the following four steps:

Step 1: Initialize P° = P* and let t=0, where P* denotes the result
obtained by the previous CCCP loop.

Step 2: Find an extreme point X' (a permutation matrix) of D by
solving the linear program
min. tr Vf,(PY'X", st X'eD, an
where Vf ., (P) is given by
Vf ccep(P) = 27(ApApP — ApPAw — ApPAy; +PAuA)

—2(1—y)P*. (12)

Step 3: Find a step size a & [0, 1] to minimize f.,(P' +a(X' —P")),
and update P'*! = P!+ (X' —P").

Step 4: If (Vfeeqp(P), X =P < &lf cop(P) +(Vf ccep(P), X' — PO

where ¢ is a small positive constant, return P‘*!. Other-
wise, let t =t+1 and go back to step 2.

In the algorithm, the linear program in step 2 can be solved by
the Hungarian algorithm with a complexity O(N®), and the line
search can be efficiently implemented by the backtracking algo-
rithm [3]. The stopping criterion in step 4 is applicable, thanks to
the convexity of the objective function feccp.

Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148 143

Finally, the graph matching algorithm is summarized by
Algorithm 1.

Algorithm 1. GraphMatching (Ap,Ay).

P" —1nun/N,n0,7 1
while y > 0&P¢ P

do P! CCCP(P",y),y «y—6y.n—n+1
return (P")

In the algorithm &y is the step size of y, and once P becomes
a permutation matrix which implies that the current objective
becomes a concave one, the algorithm is terminated, even if y has
not reached zero. Each main loop of the graph matching algorithm
is called as a CCCP algorithm, and each CCCP loop is further called
as a Frank-Wolfe algorithm. Thus, P* and P* in the Frank-Wolfe
and CCCP algorithms should be formally denoted as P™* and P
with the three superscripts n, k, and t denoting the processes of
the main loop, CCCP loop and Frank-Wolfe loop, respectively.

2.3. An efficient initialization based on simplicial decomposition

It is well known that the Frank-Wolfe algorithm suffers a sub-
linear convergence rate due to the fact that the reduced search
direction of the Frank-Wolfe algorithm tends to be perpendicular
to the steepest descent direction as the iteration proceeds [15,10].
Below we adopt the simplicial decomposition to efficiently solve
the convex relaxation, i.e., initialization of the objective function as
y=1

The constraint Pe D can be written in the form of a linear
equality together with a inequality constraint as

Cvec(P)=1xn_1,
vec(P)> 0,2, (13)

where C is an appropriate constant matrix to constrain each
column and row of P a unit vector. Thus, the constrained program
in Eq. (9) satisfies the following three conditions: (1) the feasible
region is convex and compact; (2) the objective function is convex;
and (3) the constraints are linear. These cause the program to be
effectively solved by the simplicial decomposition algorithm
[12,21,15,10], which, as a generalization of the Frank-Wolfe algo-
rithm [8], is expected to converge in a much faster way. Specifi-
cally, the simplicial decomposition algorithm decomposes the
program into two parts, subproblem and master problem, and
solves the original program by iterating the two parts. Given the
current estimation of P* at the tth iteration, the subproblem solves
exactly the same linear program given by (11).

The master problem involves solving the following quadratic
convex problem over a r—1 dimensional simplex:

min. h(B) =fueyWP). st. 3 fi=1.p20i=1.2..r. (14
i=1

where W e RV consists of a subset of extreme points of D that
have been found previously by the subproblem, together with the
current estimation P, i.e.,

W =[vec(X"), ..., vec(X"), vec(Ph)].
More specifically, by defining SAqWTQW we have
WPB) = fecepWP) = 1B Sp—2(1—y) vec(P*)' Wp (15)

where Se R™ is a symmetric positive definite matrix. Then, P'*!
in the next iteration is given by

P+l =wp. (16)
Each entry of S is simply given by
Sij = Sji = W] QW;

=vec(Ap uvec(W;)—uvec(Wy)Au)" vec(Ap uvec(W;)

—uvec(Wj)Aum), a7

where uvec(-) is a converse operator of vec(-), and W; denotes the
ith column vector of W. Just like Eq. (12), it does not involve the
big-size Q explicitly.

A key parameter in the simplicial decomposition algorithm is r,
the number of extreme points needed to be combined to get the
final solution. An upper bound of R was suggested for r [11], which
is usually much smaller than N2, and it was shown that there is a
tradeoff between R and the number of iterations to get the optimal
solution. R = 3+/N is suggested in all of our experiments.

A much smaller R implies that the master problem can be
efficiently solved by a second-order technique, such as the
projected Newton method [2,20]. By transferring the simplex
constraint to be a bound region, the global minimum of the master
problem can be efficiently reached by the projected Newton
algorithm with a super-linear convergence, usually needing only
3-5 iterations to converge. A detailed implementation of the
projected Newton method on the master problem is given in
Appendix A.

The simplicial decomposition algorithm is finally summarized
as follows:

Let PO = P*, W]’ =0,[W,]° = {P°},t =0.
Get X‘ by solving the subproblem in Eq. (11) by the
Hungarian algorithm.

Step 1:
Step 2:

Step 3.1: If |[Ws]'| =R, remove the element with the minimal
weight () in [W;]".
Step 3.2: Let [W]"*! =[W,]f U X,
[Wx]t+1 — {Pt},WHl — [Ws][+] U [Wx][+].
Step 4: Get P'*! by solving the master problem in Eq. (14) by the
projected Newton algorithm. If [vec(P'™'—P')| <¢&p or
[F(PF 1) —f(P")| < &f(P")|, terminate the algorithm and

output P'*! as the solution; otherwise, let t =t+1 and
go back to step 2.
In the algorithm ¢p and & are two small positive constants to
control the precision of the algorithm.

3. Experimental illustrations

Two series of experiments on both synthetic data and real
feature correspondence were conducted to evaluate the proposed
algorithm. Five algorithms including Umeyama's algorithm (U for
short) [23], PATH following algorithm [28] (on undirected graphs
only), QCV algorithm given by Eq. (7), graduated assignment
algorithm [9] (GA for short), and the proposed algorithm (Ours)
were experimentally compared. All of the algorithms were imple-
mented by Matlab 2009b, with a MEX function to implement the
Hungarian algorithm.

3.1. On synthetic data

Two types of synthetic graphs, uniform graphs and scale-free
graphs, were synthetically generated for the comparison. For
problems with small scale (N=8 for instance), an exhaustive
search was applied to get the optimal matching. The degree
distribution of a uniform graph follows a uniform distribution,
which is generated as follows: given a sparsity s, for each entry of
the adjacency matrix generate a random number r which is
uniformly distributed within [0, 1]; if r > s, randomly generate its

144 Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148

weight Aj =we[0,1], or otherwise A; =0. The scale free graph
whose degree distribution follows a power law p(k)oc k™% is
generated in the same manner as that used in [28], by setting
a=1.5. Each edge of the scale free graph is assigned a unit weight,
that is, its adjacency matrix comprises only 0 and 1.

graphs, given a noise level pe[0,1] and a randomly generated
adjacency matrix Ap, Ay is generated by the following steps:

1. Set Ay —Ap, and for each (Ay);, randomly generate two vari-
ables r; and r; €0, 1].

The first experiment is to simulate the scenario of graph 2.If (Aw);>0: if ri<p, (Aw);<0; or otherwise, (Ay);<
matching without any prior. In the experiment, 100 pairs of graphs (Am)jj+pra.
with size N=8 are randomly generated by the following procedure: 3. If (Ap)y; =0: if ry < p, (An)jj<T2.
for each entry A;; (Aj; = Aj in the case of undirected graph) randomly 4, Randomly generate a permutation matrix P, and set

generate a uniformly distributed number r € [0, 1]; if r > 0.5 (mean-
ing that sparsity of the graph is around 0.5), randomly generate its
weight Aj =w €[0, 1], or otherwise A; =0. The first experimental
results are listed in Table 1 from which it is witnessed that the PATH
(on only undirected graphs) and our algorithms have much better
performances on accuracy than the U, QCV and GA algorithms.
Besides, PATH and our algorithm have a comparable performance
on accuracy, as echoed by the discussions in Section 2.1.

The second experiment is to evaluate the noise robustness of
the algorithms. In the experiment, the second graph in a graph
pair was generated based on the first one by adding some noises
which are controlled by a noise level. Specifically, for uniform

Table 1

A < PAyP".

For the scale free graphs, the noise is added by randomly adding
pNp edges into Gp to get Gy, where we denote by Np the number
of edges of Gp.

The noise level p increases from O to 1 by a step size 0.1. On each
noise level, 100 graph pairs with N=8 are generated according to the
above process. The experimental results on the four types of graphs
are shown in Fig. 2. Similar to the first experimental result, the PATH
and our algorithm outperform significantly the other three algorithms.

The third experiment is to evaluate the scalability of the five
algorithms with respect to the graph size, on both accuracy and

Comparative experimental results on four types of graphs with N=8, summarized from 100 random runs.

Graph types Error OPT] GA QCv PATH Ours
Undirected uniform Mean 3.229 8.255 6.476 8.741 3.776 3.737
Std 1.055 2.947 1.892 2.367 1.289 1354
Directed uniform Mean 5.565 11.26 9.619 9.300 - 6.447
Std 0.948 2.573 1.833 2.095 - 1.258
Undirected scale-free Mean 10.20 23.66 13.13 21.13 10.73 10.60
Std 3.689 4.957 5.056 5.424 3.644 4.050
Directed scale-free Mean 12.23 24.83 18.96 2143 - 13.76
Std 1.356 3.374 3.056 3.158 - 2238

undirected uniform

directed uniform

GBS NS

T

matching error

matching error

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
noise level noise level

undirected scale—free

30 . ; , . — > PATH d|rec':ted scale'—free

I .
T - 1 T .

- T
5//,,\%%#\,\»/%%

20}

matching error
-
matching error

0.4 0.6

noise level noise level

Fig. 2. Changes of the matching error with respect to noise levels, summarized from 100 random runs. Left: undirected graphs without self-loops. Right: undirected graphs
with self-loops.

Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148 145

undirected uniform directed uniform
600 T T T T T //L 600
5 400} : 5 400
(0] ()
2 2
5 5
£ 200} T 2007
£ £
—A—U
0 o GA
graph size Qcv graph size
undirected scale-free ; PATH directed scale—free
300 T T T T — 5 Ours . T T T T \
i V
S 200f K/L\A 5 200}]
(0] 1’ - (]
g 1 =% 2 T
s T - S 100
% 100f &+ S |
E :ff/&) g
o —b—a—b—5 5 & b—S—fH—8 ' 03
10 20 30 40 50 60

graph size graph size

Fig. 3. Changes of the matching error with respect to graph sizes, summarized from 100 random runs. Left: undirected graphs without self-loops. Right: undirected graphs
with self-loops.

undirected uniform

directed uniform

2 2
© ©
£ of E o0
n m
@)
T2 -2} 2 -2y
g 3
—A—U
_4 L L L L
0.5 1 15 O GA i 1 15 2
log, ,(N) (graph size) acv log, (N) (graph size)
—b— PATH
undirected scale—free directed scale-free
1 T T B— Ours - -
—~ Or —~ O
[0 (0]
£ £
S -1t S -1t
8] O
[0 [0}
%7 M < 2
o o
£ Il A/A/A\A/M 2 =37
_4 1 L _4 L 1
0.5 1 15 2 0.5 1 1.5 2
Iogm(N) (graph size) Iogm(N) (graph size)

Fig. 4. Changes of the matching error with respect to graph sizes, summarized from 100 random runs. Left: directed graphs without self-loops. Right: directed graphs with
self-loops.

complexity. In the experiment, 12 groups of graph pairs with different On accuracy, similar experimental results as the above two are
sizes are included for comparison with the size increasing from 5 to 60 obtained on all of the 12 groups of graph pairs, as witnessed by
by a step size 5. In each group, 50 graph pairs are generated in the Fig. 3. On complexity, the time-cost of the five algorithms is shown
same way as the second experiment with a noise level 0.2. in Fig. 4 in which the slopes of the five curves corresponding to U,

146 Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148

Fig. 5. Five feature correspondence results by the five graph matching algorithms, with 47, 19, 6, 4, and 2 mismatched pairs (out of 125), which are indicated by white

thicker lines.

QCV, GA, PATH, and our algorithm are around 2.412 + 0.032,
3.033+ 0.06, 4.135 + 0.19, 2.962 + 0.08, and 2.937 + 0.07, respec-
tively, which imply that the GA suffers the biggest complexity and
U is the simplest one. On the other hand, the complexity of QCV,
PATH and our algorithm is all around O(N?).

3.2. On feature correspondence

Feature correspondence (or point pattern matching) is a funda-
mental problem in pattern recognition and computer vision. The
objective function of feature correspondence usually involves two
terms, the unary term related to the appearance cues and the pairwise
term related to the geometric relationship [16,26,18]. To evaluate the
proposed graph matching algorithm, we focus on the pairwise term,
which in the experiment is formulated by the normalized square of
the difference between the distances between two feature locations as
follows:

F(P)= I|Ap—PAuPT I,
0 ifi =,
Aj=4q | i1l F/H#I%X Amn otherwise,

where [; = (x;, ;)" denotes the location of the feature i. It takes exactly
the same form as the graph matching problem in (1), and thus can be
solved by the proposed algorithm.

We adopt the CMU hotel sequence data for the comparison,
where we choose 6 frames, i.e., the frames 1, 21, 41, 61, 81 and 101
with a 20-frame interval, as shown in Fig. 5. For each frame we
manually marked the same 25 feature points (typically the corner
points), and totally perform C2 = 15 matchings between the 6 frames
and take the number of mismatched feature pairs (the total number
is 375) as the evaluation criterion. The matching results are listed in

Table 2
Comparative experimental results of the five algorithms on pairwise matching

Results U Qcv GA PATH Ours
Average matching error 39.3772 41764 1.3976 0.9657 0.9627
of mismatched feature pairs 137 49 13 8 8

Table 2, and five typical matching results are shown in Fig. 5, which
shows similar results as on the synthetic data.

4. Conclusions

In this paper we showed that together with the convex
relaxation, a very simple concave function has a comparable
performance with the concave relaxation for the graph matching
problem. The point is that the simple concave function can be
utilized on matching different types of graphs, but by contrast, the
concave relaxation of PATH following algorithm can be used only
on undirected graphs. On four different types of graphs, our
algorithm showed a state-of-art performance on accuracy.

Acknowledgments

This work was supported by National Science Foundation of
China (NSFC) (Grants 61375005, 60975002, 61033011, 61210009),
and the National Basic Research Program of China (973 Program)
(Grant 2009CB825404).

Appendix A. Master problem: a projected Newton algorithm

To use the projected Newton method to solve the master
problem in Eq. (14), we first transform the simplex to a bound

Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148 147

constraint [2]. Given a feasible f, find
I=arg max{f;li=1,2,...,1}. (A1)
1

Then, a variable A is introduced in the following way:

bi
y

where T; =1 if i=j, or otherwise,

-1 ifi=1
-{;

otherwise.
With the above transformation, the master problem in Eq. (14) is
rewritten as

ifi#l

otherwise or f=T4, (A-2)

min. g) =yATPA—2(1—7) vec(P*)T WTA
st. A4>0,Vi£l 4=1, 4— X 4>0. (A3)
i#l

where WAqQT'ST is a symmetric positive definite matrix with §
given by Eq. (17). Since the last constraint, i.e, 4,— Y}; . ;4; >0, is by
construction inactive at the point A=T '/, it will be ignored in
the iteration of the projected Newton algorithm. The algorithm
iterates the following two steps to convergence:

Step 1: Get A™ by Eq. (A.2), and set I,-ﬁ =yl ify">0; or Zﬁ =0
otherwise, where y™ =A™ —aD™vg(A™).
Step 2: Update A" =1 if i=I"; or """ = A" otherwise, and

reconstruct g™+ 1 by g1 =M™
There are two terms in the algorithms needed to be specified, i.e.,
D™ and « in step 1.
In implementation, the elements of A are divided into free and
restricted subsets. The restricted subset is defined as

" ={ilA" <, Vg > 0}, (A4)
and the free subset denoted by g™ contains the remainders, where
¢ is a small positive number. Then, D™ is defined as follows:
0 i#j and either ie 3™ or je 3"
D=4 0 ifi=Imorj=I"
(V2™ ' else,

(A5)

where the gradient and Hessian of the objective are given as
follows:

vg(A™) =2y ¥ A" = 2(1 —y)(T™TWT vec(P*), (A.6)

vigA") =y¥". (A7)

By setting aAqrag™ for some 7€ (0,0.5),0 €(0,1), a is found by

finding the smallest nonnegative integer m that satisfies both

1-3A"™ >0 (A8)
i#l

and

gA™) < g™+ 1M VgA™T AT ™).

It is worth adding some discussions on step 1, where 2" is

actually got by A" =arg min;, o (A—y™T(A—y™) = B[y™], a pro-
jection of the unconstrained direction under the standard Eucli-
dean norm instead of being with the metric is defined by the
Hessian matrix. Each element by the projection B[y™] is simply
given by the componentwise median of B[y!']={v]",y[",ul"},
where v!" denotes the lower bound (0 for i=I™), and u!" upper
bound (+oo for i I™). Moreover, as discussed in [20], as ¢ in
Eq. (A.4) is small enough, we can just ignore all of the elements in
3™ that remain zero during the iterations, and consequently save
computational load.

References

[1] A. Berg, T. Berg, J. Malik, Shape matching and object recognition using low
distortion correspondences, Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(2005) 26-33.

[2] D.P. Bertsekas, Projected Newton methods for optimization problems with
simple constraints, SIAM]. Control Optim. 20 (1982) 221-246.

[3] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,
Cambridge, UK., 2004.

[4] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in
pattern recognition, Int. J. Pattern Recognit. Artif. Intell. 18 (2004) 265-298.

[5] M.A. Eshera, K.S. Fu, An image understanding system using attributed sym-
bolic representation and inexact graph-matching, IEEE Trans. Pattern Anal.
Mach. Intell. 8 (1986) 604-618.

[6] M.L. Fernandez, G. Valiente, A graph distance metric combining maximum
common subgraph and minimum common supergraph, Pattern Recognit. Lett.
22 (2001) 753-758.

[7] M.A. Fischler, R.A. Elschlager, The representation and matching of pictorial
structures, IEEE Trans. Comput. C 22 (1973) 67-92.

[8] M. Frank, P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Q.
3 (1956) 95-110.

[9] S. Gold, A. Rangarajan, A graduated assignment algorithm for graph matching,
IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996) 377-388.

[10] M. Guignard, A. Ahlatcioglu, The convex hull relaxation for nonlinear integer
programs with convex objective and linear constraints, in: Proceedings of the
European Workshop on Mixed Integer Nonlinear Programming, 2010, pp. 149-158.

[11] D.W. Hearn, S. Lawphongpanich, J.A. Ventura, Restricted simplicial decompos-
tion: computation and extensions, Math. Program. Study 31 (1987) 99-118.

[12] B.V. Hohenbalken, Simplicial decomposition in nonlinear programming algo-
rithms, Math. Program. 13 (1977) 49-68.

[13] J.E. Hopcroft, J.K. Wong, Linear time algorithm for isomorphism of planar
graphs (preliminary report), in: Proceedings of the 6th annual ACM sympo-
sium on Theory of computing, STOC'74, ACM, New York, NY, USA, 1974,
pp. 172-184.

[14] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res.
Logist. Q. 2 (1955) 83-97.

[15] T. Larsson, M. Patriksson, Simplicial decomposition with disaggregated repre-
sentation for the traffic assignment problem, Transp. Sci. 26 (1992) 4-17.

[16] H. Liu, S. Yan, Common visual pattern discovery via spatially coherent
correspondences, in: 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1609-1616.

[17] R. Myer, R.C. Wilson, E.R. Hancock, Bayesian graph edit distance, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (2000) 628-635.

[18] G. Philbin, J. Sivic, A. Zisserman, Geometric latent Dirichlet allocation on a
matching graph for large-scale image datasets, Int. J. Comput. Vis. 95 (2011)
138-153.

[19] R. Salakhutdinov, S.T. Roweis, Z. Ghahramani, On the convergence of bound
optimization algorithms, in: Proceedings of Uncertainty in Artificial Intelli-
gence, pp. 509-516.

[20] M. Schmidt, D. Kim, S. Sra, Projected Newton-type methods in machine
learning, in: S. Sra, S. Nowozin, S.J. Wright (Eds.), Optimization for Machine
Learning, MIT Press, Cambridge, MA, USA, 2011.

[21] C.M. Shetty, M.B. Dyaa, A decomposition procedure for convex quadratic
programs, Naval Res. Logist. Q. 35 (1988) 111-118.

[22] W.H. Tsai, K.S. Fu, Error-correcting isomorphisms of attributed relational
graphs for pattern analysis, IEEE Trans. Syst. Man Cybern. 9 (1979) 757-768.

[23] S. Umeyama, An eigendecomposition approach to weighted graph matching
problems, IEEE Trans. Pattern Anal. Mach. Intell. 10 (1988) 695-703.

[24] L. Xu, M.L Jordan, On convergence properties of the EM algorithm for Gaussian
mixtures, Neural Comput. 8 (1996) 129-151.

[25] L. Xu, I. King, A PCA approach for fast retrieval of structural patterns in
attributed graphs, IEEE Trans. Syst. Man Cybern. B: Cybern. 31 (2001) 812-817.

[26] Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, Y. Pan, A multimedia retrieval
framework based on semi-supervised ranking and relevance feedback, IEEE
Trans. Pattern Anal. Mach. Intell. 34 (2012) 723-742.

[27] A.L. Yuille, A. Rangarajan, The concave-convex procedure, Neural Comput. 15
(2003) 915-936.

[28] M. Zaslavskiy, F. Bach, J.P. Vert, A path following algorithm for the graph
matching problem, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009)
2227-2242.

Zhi-Yong Liu is a professor at the State Key Laboratory
of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences,
Beijing, China. His research interests include machine
learning, pattern recognition, computer vision, and
bioinformatics.

http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref1
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref1
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref1
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref2
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref2
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref3
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref3
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref4
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref4
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref5
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref5
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref5
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref6
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref6
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref6
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref7
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref7
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref8
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref8
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref9
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref9
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref11
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref11
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref12
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref12
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref14
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref14
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref15
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref15
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref17
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref17
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref18
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref18
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref18
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref20
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref20
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref20
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref21
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref21
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref22
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref22
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref23
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref23
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref24
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref24
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref25
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref25
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref26
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref26
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref26
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref27
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref27
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref28
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref28
http://refhub.elsevier.com/S0925-2312(14)00118-0/sbref28

148

Z.-Y. Liu et al. / Neurocomputing 134 (2014) 140-148

Hong Qiao is a professor at the State Key Laboratory of
Management and Control for Complex Systems, Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing, China. Her research interests include robotics,
machine learning, and computer vision.

Li-Hao Jia is currently a postdoctoral researcher at the
State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese
Academy of Sciences, Beijing, China. His research inter-
ests include vision perception, sparse representation
and their applications to robotics.

Lei Xu is a chair professor at the Department of
Computer Science and Engineering, Chinese University
of Hong Kong, Statin, Hong Kong. His research interests
include statistical learning, computer vision, and
bioinformatics.

	A graph matching algorithm based on concavely regularized convex relaxation
	Introduction
	Proposed method
	Objective function
	Algorithm
	An efficient initialization based on simplicial decomposition

	Experimental illustrations
	On synthetic data
	On feature correspondence

	Conclusions
	Acknowledgments
	Master problem: a projected Newton algorithm
	References

