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Based on the problem of determining the hidden dimensionality (or the number of latent factors) of Fac-
tor Analysis (FA) model, this paper provides a theoretic comparison on several classical model selection
criteria, including Akaike’s Information Criterion (AIC), Bozdogan’s Consistent Akaike’s Information Crite-
rion (CAIC), Hannan–Quinn information criterion (HQC), Schwarz’s Bayesian Information Criterion (BIC).
We focus on building up a partial order of the relative underestimation tendency. The order is shown to
be AIC, HQC, BIC, and CAIC, indicating the underestimation probabilities from small to large. This order
indicates an order of model selection performances to great extent, because underestimations usually
take the major proportion of wrong selections when the sample size and the population signal-to-noise
ratio (SNR, defined as the ratio of the smallest variance of the hidden dimensions to the variance of noise)
decrease. Synthetic experiments by varying the values of the SNR and the training sample size N verify
the theoretical results.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Dimensionality reduction plays an important role in feature
selection and extraction for pattern recognition problems (Tubbs
et al., 1982; Wang and Paliwal, 2003). Especially for those
high-dimensional pattern classification tasks, dimensionality
reduction based methods can well improve the classification accu-
racy (Kim, 2011), or improve classifiers’ computational efficiency
(Villegas and Paredes, 2011). Factor Analysis (FA) (Anderson and
Rubin, 1956) is a widely-used linear technique of dimensionality
reduction (Jolliffe, 2002), by modeling the observed multidimen-
sional variable as a low dimensional Gaussian latent variable (or
factor) through a linear transform by a factor loading matrix, plus
a Gaussian noise vector. Revisited in (Tipping and Bishop, 1999),
the maximum likelihood solution of FA with an isotropic noise
covariance matrix extracts principal components of the observed
data as given by Principal Component Analysis (PCA) (Jolliffe,
2002). In this paper, the number of latent factors and the number
of principal components are all referred to as the hidden dimen-
sionality, whose value is usually unknown but important in many
areas and applications. This paper focuses on this model selection
problem of determining the hidden dimensionality.

To tackle this model selection problem, a traditional approach
is a two-stage implementation, in which parameter learning is
repeated on a set of candidate model scales among which one is
ll rights reserved.
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selected by a model selection criterion. Existing criteria include
Akaike’s Information Criterion (AIC) (Akaike, 1974), Bozdogan’s
Consistent Akaike’s Information Criterion (CAIC) (Bozdogan,
1987), Hannan–Quinn information criterion (HQC) (Hannan and
Quinn, 1979), Schwarz’s Bayesian Information Criterion (BIC)
(Schwarz, 1978) (which coincides with Rissanen’s Minimum
Description Length (MDL) Rissanen, 1978). These classical criteria
attempt to select a model with small generalization error, by trading
off between the likelihood-based goodness of fit and model
complexity subject to noise and uncertainty in a finite number of
observations.

It is important to examine the relative strength and weakness of
various model selection criteria. One way (e.g., in Hu and Xu
(2004), Chen et al. (2008), and Tu and Xu (2011)) is to empirically
examine their model selection performances by varying the struc-
ture of the population eigenvalues, training sample size N, etc. The
other way is to formally analyze the probability of accurate estima-
tion. Initialized from Wax and Kailath (1985) and followed by e.g.,
(Zhang et al., 1989; Xu and Kaveh, 1995; Liavas and Regalia, 2001;
Fishler and Poor, 2005; Nadakuditi and Edelman, 2008), AIC and
MDL were introduced to determine the number of source signals
(or the latent factors) with efforts on approximating the underesti-
mation (or overestimation) probability and asymptotical consis-
tency under an infinite N. BIC/MDL was found to be consistent
while AIC tended to overestimation as N ? +1. Moreover, in Na-
dler (2010), a more accurate expression for the performance of
MDL was derived and the overestimation probability of AIC was
analyzed from a random matrix theory viewpoint (Johnstone,
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2001), in the joint limit N, n ?1 with n/N ? c, where n is the
dimensionality of observations, and c > 0 is a constant.

Following the above track, this paper aims at a comparative
investigation on model selection behavior of AIC, HQC, BIC/MDL
and CAIC. We focus on building up a partial order of the relative
underestimation tendency of these criteria, i.e., AIC, HQC, BIC/
MDL and CAIC from weak to strong. The paper (Tu and Xu, 2009)
only preliminarily reported the theoretical results without details
due to the space limit. In this paper, we further provide a system-
atic support with more details and insights for the main claims in
(Tu and Xu, 2009). Moreover, we also conduct an extensive exper-
imental justification, which coincides with this partial order.

The rest of this paper is organized as follows. Section 2 formulates
the problem of determining the hidden dimensionality of a probabi-
listic model FA, and also introduces a two-stage implementation
with classical model selection criteria. Section 3 analyzes these crite-
ria in terms of the relative underestimation tendency. Experimental
results in Section 4 verify the relative order. Finally, concluding re-
marks are provided in Section 5. Proofs are left in Appendix A.

2. Problem formulation and classical model selection criteria

Factor Analysis (FA) (Anderson and Rubin, 1956; Tipping and
Bishop, 1999) assumes an n-dimensional observation x to be dis-
tributed as follows:

x ¼ Ay þ lþ e; Hm ¼ fA;l;Ry;Reg;
pðxjyÞ ¼ GðxjAy þ l;ReÞ; pðyÞ ¼ Gðyj0;RyÞ;
pðxjHmÞ ¼

R
pðxjyÞpðyÞdy ¼ Gðxjl;RxÞ;

Ry ¼ Imðm�m identity matrixÞ; Rx ¼ ARyAT þ Re;

8>>><>>>: ð1Þ

where y is an m � 1 hidden factor vector, A is an n �m factor loading
matrix with full column rank, the noise covariance matrix Re is diag-
onal, and G(�jl, R) denotes a Gaussian distribution with the mean
vector l and the covariance matrix R. We set FA in its special case
by l ¼ 0, Re ¼ r2

e In, which is equivalent to PCA (Anderson and Rubin,
1956; Tipping and Bishop, 1999) under the maximum likelihood prin-
ciple. Then, the population covariance matrix of the observations is

Rx ¼ ARyAT þ r2
e In: ð2Þ

The problem of determining the hidden dimensionality of y is to
estimate the rank of ARyAT based on an i.i.d sample set XN ¼ fxtgN

t¼1.
The learning task consists of estimating the parameters Hm and

selecting the hidden dimensionality m, traditionally tackled by the
following two-stage procedure:

� Stage I: Compute bHm ¼ bHðXN;mÞ for each candidate m 2M

with a given candidate set M. Normally, bHm is given by the
Maximum Likelihood (ML) estimator bHML

m ¼ arg maxHm

ln pðXNjHmÞ ¼ arg minHmELðXNjHmÞ, where ELðXNjHmÞ ¼ � 2
N

ln pðXNjHmÞ is denoted as NLL (negative log-likelihood).
� Stage II: Estimate m̂ ¼ arg minmECri, where ECri is a model selec-

tion criterion (Cri), e.g.,

ECriðXN; bHmÞ ¼ ELðXN ; bHmÞ þ
qNdm

N
; ð3Þ

dm ¼ nmþ 1�mðm� 1Þ
2

; number of free parameters of FA;

qN ¼

2; for AICðAkaike; 1974Þ
ln N; for BIC=MDLðSchwarz; 1978; Rissanen; 1978
ln N þ 1; for CAICðBozdogan; 1987Þ
2 lnðln NÞ; for HQCðHannan and Quinn; 1979Þ

8>>><>>>:
ð4Þ
The criterion by Eq. (3) aims to trade off between the log likeli-
hood and the model/sample complexity. An appropriate balance
allows to detect the true hidden dimensionality, if any, subject to
noise and small sample size.

3. A theoretic underestimation partial order

3.1. Events of estimating the hidden dimensionality

Denote the events of underestimation (U), overestimation (O) and
successful-selection (S) in order as:

A1 : m̂ < m�; B1 : m̂ > m�; C1 : m̂ ¼ m� ð5Þ

where m̂ ¼ m̂ðXNÞ is an estimator of the underlying true hidden
dimensionality m⁄ under a model selection criterion, i.e.,

m̂ðXNÞ ¼ arg min
m

EcriðXN;mÞ: ð6Þ

For the model selection behavior of a criterion, it suffices to com-
pute all the probabilities P(A1), P(B1) or P(C1), which are difficult
for a finite N. One way is to estimate them empirically by the rates
of three categories U/S/O (i.e., underestimation, successful-selection
and overestimation, respectively); another way is to estimate them
under certain assumptions and approximations.

Since A1 and B1 are disjoint, they contribute the event of wrong
selections as follows:

PðC1Þ ¼ PðA1 \ B1Þ ¼ PðA1 [ B1Þ ¼ PðA1Þ þ PðB1Þ: ð7Þ

which motivates us to study P(C1) via analyzing P(A1) and P(B1)
respectively. Since computing P(A1) or P(B1) is still hard, we turn
to an investigation on the relative underestimation or overestima-
tion tendency which is also an insightful investigation.

3.2. The structural property of the criterion function

Assuming a zero mean, the sample covariance matrix is a suffi-
cient statistic for the hidden dimensionality estimation problem.
Many criteria are based on the eigenvalues of the sample covari-
ance matrix. The difficulty is to distinguish between the small
yet significant sample eigenvalues due to weak hidden factors,
and large yet insignificant sample eigenvalues due to noise.

As in Eq. (6), m̂ is determined by a discrete optimization, in
which a continuous optimization for parameter learning is nested
as in Fig. 1(a). To locate the minima, it is reasonable to study the
backward difference function, i.e.,

rmECri ¼ ECriðXN;mÞ � ECriðXN;m� 1Þ; ð8Þ

whose sign actually determines the local preference over two con-
secutive models {m � 1,m} as in Fig. 1(b)(d). The difference function
Eq. (8) can be formulated as a function of a statistic �cðXNÞwhich is a
subset or a function of the sample eigenvalues. The statistic �cðXNÞ is
a preprocessed input to each criterion. For those criteria in Eq. (3),
�cðXNÞ can be the ratio of a sample eigenvalue to the mean of the rest
smaller sample eigenvalues. Through studying the sign change of
the difference function with respect to this key statistic, we are able
to provide a partial order of the relative underestimation tendency
(U-tendency) of Eq. (3) in Fig. 2.

We use Eq. (1) in FA’s special case of PCA by letting l ¼ 0,
Re ¼ r2

e In. Let s1 P . . .P sn be the sample eigenvalues, then the
Maximum Likelihood (ML) parameter estimate bHML

m of FA by
Eq. (1) is given to be (Anderson and Rubin, 1956; Wax and Kailath,
1985; Bishop, 1999):bAML

n�m ¼ Un�mðDm � r̂2
e Þ

1
2RT ;

r̂2;ML
e ¼ 1

n�m

Pn
i¼mþ1

si;

8><>: ð9Þ



Fig. 1. For a given XN , graphs of ECri and rmECri w.r.t. m are sketched in (a) and (b), while for two criteria, Cri1 and Cri2, the graphs of rmECri1 ;rmECri2 w.r.t. cm given m are
sketched in (c), as well as its corresponding local preference defined in (d), where S(Hm, m) represents a family of statistical models p(xjHm) for FA. We call c�mðCri1Þ or
c�mðCri2Þ as indicator.

Fig. 2. The theoretical relative underestimation tendency (U-tendency) of Eq. (3)
from weak to strong.

Table 1
For each of the three scenarios in the experiments, there are jVN j � jVco

j configura-
tions, where VN = {17,25,50,75,100,200,400,800}, Vco

¼ f1:2;1:5;2;2:5;3;3:5;4;8;16g,
and U is randomly generated and normalized to be UTU = Im, and ki � [1,10] means ki

is uniformly drawn from the interval [1,10] so that the signal eigenvalues can vary.

scenario (s) settings of each scenario
8N 2 VN ; 8co 2 Vco

I: n = 15, m⁄ = 5,ki = 1, "i {(I,N,co)}
II: n = 30, m⁄ = 10, ki = 1, "i {(II,N,co)}
III: n = 15, m⁄ = 5, ki � [1,10], "i {(III,N,co)}
IV: n = 15, m⁄ = 5, ki = 1, "i, Uniform

noise
{(IV,N,co)}
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where the i-th column of Un�m is the eigenvector of the sample
covariance matrix corresponding to si, the elements of Dm are all
zero except diagonals to be s1, . . . ,sm or shortly Dm = diag[s1, . . . ,sm],
and R is an arbitrary rotation matrix. It follows from Eq. (9) that

EL XN ; bHML
m

� �
¼ðn�mÞln

Xn

i¼mþ1

si�ðn�mÞlnðn�mÞ�
Xn

i¼mþ1

lnsi: ð10Þ

As a result, the difference function of Eq. (3) is

rmEcri ¼ rmELðXN ;mÞ þ aðm;NÞ; ð11Þ

where

rmELðXN ;mÞ ¼ �ðn�mþ 1Þ ln 1þ cm � 1
n�mþ 1

� �
þ ln cm; ð12Þ

aðm;NÞ¼qN
n�mþ1

N
; An

m¼
Xn

i¼m

si

n�mþ1
; cm¼

sm

An
mþ1

P1; ð13Þ

Fixing m at the underlying true hidden dimensionality m⁄, then sm�

and An
m� are ML estimators of m⁄-th eigenvalue of the population

covariance matrix ARyAT þ r2
e In and noise variance r2

e respectively,
and thus cm� is the ML estimator of the underlying ratio co ¼

km�
r2

e
þ 1

which we call signal–noise ratio (SNR)1 in this paper, where km� is
the m⁄-th largest eigenvalue of ARyAT. Thus, we call cm� as empirical
signal–noise ratio (eSNR). In this context, the �cðXNÞ becomes a scalar
cm for Eq. (3). Generally, �cðXNÞ can be a multivariate vector, e.g., a
two-variable vector for the criterion DNLL (difference of NLL), which
is left in Appendix A.

The difference function Eq. (11) is contributed by two terms on
the right hand side. When m 6m⁄, the dominant term is the former
one which is the fitting error caused by the insufficient scale of
structure. When m > m⁄, the latter term plays a main role, for the
cost of increasing model structure. The model selection perfor-
1 SNR is a term borrowed from signal processing literature, because its definition
coincides with those SNR given in signal processing literature. There may be many
other definitions for SNR, e.g., co ¼ km� =r2

e , co ¼ 10 log power of one signal=r2
e

	 

dB.

Here, the definition is the ratio of the smallest factor eigenvalue of the population
covariance matrix to the noise eigenvalue, which is equivalent to km� =r2

e up to a
constant.
mance of a criterion depends on how a criterion balances the
two terms around the critical point m⁄. Concerning about the
mathematical properties of rmECri, the following lemmas holds
(with proof in Appendix A):

Lemma 1. Considering cm as an independent variable c for rmEcri

when m fixed, rmEcriðcÞ is a monotone decreasing function of
c 2 [1,+1) upper bounded by a(m,N).
Lemma 2. Let c⁄ be the root of rmEcriðcÞ ¼ 0 or equivalently
rmELðcÞ ¼ �a, then

(1). Given a > 0, c⁄ is unique for c > 1 and bounded in (clow,cup),
where clow = (k + 1)C0 � k, and cup ¼ clowþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðkþ 1ÞC0ðC0 � 1Þ
p

, and C0 ¼ exp a
k

� �
¼ exp ðkþ1Þq

kN

n o
,

k = n �m.
(2). If q(Cri1) > q(Cri2) > 0 for criteria Cri1 and Cri2, then we have

c⁄(Cri1) > c⁄(Cri2) > 1.
Remarks 1. c is an independent variable corresponding to cm for a
fixed m, and q or q(Cri) corresponds to qN in Eq. (3) for any crite-
rion (Cri) with the subscript N omitted.

We transform the problem of ordering the relative U-tendency
to sorting the indicators, which are the critical points (roots) of
the sign change of the difference functions, under the following
assumptions:

� P(A1) � P(A2), where A2 denotes the event of fEðXN;m� � 1Þ
< EðXN;m�Þg. It actually means underestimation is approxi-
mated by locally preferring m⁄ � 1 to m⁄. This assumption has
been used in e.g., (Zhang et al., 1989; Fishler et al., 2002), and
it will be verified via experiments later.
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� Assume the probability P{cm 2C} > 0, for any non degenerate
interval C in the support of cm. Otherwise, P{cm 2 C} = 0.

At m = m⁄, suppose Cri1 and Cri2 comes from Eq. (3) and satisfy
the above assumptions with their difference functions sketched in
Fig. 1(c) as well as their indicators (i.e., roots ofrmEcriðcmÞ ¼ 0) sat-
isfying c�mðCri1Þ < c�mðCri2Þ. Then, Cri2 has a bigger chance to get a
smaller dimensionality, because

Pfcm 2 CþmðCri2Þg � Pfcm 2 CþmðCri1Þg
¼ P c�mðCri1Þ 6 cm < c�mðCri2Þ

� �
> 0; ð14Þ

where CþmðCriiÞ ¼ ½1; c�mðCriiÞÞ, i = 1,2. That is, ‘‘the underestimation
tendency of Cri2 is stronger than that of Cri1’’ or Cri1 � textsub-
scriptuCri2. Similar analysis on overestimation can be performed
at m = m⁄ + 1. Therefore, for AIC, BIC, HQC, CAIC given by Eq. (3),
we obtain the following partial order of underestimation tendency
from weak to strong:

Theorem 1. If N > 16, then we have: ‘‘(NLL�u) AIC �u HQC �u BIC �u

CAIC’’ (Fig. 2).
Remarks 2. The indicator c�mðCriÞ actually characterizes a lower
bound of eSNR cm for the criterion (Cri) to avoid the risk of under-
estimation. In other words, a criterion with a large lower bound
requires a higher SNR co, namely stronger factors, because the
eSNR cm is close to the SNR co with high probability for a large sam-
ple size. Actually, for a factor to be identified, the population SNR co

must be larger than a critical value according to a phase transition
phenomenon in eigenvalues (see e.g., Baik and Silverstein, 2006;
Johnstone, 2006; Paul, 2007), when the sample size is relatively
small.
Remarks 3. Based on Eq. (7), when underestimation plays a key
role in wrong selections, e.g., at the cases of small sample size
and weak structure, this partial order of relative U-tendency lar-
gely implies an order of accurate selection performance. AIC pays
a high risk of overestimation for its robustness against underesti-
mation, while CAIC greatly avoid overestimation through a large
penalty but at the expense of being liable to underestimation.
Besides, NLL tends to select large m in probability one unless
cm = 1, "m > m⁄ or si = r2 ("i P m⁄) which requires N ? +1.
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Fig. 3. Examples of contour maps with adjusted axes, i.e., 1:2; . . . ;16 2 Vco
being equally

(If moving from the top-right to the bottom-left of the contour map, the rates of undere
4. Empirical analysis

With the help of a wide scope of controlled experiments on syn-
thetic data, we are able to verify the estimated hidden dimension-
ality with a known true one, so as to examine the relative strengths
and weaknesses of various model selection criteria. Synthetic data
are generated according to the FA model with the population
covariance matrix Rx ¼ UKUT þ r2

e In, where UT U ¼ Im� , m⁄ denotes
the true underlying hidden dimensionality, K is a diagonal matrix
with k1 P . . . P km� > 0 as its diagonal elements, and r2

e is the
noise variance as in Eq. (2).

Similar to Tu and Xu (2011), experiments are conducted by
varying the values of the sample size N, and the signal–noise-ratio
(SNR) co ¼ km�=r2

e þ 1, under two scenarios of dimensionalities gi-
ven in Table 1. For each configuration (s,N,co) in Table 1, 103 inde-
pendent trials are implemented. For every trial, a synthetic data set
XN is randomly generated. The two-stage procedure is imple-
mented on XN for every candidate integer m in [1,2m⁄ � 1], among
which one is selected by a criterion. The points in the configuration
space (N,co) having the same model selection results, including
Successful-selection (S) m̂ ¼ m� and Underestimation (U), are con-
nected, and thus we obtain performance contour maps, as given in
Fig. 3. Fig. 3 shows that as the sample N and/or co become small
(i.e., moving towards the left-bottom of the contour map), the
model selection accuracies decrease to zero, while the underesti-
mation rates grow to 100%, which implies that underestimation
takes the major proportion of wrong selections, because the effec-
tive number of latent factors may be reduced due to a phase tran-
sition threshold according to the random matrix theory (Baik and
Silverstein, 2006; Johnstone, 2006).

We verify Theorem 1 through experiments on the four scenarios
in Table 1. Figs. 4 and 5 present several underestimation contour
(U-contour) curves of the same levels in the contour maps of the
four criteria in Eq. (3). The result coincides with Theorem 1. More-
over, examples of the successful-selection contours from the four
scenarios are reported in Fig. 6, respectively, which indicates a
reverse performance order in contrast to the underestimation or-
der in Theorem 1, except when SNR is large but N is very small.

In addition, we verify the effectiveness of an approximation
P(A1) � P(A2) used in the theoretical analysis in Section 3. This
approximation has also been adopted as an assumption without
comprehensive verifications in (Zhang et al., 1989; Xu and Kaveh,
1995 and Fishler and Poor, 2005). Based on the above experiments,
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Fig. 4. The underestimation contours (U-contours) of AIC, BIC, HQC and CAIC at the same level (30%, 50% or 70%) for scenario I on the left and scenario II on the right (In
Fig. 4(e), the contour curves of AIC and HQC turn left sharply when moving from N = 25 to N = 17 where SNR is large, which indicates a rapid reduction on underestimation
rates, due to a quick rise of overestimation of AIC and HQC. The sharp turns can also be observed in Fig. 5.)
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the effectiveness is verified by empirically estimating the
difference

dðN; coÞ ¼ PðA1Þ � PðA2Þ � ½nðA1Þ � nðA2Þ	=103; ð15Þ

and the relative difference d(N,co)/P(A1), where n(A1) and n(A2) are
respectively the number of occurrences of event A1 and A2 in 103
independent trials, for each ðI;N; coÞ 2 fðI;N; coÞj8N 2 VN; co 2 Vco
g.

Taking AIC for example, the values of d(N,co) and d(N,co)/P(A1) are
given in Table 2. The values show that the approximation
P(A1) � P(A2) is effective for most cases, though it is not very good
when N is very small and SNR is relatively large. Instead of listing
all empirically computed values of d(N,co) for each criterion and
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IV: Contours of Underestimation at 70%
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SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

Fig. 5. The underestimation contours (U-contours) of AIC, BIC, HQC and CAIC at the same level (30%, 50% or 70%) for scenario III on the left and scenario IV on the right.
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for each scenario, we calculate the means and standard deviations
of d(N,co) on Scenario I for each of the four criteria. Table 3 shows
that the approximation is also effective for BIC, HQC, and CAIC.

All criteria are also evaluated on two UCI (Asuncion and New-
man, 2007) real world data sets, i.e., Pen-Based Recognition of
Handwritten Digits Data Set (denoted as PEN, 16 attributes, 10
classes, 10992 instances), and Waveform Database Generator
(Version 1) Data Set (denoted as WAVE, 21 attributes, 3 classes,
5000 instances). Since we do not know the true hidden dimension-
ality (if any) of this data set, the four criteria are evaluated by their
classification performances instead. In practice, FA or PCA is usu-
ally used to extract features for tasks like classification, clustering,
and regression, so that the computation may be more efficient with
the dimensionality and noise reduced.
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IV: Contours of S−selection at 50%

AIC
BIC
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SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

SNR (adjusted) 
1.2 1.5 2.0 2.5 3.0 3.5 4.0 8 16

Fig. 6. Example successful-selection contour (S-contour) curves of AIC, BIC, HQC and CAIC at the same level (50%) for the four scenarios. (In contrast to the underestimation
contours, the levels of S-contours decrease from the upper-right to the bottom-left of the figure. Therefore, the closer of the same-level S-contours are to the bottom-left, the
better that criterion performs.).

Table 2
The empirical values (�10�2) of the approximation difference d(N, co) computed by Eq. (15) and the relative difference d(N, co)/P(A1) for AIC on Scenario I are listed below.

NnSNR 1.2 1.5 2.0 2.5 3.0 3.5 4.0 7 16

Values of difference d(N, co)
17 2.4 4.0 4.5 0.8 �2.0 �9.6 �7.6 �7.9 �1.0
25 2.5 3.5 5.0 5.4 5.4 1.7 �1.2 �0.8 0
50 0.4 0.9 3.8 5.2 1.8 �0.1 �0.5 0 0
75 0.1 0.9 4.5 2.0 �0.3 �0.1 0 0 0
100 0.2 1.0 3.7 0.1 �0.1 0 0 0 0
200 0.1 2.5 �0.2 0 0 0 0 0 0
400 0.2 1.0 0 0 0 0 0 0 0
800 1.4 0 0 0 0 0 0 0 0

Values of relative difference d(N, co)/P(A1)
17 2.5 4.3 5.1 1.0 �2.8 �16.5 �15.1 �86.8 �200.0
25 2.5 3.5 5.1 5.7 6.7 2.6 �2.4 �19.5 0
50 0.4 0.9 3.9 6.8 4.3 �0.5 �7.8 0 0
75 0.1 0.9 5.1 4.6 �2.9 �4.5 0 0 0
100 0.2 1.0 5.2 0.8 �7.1 0 0 0 0
200 0.1 2.6 �2.9 0 0 0 0 0 0
400 0.2 2.5 0 0 0 0 0 0 0
800 1.4 0 0 0 0 0 0 0 0
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Similarly, we vary the training sample size N 2 {17,20,30,
40,50,60,70,80,90,100,200}. For each of 102 runs, we randomly
select N instances from every class for training an FA model, based
on which a Bayesian classifier is built to classify the remaining in-
stances. The two-stage procedure is implemented on a candidate
set M ¼ f1;2; . . . ;15g. Although the true hidden dimensionality



Table 3
We calculate e.g., the means and standard deviations, of d(N, co) on Scenario I to justify the effectiveness of the approximation, where ‘‘mean (jdj)’’ is
calculated by 1

jVN j
jVco j
P

N2VN

P
co2Vco

jdðN; coÞj, and so on and so forth.

�10�2 AIC BIC HQC CAIC

mean(jdj) 1.339 1.942 1.532 2.372
mean(d) 0.467 1.931 1.082 2.372
std(d) 2.507 3.896 2.557 6.016
min(d) �9.60 �0.30 �7.10 0.0
max(d) 5.40 14.90 7.80 23.30
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Fig. 7. Results on real world data sets: (a) classification accuracy heat map of the cases that constrain the same hidden dimensionality for each class on WAVE data, as well as
the curves of averaged estimated hidden dimensionality by AIC, BIC, HQC, and CAIC; (b) classification accuracies of the two-stage procedures by AIC, BIC, HQC, and CAIC on
WAVE data; (c) heat map on PEN data; (The low performance for high-dimensional small-sample-size case may be due to the reduction in effective dimensionality Baik and
Silverstein, 2006; Johnstone, 2006.) (d) accuracies on PEN data.

1124 S. Tu, L. Xu / Pattern Recognition Letters 33 (2012) 1117–1126
is unknown, the optimal one m�c for classification can be estimated
according to the classification performances of all FA models
trained by enumerating the candidates in M.

The results are reported in Fig. 7. To estimate m�c , since it is too
expensive to train jMjC possible models when there are jMj candi-
date dimensions and C classes, we only compute jMj cases by con-
straining the hidden dimensionalities to be the same for each class.
The classification accuracies of the jMj cases (vertical axis) are
shown by the heat maps in Fig. 7(a) and (c) against a varying sam-
ple size (horizontal axis), which approximately implies m�c ¼ 1 for
WAVE and m�c ¼ 14 for PEN. For a comparison, the estimated hid-
den dimensionality for each class is averaged and plotted in the
heat maps as four curves (corresponding to AIC, BIC, HQC, and
CAIC), which show that the four criteria tend to correctly selecting
m�c as sample size grows, while for a small sample size they choose
different dimensionalities but in the same order as Fig. 2. More-
over, the classification accuracies of the four criteria are reported
in Fig. 7(b) and (d), which coincide in order with the four curves
in the Fig. 7(a) and (c), respectively. It should be noted that
Fig. 7(b) shows a reversed performance order from Fig. 7(d), be-
cause AIC, BIC, and HQC tends to overestimation for WAVE.

5. Concluding remarks

Based on the problem of determining the hidden dimensionality
of FA, the relative strength and weakness of several model selec-
tion methods has been investigated theoretically. We concentrate
on building up a partial order of relative underestimation tendency
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of several criteria. We found that the order is AIC, HQC, BIC/MDL
and CAIC from weak to strong. This order is an intrinsic relation
of criterion functions to the latent factors’ strength. Experiments
have been conducted to verify this order and the effectiveness of
a common assumption used in this paper and literature.
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Appendix A. Proofs
Proof of Lemma 1. Replacing cm with an independent variable c,
we regard rmEL by Eq. (12) as a function of c, and then "c 2
[1,+1), we have @rmELðcÞ

@c ¼ � kðc�1Þ
ðkþcÞc 6 0; k ¼ n�m, which implies

that rmEcriðcÞ is monotone decreasing, because a(m,N) is irrele-
vant to c. Then, rmEcriðcÞ 6 rmEcrið1Þ ¼ a. h
Proof of Lemma 2. After some straightforward manipulations,
rmELðcÞ ¼ �a is equivalent to f(z) = zk+1 � (k + 1)C1z + kC1 = 0 with
z = k + c P k + 1, and C1 = (k + 1)kea.

Solving f0(z) = (k + 1)(zk � C1) = 0 we get zmin ¼
ffiffiffiffiffiffi
C1

k
p

> kþ 1, and
then f(z) has a local minimum at zmin because f00(z) =
k(k + 1)zk�1 > 0. Since f(k + 1) = (k + 1)k+1(1 � ea) < 0, there is no
root of f(z) in its decreasing interval [k + 1,zmin]. As f(z) is
monotonic increasing in [zmin,+1), f(z) will have a unique root in
[zmin, +1), i.e., z⁄ > zmin.

Approximating f(z) by Taylor-expansion at zmin to the second-

order, we have f ðzÞ � f̂ ðzÞ ¼ f ðzminÞ þ 1
2 f 00ðzminÞðz� zminÞ2, and get

zup ¼
ffiffiffiffiffiffi
C1

k
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkþ 1ÞC0ðC0 � 1Þ

p
by solving f̂ ðzÞ ¼ 0, where

C0 ¼ expfa=kg ¼ exp ðkþ1Þq
kN

n o
. As f(j)(z) = (k + 1)!zt�j+1/(t � j + 1)!

> 0, f(z) grows faster than f̂ ðzÞ at [zmin, +1), which implies that
z⁄ < zup. Notice that c = z � k, then the Lemma 2(1) holds.

Since a ¼ kþ1
N q, then a(Cri1) > a(Cri2) > 0 if q(Cri1) > q(Cri2) > 0.

Then, we obtain Lemma 2(2), i.e., c⁄(Cri1) > c⁄(Cri2) > 1, because of
the monotone decreasing property of rmEcriðcÞ. Moreover, an
approximation formula is obtained by substituting C0 � 1þ a

k into

cup, i.e., c�m � 1þ aþ a
k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkþ 1Þ 1þ a

k

� � a
k

q
þ O a

k

� �
. h
Proof of Theorem 1. By Eq. (4), 0 = q(NLL) < q(AIC) < q(HQC)
< q(BIC) < q(CAIC), if the sample size N > 16. Then, it follows from
Lemma 2(2) that the indicators satisfy 1 ¼ c�m� ðNLLÞ < c�m� ðAICÞ
< c�m� ðHQCÞ < c�m� ðBICÞ < c�m� ðCAICÞ, which implies the relative
U-tendency order according to Eq. (14). h

An Example that �cðXNÞ is a two-variable vector:
We define corresponding objective of the difference of negative

log-likelihood (DNLL) is EDNLLðXN; bHML
m Þ ¼ rmEL, where rmEL is

given in Eq. (12). Then, its difference function is

rmðEDNLLÞ ¼ r2
mEL ¼ �2ðkþ 1Þ ln 1þ cm � 1

kþ 1

� �
þ ðkþ 2Þ ln 1þ bm þ cm � 2

kþ 2

� �
� ln

bm

cm
; ðA:1Þ

where bm ¼ sm�1=A
n
mþ1, cm and An

mþ1 are given in Eq. (13), and
bm P cm P 1.

Then, the statistic �cðXNÞ is generalized to be a two variable vec-
tor (bm,cm) which characterizes a 2-dimensional boundary of the
sign change of the difference function. According to the property
of Eq. (A.1), we have the following result: (1) When m = m⁄: If
sm�1 � sm �An

mþ1, then cm�1,m � cm, m� 1, which implies
rmEDNLL < 0, i.e., m⁄ is preferred to m⁄ � 1.(2) When m � 1 = m⁄:
If sm�1 � sm �An

mþ1, then cm�1,m� cm, m � 1, which implies
rmEDNLL > 0, i.e., m⁄ is preferred to m⁄ + 1. The above results implies
that DNLL favors the case with slightly dispersed latent factors and
noise eigenvalues (i.e., prefers scenario I to II (a)) with large SNR.
This agrees with the experimental results for DNLL (not shown
here). Note that rmEDNLL ¼ 0 if cm�1,m = cm, m = 1 or si = const., "i.
Let k = n �m, dc(m) = cm�1,m � cm, m > 0. Then the above results hold
because:

@rmEDNLL

@cm;m
¼

�kðkþ cm�1;m þ cm;mÞðcm;m � 1Þ
�cm;m½kðcm�1;m � 1Þ þ dc	

( )
ðkþ cm�1;m þ cm;mÞðkþ cm;mÞcm;m

6 0;

@rmEDNLL

@cm�1;m
¼

kðcm�1;m � 1Þ þ dc

ðkþ cm�1;m þ cm;mÞcm�1;m
P 0;

@rmEDNLLjdc¼0

@cm;m
¼

�2kðcm;m � 1Þ
ðlþ 2cm;mÞðkþ cm;mÞ

6 0:
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