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Abstract

Background: Identifying biologically relevant protein complexes from a large protein-protein interaction (PPI)
network, is essential to understand the organization of biological systems. However, high-throughput experimental
techniques that can produce a large amount of PPIs are known to yield non-negligible rates of false-positives and
false-negatives, making the protein complexes difficult to be identified.

Results: We propose a binary matrix factorization (BMF) algorithm under the Bayesian Ying-Yang (BYY) harmony
learning, to detect protein complexes by clustering the proteins which share similar interactions through
factorizing the binary adjacent matrix of a PPl network. The proposed BYY-BMF algorithm automatically determines
the cluster number while this number is pre-given for most existing BMF algorithms. Also, BYY-BMF's clustering
results does not depend on any parameters or thresholds, unlike the Markov Cluster Algorithm (MCL) that relies on
a so-called inflation parameter. On synthetic PPl networks, the predictions evaluated by the known annotated
complexes indicate that BYY-BMF is more robust than MCL for most cases. On real PPl networks from the MIPS
and DIP databases, BYY-BMF obtains a better balanced prediction accuracies than MCL and a spectral analysis
method, while MCL has its own advantages, e.g., with good separation values.

Introduction

Protein-protein interactions (PPI) play key roles in the
biological processes including cell cycle control, differ-
entiation, protein folding, signaling, transcription, trans-
lation and transport etc. Protein complexes are groups
of proteins that densely interact with each another [1].
They are key molecular entities that perform cellular
functions. Identifying these interacting functional mod-
ules is essential to understand the organization of biolo-
gical systems. A large amount of protein interactions
produced by high-throughput experimental techniques
enables us to uncover the protein complexes. However,
high-throughput methods are known to yield non-negli-
gible rates of false-positives and false-negatives, due to
the limitations of the experimental techniques and the
dynamic nature of protein interactions. Thus, it is
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difficult to accurately predict protein complexes from a
PPI network.

PPI networks are generally represented as undirected
graphs with nodes being proteins and edges being inter-
actions. Various algorithms have been used to detect
subgraphs with high internal connectivity [2-4]. One
reputed algorithm is Markov Cluster Algorithm (MCL)
[5], which simulates flow in a graph, causes flow to
spread out within natural clusters and evaporate inbetw-
een different clusters. The value of a so-called inflation
parameter strongly influences the clusters and the clus-
ter number. MCL was used to detect protein families
[6], and was shown to be remarkably robust against ran-
dom edge additions and deletions in quantitative evalua-
tions [3,7]. Particularly, “MCL had the best performance
on both simulated and real data sets” [7]. In addition, a
spectral clustering (SC) method was introduced in [8]
for finding functional modules from a PPI network.
Clusters are constructed by selecting a proportion of top
absolute values of elements of each eigenvector
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corresponding to large eigenvalues, and controlling the
cluster internal connectivity and cluster-size through
thresholds.

In this paper, we propose a binary matrix factorization
(BMF) algorithm under Bayesian Ying-Yang (BYY)
learning [9,10] to predict protein complexes from PPI
networks. The BMF models the binary adjacent matrix
X of the PPI interaction graph as a product of two low-
rank matrices A and Y with binary entries, i.e., X = AY,
where each column of Y represents the interaction pat-
tern of the corresponding protein via weighting the col-
umns of A. A cluster consists of proteins sharing similar
interaction patterns. The roles of A and Y are exchange-
able due to their symmetric positions in X =~ AY , and
thus BMF gives a biclustering on both the rows and col-
umns of X[11].

We propose a BMF learning algorithm, shortly
denoted as BYY-BMEF, under the BYY best harmony
principle [9]. It has the following merits: (1) It automati-
cally determines the cluster number (or equivalently the
low-rank) during the learning process, in contrast to
most existing BMF algorithms which require a given
cluster number; (2) Its clustering result does not depend
on any thresholds or parameters, as opposed to MCL
[5] which relies on the inflation parameter for the parti-
tion boundaries, as well as SC [8] which strongly
depends on thresholds to construct clusters through
eigen-decomposition. Moreover, BYY-BMF can be
applied to biclustering on a rectangular dyadic matrix.

We adopt the strategy in [3] to test the performance
of our algorithm. A test interaction graph is constructed
from a set of annotated complexes from the MIPS data-
base [12] by linking the proteins in the same complex,
and then altered by random edge additions or deletions
under various proportions to simulate the false positives
and false negatives in PPI data. The predictions are eval-
uated with annotated complexes by Sensitivity, Positive-
predictive value (PPV), Accuracy and Separation [3].
Since MCL was evaluated in [3] to be more robust than
other three popular complex-prediction algorithms on
the above four criteria, and regarded in [7] as “the lead-
ing technique for direct and module-assisted function
prediction”, we focus on comparing BYY-BMF with
MCL. By selecting the output with the highest harmony
measure under repeated random initializations, BYY-
BMF’s predictions are more robust against the false
positives and false negatives than MCL’s best predictions
with the inflation parameter optimally tuned according
to the test performance which is impractical because the
test performance is evaluated with the true annotated
complexes. Moreover, for real PPI networks from MIPS
[12] and DIP [13], the BYY-BMF by averaging all
repeated evaluation results is better than MCL (with the
most frequently used value for the inflation parameter)
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and SC, in balancing Sensitivity and PPV. In addition,
we demonstrate BYY-BMF’s biclustering performance
on synthetic gene expression data given in [14].

Results and discussion

A novel binary matrix factorization algorithm under
Bayesian Ying-Yang learning

A PPI network is usually represented as an undirected
graph G = (V,E) [3,4], where a node v;(i = 1,...,n) in V
represents a protein, and an edge e = (v; v;) in E repre-
sents an interaction between the proteins v; and v;. The
symmetric adjacent matrix is defined as X = [x;], where
x; = 1 if there is an interaction between v; and v;, other-
wise x;; = 0. Mathematically, protein complexes are
defined as sets of nodes with more edges amongst its
members than between its members and the rest. Many
methods (see e.g., [4]) were used to detect proteins com-
plexes. A reputed one is called the Markov Cluster
Algorithm (MCL) [5], which was shown to be very
robust [3].

The adjacent matrix X is binary, and analysis on bin-
ary data has been studied in the literature, e.g., in [15].
There also have been many efforts on discovering latent
binary factors from observation data [16-18]. In this
paper, we focus on X ~ AY, where X = [x;],.n Xi5 €
{OJ}: and A = [aij]nxm: Y= [yjt] mxN » @Gijp Yjt € {0:1} As
in [11],X = AY equivalently performs a biclustering on
the rows (features) of X by A and on the columns
(items) of X by Y, where each feature/item is assigned to
one cluster or more. Most existing BMF algorithms are
implemented for a given low-rank m (or equivalently
the cluster number). For the protein-complex prediction
problem, X is a symmetric binary adjacent matrix of the
PPI network with #n = N, and thus we can further con-
strain A = Y. In this paper, we propose a novel BMF
algorithm under the Bayesian Ying-Yang (BYY) harmony
learning [9,10]. The algorithm is denoted as BYY-BMF
or shortly BMF when there is no ambiguity from the
context. Our BYY-BMEF algorithm considers an effective
factorization and an automatic determination of the
cluster number simultaneously by maximizing a har-
mony functional (see eq.(4) in the Section “Methods”),
while most existing BMF algorithms need a given cluster
number. The computational details are referred to the
Section “Methods”.

Experiments

On altered graphs by randomly adding and deleting edges
As in [3], we build a test graph X from the MIPS com-
plexes [12] by linking the protein nodes in the same
complex. Table 1 evaluates the predicted complexes by
various algorithms on the test graph. The “algorithm
true” uses the MIPS complexes as the predicted com-
plexes. The BYY-BMF algorithm is implemented with
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Table 1 Evaluations of different clustering algorithms on
the test graph X0

algorithm Sn PPV Acc Sep #C
true 1.0000 0.7219 0.8497 0.7826 216
BMF(opt) 0.9844 0.8459 0.9125 0.8652 179
BMF(avg) 0.9764 0.7805 0.8730 0.7861 147
MCL(1.8) 0.9920 0.7689 08734 0.8474 157
MCL(opt) 0.9818 0.7936 0.8827 0.8560 164
SC(10%,1%) 06788 0.2661 04250 0.0238 622

It presents evaluation results of different clustering algorithms on the test
graph X0 (#C: number of predicted complexes).

random initialization (m;,;, = 300, x = 1) by 10® inde-
pendent trials. The BMF(avg) averages the results of all
trials, while the BMF(opt) denotes the trial with the
highest value of the harmony measure (by eq.(4) in Sec-
tion “Methods”). The MCL(1.8) means the MCL process
with the inflation parameter being 1.8, while MCL(opt)
denotes the MCL implementation of possible best Accu-
racy (Acc), with the optimal inflation parameter value
3.4 for the test graph (see Table (2) in [3], where 1.8 is
the most frequent value). Noticing that BMF(opt) does
not rely on while MCL(opt) has to rely on the test per-
formance that needs to know the true annotated com-
plexes, practically it is more interesting to compare
whether MCL(1.8) is improved by BMF(avg) and then
further improved by BMF(opt) with extra computing
cost. SC(10%,1%) means the spectral clustering (SC) is
implemented with o,.% = 10% and B, % = 1%.

The observations from Table 1 are as follows. (1) The
BMF(avg) is improved by the BMF(opt) via relieving
the local optimum problem with a better initialization
guided by the harmony measure at the cost of more
computation; (2) The values of the inflation parameter
influences MCL’s prediction accuracies; (3) The BMF
(opt) is better than MCL(1.8), and also better than
MCL(opt).

For a systematic evaluation, we alter the test graph X to
be X,,,, where a and d denote the percentages of ran-
domly added or deleted edges with respect to the number
of original edges in X. The set of percentage pairs (4, d) is
Pap = {(a, d)|a e {0,0.05,0.1, 0.2,0.4, 0.8,1.0}; d € {0,0.05,
0.1,0.2, 0.4,0.8} }. A graph X, ; is generated for each of 10
runs of the case (a4, d). The evaluation results, averaged
on the 10 runs of each (a, d) = (0,0), indicate the robust-
ness of each algorithm against false-positive and false-
negative edges. To save space, the results on 9 out of 42
percentage pairs (a, d) in P4p are presented in Figure 1
(Refer to Additional File 1 for more results).

The value of the prediction Accuracy (Acc) criterion
implies how an algorithm balances between Sensitivity
(Sn) and PPV. Thus, the “Acc” may serve as a general
performance indicator. The observations from Figure 1
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are as follows. (1) At the cost of more computation on
random repeated initializations, BMF(opt) is obviously
better than MCL(1.8). Moreover, there is still room for
improvement via seeking a more effective implementa-
tion to replace the current BMF(opt) which is based on
repeated random initializations. (2) If, on each case (a,
d), allowing to use the information of the true com-
plexes for MCL to tune an optimal inflation parameter
value through extra computation of repeatedly trials
under different candidate values, BMF(opt) is still more
robust than MCL(opt) for most cases except for (a, d)
= (0, 0.8), a case of a large deletion without any addi-
tion. (3) If BYY-BMF is implemented without extra
computation as BMF(avg), it is still robustly better than
or at least comparable to MCL(1.8) for majority cases,
while MCL(1.8) has relative advantages on the Separa-
tion (Sep) value for the cases of a large proportion of
deletions but a very small percentage of additions.

On real PPI data sets

Two real PPI data sets are collected from the MIPS [12]
and DIP [13]. For a practical comparison and to save
computation, we compare BYY-BMF and MCL, by aver-
aging the results of 10 runs of BYY-BMF with m;,,;, =
600, and choosing the most often used inflation para-
meter value 1.8 for MCL, respectively. We evaluate the
predictions with the known 428 reference complexes in
Figure 2. The used reference complexes probably cannot
cover all true complexes underlying the real PPI net-
works from MIPS and DIP, and thus as indicated in [3],
the values of PPV and Separation (Sep) only indicate
factional actual complexes annotated already, whereas
Sensitivity (Sn) is likely to provide more relevant infor-
mation of the coverage of the reference complexes
recovered in the predictions. The results show that
BYY-BMF has a better prediction Accuracy, which bal-
ances the Sensitivity and the PPV, than MCL, followed
by SC, while MCL obtains the best separation value.
This observation is consistent with the comparisons
between BMF(avg) and MCL(1.8) from Figure 2 espe-
cially for the cases of a small addition proportion but a
large deletion proportion. This observation may be rea-
sonable because the real PPI network is very sparse.

On gene expression data for biclustering

In addition, we demonstrate to use our BYY-BMF as a
biclustering algorithm on synthetic gene expression data
in [14]. The original data, which consist of non-overlap-
ping biclusters, are added with random Gaussian noise
under increasing noise levels (i.e., the standard devia-
tion). Figure 3 indicates that the performance of BYY-
BMEF is very robust against noise.

Conclusions
We have proposed a Binary Matrix Factorization (BMF)
algorithm under Bayesian Ying-Yang (BYY) harmony
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Figure 1 Prediction evaluations of BMF and MCL on altered graphs Prediction evaluations of BMF and MCL on altered graphs constructed
from a test graph, with add% edges randomly added and/or del% edges randomly deleted with respect to the original number of edges. To
save computation, we actually implement BMF(opt) at the same initialization as the one used in Table 1, and use the optimal inflation

PPV
(h)

Sep Sn

Acc

Sep

learning, to tackle the problem of predicting protein
complexes from a protein-protein interaction (PPI) net-
work. The algorithm has the following merits: (1) The
input of the known cluster number required by most
existing BMF algorithms is not necessary; (2) As
opposed to MCL and SC, BYY-BMF has no dependence
on any parameters or thresholds.

Experimental results show that our BYY-BMF algo-
rithm, if implemented by searching the output with the
highest BYY harmony measure under repeated random
initializations, is more robust against PPI false positives
and false negatives than MCL using optimal inflation
parameters tuned by the testing accuracies. The

prediction results on large real world PPI networks indi-
cate that the average results of repeated independent
trials by BYY-BMF obtains a better balanced prediction
accuracy, while MCL has a relative advantage in separa-
tion value. In addition, we have demonstrated the effec-
tiveness and robustness of BYY-BMF in biclustering on
synthetic gene expression data.

Furthermore, the current implementation of BYY-
BMEF seeks a more optimal performance simply by
implementing BYY-BMF at a number of random initiali-
zations and selecting one with the highest harmony
measure, it suffers high computing costs but indicates
that BYY-BMF still has room for improvement via
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Figure 2 Prediction accuracies of BMF, MCL and SC on real world PPI networks Prediction accuracies of BMF, MCL and SC on real world
PPI networks are collected from MIPS (left) and DIP database (right). On a large real PPI network, since it is expensive to implement BMF under
repeatedly random initializations and it is not only expensive but also not practical to tune the inflation parameter for MCL using a probably
subset of the underlying true complexes as the reference complexes, we implement BMF(avg) and MCL(1.8).

seeking one more effective implementation. Also, BYY-
BMF can be extended and used on those data with non-
overlapping clusters.

Methods

The proposed BYY-BMF algorithm

We present a probabilistic model for the task of binary
matrix factorization. The joint likelihood is g(X, A, Y, )
= 4(XIA, Y, 0)q(A|0)4(Y]6), where

N n m
ax v, 4) =TT - s =exp{w2am v kn >ovzo. (1)

=1 i=l j=1

N m m
av 1) =[T[Jer Dei=1 o;20 a=ta} @
=1 j=1 j=1

aalp=TTI15" D=1 820 =83 ©)
=1 j=1 j=1

where both each coloumn of Y and each row A are
contrained to have one and only one “1”. Furthermore,

Dirichlet D(a|L1%,E)
D(B| AP EP ) respectively for the parameter 0 = {a, B}

we adopt priors and

with hyperparameters = ={£% 1% &7, 2P}, where

I'(b) Mmoo a1
m H j:lzj ] .
H T(ba;)
j=1
Systematically developed over a decade and half [10],
see [9] for a recent overview, the Bayesian Ying-Yang

D(z]|a,b)=

(BYY) harmony learning is a general statistical learning
framework for parameter learning and model selection
under a best harmony principle. It follows from Eq.(1)
and Eq.(2) in [9] that the harmony measure for the
above BMF model is the following expression:

H(pllq)= ;\ juw,ﬁ |X(A.Y | X, PP I[A(X Y, A)aCY | @)d(A | Plaler | DB DB (4)
where ¢(-) gives the Ying representation, and p(-) gives
the Yang representation. All components in Ying repre-
sentation are given by eq.(1), eq.(2), and eq.(3). In Yang
representation, the empirical density p(X) = 6(X - Xy) is
adopted with X, ={x,}~,, and the other components
are free to be determined via the best harmony, i.e,
maximizing H(p||q).

To achieve the best harmony, a Ying-Yang alternative
procedure is implemented and sketched in Algorithm 1.
The cluster number starts from a large enough m;,,;; ,
and reduces during the implementation of this algo-
rithm at its “Model-Selection-Step”. This automatic
reduction results from a least complexity nature of max-
imizing H(p||q), which can be understood from several
perspectives [9]. By one simple interpretation, the maxi-
mization forces Ying representation to match Yang
representation, but they may not be perfectly equal due
to a finite sample size and other constraints. At the
equality, H(p||q) becomes the negative entropy, further
maximizing which will minimize system complexity.

This BYY-BMEF algorithm reaches an effective factori-
zation and an automatic determination of the cluster
number simultaneously, while most existing BMF algo-
rithms need a pre-given cluster number. In the “Yang-
Step”, Y and A are simply computed via individual
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Figure 3 Matching scores of BYY-BMF versus other biclustering algorithms The matching score is calculated by DEFINITION 2 in [14]. The
bicluster relevance reflects to what extent the generated biclusters represent true biclusters, while the module recovery quantifies how well
each true bicluster is recovered. The details of other algorithms are referred to [14].

maximization per column or row. The algorithm results
in non-overlapping clusters since there is one and only
one “1” per column of Y or per row of A.

Algorithm 1 The Sketched BYY-BMF algorithm
Input : data X =[x,,...,xy]

Initialize A, m = myy, a, B,E% =&P =m [2,2% = 2% =[1,...,1] /m,n = 0.98,v =0.01.
repeat
Yang - Step :
Y =argmaxy In[q(X | Y, ACV)q(v [aV));
AD =argmax , Infg(X | Y™, A)g(a | BE);
Ying - Step :
o) =argmax,, In[q(Y ) |a)q(a |E)];
B =argmax 5 Infg(A® | B)a(B | D)];
Model - Selection - Step :
for j=1to m do
if a; <ng or B; <ng then
Discard the j-th dimension; m < m —1;
end if
end for
until| HO(p[14) - HED(p 1) <10 [ HOp [ 9)|
Output: A, Y =[y,,...yx],m
Notations : m;, is an initial integer for m; t is the iteration number; n,, is a very small positive value.

Due to the non-convexity of eq.(4), different initializa-
tions BYY-BMF may reach different local optima. To
tackle this problem, we implement BYY-BMF at a num-
ber of random initializations and select the output with
the highest harmony measure. There is a room for more
effective implementations.

Other methods in comparison

MCL [5] simulates flow using two algebraic operations
on matrices. The first operation is expansion that mod-
els the spreading out of flow, which coincides with nor-
mal matrix multiplication. The second is inflation to
model the contraction of flow, mathematically a Hada-
mard power followed by a diagonal scaling. The flow
becomes thicker in regions of higher current and

thinner in regions of lower current. MCL generates
non-overlapping clusters by controlling the flow to
spread out within natural clusters and to evaporate
inbetween different clusters. The value of an inflation
parameter strongly influences the cluster number. The
MCL program can be assessed via the web site of Net-
work Analysis Tools (NeAT) [19]. A spectral clustering
(SC) method was introduced in [8] to find quasi-cliques
(and quasi-bipartites) in a PPI network. First, it calcu-
lates the eigen-decomposition X = UDU” for eigenvec-
tors (the columns of U) and corresponding eigenvalues
(diagonal elements of the diagonal matrix D); Then, it
constructs clusters by selecting top o,.% absolute values
of each eigenvector corresponding to large eigenvalues;
Finally, it discards the nodes linked to less than ;% of
nodes within a cluster. The obtained clusters depend on
the proportion of selection o, % and the internal con-
nectivity by f.%.

Data sets

As in [4], the reference protein complexes contain 428
complexes by combining manually curated 216 com-
plexes from MIPS [12], 92 complexes from Aloy et al.
[20], and 295 complexes from the SGD database [21].
The PPI network data sets are: (1) constructed from the
MIPS complexes by instantiating a node for each pro-
tein and linking by an edge any two proteins within the
same complex; (2) collected from MIPS database [12],
with 12, 317 interactions among 4543 proteins, or from
DIP database [13] with 4405 interactions among 2144
proteins. Specifically, the file “Scere20100614CR.txt”
from DIP is used.
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Evaluation criteria
To evaluate the accuracy of the predictions, we adopt
the following four criteria used in [3,4].

Sensitivity (Sn) is defined as follows:

Sn ={Z?_lmaxj{Tij}}/Z?_lNi/ (5)

where n and m is the number of reference and pre-
dicted complexes respectively, T;; is the number of com-
mon proteins in the i-th reference complex and the j-th
predicted complex, and N; is the number of proteins in
the i-th reference complex. A high S, value implies a
good coverage of proteins in the reference complexes.
Positive predictive value (PPV) is defined as

PPV:{Z;ilmaxi{Tij}}/Z:ilT.j, ©)

Where T.. = T; - A high PPV value indicates
. i1 Y . ..
the predlctec{ cofniplékes are likely to be true positive.
Accuracy (Acc) is the geometric average of Su and
PPV,

Acc =[S, x PPV, 7)

which balances the complementary information pro-
vided by Su and PPV. Sn increases to 1 for the big clus-
ter of all proteins, while PPV reaches 1 for single-
protein clusters.

Separation (Sep) value is given by

LS 3D SIS Yl S

Where s; =T; /(T.;T;.) and T,.= ) ~ Tj. A high
Sep indicatesa better general Correspond]e:rllce between
predicted and reference complexes.

Additional material

Additional file 1: In the additional file, all evaluation results on 42
percentage pairs of random additions and deletions are given.
Also, a theoretical analysis on the computational efficiency and
performance of the proposed BYY-BMF algorithm is presented.
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