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Abstract How parameterizations affect model selec-
tion performance is an issue that has been ignored or
seldom studied since traditional model selection criteria,
such as Akaike’s information criterion (AIC), Schwarz’s
Bayesian information criterion (BIC), difference of neg-
ative log-likelihood (DNLL), etc., perform equivalently
on different parameterizations that have equivalent like-
lihood functions. For factor analysis (FA), in addition
to one traditional model (shortly denoted by FA-a), it
was previously found that there is another parameteriza-
tion (shortly denoted by FA-b) and the Bayesian Ying-
Yang (BYY) harmony learning gets different model se-
lection performances on FA-a and FA-b. This paper in-
vestigates a family of FA parameterizations that have
equivalent likelihood functions, where each one (shortly
denoted by FA-r) is featured by an integer r, with
FA-a as one end that r = 0 and FA-b as the other end
that r reaches its upper-bound. In addition to the BYY
learning in comparison with AIC, BIC, and DNLL, we
also implement variational Bayes (VB). Several empiri-
cal finds have been obtained via extensive experiments.
First, both BYY and VB perform obviously better on
FA-b than on FA-a, and this superiority of FA-b is re-
liable and robust. Second, both BYY and VB outper-
form AIC, BIC, and DNLL, while BYY further outper-
forms VB considerably, especially on FA-b. Moreover,
with FA-a replaced by FA-b, the gain obtained by BYY
is obviously higher than the one by VB, while the gain
by VB is better than no gain by AIC, BIC, and DNLL.
Third, this paper also demonstrates how each part of pri-
ors incrementally and jointly improves the performances,
and further shows that using VB to optimize the hyper-
parameters of priors deteriorates the performances while
using BYY for this purpose can further improve the per-
formances.
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1 Introduction

Model selection is traditionally implemented in two
stages. The first stage enumerates a set of candidate
models via an index k that represents the complexity
of the corresponding model and estimates the param-
eter θ̂k that maximizes the likelihood L(θk), while the
second stage selects a best complexity k according to
one of typical criteria, such as Akaike’s information cri-
terion (AIC) [1], Schwarz’s Bayesian information crite-
rion (BIC) [2], Rissanen’s minimum description length
(MDL) [3] (which stems from another viewpoint but co-
incides with BIC when it is simplified to a simple com-
putable criterion), in a format of

J (k) = L(θ̂k) + C(k). (1)

Two candidate models with different parameterizations
have the same model selection performance if they share
equivalent likelihoods and the complexity term C(k).
Consequently, how parameterizations affect model selec-
tion performance was an issue that has been ignored or
seldom studied.

Factor analysis (FA) [4] models the observed multi-
dimensional vector with the help of a low-dimensional
Gaussian latent vector (or factors) through a linear
transform by a factor loading matrix, plus a Gaussian
noise vector. It is usually used as a linear technique of
dimensionality reduction [5,6]. Moreover, the maximum
likelihood solution of FA with an isotropic noise covari-
ance matrix extracts principal components of the ob-
served data [4,7]. Traditionally, FA is made on a param-
eterization that takes the form of a free factor loading
matrix and a unit covariance matrix for the latent fac-
tors, which has been widely used in various studies, e.g.,
in Refs. [8–10]. For simplicity, we shortly denote this
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parameterization as FA-a.
In the literature, the parameterization issue of a statis-

tical model has been studied within Bayesian paradigm
on the performance of numerical techniques in making
inferences rather than model selection. Reparameteri-
zation techniques include parameter transformation to
posterior normality and orthogonality [11,12], data aug-
mentation (adding latent variables) and parameter ex-
pansion (adding new parameters) to improve the com-
putational accuracy and efficiency, such as fitting the
data more accurately, speeding up the Gibbs sampler
for posterior [13], and so on. Recently, FA-a is overpa-
rameterized in Ref. [14] to obtain a fast Gibbs sampler
for a posterior distribution, where the factor loading ma-
trix has a lower triangular structure and the covariance
matrix for the latent factors is diagonal.

In the Item 9.4 of Ref. [15], an alternative FA
parametrization has been proposed and implemented
by the Bayesian Ying-Yang (BYY) harmony learning,
which constrains the factor loading matrix to be a rect-
angular orthogonal matrix, and allows free parameters
as the diagonal covariance matrix of the latent variables.
Here, we shortly denote this parameterization as FA-b.
FA-a and FA-b are equivalent by the maximum likeli-
hood (ML) learning because the corresponding two like-
lihood functions are equivalent, and thus get the same
performance of model selection under the criterion of
Eq. (1). However, it was found that the BYY harmony
learning gets different model selection performances on
FA-a and FA-b [16–19].

This paper continues the above study to further exam-
ine how parameterizations affect model selection perfor-
mance. We combine FA-a and FA-b into a family of FA
parameterizations that have equivalent likelihood func-
tions. Each instance in this family is featured by an in-
teger r and thus shortly denoted by FA-r, with FA-a as
one end that r = 0 and FA-b as the other end that r
reaches its upper-bound m. Between the two ends, FA-r
is a mixture of an r hidden factor based FA-b and an
m − r hidden factor based FA-a, with r indicating the
number of free parameters in the diagonal covariance
matrix of the hidden variables. This paper aims at a
systematic empirical investigation on this family of pa-
rameterizations. In addition to the BYY learning, we
take in consideration not only variational Bayes (VB)
that has been popularly studied in Refs. [20,21], but
also AIC, BIC, and difference of negative log-likelihood
(DNLL) in a format of Eq. (1). Moreover, we also take in
consideration how each part of priors incrementally and
jointly improves the performances of BYY and VB, and
whether optimizing the hyper-parameters within these
priors can further improve the performances.

Several empirical finds have been obtained via exten-
sive experiments. First, both BYY and VB perform bet-
ter on FA-b than on FA-a. Specifically, both BYY and

VB reach their best performances on one parameteriza-
tion FA-m∗ with m∗ being the correct number of hidden
factors. This provides a correct calibration though m∗

is unknown. On one hand, the performances on those
of FA-r drop sharply as r reduces from m∗ towards to
FA-a, which means that the contribution of FA-a is nega-
tive. On the other hand, the performance of FA-r reduces
slightly and slowly as r increases towards to FA-b. More-
over, we make a comparison on FA-b with its initial di-
mension set at r and found a performance similar to that
on FA-b. Therefore, FA-b is superior to FA-a consider-
ably and reliably. Second, both BYY and VB outperform
AIC, BIC, and DNLL, while BYY further outperforms
VB, especially on FA-b. Moreover, with FA-a replaced
by FA-b, the gain obtained by BYY is obviously higher
than the one by VB, while the gain by VB is better than
no gain by AIC, BIC, and DNLL, especially for a finite
size of samples. Third, we also provide a systematic in-
vestigation on how each part of the priors contributes to
the model selection performance, and find that though
the performance of either VB or BYY can be improved
with the help of appropriate priors, BYY does not highly
depend on the presences of the priors whereas VB does.
Moreover, optimizing the hyper-parameters of priors by
BYY further improves the performances while using VB
for this purpose actually deteriorates the performances.

The rest of this paper is organized as follows. Sec-
tion 2 introduces FA-a and a two-stage procedure for
the hidden dimensionality estimation problem. Section
3 presents the ML equivalent family of parameteriza-
tions, FA-r. Section 4 is devoted to VB learning on FA-
r. Though there is one algorithm available (see Sect. 3.2
in Ref. [22]) for making the BYY learning, no study has
been made with appropriate priors added and the hyper-
parameters of theses priors updated, for which we derive
the learning algorithms in Sect. 5. Then, Sect. 6 gives a
systematic empirical analysis on all learning algorithms
based on FA-r. Section 7 concludes this paper.

2 FA and its modeling task

FA is a statistical method that models the observed ran-
dom variables as linear combinations of fewer hidden
variables (called factors) plus some noise, i.e.,

x = Ay + μ + e, (2)

where x is an n-dimensional observation, y is an m× 1
hidden factor vector, A is an n ×m factor loading ma-
trix, μ is an unknown constant, and e is an n× 1 noise
vector. Moreover, y and e are assumed to be Gaussian
distributed, and uncorrelated, i.e., E[yeT] = 0. Usually,
m < n, where m is the number of hidden factors or the
hidden dimensionality.
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We further specify the mathematical details of the
joint likelihood q(x,y|Θm) with Θm representing all un-
known parameters. One conventional parameterization
is the FA-a given in Table 1, where the factor loading
is an arbitrary matrix and the latent factors’ covariance
matrix is an identity matrix. FA-a is commonly used in
statistics [4] and machine learning [7,9,23].

Given an independent and identically distributed
(i.i.d.) sample set XN = {xt}N

t=1, the task of FA model-
ing consists of three levels of inverse problems (see Sect.
1.1 in Ref. [22]), i.e., inferring {yt}, learning parameters
Θm and selecting an appropriate m. The three prob-
lems are sequentially nested within a hierarchy. Usually,
parameters are estimated under the ML principle:

Θ̂ML
m = arg max

Θm

ln q(XN |Θm),
(3)

q(XN |Θm) =
∏

t

q(xt|Θm),

which is implemented by an expectation-maximization
(EM) algorithm [7,24].

Selecting an appropriate hidden dimensionality is a
model selection problem, conventionally tackled by a
two-stage procedure, i.e., at Stage I parameter learning
is repeated on a set of candidate hidden dimensionali-
ties among which one is selected via a criterion at Stage
II. Classical model selection criteria include AIC [1,25]
and BIC/MDL [2,3]. The FA hidden dimensionality is
determined as m̂:

m̂ = arg min
m∈M

JCri,

(4)
JCri =

{
− ln q(XN |Θ̂ML

m ) + dm, AIC,

− ln q(XN |Θ̂ML
m ) + ln N

2 dm, BIC/MDL,

where M is a set of candidate hidden dimensionalities,
and dm is the number of degrees of freedom in FA. Equa-
tions (3) and (4) constitute the conventional two-stage
procedure. Equation (4) provides two specific examples
of Eq. (1). Another choice for JCri is the logarithm
of the likelihood-ratio or the difference of negative log-
likelihood (DNLL):

JDNLL = − ln q(XN |Θ̂ML
m ) + ln q(XN |Θ̂ML

m−1), (5)

which allows model selection by capturing the decrement
of the negative log-likelihood as the candidate hidden di-
mensionality increases by one.

In the following, we consider FA with Σe = σ2
eIn,

which leads FA equivalent to principal component anal-
ysis (PCA) [4,7] under the ML principle. Without loss
of generality, we also assume μ = 0.

3 ML-equivalent parameterizations of FA

In this paper, the ML-equivalence between two FA pa-
rameterizations means “the corresponding two likeli-
hood functions are equivalent”. The FA-b [15–17], listed
in Table 1, is another parameterization for FA, and it
is ML-equivalent to FA-a because we have G(x|μ,Σx),
with Σx = AAT + Σe for FA-a and Σx = UΛUT + Σe

for FA-b. It can be observed that the ML estimation
seeks a positive definite matrix Σx or its equivalent de-
composition into either of UΛUT and AAT.

Since FA-a has more number of free parameters than
FA-b, they are different under AIC or BIC by Eq. (4) if
the number of free parameters is directly used as dm. In
practice [4,7,17], the extra degrees of freedom in FA-a
are actually subtracted, i.e., dm = nm + 1 − m(m−1)

2 ,
equal to the number of free parameters in FA-b. Thus,
we get the same m̂ under AIC or BIC by Eq. (4).

Although FA-a and FA-b are equivalent in model se-
lection under AIC or BIC, they have been pointed out
to be different under the BYY learning in Refs. [15,16].
This motivates us to further investigate how the forms
of parameterizations affect model selection performance.
For a systematic study, we present a new family of ML-
equivalent FA parameterizations varying from FA-a to
FA-b as follows.

The difference between FA-a and FA-b mainly comes
from how to encode the hidden variable y’s complex-
ity. Following this nature, we construct the following FA
model:

x = Vry + μ + e, Vr = [Ur,Am−r], (6)

y comes from G(y|0,Σr
y),

Σr
y = diag[ν−1

1 , . . . , ν−1
r , 1, . . . , 1],

Table 1 Two probabilistic parameterizations of FA, namely FA-a and FA-b (E[·] denotes the expectation, and G(•|μ,Σ)
denotes a Gaussian distribution with the mean vector μ and the covariance matrix Σ, and diag[λ1, λ2, . . . , λm] is a diagonal
matrix with λ1, λ2, . . . , λm as its diagonal elements. Im is an m ×m identity matrix. Σe is a diagonal positive definite
matrix. Here and throughout this paper, both q(·) and p(·) denote probability distributions.)

type-A type-B

FA-a: Θa
m = {A,μ,Σe} FA-b: Θb

m = {U,μ,Λ,Σe}
E[yeT] 0 (y and e uncorrelated) 0 (y and e uncorrelated)

q(y|Θ) G(y|0, Im) G(y|0,Λ), Λ = diag[λ1, λ2, . . . , λm]

A any full column rank matrix A = U, UTU = Im

q(x|y,Θ) G(x|Ay + μ,Σe) G(x|Uy + μ,Σe)

q(x|Θ) G(x|μ,AAT + Σe) G(x|μ,UΛUT + Σe)
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where Σr
y is y’s covariance matrix with m − r con-

stant 1s in the diagonal. Moreover, we have Ur ∈ R
n×r,

UT
r Ur = Ir , Am−r ∈ R

n×(m−r), and m is the initial
value of the hidden dimensionality. The integer r denotes
the number of free parameters in Σr

y with 0 � r � m.
We denote this type of parameterizations as FA-r, where
the noise covariance is the same as FA-a and FA-b. For
any r ∈ [0,m], FA-r is ML-equivalent to FA-a, and r

indicates to what extent FA-r is similar to FA-b. Spe-
cially, FA-r becomes FA-a when r = 0, and becomes
FA-b when r = m.

4 VB

Bayesian approach has been extensively used in many
scientific areas. One important and difficult problem is
computing the marginal likelihood of a given training
data set, which involves a high dimensional integral over
all parameters. Developed recently, VB [20,21] tackles
the integral by means of variational methods to approx-
imate the log marginal likelihood ln q(XN |m,Ξ) of a
given data set XN with a lower bound:

F(p(Θ), p(Y ),m,Ξ)

=
∫
p(Θ)p(Y ) ln

q(XN , Y |Θ)q(Θ|m,Ξ)
p(Θ)p(Y )

dΘdY (7)

= ln q(XN |m,Ξ)

−KL(p(Θ)p(Y )‖q(Θ, Y |XN ,m,Ξ)), (8)

where Y represents hidden variables, q(Θ|m,Ξ)
is a given prior over the parameters Θ, and
KL(p‖q) =

∫
p ln(p/q) � 0 is the KL-divergence,

q(Θ, Y |XN ,m,Ξ) ∝ q(XN , Y |Θ)q(Θ|m,Ξ). The lower
bound F is a functional of model scale m, prior’s hyper-
parameters Ξ, and the variational posterior p(Θ)p(Y ),
which is usually assumed to be further factorized as∏

i p(θi)
∏

t p(yt) with Θ = {θi} and Y = {yt}, in order
to obtain computable variational posteriors. The tight-
ness of the bound depends on the KL divergence be-
tween the computed variational posterior and the exact
Bayesian posterior. By Eq. (7), the model scale is esti-
mated through a two-stage procedure given in Table 2.
The optimized F approaches the maximum log marginal

likelihood, which encodes a preference for simpler, more
constrained models through assigning higher probability
to the data set.

Table 2 Two-stage procedure of VB learning (The two-stage
procedure of VB learning for a model selection problem consists
of repeating a VBEM algorithm to maximize F and a discrete
maximization to select an appropriate model scale, where τ is the
iteration indicator, and τo denotes the number of iterations used to
reach convergence (i.e., the objective function values vary small).
A general derivation of VBEM is referred to the Theorem 2.1 in
Ref. [21].)

Stage I: Enumerate each candidate model scale m ∈ M:

(a.1) p(τ+1)(Y ) = arg maxp(Y ) F(p(τ)(Θ), p(Y ), m,Ξ(τ)),

(a.2) p(τ+1)(Θ) = arg maxp(Θ) F(p(Θ), p(τ+1)(Y ), m,Ξ(τ)),

(b) Ξ(τ+1) = argmaxΞ F(p(τ+1)(Θ), p(τ+1)(Y ), m,Ξ).

Stage II: Model selection:

m̂ = arg maxm∈M F(p(τo)(Θ), p(τo)(Y ),m,Ξ(τo)).

There have been efforts of VB learning on FA-a [8–
10], in which the adopted priors on FA-a’s parameters
are listed in the left column of Table 3. For FA-b, we have
derived a VB learning algorithm in Ref. [26] by the pri-
ors given in the right column of Table 3. We directly use
the existing VB learning algorithms for FA-a and then
extend it for FA-b by certain modifications, and further
extend them into a VB learning algorithm for FA-r for
which the detailed algorithm is given in Appendix A.

Table 3 Priors distributions of FA-a and FA-b (The above prior
distributions in the left column for FA-a have been used in Refs.
[8–10]. The priors in the right column for FA-b have been used in
Ref. [26]. Γ(z|a, b) = baza−1e−bz/Γ(a) is the Gamma density with
shape parameter a and inverse scale parameter b, where Γ(a) is the
Gamma function. The Ξa and Ξb denote the hyperparameters.)

priors for FA-a priors for FA-b

Ξa = {aα,bα, aϕ, bϕ} Ξb = {aν ,bν , aϕ, bϕ}
ϕ = ϕIn = Σ−1

e ϕ = ϕIn = Σ−1
e , ν = Λ−1

ai: ith column vector of A UTU = Im, U is at Stiefel

manifold

q(A|α) =
Qm

i=1G(ai|0, 1
αi

In) q(U) = 2−m
Q

i Γ((n − i

+1)/2)π−(n−i+1)/2

q(α|aα, bα) =
Qm

i=1 Γ(αi|aα
i , b

α
i ) q(ν|aν , bν) =

Q
i Γ(νi|aν

i , b
ν
i )

q(ϕ|aϕ, bϕ) = Γ(ϕ|aϕ, bϕ) q(ϕ|aϕ, bϕ) = Γ(ϕ|aϕ, bϕ)

The algorithm aims at maximizing the following F re-
sulted from putting the details of Eq. (6) and Tables 1
and 3 into the variational lower bound F by Eq. (7):

F =
∫ {

F1 + ln

[(
r∏

i=1

Γ(νi|aν
i , b

ν
i )

m−r∏

k=1

(G(ak|0, α−1
k In)Γ(αk|aα

k , b
α
k ))

)
q(Ur)Γ(ϕ|aϕ, bϕ)
pApUpνpαpϕ

]}
pΘpY dΘdY, (9)

F1 =
N∑

t=1

{lnG(xt|Vryt, ϕ
−1In) + lnG(yt|0, diag[ν−1

r , Im−r]) − ln p(Y )}pY dY, (10)

where the variational posterior pY = p(Y ), pΘ = p(Θ) =
pApUpαpνpϕ, Vr = [Ur ,Am−r], q(Ur) = 2−r

∏
i Γ((n −

i + 1)/2)π−(n−i+1)/2, Am−r = [a1,a2, . . . ,am−r], νr =

[ν1, ν2, . . . , νr]. For simplicity, we omit the subscripts r
and m− r in the rest of context.

Moreover, F by Eq. (9) consists of a part that is a
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function of Ξr , that is,

F = Fh(Ξr) + others. (11)

As listed as Stage I(b) in Table 2, we also maxi-
mize F with respect to the hyperparameters Ξr =
{aα

k , b
α
k , a

ν
i , b

ν
i , a

ϕ, bϕ}, which is implemented in the de-
tailed algorithm given by Appendix A with the help of
the gradient of Fh(Ξr) with respect to the hyperparame-
ters Ξr . It follows from Eq. (8) that such an update of Ξr

not only minimizes the KL term leading the variational
lower bound F to approach to ln q(XN |m,Ξr) but also
further maximizes ln q(XN |m,Ξr).

Leaving the computational details of the VB algo-
rithm for FA-r in Table A1 (see Appendix A), we outline
the major updates in Table 4 together with the following
remarks:

1) When r = 0, the VB algorithm on FA-r equiva-
lently implement the one on FA-a [8], where the varia-
tional posteriors pU and pν disappear because U and ν

is empty for r = 0.
2) When r = m, the VB algorithm on FA-r becomes

the one on FA-b [26], where pU and pν take over pA and
pα with U and ν taking the place of A. It is empiri-
cally observed that pϕ has different impacts on model
selection in FA-a and FA-b as shown by experiments
later, although the corresponding two variational poste-
riors which have similar forms are computed from the
same Gamma prior.

3) When 0 < r < m, the VB algorithms on FA-r are
variants in addition to those on FA-a and FA-b. On one
hand, if we consider no priors over all the parameters Θr

m

in FA-r, then the bound F degenerates to F1 by Eq. (10).
Maximizing F1 leads to an EM algorithm for FA-r. On
the other hand, maximizing F1 takes the lead in maxi-
mizing F (for a large r), especially when the sample size
N or the dimensionality n is very large, because we use a
point estimation for pU (see a.2 in Table 4) and thus the
contribution of updating U at Stage I of Table 2 to max-
imizing F actually comes through maximizing F1. De-
note the number of free parameters in φ by d(φ), we have
d(U) = nr−0.5r(r+1) and d(Θr

m) = nm−0.5r(r−1)+1.
It follows d(U)/d(Θr

m) ≈ r/m for a large n and r/m ≈ 1
for a r close to m that a large n implies the learning on
U actually plays a main role in maximizing F . This de-
generacy would make the VB algorithm of maximizing

F return back towards the EM algorithm, deteriorat-
ing the model selection performances and also reducing
the performance differences of FA-r for different r. Still,
maximizing F (for r > 0) yields better performance than
the algorithm in Refs. [8,10] for FA-a as will be shown
later. Moreover, a further improvement in model selec-
tion by F is possible by finding a better prior on U .

Table 4 An outline of VB algorithm on FA-r, with details in
Table A1 of Appendix A

the τth iteration of Stage I(a):

(a.1): Update p
(τ)
Y =

QN
t=1G(yt|μ(t)

y|x,Σy|x) based on p
(τ−1)
A ,

p
(τ−1)
α , p

(τ−1)
ν , p

(τ−1)
ϕ , Ξ

(τ−1)
r .

(a.2):

• Update p
(τ)
A =

Qn
j=1G(aj |μA,j ,ΣA,j) based on p

(τ)
Y ,

p
(τ−1)
α , p

(τ−1)
ν , p

(τ−1)
ϕ , Ξ

(τ−1)
r .

• Update p
(τ)
U ≈ δ(U − U∗

S), U∗
S = U∗

E

`
U∗

E
TU∗

E

´− 1
2 ,

U∗
E =

“P
t xt(μ

(t)
y|x)T

” `
E
ˆ
ytyT

t

˜´−1
.

• Update p
(τ)
α =

Qm−r
k=1 Γ(αk |âα

k , b̂
α
k ), based on p

(τ)
A ,

p
(τ)
α , p

(τ−1)
ν , p

(τ−1)
ϕ , Ξ

(τ−1)
r .

• Update p
(τ)
ν =

Qr
i=1 Γ(νi|âν

i , b̂
ν
i ), based on p

(τ)
A , p

(τ)
α ,

p
(τ)
ν , p

(τ−1)
ϕ , Ξ

(τ−1)
r .

• Update p
(τ)
ϕ = Γ(ϕ|âϕ, b̂ϕ), based on p

(τ)
A , p

(τ)
α , p

(τ)
ν ,

p
(τ)
ϕ , Ξ

(τ−1)
r .

the τth iteration of Stage I(b):

Update hyperparameters Ξr by gradient method,

Ξnew
r = Ξold

r + η ∂Fh(Ξr)
∂Ξr

˛
˛
˛
Ξr=Ξold

r

.

5 BYY harmony learning

Firstly proposed in Ref. [27] and systematically devel-
oped over a decade, BYY harmony learning theory is
a general statistical learning framework that can han-
dle both parameter learning and model selection under
a best harmony principle. The BYY harmony learning
on typical structures leads to new model selection crite-
ria, new techniques for implementing regularization and
a class of algorithms that implement automatic model
selection during parameter learning. In the sequel, we
introduce some fundamentals of BYY. Readers are re-
ferred to Ref. [22] for a recent systematic introduction.

Mathematically, the best harmony principle is to max-
imize the following harmony functional:

H(p‖q) =
∫
p(R|X)p(X) ln [q(X |R)q(R)] dXdR =

∫
p(Θ|X)H(p‖q,Θ)dΘ,

H(p‖q,Θ) =
∫
p(Y |X,Θ)p(X) ln[q(X |Y,Θ)q(Y |Θ)] dY dX + ln q(Θ|Ξ), (12)

where the observation data X are generated from its
inner representation R = {Y,Θ}, where a parameter
set Θ represents the underlying regularities of X and

Y is the inner representation of X accordingly. The two
types of Bayesian decompositions, i.e., p(R|X)p(X) and
q(X |R)q(R), are called Yang machine and Ying machine
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respectively, which form a BYY system as depicted in
Fig. 1.

Fig. 1 BYY system in the general form and specific structures
for FA

An important nature of maximizing H(p‖q) is that
it leads to not only a best matching between the Ying-
Yang pair, but also a compact model with a least com-
plexity. Such an ability can be observed and investi-
gated from several perspectives, see Sect. 4.1 in Ref. [22],
and here we only introduce one of them due to space
limit. On one hand, maximizing H(p‖q) forces Ying ma-
chine q(X |R)q(R) to match Yang machine p(R|X)p(X).
Due to a finite sample size and practical constraints im-
posed on the Ying-Yang structures, a perfect equality
q(X |R)q(R) = p(R|X)p(X) may not be really reached
but still be approached as possible as it can. At this
equality, H(p‖q) becomes the negative entropy that de-
scribes the complexity of the system. Further maximiz-
ing it will decrease the system complexity which provides
a model selection ability.

In implementation, we maximize H(p‖q) by a two-
stage procedure as shown in Table 5, which shares a
format similar to the one in Table 2 and also the con-
ventional two-stage procedure introduced after Eqs. (3)
and (4). Moreover, the BYY harmony learning is also
featured by its favorable nature that model selection
is made automatically during the implementation of
merely Stage I, e.g., for FA-b in Table 1, the implemen-
tation of either Stage I(a) or both Stage I(a) and I(b)
will drive some λj to zero when the jth dimension of yt

is extra. Thus, automatic model selection can be made
via discarding the jth dimension after checking λj → 0.

This paper mainly focuses on a detailed comparative
study with the VB learning in Table 2 by the conven-
tional two-stage procedure, without making automatic
model selection via checking λj → 0. Also, we pro-
vide a simple comparative investigation on the auto-

matic model selection performances of BYY and VB.
Further details about automatic model selection are re-
ferred to Sects. 2.1 and 3.2 in Ref. [22] and to Sect. 2.2
in Ref. [28] for further improvements via exploring a co-
dimensional matrix pair nature (additionally where an
improved model selection criterion is given by e.g., Eq.
(29) in Ref. [28]).

Table 5 General two-stage iterative BYY harmony learning pro-
cedure (The procedure is restated from Fig. 6(a) in Ref. [29] (also
see Eqs. (6) and (7) in Ref. [30] and Fig. 5(b) in Ref. [22]), where
nf (Θ) is the number of free parameters in Θ, and dm(Ξ) is given
in Eq. (16). The “incr” means “to increase”.)

Stage I: Enumerate candidate models by m and for each
candidate,

we iterate the following (a) and (b) until converged:

(a) Θ(τ) = arg max /incrΘH(p‖q,Θ,m,Ξ(τ−1)),

(b) Ξ(τ) = arg max /incrΞ

n
H(p‖q,Θ(τ),m,Ξ)

+ 1
2
dm(Ξ)+Hb(m,Ξ)

o
,

Stage II: Select the best m̂:

m̂ = arg minm

n
−H(p‖q,Θ(τ∗), m,Ξ(τ∗))

+ 1
2
nf (Θm) −Hb(m,Ξ)

o
,

τ∗ is the value of the iteration indicator τ when

Stage I converged.

Next, we outline the derivation of Table 5 with details
referred to Sect. 4.3 in Ref. [22]. Putting the empirical
density p(X) = δ(X−XN) with XN = {xt}N

t=1 into Eq.
(12) and splitting Θ = Θa ∪ Θb, Θa ∩ Θb = empty, we
have

H(p‖q) = Hb(m,Ξ)

+
∫
p(Θ|XN ,Ξ)H(p‖q,Θ,m,Ξ) dΘ, (13)

Hb(m,Ξ) =
∫
p(Θb|XN ,Ξ) ln q(Θb|Ξ) dΘb, (14)

H(p‖q,Θ,m,Ξ)

=
∫
p(Y |XN ,Θ) ln [q(XN |Y,Θ)q(Y |Θ)] dY

+ ln q(Θa|Ξ), (15)
∫
p(Θ|XN ,Ξ)H(p‖q,Θ,m,Ξ) dΘ

≈ H(p‖q,Θ∗,m,Ξ) +
1
2
dm(Ξ), (16)

dm(Ξ) = −nf(Θ) + (ΘX − Θ∗)TΩ(Θ∗,Ξ)(ΘX − Θ∗),
Θ∗ = arg max

Θ
H(p‖q,Θ,m,Ξ), (17)

where the integral for Hb(m,Ξ) can be solved analyt-
ically and Θb could be an empty subset. The second
term in Eq. (13) is handled by the so called apex ap-
proximation, resulting in Eq. (16), where Ω(Θ∗,Ξ) =
∇2

ΘΘTH(p‖q,Θ,m,Ξ) is the Hessian matrix evaluated
at Θ∗. ΘX is the mean of p(Θ|XN ,Ξ). Simply, we adopt
ΘX = Θ(τ−1) and thus Θ∗ = Θ(τ). It follows that
Θ(τ) − Θ(τ−1) vanishes when the iteration converges.
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Therefore, we get Stage I(a) in Table 5 directly from
Eq. (17). Moreover, putting Eq. (16) into Eq. (13), we
may update the hyperparameters Ξ by Stage I(b) and
select m̂ by Stage II.

Specifically, we consider the FA-r model by Eq. (6)
with i.i.d. samples in XN = {xt}N

t=1, from which we
have

q(X |Y,Θ) =
∏

t

q(xt|yt,Θ),

q(Y |Θ) =
∏

t

q(yt|Θ),

p(Y |X,Θ) =
∏

t

p(yt|xt,Θ),

q(x|y,Θ) = G(x|Vry + μ,Σe),

q(y|Θ) = G(y|0,Σr
y),

p(y|x,Θ) = G(y|W̃x + w,Σy|x), (18)

where the Yang machine G(y|W̃x,Σy|x) is designed
as the inverse from G(x|Vry + μ,Σe) and q(y|Θ) =
G(y|0,Σr

y) according to the variety preservation (VP)
principle (see Eq. (31) in Ref. [22]). Moreover, it follows
from y = Wx + w within Eq. (47) in Ref. [30] that we
consider free parameters W̃ and w to be updated via
learning.

In the sequel, we develop the learning procedure in
Table 5 into a gradient based BYY learning algorithm
on FA-r. Leaving the computational details of this algo-
rithm in Table B1 (see Appendix B), here we introduce
its key points in an outline in Table 6.

At the τth step of the implementation, putting Eq.
(16) into Eq. (13) and obtaining Θ(τ)

r of the FA-r model
by Eq. (6), we have

H(p‖q) ≈ H(p‖q,Θ,m,Ξ) +
1
2
dm(Ξr) +Hb, (19)

dm(Ξr) = −nf(Θr) + ΔT
Θr

Ω(Θ(τ)
r ,Ξr)ΔΘr ,

ΔΘr = Θ(τ−1)
r − Θ(τ)

r , (20)

from which we get Stage I(b) in Table 6 for updating the
hyperparameters Ξ at the τth step.

Further putting Eq. (18) and the priors given in Table
3 into Eqs. (13) and (15), we have

H(p‖q,Θ,m,Ξ)

=
∏

t

lnG(xt|0,Σx) −N ln
√

(2πe)m|Σy|x|

+dr(W̃ ) + ln q(Θa|Ξ), (21)
⎧
⎪⎨

⎪⎩

Σx = V Σr
yV T + ϕ−1In,

Σr
y = diag[ν−1, Im−r],

Σy|x =
[
(Σr

y)−1 + V T(ϕIn)V
]−1

,

(22)

⎧
⎪⎨

⎪⎩

dr(W̃ ) = − 1
2Tr(ΔT

WΣ−1
y|xΔW SN ),

SN =
∑

t xtx
T
t ,

ΔW = W̃ − W ; W = Σr
yV TΣ−1

x .

(23)

Table 6 A sketch of the gradient implementation of BYY learn-
ing algorithm on FA-r (All computational details are referred to
Table B1 in Appendix B.)

objective: maximize the harmony functional

H(p‖q) ≈ H1 + dr(fW) + ln q(Θa|Ξ) +Hb + 1
2
dm(Ξ),

H1 = −N(n+m)
2

ln(2π) − Nm
2

+ N
2

ln |νr| + N
2

ln |ϕIn|
− 1

2
Tr[SN (V · diag[ν−1, Im−r ]V T + ϕ−1In)−1].

The last four terms of H(p‖q) are given by Eqs. (23), (24),

(25), and (19).

the τth iteration of Stage I(a): gradient method to

update the parameters

θ(τ) = θ(τ−1) + η∂θ, ∂θ = ∂Hθ = ∂H(p‖q)
∂θ

˛
˛
θ=θ(τ−1) ,

∀θ ∈ {U,A,ν, ϕ}, η is a step size.

According to the five terms of H(p‖q), we have

∂θ = ∂H1θ + ∂dr θ + ∂qθ + ∂Hbθ + ∂dmθ.

the τth iteration of Stage I(b): gradient method to

update the hyperparameters

Hessian matrix Ω(Θ(τ),Ξ) (approximated as block-diagonal);

ξ(τ) = ξ(τ−1) + η ∂H(p‖q)
∂ξ

˛
˛
˛
ξ(τ−1),θ(τ)

,

∀ξ ∈ {aα
k , b

α
k , a

ν
i , b

ν
i , a

ϕ}, η is a step-size.

Again, the aboveH(p‖q,Θ,m,Ξ) shares a format sim-
ilar to Eq. (4). The term dr(W̃ ) vanishes when the al-
gorithm converges, taking a regularization role during
learning for alleviating to be stuck at local optimums.
The previous studies of the BYY learning for FA-a in
Ref. [18] or for FA-b in Ref. [19] without considering the
prior term ln q(Θa|Ξ), except a preliminary study made
in Ref. [26]. In contrast, a role similar to the conven-
tional Bayesian regularization is taken by the (log) prior
term in Eq. (21) with the following details:

ln q(Θa|Ξ)

= ln

[
q(U)

r∏

i=1

Γ(νi|aν
i , b

ν
i )Γ(ϕ|aϕ, bϕ)

]

= −r ln 2 +
r∑

i=1

[
ln Γ

(
n− i+ 1

2

)
− n− i+ 1

2
lnπ

]

+
r∑

i=1

{(aν
i − 1) ln νi − bνi νi + aν

i ln bνi − ln Γ(aν
i )}

+(aϕ − 1) lnϕ− bϕ lnϕ+ aϕ ln bϕ − ln Γ(aϕ), (24)

Hb(m,Ξ)

=
∫
p(α|A, ϕ,XN ) ln[q(A|α)q(α)]dα

=
m−r∑

k=1

{
(âα

k − 1)
(
ψ(âα

k ) − ln b̂αk
)
− âα

k + aα
k ln bαk

− lnΓ(aα
k )
}
− n(m− r)

2
ln(2π), (25)

where p(α|A, ϕ,XN ) =
∏m−r

k=1 Γ(αk|âα
k , b̂

α
k ) with âα

k =

aα
k + n

2 and b̂αk = bαk + aT
k ak

2 , and I� denotes an 
 × 


identity matrix, and ψ(·) is the digamma function.
Putting the above obtained H(p‖q,Θ,m,Ξ) into Ta-

ble 6, we can derive the detailed equations for gradients
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and Hessian matrices (with respect to each part of un-
known parameters), from which we obtained the BYY
learning algorithm for FA-r given in Table B1 (see Ap-
pendix B) together with the following remarks:

1) When r = 0, Table 6 implements BYY harmony
learning on FA-a, where the terms ln |ν|, ln q(U), and
ln q(ν) in H(p‖q) disappear.

2) When r = m, Table 6 implements BYY har-
mony learning on FA-b, where the term Hb given in Eq.
(25) disappears, and maximizing the term ln |ν| pushes
1/νi → 0 if the ith hidden dimension is an extra scale.

3) When 0 < r < m, Table 6 provides variants of BYY
learning algorithms on FA between FA-a and FA-b.

Last but not the least, the algorithm in Table B1 is
derived from getting the integral over y analytically re-
moved and then making gradient based updates. Alter-
natively, maximizing the harmony functional can also be
implemented by a Ying-Yang alternation procedure (see
e.g., Fig. 8 of Ref. [22]), which is featured by getting
the peak value of y∗ in the Yang step and removing the
integral over y around this y∗, while the Ying step up-
dates all the unknown parameters. Readers are referred
to Sect. 4.3 in Ref. [22] for more details.

6 Empirical analysis

6.1 Three levels of investigations

This empirical analysis has the following purposes:
1) Examining whether FA-b is better than FA-a for

making model selection, via BYY, VB, AIC, BIC, and
DNLL;

2) Examining the joint effects of two parameteriza-
tions and the role of priors on the performances of model
selection;

3) Comparing the performances of BYY, VB, AIC,
BIC, and DNLL.

Towards these purposes, we conduct investigations at
three different levels, as shown in Table 7. The criteria
AIC, BIC, and DNLL are indifferent for FA-b and FA-
a in term of making model selection. Without a priori
q(Θa|Ξ) (i.e., Level 1 in Table 7), VB degenerates to
ML and thus is also indifferent for FA-b and FA-a. In
this case, only BYY is capable of model selection, and
has different performances on FA-a and FA-b. To enable

VB to make model selection, we take a priori q(Θa|Ξ) in
consideration to compare the performances of both BYY
and VB. Since q(Θa|Ξ) depends on the hyperparameters
Ξ, it is natural to consider the cases with Ξ fixed (i.e.,
Level 2 in Table 7) and the cases with Ξ optimized (i.e.,
Level 3 in Table 7) via maximizing the variational lower
bound F by VB and H(p‖q) by BYY.

For simplicity and clarity, we use the notations
VB(r,l) and BYY(r,l) to indicate the two-stage proce-
dure by VB and BYY, respectively, for different val-
ues of r for FA-r and for different levels of l. E.g.,
VB(r,1), VB(r,2), VB(r,3) versus BYY(r,1), BYY(r,2),
BYY(r,3), respectively. Also, on FA-a and FA-b we
have VB(a,1), VB(b,1) (i.e., VB(0,1), VB(m,1)) versus
BYY(a,1), BYY(b,1) (i.e., BYY(0,1), BYY(m,1)).

We adopt the empirical analysis method presented in
Ref. [31] for the performance evaluation on the three
levels of implementations of VB and BYY for FA-a and
FA-b, and also with the performances on AIC, BIC and
DNLL included for comparisons.

The simulated data sets are randomly generated
according to FA-b (or FA-a) in Table 1. A setting
S(N, γo, n,m

∗) for FA-b is determined by choosing val-
ues from a candidate set of the sample sizes N , the
signal-to-noise ratios (SNRs) γo, the dimensionality of
the observed variable n = dim(x) and the dimension-
ality of the latent variable m∗ = dim(y), where SNR
is defined as the ratio of the m∗th largest eigenvalue of
the population covariance matrix UΛUT + σ2

eIn to the
noise variance σ2

e , i.e., γo = (λm∗ + σ2
e)/σ2

e .
Listed in Table 8 are the choices of S(N, γo, n,m

∗)
considered in this paper. For example, S(50, 3.0, 15, 5)
means that training data sets XN = {xt}N

t=1 are ran-
domly generated according to FA-b with N = 50, γo =
3.0, n = 15 and m∗ = 5.

6.2 FA-A versus FA-B: Performances of BYY, VB,
AIC, BIC, and DNLL

Each of BYY, VB, AIC, BIC, and DNLL is implemented
for 103 trials on each of the settings S(:, :, 15, 5) =
{S(N, γo, 15, 5) : ∀N ∈ V (N), γo ∈ V (γo)} with dif-
ferent sample sizes and SNRs chosen from Table 8. The
model selection accuracies are reported in Figs. 2 to 4
through the contour maps suggested in Ref. [31] for illus-
trating the joint effect of N and γo on the performance.
Readers are referred to Ref. [31] for the characteristics

Table 7 Three levels of investigations

VB in Table 2 BYY in Table 5

Level 1: ln q(Θ|Ξ) = 0 update pY and Θ = arg maxΘ F1 fix ∂qθ = ∂Hbθ = ∂dm θ = 0

instead of {pA, pU , pα, pν , pϕ}; not update Ξr = {aα
k , b

α
k , a

ν
i , b

ν
i , a

ϕ, bϕ}
Level 2: q(Θ|Ξ) with Ξ fixed without Stage I(b) without Stage I(b)

Level 3: q(Θ|Ξ) with Ξ optimized all the steps all the steps
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Table 8 Candidate values of each feature (All possible combina-
tions consist of all settings S(N, γo, n,m∗) used in the empirical
analysis. We set λ1 = λ2 = · · · = λm∗ = 1. For two-phase pro-
cedures, we set the candidate set of hidden dimensionalities as
M = {1, 2, . . . , 9} or {1, 2, . . . , 15} for m∗ = 5, 10 respectively, un-
less otherwise specified. V (f) is the set of the candidate values of
the feature f .)

features f candidate values

sample size N V (N): 25, 50, 75, 100, 200, 400, 800

SNR: γo =
λm∗
σ2

e
+ 1 V (γo): 1.2, 1.5, 2, 2.5, 3, 3.5, 4, 8, 16.

dim: {n,m∗} V (n,m∗): {15, 5}, {30, 10}

(e.g., a three-region partition phenomenon) of the con-
tour maps for describing model selection accuracies, as
well as a systematic comparison of BYY(b,1) with sev-
eral classical criteria and recently developed model se-
lection methods.

Here we summarize our observations on Figs. 2 to 4
as follows:

1) Shown by Fig. 3, VB performs better on FA-b than
on FA-a. VB(a,1) and VB(b,1) actually implement the
maximum likelihood principle which is not good1) for
model selection under a finite sample size. For a rela-
tively small N , FA-b is obviously superior to FA-a un-
der VB. As N goes large, the difference between VB(b,2)
and VB(a,2) tends to be not so obvious, because a large
N would lead F (for r = m) in Eq. (9) close to F1

and thus VB(b,2) approaches to VB(b,1). Analogously,
VB(a,2) approaches to VB(a,1). This tendency towards
maximum likelihood gradually reduces the gain obtained
from using FA-b in place of FA-a.

Due to the approximation p(τ)
U ≈ δ(U−U∗

S) in Table 4,
VB(b,3) with optimized hyperparameters becomes even
closer to maximum likelihood than VB(b,2) does, while
VB(a,3) does not decline to be inferior to VB(a,2) with

the help of the variational posterior over the loading ma-
trix A [10,21]. As a result, the gain of using FA-b in place
of FA-a becomes lower as we proceed from VB(b,2) to
VB(b,3).

Moreover, on FA-a, VB(a,2) is slightly worse than BIC
especially for a small sample size, but on FA-b, VB(b,2)
greatly outperforms BIC.

2) Shown by Fig. 4, BYY performs better on FA-b
than on FA-a even more significantly. Moreover, with
FA-a replaced by FA-b, the gain obtained by BYY is
obviously higher than that by VB. Unlike VB, BYY dif-
fers from maximum likelihood even without priors by
Eq. (15), since FA-b’s latent coordinate system better
encodes the latent variable y’s complexity, which is well
captured by BYY (see discussions in Sect. 2.2 and Fig. 5
in Ref. [22]). If the ith hidden dimension is extra, max-
imizing H(p‖q) with the term ln |ν| present for FA-b in
Table 6 would push its variance 1/νi → 0.

Moreover, the model selection performances of BYY
are further improved by adopting a prior q(Θa|Ξ), and
further improved by optimizing the hyperparameter Ξ.
For most cases (especially for a small sample size),
BYY(b,3) outperforms VB(b,2) which is the best among
all VB implementations, while VB(b,2) has a relative ad-
vantage for the case of large N and small SNR.

6.3 FA-r: Performances of VB versus BYY

6.3.1 Priors affect model selection

The above results show that appropriate priors benefit
model selection. Next, based on the family FA-r of FA
parameterizations, we present a detailed empirical anal-
ysis on how much each part of the priors contributes to
model selection performance.

Fig. 2 Successful-selection (S-selection) rates on S(:, :, 15, 5) presented in terms of contour maps. (The axes are adjusted by equally
spacing the elements in V (N) and V (γo). A red asterisk (∗) at the coordinate (N, γo) indicates that the corresponding criterion gets
the highest successful selection rate on S(N, γo, 15, 5) among AIC, BIC, DNLL and all implementations of VB and BYY. Briefly
speaking, the closer the contour lines to the bottom-left corner reflects the more robust the corresponding algorithm to small N and
γo, and the more there are red asterisks, the better the performance. AIC, BIC, and DNLL have the same performance on FA-a and
FA-b.)

1) For a finite sample size, the obtained maximum likelihood L(Θ̂m) increases as m grows, and thus m̂ = arg maxm L(Θ̂m) tends to
overestimation. An alternative criterion is DNLL given by Eq. (5) and Fig. 2(c), which finds the maximum increment in the likelihood

function.



Shikui TU et al. Parameterizations make different model selections performances 265

Fig. 3 Successful-selection (S-selection) rates of VB obtained on the same synthetic data as in Fig. 2. (The red asterisk (∗)
indicates the corresponding criterion gets the highest model selection accuracy among all VB/BYY implementations as well as
AIC, BIC, and DNLL. Notice that the figures of VB(a,1) and VB(b,1) are “blank” (i.e., zero rates of successful-selections). VB(a,1)
and VB(b,1) are not capable of model selection for a finite sample size, because they both implement maximum likelihood L(Θ̂m)
which increases as m grows. Therefore, the estimated m̂ = arg maxm∈M L(Θ̂m) tends to overestimation. In the figures of VB(a,2)
and VB(a,3), the accuracies are zero when SNR < 1.5 and N � 800. Actually, as N further goes large, the rates will increase.)

Fig. 4 Successful-selection (S-selection) rates of BYY obtained on the same synthetic data as in Fig. 2. (The red asterisk (∗)
indicates the corresponding criterion gets the highest model selection accuracy among all VB/BYY implementations as well as AIC,
BIC, and DNLL.)
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We use the same configurations S(:, :, 15, 5) given in
Sect. 6.2. Model selection accuracies are selectively re-
ported in Figs. 5 and 6 for a series of critical settings
(N, γo), illustrating the relative strengths and weak-
nesses of different learning algorithms.

Figures 5 and 6 show that the performances are con-
tinually improved as parts of priors are incrementally

incorporated. The best performance is mostly achieved
on the parameterization FA-m∗ with m∗ = 5 being the
true number of hidden factors, and the performance
of FA-r drops sharply as r reduces from m∗ towards
FA-a, while the performance of FA-r declines a little
and reduces slowly as r grows from m∗ towards FA-b.
All chosen combinations of priors work better on those of

Fig. 5 Model selection accuracies of VB learning on FA-r against r. (Each curve represents a configuration of the priors on
(V ,ν, ϕ) in Table 3. For example, “0-0-1” denotes the configuration without priors on V = [A,U] or ν, with priors on ϕ, and so
on and so forth. VB is run at its best implementation level, i.e., Level 2 (with the hyperparameters fixed at the constants as used
in Refs. [8,26]), which has been shown to be the best in Fig. 3. Note that FA-r is FA-a at r = 0, or FA-b at r = 9 (because the
used maximum candidate scale is 9).)

Fig. 6 Experimental results on FA-r with different parts of priors under BYY which runs at Level 3 (i.e., with the hyperparameters
updated during learning). (Refer to the caption of Fig. 5 for the notation details.)
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FA-r with r � m∗ than with r < m∗.
It can be observed from Fig. 5 that VB’s model selec-

tion performance highly depends on the presence of the
prior q(V ) = q(A)q(U) when r � m∗, and the presence
of the prior q(ν) when r > m∗, whereas this depen-
dence is significantly weakened as FA-r becomes close
to FA-b. Moreover, the prior q(ϕ) is able to individu-
ally contribute a large proportion to model selection for
a large enough r, especially when N and SNR are rela-
tively large. That is, FA-b is better than FA-a under VB
even if only one and same prior q(ϕ) is considered.

As shown in Fig. 6, BYY’s model selection perfor-
mance does not reply on priors as much as VB, because
BYY is capable of model selection even without any pri-
ors (see the results of BYY(a,1) and BYY(b,1) in Fig. 4
or refer to Fig. 5 in Sect. 2.2 of Ref. [22] for a detailed
explanation). Moreover, BYY works slightly better with
q(ν) in place of q(V ).

The performance gain from the incorporation of the
priors over the parameters becomes small as we proceed
from FA-a to FA-b. Appropriate priors are very helpful
for a not good model parameterization, but they may
become not so critical if a good model parameterization
is chosen. Moreover, it should be noted that the q(U)
given in Table 3 has no impact on parameter learning
but only help model selection at Stage II.

6.3.2 r should be no less than needed

We further make empirical analysis on how model selec-
tion performances vary on FA-r as r changes, by VB and
BYY with all priors used.

The experiments are still conducted on S(:, :, 15, 5).
The model selection accuracies of VB on FA-r for dif-
ferent r are reported in terms of contour maps in Fig.
7.

The best performance is achieved on the parameteri-
zation FA-m∗ (m∗ = 5), which provides a correct cali-
bration though this m∗ is practically unknown. On one
hand, the performances on those of FA-r drop sharply as
r reduces from m∗ towards FA-a, which implies that the
parts of FA-a combined in FA-r make negative contribu-
tions to model selection. On the other hand, the perfor-
mance on FA-r deteriorates slightly and slowly as r in-
creases from m∗ towards FA-b, though extra parameters
in the covariance of the hidden variables incurs certain
overfitting. The above characteristic is better demon-
strated in Fig. 8.

The model selection accuracies by BYY on FA-r show
a similar trend, and thus omitted here. Moreover, BYY
outperforms VB for a large enough r or for a FA-r close
to FA-b. Specifically, we compare their best cases (both
at r = 5) among all FA-r in Fig. 9. BYY is better for

Fig. 7 Model selection accuracies of FA-r under VB for r = 0, 1, 3, 5, 7, 9, on the same synthetic data as Figs. 2 to 4. (A red asterisk
(∗) indicates a highest accuracy among all the subfigures in this figure. The results are obtained from Level 2 implementation in
Table 7, because VB(b,2) is the best in Fig. 3.)
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Fig. 8 Model selection accuracies of VB on FA-r for r ∈ {1, 2, . . . , 9} on different experimental settings (N, γo), i.e.,
S(N, γo, 15, 5), where N and γo denote sample size and SNR, respectively

Fig. 9 A comparison of model selection performances of VB and BYY learning on FA-r at r = m∗ = 5. (A red asterisk
(∗) indicates a highest accuracy between VB(5,2) (a) and BYY(5,3) (b).)

most settings while VB is relatively better for a large N
but small SNR. This observation is consistent with Figs.
3 and 4.

In fact, the above obtained trend has also been ob-
served in Figs. 5 and 6 under different combinations of
parts of priors on the parameters. Therefore, this trend
is implied to be an intrinsic characteristic of FA-r in
model selection.

Figure 10 visualizes how the values of VB’s varia-
tional lower bound or BYY’s harmony functional vary
as r changes. The curves illustrate a “combined effect”
of FA-a and FA-b on FA-r, i.e., they are approximately
bounded between FA-a and FA-b. Thus, FA-r can ro-
bustly balance the underestimation and overestimation
at r = m∗.

In summary, the parameterization family FA-r serves
as a transition map (from FA-a to FA-b), based on which
we are able to systematically study the various aspects
of model selection performances. In this map, the FA-
m∗ is the best. Since m∗ is unknown to be sought, we
should use FA-r with a r large enough such that it is
not less than m∗. Since the performance on FA-r deteri-
orates slightly and slowly as r increases fromm∗ towards
FA-b, FA-b is a good alternative of FA-r with a right r,
especially for BYY. The superiority of FA-b over FA-a

is significant and reliable. With FA-a replaced by FA-b,
the gain obtained by BYY is obviously higher than that
by VB, while the gain by VB is better than no gain by
AIC, BIC and DNLL, especially for a finite sample size.

6.4 FA-a versus FA-b: Automatic model selection
performance of BYY and VB

The above investigations are all based on two-stage pro-
cedures. However, not only the two-stage procedure is
computationally expensive, but also the performance of
parameter estimation deteriorates for those candidate
models with a large hidden dimensionality m (see Sect.
2.1 of Ref. [22]). Automatic model selection, i.e., discard-
ing extra hidden dimensions during parameter learning,
is one road to tackle the problems of two-stage imple-
mentation. Both BYY [22,27] and VB [8] have been
found to be capable of automatic model selection. In
this section, we investigate the automatic model selec-
tion performances of BYY and VB on both FA-a and
FA-b.

During parameter learning by merely Stage I, we dis-
card the ith hidden dimension if either of the following
two equations hold:
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Fig. 10 Values of VB lower bound F or BYY harmony measure H on FA-r for two different settings S(N, 8.0, n,m∗).
(The values of VB’s variational lower bound F and BYY’s harmony functional H are the largest one of 10 independently
repeated trials on a synthetic data set randomly generated according to S(N, 8.0, n,m∗). The axis represents the candidate
hidden dimensionality m ∈ M, where M = {1, 2, . . . , 14} when n = 15; otherwise M = {1, 2, . . . , 20}. Specifically, FA-r
becomes FA-a when r = 0, FA-b when r = 14 for (a)(c) and r = 20 for (b)(d) respectively.)

1/αi < η0, for FA-a; 1/νi < η0, for FA-b, (26)

J (τ2)(m− 1) � J (τ1)(m), J is given by

Eq. (9) for VB, Eq. (19) for BYY, (27)

where τ1, τ2 are iteration indicators meaning the τ1th,
τ2th iteration respectively, subject to

1) |J (k)−J (k−1)| < η1 · |J (k)|, where J (k) is the value
of the learning objective function evaluated at the kth
step, and k = τ1, τ2, τ1 < τ2;

2) The hidden dimensionality is equal to m at the τ1th
step, and is reduced to be m− 1 at the (τ1 + 1)th step,
with the ith dimension is temporarily discarded, where
i = arg minj{1/αj} for FA-a, i = argminj{1/νj} for
FA-b.

Since an arbitrary value for η0 in Eq. (26) for all al-
gorithms may not be good and fair, an alternative way
in Eq. (27) is to check whether a reduction brings down
the value of the objective function.

In the experiments on the settings S(:, :, 15, 5), we set
η0 = 0.01, η1 = 0.001, and initialize m = 9. We report
the automatic model selection accuracies of VB(a,3),
VB(b,2), BYY(a,3), and BYY(b,3) in Fig. 11, because
they are the best implementation levels respectively ac-
cording to Figs. 3 and 4. The results again show that

FA-b is better than FA-a, and BYY(b,3) is superior for
a small sample size, while VB(b,2) has the advantage
when the sample size is large and SNR is small. As a
whole, automatic model selection performances are not
so good as those by two-stage implementation, because
Eq. (26) relies on parameter learning without using the
terms only related to m, and Eq. (27) is a simple depth-
first search without evaluating the objective function for
all candidate dimensionalities. Moreover, VB is not good
for automatic model selection under Eqs. (26) and (27)
for its automatic performance deteriorates more rapidly
than that of BYY does.

6.5 Classification performance on real world data sets

We consider two real world data sets: Pendigits (PEN)
and Segment (SEG), taken from the UCI machine learn-
ing repository (http://archive.ics.uci.edu/ml/datasets.
html) [32]. For each out of 100 independent runs, a train-
ing set of a chosen sample size N ∈ {16, 20, 30, 80} is
made up of instances randomly picked from the original
data set, while the rest instances are put in a testing set.
The details are listed in Table 9. The candidate scale set
for the two-stage procedure is M = {1, 2, . . . , 15}. We
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Fig. 11 Automatic model selection accuracies of VB and BYY on FA-a and FA-b (n = 15, m∗ = 5)

estimate a model for every class, and get classification
accuracies on testing sets by a Bayesian classifier.

Table 9 Real world data sets: Pendigits (PEN) and Segment
(SEG) (PEN consists of 16 attributes, 10 classes, 10992 instances;
SEG consists of 16 attributes, 7 classes, 2310 instances. Here, the
SEG is preprocessed by a normalization and discarding three at-
tributes, i.e., (3, 4, 5), in the original 19 attributes.)

data set
training

size

testing

size
data set

training

size

testing

size

PEN-16 16 × 10 10832 SEG-16 16 × 7 2198

PEN-20 20 × 10 10792 SEG-20 20 × 7 2170

PEN-30 30 × 10 10692 SEG-30 30 × 7 2100

PEN-80 80 × 10 10192 SEG-80 80 × 7 1750

The results are reported in Table 10. Most criteria
achieve comparable performances when the sample size
is large, and deteriorate as the sample size reduces,
which is consistent with Figs. 3 and 4. BYY is better
than VB for most cases, and is comparable to VB for the
rest cases but still preferred because of a smaller stan-
dard deviation. It can be observed that the recognition
rates in Table 10 are different from the model selection
rates. A correct model selection helps to improve clas-
sification accuracy. However, an oversized model may
not considerably deteriorate the classification accuracy,
depending on the nature of tasks, e.g., if an extra di-

mension does no harm to generalization, the influence of
model selection on classification may not be very obvi-
ous.

7 Concluding remarks

Focusing on FA, we have made a systematic empirical
investigation on how parameterizations affect model se-
lection performance, which was an issue that has been
ignored or seldom studied. To this purpose, we present
a new family of FA parameterizations, FA-r, that have
equivalent likelihood functions with FA-a and FA-b as
two ends, where FA-a and FA-b were previously known
to be different in model selection under BYY.

Several empirical finds have been obtained via ex-
tensive experiments. First, both BYY and VB perform
obviously better on FA-b than on FA-a. Specially, both
BYY and VB achieve their best performances on the pa-
rameterization FA-m∗ withm∗ being the correct number
of hidden factors. The performance on those FA-r close
to FA-b is considerably superior to those FA-r close to
FA-a. Since m∗ is unknown to be sought, we should use
FA-r with an r large enough such that it is not smaller
than m∗. Due to the performance on FA-r deteriorates
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Table 10 Experiment results on real world data sets PEN and

SEG (The classification accuracies (%) are reported in the form of
“average±standard deviation” by 100 independent runs for each
setting. The improvement from a higher level implementation (ex-
cept VB on FA-b) reduces as the sample size grows. Moreover, the
improvements from BYY(b,1) to BYY(b,2), and then to BYY(b,3)
are small because BYY(b,1) performs already very good, especially
for a small sample size.)

criteria PEN-16 PEN-20 PEN-30 PEN-80

VB(a,2) 85.44±1.07 89.96±1.14 92.90±0.98 95.99±0.50

VB(a,3) 86.82±1.53 91.02±1.19 93.11±1.01 96.02±0.55

VB(b,2) 87.02±2.45 91.68±1.81 93.86±1.31 96.09±0.31

VB(b,3) 84.87±1.78 90.42±0.09 93.01±1.34 96.01±0.41

BYY(a,1) 55.25±6.40 64.13±6.22 71.77±6.42 84.70±4.17

BYY(a,2) 82.77±2.04 83.52±2.23 84.54±2.02 85.63±1.91

BYY(a,3) 87.26±1.30 88.13±1.24 90.65±1.86 89.14±1.57

BYY(b,1) 87.31±1.08 93.31±1.03 93.71±0.37 95.95±0.41

BYY(b,2) 87.01±1.06 93.27±0.72 94.01±0.21 96.16±0.19

BYY(b,3) 88.57±1.04 93.55±0.51 94.15±0.33 96.17±0.22

criteria SEG-16 SEG-20 SEG-30 SEG-80

VB(a,2) 71.57±4.12 78.06±3.33 88.02±2.35 97.57±0.32

VB(a,3) 72.73±3.23 77.78±2.78 82.63±2.02 97.22±1.25

VB(b,2) 75.98±5.03 79.48±2.99 89.13±1.65 97.61±1.06

VB(b,3) 69.73±6.76 75.49±6.10 87.15±1.24 97.27±0.49

BYY(a,1) 79.40±2.71 80.43±3.23 77.25±4.21 78.71±4.71

BYY(a,2) 68.69±5.37 79.98±5.14 78.95±4.74 81.15±4.37

BYY(a,3) 82.02±3.02 84.09±2.87 85.91±2.73 86.78±2.47

BYY(b,1) 82.14±2.08 85.17±1.60 87.91±1.93 97.56±0.37

BYY(b,2) 84.87±1.50 85.65±1.42 88.32±1.31 97.62±0.51

BYY(b,3) 85.01±0.98 85.91±0.91 89.01±1.19 97.65±0.31

slightly and slowly as r increases from m∗ towards FA-

b, FA-b is a good alternative of FA-r with a right r,
especially for BYY. The superiority of FA-b over FA-a
is significant and reliable. Second, both BYY and VB
outperform AIC, BIC, and DNLL, while BYY further
outperforms VB, especially on FA-b. Moreover, BYY
obtains a higher gain than VB does on FA-b in place
of FA-a, while the gain by VB is better than no gain by
AIC, BIC, and DNLL, especially when the sample size
is small. Third, we have also investigated how each part
of the priors contributes to the model selection perfor-
mance, and found that appropriate priors are beneficial
in model selection, but BYY does not highly depend on
the presences of the priors whereas VB does. Moreover,
optimizing hyperparameters further improve the perfor-
mance of BYY whereas it deteriorates the performance
of VB, which indicates that a good learning approach
weakens its dependence on getting appropriate priors to
obtain improved performance.

The above empirical findings on the superiority of FA-
b over FA-a concur with two recent analytical justifica-
tions on the superiority of FA-b over FA-a made in Ref.
[28] (especially see the paragraph around its Eq. (28)).
That is, the FA-b with G(y|0,Λ) is better than the FA-a
with G(y|0, I) in term of providing one additional room
for model selection either directly via Λ by BYY or via
adding priors by BYY, VB and also other Bayesian ap-
proaches. In comparison with getting priors,G(y|0,Λ) is
more reliable and easy to be estimated from data. More-
over, more reliable information about m is contained in
G(y|0,Λ) than in priors. Thus, BYY can considerably
outperforms VB on FA-b.

Appendix A VB learning algorithm on FA-r

According to e.g., Eq. (13) in Ref. [8], or Theorem 2.1 in Ref. [21], the variational posteriors are iteratively derived by
optimizing the variational lower bound F in Eq. (7) with the other variational posteriors fixed. Mathematically, we have

pY ∝ exp

jZ
ln[q(XN , Y |Θ)q(Θ)] dΘ

ff
, (A.1)

pθj ∝ exp

jZ
ln[q(XN , Y |Θ)q(Θ)] dY dθi�=j

ff
, (A.2)

where pΘ =
Q

i pθi and Θ = {θi, ∀i}, dθi�=j = dθ1dθ2 · · ·dθi−1dθi+1 · · ·dθu.
It follows from the variational lower bound F on FA-r by Eq. (11) that we can derive the following variational posteriors:

pY =
NY

t=1

G(yt|μ(t)
y|x,Σy|x) ∝ exp

(
NX

t=1

j
−1

2
yT

t

“
E[V TϕV ] + diag[μν , Im−r]

”
yt + yT

t μT
V μϕxt

ff)
,

pA =

nY
j=1

G(aj |μA,j ,ΣA,j) ∝ exp

(
nX

j=1

(
−1

2
aT

j

 
μϕj

NX
t=1

E
h
y

(m−r)
t y

(m−r)
t

T
i

+ diag[μα ]

!
aT

j

+ aT
j

 
μϕj

NX
t=1

E

"
(xjt −

rX
i=1

yituji)y
(m−r)
t

#!))
,

pα =

m−rY
k=1

Γ
“
αk|âα
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where all the notations are referred to Table A1, which summarizes the detailed iterations of the VB learning algorithm.

Table A1 Details of the VB learning algorithm on FA-r (Ep[f(θ)] denotes the expectation of f(θ) with respect to
(variational posterior) p(θ), and the subscript p is omitted for notation simplicity.)

objective: maximize the variational lower bound

F(pΘ, pY ,Ξr) =
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t=1{G(xt|V yt, ϕ−1In)G(yt|0,Σr

y)}Qr
i=1 Γ(νi|aν

i , b
ν
i )

·Qm−r
k=1 G(ak |0, α−1

k In) · q(U)Γ(ϕ|aϕ, bϕ)/(pApUpνpϕpY )
i

dY dAdUdνdϕ

initialization: initialize pθ, θ ∈ {U,A,ν,α, ϕ}, ϕ = ϕIn, V = [U,A],
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update hyperparameters Ξ by gradient method,
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where g(z, a, b, p) = (a− â)Ep[ln z] − bEp[z] + â+ a ln b− â ln b̂− ln
Γ(a)
Γ(â)

, p = Γ(z|â, b̂).
convergence: Repeat the above until the value of the variational lowerbound converges.

Appendix B BYY learning algorithm on FA-r

We adopt the gradient method to implement the Stage I in Table 5. The detailed harmony functional H(p‖q) given in Eq.
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(19) for FA-r consists of following five terms:

H(p‖q) ≈ H1 + dr(fW ) + ln q(Θa|Ξ) + Hb +
1

2
dm(Ξ),

where the detailed formulas of the five terms are given in Eqs. (20) to (25). For each parameter θ ∈ {U , A, ν, ϕ}, or each
hyperparameter ξ ∈ {aα

k , bα
k , aν

i , bν
i , aϕ, bϕ}, the gradients can be computed separately for each of the five terms. The compu-

tational details of the BYY learning algorithm are summarized in Table B1.

Table B1 Details of BYY learning algorithm on FA-r

objective: maximize the harmony functional: H(p‖q) ≈ H1 + dr(fW) + ln q(Θa|Ξ) +Hb + 1
2
dm(Ξ),

The first term is H1 = −N(n+m)
2

ln(2π) − Nm
2

− 1
2
Tr[SNΣ−1

x ] + N
2

ln |νr | + N
2

ln |ϕIn|.
The last four terms are given by Eqs. (23), (24), (25), and (20).

initialization: randomly initialize θ ∈ {U,A,ν, ϕ}
gradient method: θnew = θold + η∂θ, ∂θ = ∂Hθ = ∂H(p‖q)

∂θ
|θ=θold

∂θ = ∂H1θ + ∂dr θ + ∂qθ + ∂Hbθ + ∂dmθ, from the five terms of H(p‖q).
• ∂ak = ∂H1ak + ∂dr ak + 0 + ∂Hbak + 0, ak is the kth column of A.

∂H1ak = MV Σr
yIT

ak
; ∂Hbak = −(âα

k − 1)(b̂αk )−1ak; ∂dr ak = BwΣr
yIT

ak
− 2BwBxIT

ak
− ϕV ΔwSNΔT

wIT
ak

.

• ∂ui = ∂H1ui + ∂dr ui + 0 + 0 + 0, ui is the ith column of U,

∂H1ui = MV Σr
yIui , ∂

dr ui = BwΣr
yIT

ui
− 2BwBxIT

ui
− ϕV ΔwSNΔT

wIT
ui

.

• ∂νi = ∂H1νi + ∂drνi + ∂qνi + 0 + 0, ν = diag[ν1, ν2, . . . , νr],

∂H1νi = − 1
2
Tr[BMIνi ] +

N
2
ν−2

i , ∂qνi = (aν
i − 1)ν−1

i − bνi , ∂drνi = −Tr[Σr
yV TBwBxIνi ] − 1

2
Tr[ΔwSNΔT

wIνi ].

• ∂ϕ = ∂H1ϕ+ ∂drϕ+ ∂qϕ+ 0 + 0,

∂H1ϕ = − 1
2
Tr[ϕ−2M] + Nn

2
ϕ−1, ∂qϕ = (aϕ − 1)ϕ−1 − bϕ, ∂drϕ = Tr[ϕBwΣr

yV TΣ−1
x ϕ] − 1

2
Tr[V ΔwSNΔwV T].

Hessian matrix Ω(Θ,Ξ) (approximated as block-diagonal):

∂2ak = MIakΣr
yIT

ak
+ MBkΣ−1

x + Σ−1
x BkM + (âα

k − 1)(b̂αk )−2[akaT
k − b̂αk In],

∂2ui = MIμiΣ
r
yIT

μi
+ MBiΣ

−1
x + Σ−1

x BiM, Bi = V Σr
yIT

ui
IuiΣ

r
yV T,

∂2νi = −N
2
ν−2

i + 1
2
Tr[BMIνiΣ

r
yIνi + Σr

yIνiBMIνi − BMIνiBxIνi − BxIνiBMIνi ] − (aν
i − 1)ν−2

i ,

∂2ϕ = Tr[ϕ−3M] − Tr[ϕ−4Σ−1
x M] − (aϕ + Nn

2
− 1)ϕ−2.

• ∂aα
k = ψ(âα

k − ln b̂αk ) − 1 + ln bαk + (âα
k − 1)ψ′(âα

k ) − ψ(aα
k ) + 1

2
(b̂αk )−2ΔT

ak
(akaT

k T + b̂αk In)Δak ,

• ∂bαk = (âα
k − 1)/b̂αk + aα

k − (âα
k − 1)(b̂αk )−3ΔT

ak
(akaT

k )Δak ,

• ∂aν
i = ln bνi − ψ(aν

i ) + ln νi − 1
2
ν−2

i (Δνi )
2, ∂bνi = aν

i /b
ν
i − νi,

• ∂aϕ = lnϕ+ ln bϕ − ψ(aϕ) − 1
2
ϕ−2(Δϕ)2, ∂bϕ = aϕ/bϕ − ϕ.

Notations:

M = Σ−1
x SNΣ−1

x , âα
k = aα

k + n
2
, b̂αk = bαk +

aT
k ak

2
, Bk = V Σr

yIT
ak

IakΣr
yV T, Bw = Σ−1

x SNΔwΣ−1
y|x,

Iak = [01×(r+k−1), 1, 01×(m−r−k)], Iνi = diag[01×(i−1), 1, 01×(m−i)], Bx = Σr
yV TΣ−1

x V Σr
y, BM = Σr

yV TMV Σr
y,

Iui = [01×(i−1), 1, 01×(m−i)], 0�1×�2 denotes an �1 × �2 zero matrix.

convergence: repeat until the value of the harmony functional converges.
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