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Abstract. A number of unsupervised learning studies have been sum-
marized from the perspectives of (a) mining dependence among compo-
nents (PCA and MCA, LMSER and nonlinear PCA, [CA and indepen-
dent factor analyses, three layer net and hidden unit number, etc); (b)
mining homogeneous or nonhomogeneous groups among samples (MSE
clustering and VQ, RPCL learning and elliptic extensions, Gaussian mix-
ture and modified EM algorithms, etc); (¢) mining dependences within
local groups (localized extensions of part (a) as well as modular su-
pervised learning such as RBF nets, mixture-of-experts and kernel on
support vectors); and (d) mining topological structures with organized
groups ( self-organization map and others).

1 Data Mining and Statistical Learning

In recent years, knowledge database discovery (KDD) becomes an increasingly
popular area. Generally, it stands for discovering and visualizing the regularities,
structures and rules from data. Its core part [22,28, 8] consists of dimension
reduction, structure mining and visualization, which is, referred as data mining
(DM) in a broad sense, actually a revisit from a more engineering perspective of
those statistical learning studies in the literature of neural networks and pattern
recognition [108,20,19, 21].

The so called regularities, structures and rules are actually different expres-
sions of various types of dependences among data. We can categorize these types
of dependences 1n five levels based on the complexities of data in different me-
dia. Learning from data is actually made through samples of data. Usually, a
sample is in the expression of a vector & = [0, ... 2T with each compo-
nent 27 called feature that is either a real number or a symbol. Thus, the basic
level of dependences is among features and can be represented in a set of either
mathematical functions or logical rules. The next level of dependences is demon-
strated via the locations of samples vectors. That 1s, under such dependences,
samples located closely are regarded as same or similar and thus form a group
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or cluster, such that each sample in a cluster can be represented by either any
one sample in this cluster or a representative of this cluster (e.g., by the cluster
center) [35]. In contrast, samples that locates far away are different and belong
to different clusters. In other words, this level of dependence participates sam-
ples into a number of equivalence class that is called groups or clusters. Again,
such a type of dependences can be represented via either mathematical functions
or logical rules. The third level of dependence is indicated via the topological
links among clusters, which 1s usually demonstrated via the topological links of
centers of clusters [73,42]. Moreover, the next level of dependences is temporal
dependences among data that come from speech; audio or other time series [30].
Finally, for data from image and video, we have the 5th level of dependences that
represents spatial relations of samples. The spatial relations can be in either the
form of regular 2D or 3D lattice or of the more general graphic topology such as
a probabilistic graphical structure or called Bayesian or Belief networks [68, 36].

A specific learning task may focus on learning or mining one or a combination
of the five levels of dependences, and thus we can have a number of learning
tasks in different complexities. In this paper, we focus on the first three levels
of dependences, which lead to five meaningful combinations that are referred as
learning tasks. Shortly we denote them as Task 1, Task 2, Task 1-2, Task 1-3,
Task 1-2-3, where Task 1 means mining the first level of dependences and Task
1-2 means mining a combination that consists of the first level and second level
of dependences. Specifically, we explore these tasks from statistical perspective.
That is, data is regarded to consist of independent and identically distributed
(i.i.d.) samples from a underlying unknown distribution p(x) with each sample
being a vector # = [z, ... 2(@]T and each of the tasks actually involves
estimating either the distribution p(z) or its certain statistics.

In the sequel, we provide an overview on several typical statistical learning
models and algorithms that implement the five learning tasks. There are already
certain survey papers in the literature. Instead of providing a complete overview
on all the existing studies in the literature, we focus those studies which have not
been well discussed yet, and particularly on those studies that can be viewed from
a unified perspective. Moreover, we also emphasize the issues of regularization
and model selection for the well known problem of a small size of samples.

2 Task 1: Mining Dependence among Components

2.1 Typical Dependence Structures

We consider three categories of typical dependence structures as follows.

(1) Forward Mapping Dependence among components are represented via
mapping ¢ forwardly to another vector y = [y{V),--- y"™]T. Specifically, this
forward mapping f(x,8) = y can be further classified in three types according
to the role of y in representation, namely, whether the role of y 1s minimized or
maximized:



e Pattern Matching The idealistic case that the role of y 1s minimized happens
at f(x,8) = y = 0 for all the samples of . It means that these samples match
the pattern described by f(x,f) = 0 with a specific value of 8, where f(x,6) =0
is a set of either mathematical functions or logical rules. Usually, y # 0 and is
regarded as random error or residual under this matching. It is natural to assume
that the residual y should be unbiased Fy = 0, and that no dependence relation
remains among components, e.g., the components become uncorrelated Eyy’ =
A = diag[Ay,- -, An] in a sense of independence up to the 2nd order statistics,
where Fu denotes the mean of u and diag[Ay, - - -, Ayp] denotes a diagonal matrix
that consists of diagonal elements Ay, .-+, A,. In other words, we can model the
residual y by a Gaussian ¢(y|6,) = G(y|0, A), where and in the sequel, G(u|m, X)
denotes a Gaussian density with mean m and covariance matrix . Generally,
we consider that the components of residual y are completely independent:

Q(y|9y) = H?llq(y(j”%j))- (1)

To minimize the role of y, we also expect that the variance of each yl) is
minimized. To make this desire meaningful, we usually need certain constraint
on #, shortly denoted by S(f). E.g., when f{x,#) is linear as given by

F(2,8) = bg(x), g(z) = { [+ 117, (2), 2)

a nonlinear map of z, (b),

if we have 'y = 0 and Fyy? = A diagonal for 0g(x) = y, then for any diagonal
D and orthogonal ¢ with ¢7¢ = I, we still have that

Ey =0, Ey'yT = D? for y = DoA™y (3)

We can remove this indeterminacy by imposing the constraint 676 = I as S(6).
Then, we can learn # via
. 1 N 2 _
min =3 [l ve = 0g(an), (4)

g, st 8Ta=1 N

b

or equivalently we can regard the residual y; being Gaussian and implement the

following ML learning

1
max —

N —_—
9,4, s.t. 0T9=T NZ:”:1 In G (1[0, A), ye = Og(x¢). (5)

Generally, for eq.(1) we further have

I N
P ﬁztzl Inq(yelby), ve = flae,0). (6)

o Marimum Information Transfer In contrast, to maximize the role of y means
to make f(x,f) able to transfer maximum information from z. Typically, we
expect to maximize the variance of every components of y. However, 1t may also



not meaningful, if there is no some extra constraint S(¢). E.g., when f(x,0) =
0g(x;), each variance tends to infinity for any ¢# as |¢| = oo. This problem can
be removed again by the constraint 76 = I. Without losing any generality,
we can assume £y = 0 (otherwise we can simply let f(z,0) — Ey to be a new
forward mapping). In this case, we have

Trl 3 2
, Jmax, Trl]or omax 3],
I —n
Zy:ﬁthlytyg: g = Og(at). (7)

Generally, we can maximize the information transferred from x via f(z, ) by

o [ [ o np@dd plo) = [ ptolepo(e)ds, g
v = F(0.0) or plyla) = 3y — 1(2,0)), pols) = 30,60 — 1),
E.g., S0)is070=1, for y=0g(x).

Particularly, for the linear mapping
y =0x +my, 076 =1, (9)

when x is Gaussian, then y is also Gaussian. In this case, we have that eq.(8)
degenerates back to eq.(7). Alternatively, changing ‘max’ into ‘min’in eq.(5) will
also become equivalent to eq.(7).

In contrast to the case that the role of y 1s minimized as residuals such
that the dependence structure among components are directly represented in
flz,8) = 0, it looks not so directly how f(z,8) = y # 0 explores the depen-
dence structures when the role of y is maximized. This 1ssue can be understood
in two different situations. On one hand, when the mapping by f(z,6) = y is
information preserving with all the information of = transferred to y, there is
no need to drive f(x,6) to explore the structure of samples of # for this in-
formation transfer. A typical example is eq.(9) with || = /. In this case, we
simply have Tr[E(0zzT01)] = Tr[E(zzT)], |E(Gz2T01)| = |E(z2T)|, and even
— [ p(y)Inp(y)dy = — [ p(x)Inp(x)dx. Thus, all the information is preserved
for any ¢ Wlth |6| = I, irrelevant to the structure of samples of z. || = 1.
On the other hand, when f(x,f) = y can only implement an information loss
mapping, in order to maximize the information transferred f(z,0) = y must
explore the major structure of x such that the major information part 1s picked
to map. In this case, eq.(7) or eq.(8) will make y become not only independent
in components, and but also carry the major information of .

e Fqualization In the above two mapping types, f(z,0) = y acts in two as-
pects, namely making y become decorrelated or independent in components, and
making the role of y either minimized or maximized. Alternatively, we also have
a third choice that we only consider the first aspect. In this case, we replace the
constraint S(#) such as 070 = I in eq.(9) by imposing the constraint that every



component of y is distributed under a same density, e.g., we impose Eyy’ = I in
eq.(9). We call this 3rd type of mapping equalization, as it can be regarded as an
extension of histogram equalization used in image processing. Clearly, to reach
such an equalization, f(x,f) = y must be able to explore the major structure of
2 unless x has no structure among components.

(2) Backward Mapping  In contrast to a forward mapping, we can also consider
a backward mapping g(y, ¢) = = which represents how y is mapped backward
to generate x. Usually, a Gaussian noise e is taken into consideration, and thus
it becomes ¢(y, ¢) + e = . More generally, this mapping is represented by

q(x]0) = /q(xly,ﬁmymylf’y)dy- (10)

E.g., g(y, ¢)+e = x under Gaussian e gives q(x|y, 0y)y) = G(x|g(y, ¢), Xe) where

the covariance matrix Y. is either simply ¢21 or diagonal. Moreover, q(x|y) can

be an other density when e is nonGaussian. Also ¢(y|6,) is involved in eq.(10).

The key point for learning the parameters of ), 0, is to make ¢(x|0) fit a

given set of samples of 2 under a learning principle. The typical example is the
ML learning

Ly 0 11

™ o) ~ 2oi=1 Inp(aed), (11)

where S(#) is again certain constrain to be impose on f to avoid certain indeter-

minacy that depends what type of ¢(y|6,) is used. In this paper, we consider the

following three types of ¢(y|@, ) that trades off the strengths of ¢(z|y, 8,,), ¢(y|0y)
in modeling the dependence structure of samples of #:

e Homogenous Independent Factors  The simplest type 1s each component, or
called factor, of y being a standard Gaussian, i.e., G'(y|0, 1), while q(z|y, 0,),)
takes all the responsibility to describe the dependence structure. As to be dis-
cussed in Sec.2.4, the disadvantage of the simplest type is leading to certain
crucial indeterminacy. Another type is that each component density g(y(j)|t9y)
in eq.(1) is a same non-Gaussian density, which provides a complementary help
to g(x|y, 0,),) in modeling the dependence structure of data.

e Nonhomogenous Independent Factors More generally, q(y(j) |6,) may be dif-
ferent for different j such that ¢(y|f,) takes more share on modeling the depen-
dence structure of data. E.g., we consider q(y(j) 0,) that is same to every j only
in 1ts first two order statistics but different in higher order statistics, as given by
an expansion

a(y91057) = G210, 1)1+ ka(yD)ha(y') /6 + ka(y¥ ) ha(y))/24], (12)

where ks, k4 are the cumulants of y9) and hs, hy are Hermite polynormails.
Another example is that each ¢(y") 6,) in eq.(1) is given by a finite mixture as
in [88].



o Gaussian Mizture Factor Instead of the independent factor model eq.(1), an-
other interesting type of ¢(y|f,) 1s either a mixture of gaussians G(y, p;, ) with
different location p; or a nonhomogenous GGaussian mixture with each Gaussian
with a different covariance matrix.

(3) Forward Mapping and Backward Mapping We can combine the features
of both the forward mapping and backward mapping. There are two ways for
such a combination. One is to make learning on each separately and then put
them together. The other is to consider the both mappings coordinately during
parameter learning. The details will be further discussed later.

Finally, we add that either f(x,0) or g(y,¢) may also be trained via su-
pervised learning algorithms when a set of paired samples {x;,y:} is known.
Supervised learning tasks are encountered in pattern recognition, prediction,
function approximation, discriminant analysis and many others. A number of
survey papers on these issues are available in the literature. E.g., an early sys-
tematical overview is referred to [108]. This paper will focus on unsupervised
learning. However, by considering & = {z;, y;} as an augmented sample vector,
a supervised learning task can also be regarded as a unsupervised learning task
on & under the structural constraint between its part x; and its part y;. For this
reason, this overview also includes 1n appropriate cases certain results on super-
vised learning. Meanwhile, we only need to consider how to get f(z, @) based on
a training set of {x;, ¥ } since the task of getting ¢(y, ¢) is similar.

2.2  Forward Mapping (I): Maximum Information Transfer

o PCA and Subspace Analyses  Studies on this topic can be traced back as
early as [32]. In past decades, Principal Component Analysis (PCA), obtained
directly from eq.(7) with y = W, has been widely studied and used in the
field of statistics and many other fields. Its close relation to the well known
Hebbian learning in neuroscience was first established in [62] where a simple
linear neuron trained by an adaptive modified Hebbian learning rule is shown to
perform exactly PCA. Since then, extensive studies have been made to develop
adaptive algorithms on linear neural nets of multiple units for PCA. The studies
consist of two main streams. One is for adaptive algorithms on asymmetrical
architecture that extract the first k-PCA vectors sequentially one by one, with
an initial study made in [74] and several sequential studies referred to [45]. The
other stream consists of adaptive algorithms on symmetrical architectures that
extract the first k-PCA vectors in parallel. Oja subspace rule [63] is one initial
effort, which as well as several related efforts, however, do not perform k-PCA as
discussed in [103], but a “collective version” of PCA, called Principal Subspace
Analysis (PSA) that extracts a subspace spanned by the k-PCA vectors.

Two years after [63], two further results have been obtained by the present
author in [103]. One is that a global convergence proof on the Oja subspace
rule was provided. The other 1s an adaptive algorithm is given for extracting
the m PCA vectors instead of only performing PSA. Moreover, adaptive PCA



algorithms for robust performance and for working on missing data have also
been proposed [94,99]. Furthermore, in the past decade, extensive studies have
also been made on showing that PCA or PSA can be equivalently implemented
by various different learning rules and architectures. A number of such criteria
and the corresponding adaptive learning rules are summarized in 1994 [100,101].
For examples, PCA 1s performed by either of the following two criteria

(a) mv%/XEHyTA_lyﬂz, (b) mI%XEHx—WtyHQ, y=Wz, st. WW'=1(13)

where A = diag[A1, -, An], A1 > -+ > Ay, is pre-given. The case (a) is called
Mazimum Variation of Normalized Output (MVNQO) and the case (b) is called
Least Mean Square Error Reconstruction (LMSER). We can get adaptive learn-
ing to implement them as shown in [101].

Typical PCA applications relate to compressing and representing as well as
visualizing data in a reduced dimension. Also, PCA is used in [106] for retrieving
complicated structures via an approximate but fast implementation of attributed
graph matching. Moreover, as a dual to [107], the direction of the first principal
vector provides a total least square fitting of data by a line. Also, we can ap-
proximately fit a curve by transferring it to a line, e.g., g() in eq.(2) is set by
the same trick in [107].

e Nonlinear PCA and ICA  PCA has two main features, namely the mapping is
linear y = Wz and the components of y are uncorrelated (i.e., independent only
in the 2nd order statistics). Extensions have been made on changing each of the
features. Under the name of nonlinear PCA, the efforts on extending y = Wx
into the post-linear y = S(Wi) with S(y) = [s(y(1)),---,s(y'™)], in a sense
that each component of linear mapping Wz is followed by a nonlinear scaling
by a scalar function (e.g., a sigmoid function). Two typical efforts were made
in 1991 from different perspectives. One is to use y = s(Wx) in Oja rule and
it turned out that the learning becomes very robust under noise and outliers
[64]. The other is made in [103] (published firstly in Proc. IJCNN91), that uses
y = s(Wz) in the above E|lx — W'y||* in eq.(13) with an adaptive gradient
algorithm provided in its Eq.(9b), which is rewritten as follows:

min £lle — WES(Wa)|[?, W = W s qlS(Wa)e” + ' (Waea"], (14)
c=&= WtS(W:B)’ E=Y- WWtS(W‘IB)ﬂ S!(y) = dzag[s’(y(l)), T S,(y(m))])

where s'(r) = ds(r)/dr. Moreover, it has been firstly discovered experimentally
that the sigmoid nonlinearity s(r) can automatically break the symmetry in the
PSA subspace such that components of W tend to directions that are close to
but not equal to the first m orthogonal PCA directions. Also, the other PCA
criterion E||y? A7 1yl|? in eq.(13) is also extended into the so called the Nonlinear
Maximum Variance (NMV) learning rule [96] by using the post-linear unit y =
s(We).

Started from Jutten and Herault in 1988 [39], under the name Independent
Component Analysis (ICA), efforts have been made on targeting on making



the components of y = Wz independent beyond the 2nd order statistics. Due
to this clear motivation, 1t has become a popular topic in the past decade.
Advances on this topic can be roughly classified into four streams. One is based
on solving the equation group on the higher order moments of  and of y subject
to y = Wa and the independent components of y. The second 1s to minimize a
so called contrast function such that the minimum is reached when y becomes
independent, with the minimization implemented by adaptive algorithms. The
third one is the above mentioned nonlinear PCA. Actually, three years after its
publication [103], eq.(15) was directly adopted to implement ICA by authors of
[40] with some promising results, which experimentally sets up a link between
ICA and nonlinear PCA by eq.(15). The last one is called information theoretic
approach, which is further discussed in the sequel.

Typical ICA applications include blind source separation, feature extraction,
medical information processing, and many others. Extensive publications on ICA
are also available in literatures, e.g., readers are referred to a special issue [27]
and a survey paper [33]. Here we only further provide certain advances on the
information theoretic approach, roughly summarized into three stages. The first
stage is featured by the INFORMAX [5] and the MMT [2]. The two typical algo-
rithms as well as several others update W adaptively after the marginal density
of each components of y is heuristically prefixed [5] or estimated via density
expansion [2]. These algorithms work well on the cases that the components of
y are either all sub-Gaussians or all super-Gaussians, but fail on the cases that
the components of y consist of partly sub-Gaussians and partly super-Gaussians.
At the second stage, it is realized [91] that the marginal density ¢(y/)) of each
component should also be learned simultaneously during learning on W to auto-
matically fit any combination of super-Gaussian or sub-Gaussian components of
y. This idea could be implemented by learning the parameters 8, in eq.(1). An
carly effort is the learning parametric mixture based ICA [91,88], where a finite
mixture is used as q(y(j) |93(,‘7)) and 65‘7) 1s updated by an EM-like algorithm dur-
ing updating W. Alternatively, efforts in [65, 15] estimate the kurtosis of ¢(yU)).
At the third stage, extensions have been made towards various cases, e.g., (a)
the dimension of z is larger than that of y instead of that T is invertible [89,
88,86], (b) some specific nonlinear ICA [78,86], (c) the so called temporal ICA
that takes temporal relation among samples in consideration [82] and (d) the so
called competitive ICA, which will be further discussed in Sec.4.1.

e Supervised learning: discriminant analysis and three layer net Forward map-
ping can also be built via supervised learning on a training set of paired samples
{zy,y1}. A typical example of linear mapping y = Wa is given by the Fisher
discriminant analysis that maps x into y for a best classification purpose [23,

21].

The key advantage of a forward mapping via supervised learning is able
to explore the complicated nonlinear mapping among given samples in pairs
{2,y }, In help of various forward networks. Readers are referred to [108] for an
overview. Here, we only introduce certain new results obtained in recent years



from Bayesian Yang-Ying learning [80,82,83] on the following three layer net
for mapping & — & — -

(a) # — £ by a post-linear map s(Azx+ag) and £ from a multivariate Bernoulli
g(€lz) = [Ty sz 1= s(zUN]' =87 2 = Az + ag, s(r) = 1/(1+€7");

(b) £ — v is made by linear mapping B¢ + by subject to a Gaussian noise
with covariance 021, i.e., ¢(y|&) = G(y|BE + by, a?1).

Thus, the mapping 2 — y is given by ¢(y|z) = Zg G (y|BE + by, oh)q(&|x).
By the linear Taylor expansion of G(y|B& + by, c?) around the mean F¢ =
s(Ax +ag), we approximately have q(y|z) &~ G(y|Bs(Az +ag) + by, 0?), and thus
E(ylz) = [yq(ylz)dy = Bs(Ax + ap) + by implements the conventional three
layer net with sigmoid hidden units.

Instead of using the back-propagation technique to train this three layer net
in the sense of least square learning, we make 1ts training via the so called BYY
harmony learning [81], which provides the following EM-like algorithm:

E step: &= arg max{G( |B¢ + by, o H g(a)[l _ S(Z(j))]l_gm},
i=1
M Step : (CE) ey =y — BOldf bold Bnew Bold + neyéT;
bgew — bgld 2 new (1 _ 77)0-2 old + 77Ilesz (15)

+ ney, o =
() ec = € — s(Ax + ag), A% = A | peca @ = a4 nec.

Specifically, E-step is equivalent to find ¢ that maximizes C(&) = —0.507?%|ly —
B& — bol]* + Z;I:l[f(j)lns(z(j)) + (1 — €Uy In (1 — s(21))), which is a typical
discrete quadratic programming problem. For a fast approximation, we can first
solve the linear equation V¢C'(§) = 0 by regarding & being real and then hard-
cutting the solution into a binary one. That is,

o 1, ifélW) 05, _
Em - { OJ Ltﬁerwﬁse &= (BTB) l[BT(y ~bo) + 0-271-],

. ()

) — )

— (71 ... o\
= [TF ’ 1—5(z(j))'

) b

rlm]t (16)
Another 1ssue 1s to set up the step size 17 in the M-step. It can be two choices:

(a) It is fixed at a small constant 17 > 0 when the learning eq.(15) is made in
the so called empirical learning [81]. Moreover, its specific value can be different
for different parameters. E.g., two different sizes na,np are used for updating
A, B, respectively.

(b) When the learning eq.(15) is made in the so called normalization learning
[81], it is given by 1 = mno with 5y > 0 and #; given by

N — % — 70; Ve = (y|Bét + by, o H 3 [1—s(z (j)(t))]l_ét(j)’
q =1
&:ztl<w&+%,M((Mn“u—dwmm1w) (17)

where 1 > v5 > 0 1s aJ%wen constant that compensates the finite sample size
in normalization by > ,_ ¢(v|&)q(&|xe). By this 7, after the winner-take-all



competition by the E-step, a de-learning is introduced to regularize the learning
on the winner for each sample in proportional to the current fitting of the model
to the sample. However, it 1s expensive to compute on all the samples as in
eq.(17). We can also approximate the sum S, adaptively by S,(¢t + 1) = (1 —
A) S, (1) + AG (y| BE; + by, 0°1) T, s(z0 )& 33 [1— s(zt(j))}l_gtm for a suitable 0 <

A < 1. Then, as t varies, we have

1 ")(t
I N TN (18)
The detail derivations of eq.(15), eq.(16) and eq.(17) are further referred to [81],
from which we also known that eq.(15) is actually implement a so called harmony
learning that will push p(£|2) into a least complexity form to avoid using extra
hidden units. Alternatively, by enumerating a number of m values incrementally,
we can also select a best number m™* for hidden units by the following criterion

m* = argminJ(m), J(m )—05m1n0' + Jy(m ) {-f Az + ag,
Jy(m) = =L S S {6 sz + (1 - €7) In (1 — s(217))}. (19)

2.3 Forward Mapping (I1): Pattern Matching and Equalization

e Pattern Malching: MCA-MSA and Surface Filting  Playing a dual role to
PCA, eq.(4) results in the so called minor component analysis (MCA) that min-
1mizes the residuals y such that the samples are fitted in the total least square
sense by either the hyperplane with the 1st minor component as its normal di-
rection or the subspace that is orthogonal to the subspace spanned by the minor
components. That is, using a m-dimensional MSA subspace to represent a data
set 1s equivalent to use a d — m dimensional PSA subspace to represent to rep-
resent the same set, where n is the dimension of z. Particularly, instead of using
d — 1 principal components to represent a hyperplane, we can equivalently repre-
sent it by only the 1st minor component. In [109], MCA or MSA is used together
with PCA or PSA to form a dual representation with a more effective dimen-
sion reduction. In 1992, an adaptive learning algorithm has been proposed to
implement MCA for the total least square fitting of not only lines, planes, and
hyperplanes but also circles, curves, planes, surfaces, and hypersurfaces [107].
Moreover, MCA is also used in [87] for the so called co-integration regularity in
time series. Furthermore, studies has also been extended to object identification
via fitting a general function ¢(y, ¢) [95].

o Fgualization: ICA, P-ICA and M-ICA  Though the concept of ICA was
proposed in parallel to PCA, the existing studies on ICA are made without
distinguishing the concepts ‘minor’ or ‘principal’. There may be two reasons.
One 1s that the original purpose of ICA is to recover # = Ay by y = Wz and
such a recovery 1s indeterminacy on the scales of each component of y. The other
is that W 1s usually invertible and y = Wz becomes independent but take all



the components in consideration, where to distinguish which components are
‘minor’ or ‘principal’ is not necessary.

Strictly speaking, the concept of ICA is parallel to de-correlation component
analysis (DCA) y = Wa that makes Eyy” be diagonal, including both PCA
and MCA as well as linear equalization by y = Wa with Eyy? = I as special
cases. Thus, when the dimension m of y is lower than the dimension d of x, we
should also have the principal ICA (P-ICA), minor ICA (M-ICA), and nonlinear
equalization. The last one has already discussed in Sec.2.1. The difference of the
principal ICA and minor ICA can be understand from the perspective of the
so called pre-whitening ICA. After making the covariance of samples of = be
orthogonal, we will have C* combinations to select m de-correlated components
and then normalize them white. Thus, ICA can be made in two steps. First, we
select a combination of m components and then normalize them white. Second,
we do the invertible ICA in the m dimension space. That is, we have C' com-
binations of ICA. Among them, we have either the P-ICA when the m principal
components are used to whitening or the M-ICA when the m minor components
are used to whitening. This way of defining the P-ICA and the M-ICA depends
on the whitening preprocessing. In Sec.2.5, we will give another way to define
them without relying on a preprocessing.

2.4 Backward Mapping: Three Typical Independent FA

o Gausstan FA and Independent FA  The typical example of the early efforts
on this topic is factor analysis, which can be traced back to the beginning of the
20th century by Spearman [77]. Formulated by Anderson and Rubin in 1956 [3],
it considers the simplest linear special case of eq.(8), that is

r = Ay +e, e isindependent from vy, (20)

where both ¢,y come from Gaussians with F(e) = 0, E(y) = 0, E(yyl ) = I,
and e 1s uncorrelated among 1ts components with a diagonal covariance matrix
3. However, this model suffers the problem of not having a unique solution
because its indeterminacy on rotation and on the communality estimation [55].
Early studies towards such problems consists of either constraining A to be
orthogonal matrix only or imposing heuristics to select a specific rotation such
as in Quartimax and Varimax [55].

In the past decade, efforts have been made on considering eq.(20) with the
independence assumption on the components of y. For clarity, we refer this new
type of factor analysis (FA) as wndependent FA (IFA) to avoid being con-
fused with the original one, which should now be more precisely referred as
De-correlating FA (DFA). Similar to ICA, when each ¢(y)) is nonGaussian or
at most only one of them is Gaussian, the rotation indeterminacy can be re-
moved. However, 1t 1s much more difficult to implement IFA than ICA. Not only
we need to deal with the problem of modeling each component density g(y(j)) as
in ICA, but also we need to handle the noise e. Due to this noise, the ML learn-
ing by eq.(11) encounters the computational difficulty on handling the integral



over y in eq.(8). Several efforts have been made towards to solving this difficulty.
The most simple way is to approximately regard e = 0 such that estimating A in
z = Ay becomes equivalent to ICA that gets the inverse mapping y = Wz. But
it works only in a small noise e case. The other ways include preprocessing for
filtering noise, making ML learning via a Monte-Carlo sampling [86], and using
heuristic structures [15,27]. Readers are referred to a survey paper [33].

In the sequel, we further add on certain advances obtained from BYY har-
mony learning in recent years [80, 82, 83].

e Bernoullt FA, Independent FA, and BYY harmony learning We consider
eq.(20) with eq.(1). In help of the BYY harmony learning [80], we can get the
following EM-like algorithm:

E step: g =arg man[G($|Ay, Xe)ql(yloy)],
M step: e =a — A%, A = A1 L opeyT - Emew — (1 — ) 299 4 pee”
0y =0, + é(y), o(y) = Vylng(ylby). (21)
Specifically, E-step is equivalent to find y that maximizes C'(y) = —0.5(x —
AT Y- Hae — Ay) + Z?:1 In q(y(j)|9&7)), which can be made by a fast approxi-

mation that solves the equation V,C(y) = 0 as shown in [80]. For illustration,
we provide two examples:

(a) for q(y|8y,) = (y|0 I, y= [I—I—ATEe_lA]_lATE_lx,

() s (4)
(b) for q(yloy) qu 1—g) v, ym:{l’ g7 > 0.3,

0, otherwise,

g}:(ATEelA) 1{AT x—l—[ﬁl,---,ﬂk]T},Trj:lnlqu . (22)
— 4y

With the case (a) in eq.(21), there is no need on updating 8, and eq.(21) actually
is an adaptive algorithm for implementing DFA. For the case (b), the updating
on #, 1s simply given by

6= (0 er) e = ) — ), (23)

In this case, eq.(21) is an adaptive algorithm for implementing a Bernoulli FA.
Also a variant of Bernoulli FA is given in [80] for the case that x is also bi-
nary from a multivariate Bernoulli. In the literature of neural networks, other
efforts have been also made on modeling binary z (e.g., representing a binary
image) by interpreting it as generated from binary hidden factor y with mutually
independent bits. Typical examples include multiple cause models [75,16] and
Helmholtz machine [17,31].

Similar to eq.(15), another issue in eq.(21) is the step size 7 in the M-step.
Again, it can be either fixed at constants for implementing empirical learning or
given by 1 = 0 with

1 . ~(7) (7)
= Y0aes = Gl A, Sl (1—g)
N g,



N ~(F) . (5)
Sq = S Glae Ap S )g ] (1— )7, (24)

for implementing normalization learning [80]. Still, we can use eq. (18) by adap-

5 ()
tively updating S, (t+1) = (1—=A)S, (¢) + G (@ | Ay, X )q?‘ (1—g;)*~ 9;” . Again,
similar to eq.(15), the harmony learning of eq.(22) will push ¢(y|8,) into a least
complexity form to avoid using a redundant dimension [80].

e Principal subspace dimension From BYY harmony learning [80, 82, 83], we
can also get the following criterion for selecting a best dimension m*:

m* = argmin.J(m), J(m) = 05In|Z.| + J,(m),

mln(?ﬂ')-l—m (a)
Tym) = 4 =+ 0L Y [ anj (1 g7 (1= )], ()
_Nzt:1 ZJ 1IDQ(3/1; |8 ): (c),
(a) q(yl6,) = G(l0, 1), () qylo,) = [T (1 =g,
(©) a(yl0y) in eq.(1), " (25)

where the value J(m) is obtained after parameter learning at each m as we
enumerate a number of m values incrementally. Specifically, the case (b) deter-
mines the number of binary bits that is required for y, while the case (a) and
case (c) describe the dimension of the subspace dimension spanned by principal
components in the sense of the 2nd order independence and of the higher order
independence, respectively. E.g., we can use the case (a) together with PCA for
determining an appropriate number m of principal components, and we can use
the case (c) together with ICA for determining the number of blind sources.

e Temporal FA and Higher order HMM  Both the DFA and Bernoulli FA have
been further extended to taking temporal relation among samples in considera-
tion [80,82] via adding a state equation y; = By:_1 +&; with B being a diagonal
and £; 18 a white noise. Specifically, DFA is extended into the so called tempo-
ral FA (TFA). Interestingly, as shown in [80,82], the rotation indeterminacy of
DFA has been removed due to temporal relation. While Bernoulli FA is extended
into the so called independent hidden Markov model. Moreover, the temporal
extensions have also been applied to perform generalized APT financial analyses.

2.5 Bi-directional Mapping: LMSER-ICA and Helmholtz machine

A backward mapping focuses on how x is generated from y such that not only
noise 1s taken in consideration but also which components of y are principal or
minor can be evaluated according to their roles in the reconstruction and its
matching to the observed data samples. As a result, it makes the problem of
selecting an appropriate m and eq.(25) meaningful. However, the disadvantage
of a backward mapping 1s that it 1s expensive and also inconvenient, based on
the learning results of a backward mapping, to perform the mapping # — y. The



disadvantage can be remedied by a bi-directional architecture that combines both
a forward mapping and a backward mapping. Actually, the nonlinear LMSER
in eq.(15) is a simple example. It combines a forward mapping y = S(Wx) and
a backward mapping = W'y, both are considered during the learning on W.
As discussed in Sec.2.2, it performs ICA. Moreover, this ICA has a feature that
components can be assessed as being principal or minor by evaluating how good
its backward mapping * = W'y matches the observed data samples, similar
to PCA. Thus, the ICA performed by this LMSER is more appropriately to
be regarded as a P-ICA. Generally, the reconstruction error J(W) = E||lz —
W'S(Wz)||* or even its linear version J(W) = El||lz — W{{WW*)~'Wz||? can
be used to measure y = WA in implementing ICA | e.g., it 1s P-ICA when the
minimumof J(W) is reached or it is M-ICA when the maximum J(W) is reached.

Several extensions of the LMSER learning have been obtained in help of
Bayesian Yang-Ying harmony learning [81]. Here we introduce one example,
which 1s equivalent to minimize

JAW g =dine + 258 57 [ Ing, 4+ (1 - ¢,) In (1 - "],
ye = Way, o = %30 |lee — AS(w)|)”- (26)

This minimization can be implemented by an adaptive EM-like algorithm

E step : y, = W%, 4 = arg H;iﬂ[0.50'_2||$t — AS(y)|)?
t

—zggwm%+u—¢%mu—%m
Mstep: ¢ = ¢ = () = ), e = @ — A (),
Arew — Aoldlj neeST (i), c;f nY = (L=n)o” " 4 nd~ e,
W = W 4 pSa(ge)eca] ) Saly) = diagls'(y(1)), -, s ("™ )],
(27)

Again, similar to eq.(15), this adaptive harmony learning will push those redun-
dant ¢; towards zero such that model selection is automatically made during
learning. Alternatively, we also have the model selection criterion

Hflin J(m), J(m) = 0.5dInc* + Z;-nzl[gr Ing, + (1 —¢g)In(1 —¢.)]. (28)

Furthermore, it has been shown in [80,82,83] that this LMSER-ICA eq.(15)
1s a special case of the Bayesian Yang-Ying independence learning, and from
which we also get other extensions of the nonlinear LMSER that not only relax
r = W'y tox = Ay without the constrain A = W7 but also take several possible
distributions of y in consideration. Particularly, one special case is equivalent to
the one layer deterministic Helmholtz machine learning [31, 16, 17]. Furthermore,
extensions have also been made towards to temporal situations, resulting in

temporal LMSER, [80].

3 Task 2: Mining Groups among Samples

Mining groups or called clustering are made among samples such that samples
within a group are regarded as same or similar while samples in different groups



are regarded being different. More specifically, we can classify the studies on the
tasks into two categories:

(a) Homogeneous grouping Samples are grouped based on a criterion of
similarity or distance d(x;, z;) that is homogeneous to any sample pair z;, z;. A
typical example 1s the Euclidean distance, as further discussed in Sec.3.1.

(b) Nonhomogeneous grouping Samples are grouped under a measure that
1s not homogeneous to every sample, but relates to the specific structure of each
group, as further discussed in Sec.3.2.

In particular, when x has a high dimension, which is usually the case in many
real applications and especially in multimedia processing, samples are grouped
based on each group’s specific structure in a subspace of much lowered dimension
instead of in the full original space of x. We call such particular cases Subspace
structure based nonhomogeneous grouping, which will be discussed in Sec.4.

3.1 MSE-VQ Clustering and RPCL Learning

o MSE Clustering, VQ and KMFEAN algorithm  Extensive studies have been
made in literature of statistics and pattern recognition for several decades under
the name of clustering analysis [4, 21, 35, 19]. The most widely used homogeneous
measure is the Euclidean distance d(z;, x;) = ||x; — z;]|*. The grouping tasks in
this situation is equivalent to use a number of vectors to represent a data set
such that each vector locates at the center of each group or cluster. The existing
algorithms for the purpose can be classified into two types. One is usually called
incremental /hierarchical /dynamic clustering [21, 19, 35] or competitive learning
[29]. The key point is incrementally adding one cluster center once a newly
coming sample is regarded to be far beyond a threshold. This type is easy to
implement and the number of clusters i1s decided dynamically. However, the
performances highly depend on the initialization and the specific way that those
clusters grows up.

The other type of clustering algorithms considers all the possible cluster cen-
ters in parallel via minimizing the mean square distances or a global measure on
all the samples. However, the complexity of finding the global minimum grows
exponentially with the number of clusters, and thus the problem is usually tack-
led by a heuristic algorithm that usually produces a solution at a local minimum.
A typical example is the KMEAN algorithm [21,19] and variants, which is also
called Vector Quantization (VQ) in literature of speech and image processing
[51,60]. Such a task is equivalently tackled under the name of competitive learn-
ing in the literature of neural networks [1,107]. The KMEAN algorithm has also
been adopted and modified in the literature of data mining as one of most pop-
ular tools for compressing, categorizing, and organizing data, with emphasis on
scaleable ability for a large database [22]. Readers are referred to these cited
textbooks, survey papers and references, particularly to a recent survey paper
[45] on multimedia data processing,.



In this paper, we emphasize certain essential issues in real applications and
especially in multimedia data processing. Specifically, two issues will introduce
below and several other issues in Sec.3.2.

e Deciding the number of clusters The KMEAN algorithm and others work
well only when a correct number & of clusters are pre-given. We can get a very
poor performance with a wrong data structure found if we do not know this
number and thus set & inappropriately [104]. Moreover, on a training set of
samples of z, though using a large & may apparently result in a smaller mean
square error, it usually generalizes badly on new samples from data, especially
in a changing environment. A possible solution to the problem is to choose a
best k* by a selection criterion. Many heuristic criteria have been proposed
in the statistic literature [24,57,58,76,72]. Recently, based the Bayesian Ying-
Yang learning, a simple criterion has been also obtained in companion with the
KMEAN algorithm as follow [90]:

min J (), J (k) = lnk +0.5dIn B3 55, (29)

where d is the dimension of  and E3;¢p is the mean square error.

However, any selection criterion suffers a large computational cost since we
need to make clustering at a number of different value of &, even though such a
process can be organized in a more efficient way, e.g., embedding the evaluation
of the selection measure during clustering as did in ISODATA[4]. Alternatively,
proposed firstly in 1992 [104], the so called rival penalized competitive learning
(RPCL) solves this problem with the correct number &* determined automati-
cally during learning for an initial £ that is large enough, in the sense that extra
units are driven far away from data due to appropriately penalized learning
on the rival. Later, RPCL has been adopted to various applications, including
information retrieval in image databases[48,41,46], Plant diagnosis[26], nonlin-
ear financial prediction, and hidden Markov model [13,12], clustering, vector
quautization, object classification in 3-D images, scene segmentation in 2D&3D
image as well as multidimensional data [9,49,14,54]. Also, following the initial
suggestion in [104] for training RBF net, a number of authors have used or rec-
ommended RPCL algorithm for the training of various RBF nets [6,10, 112,11,
47,9]. Subsequently, we will further introduce various RPCL extensions to ellip-
tic clustering and subspace structure based nonhomogeneous grouping as well
as 1ts relation to the BYY harmony learning.

e Fust implementation in a binary tree  In data mining on a large database with
data of high dimension, a clustering algorithm that can be fast implemented is
preferred. Also, the clusters should be well indexed and thus can be retrieved
conveniently. A so called hierarchical PCA [97,96] for vector quantization pro-
vides a solution for such demands. By this technique, a binary clustering tree is
formed by recursively splitting a set ). of samples associated with the current
node into two subsets that associate two son nodes such that samples of each
part locate on each side of a hyperplane that passes the mean of D, and is per-
pendicular to the principal component direction of D.. After each split, the node



associated with ). is marked CLOSED. Moreover, we can compute the value of
J (k) by the above eq.(29) and check whether J(k) turns to increase. If not, the
two sons are marked OPEN. Otherwise, we stop and discard the two sons. Next
we go to another OPEN node in either the depth-first or the breadth-first way
[67]. The root node of the tree is associated with the entire data set of samples.
The tree grows as such until J(k) turns to increase on all the OPEN nodes. Such
a technique of forming a data tree can be used for fast indexing and retrieving
in multimedia data processing.

3.2 Gaussian Mixture, EM Variants and Eliptic RPCL learning

e Gaussian Mirture and EM Algorithm  The above discussed algorithms apply
to homogeneous data with each being spherical Gaussian and sharing a same
or similar portion of samples. Studies in the literatures have also been made
on extending the KMEAN algorithm and competitive learning algorithms to
clusters of the so called elliptic shapes. Most of these studies can be related to
the special cases of the ML learning on Gaussian mixture

pleelf) = 52 0 Glelmy, &) (30)

in help of the EM algorithm [18,70,56] with good convergence properties [92].
E.g., in [90], a simplified EM algorithm on Gaussian mixture is shown to extend
the KMEAN algorithm to elliptic clustering. Actually, density estimation by a
(Gaussian mixture covers the various tasks of clustering with each group repre-
sented in a Guassian G'(x|m;, X;). It not only provides more accurate clustering
results but also sophisticated data structure via X;. As a popular topic, Gaus-
sian mixture with the EM algorithms has been both extensively studied and
widely used in many fields. The readers are referred to [45] for its applications
in multimedia data processing and to [18,70,56] in a broad scope. Here, we add
on several results that improve the generalization ability of learning.

o Three Variants of The EM algorithm  From BYY learning [90,83,81], we
get as follows:

(a) Re-weighted EM  We can replace the likelihood N=1%" Inp(x:|6) by
the general convex likelithood N='3" f(p(#|6)) with a convex function f'(r) >
0, f"(r) < 0,r > 0. We maximize this likelihood on a Gaussian mixture p(a|6)
by a so called re-weighted EM algorithm in [90] since a re-weighting factor is
attached to each sample, which was shown empirically to be more robust than
the ML learning via the original EM algorithm, especially when f(r) = 7% 3 < 1.

(b) Smoothed EM  The performance of the ML learning will degenerate
considerably on a set of finite number of high dimensional samples. To solve
the problem, a so called smoothed ML learning is proposed, which replaces the
likelihood function N~ 3" Inp(z|f) with an integral [ p;(z)Inp(z|f)dz and
pr(z) given by a Parzen window estimator [83,81]. Moreover, we are lead to a
modified EM algorithm that simply modifies the original EM algorithm at its
M-step with its updating on each X; added a smoothing parameter h to its



diagonal elements. Furthermore, after each iteration of the E-step and M-step,
we can also update the parameter h via a simple one dimensional search [83,81].

(c) De-learning EM  Another special case of BYY harmony learning on
Gaussian mixture, also taking the effect of finite number of high dimensional
samples in consideration, avoids the smoothing parameter A with its role replaced
by a de-learning in the M-step.

To illustrate, we provide a unified adaptive EM-like procedure that covers all
the above three algorithms:

E Step : jo = argmax[In G(z|m;, X;) 4+ In oy],
J

M Step :m7™ = m?id + n(z — m;id),

Tpe = (L= m) I8 lhd + (= mi ) (@ —mg )T, (31)

J Jc

Specifically, it implements the smooth EM with a constant step size n > 0,
together with ~ > 0 updated via a simple one dimensional search [83,81]. More-
over, when h = 0, according to different settings of n > 0, it acts as:

(1) An elliptic adaptive KMEAN algorithm for a constant step size > 0;

(2) An adaptive re-weighted EM algorithm as in [90] for n = f'(p(x:|9))
p(x¢|@)no > 0 with 7y being a constant;

(3) An adaptive de-learning EM algorithm as in [81] for n = non: > 0, where
n: 1s in the form of eq.(24) but with v = p(2:|0) and S, = >, p(#:|f). Again, S,
can be approximated by adaptively updating S, (¢ + 1) = (1 — A)S,(t) + p(a:]8).

e Selection of Gaussians  Similar to the homogeneous clustering, how to decide
the number k of Gaussian is an essential issue for a good performance of Gaussian
mixture. Again, one solution is to choose a best k£* by a selection criterion. In
[90], such a criterion is obtained as follow:

min J (k), J (k) = 0.55 5 a;In | 5] — Y20 ajInay. (32)

e Elliptic RPCL learning and BY'Y harmony Learning  Also, the correct num-
ber £* of Gaussians can be determined automatically during learning in help of
extending RPCL learning [104] to the cases of any elliptic shapes and in any
portion of samples [95,85,81]. As a result, we have the following elliptic RPCL
algorithm:

Step 1:j. = argmaxd;(z), j, = arg n;axdj(a:), d;(z) = —In[G(z|m;, X;)e;],
J i

c

Step 2:m3™ = m?id + ne(x — m;?id), m;e = fmﬂd — nplx — m;id),
i =S5 neAS;., Si =S5 - 0. AS) (33)

where the learning rate 7. 1s much smaller than the de-learning rate 7n,, e.g.,
8 < n./nr < 15. Also, we indirectly compute X; = Sij via updating S; in
order to gnarantee that X; =.5;_ S;i remains semi-positive definitive. In eq.(33),
AS; 1s the gradient direction given as follows:

ASj = Vg, In Glz|my, Xy) = {57 M+ (2 —my) (& — my) |07 = 571185



In implementing, we can always keep .S; in storage or get it at each updating by
decomposing X; that 1s always keep S; 1n storage. In the latter case, the updating
on Sj, can also be replaced by X7 = (1 — nC)E}?id + ne[hl + (x — mf;id)(a: —
m?4)T], and eq.(33) degenerates back to eq.(31) when 7, = 0. Moreover, we can
also let 1. to be different for m; and for X, even when 5, = 0 for X; but 5. > 0
for m;.

The role of & is same as above discussed. When h > 0, we get the smoothed
RPCL learning. Also, we can let 5. = f'(p(x:|@))p(xe|®)no. > 0 and n, =
I (p(xe]0))p(xe|0)n0» > 0 to get the robust feature of the Re-weighted EM al-
gorithm. Though, RPCL is originally proposed heuristically [104], it has been
shown that it 1s qualitatively equivalent to a special case of the general RPCL
learning algorithm obtained from the BYY harmony learning [82,83] and thus
get a guide for determining the learning rate 7. and de-learning rate ,.

4 Task 3: Mining Dependences within Local Groups

We can get the dependence structure among components locally on each cluster
in data. One way to do so 1s anyone of the algorithms in Sec.3.2 for nonhomoge-
neous grouping to get every covariance matrix 2; and then get local dependence
structures based on X;. However, since X; contains only the 2nd order statistics,
based X; we can not implement local ICA or find a local nonlinear dependence
structure. Moreover, even theoretically we can get a linear dependence structure
based on X, not only it wastes many computing costs on getting X;, but also
it may result in a bad estimate when the dimension d of x i1s high, because each
Y; contains d(d + 1)/2 parameters to be specified, which needs a large number
of samples to avoid the resulted X; to be singular.

A better alternative is to make a nonhomogeneous clustering based on min-
ing local dependence structures that are locally within much lower dimensional
subspaces. Specifically, we can get the local extensions of those algorithms in

Sec.2.

4.1 Local PCA, Competitive ICA and Modular Models

e Local PCA and Local PSA  In [109], PCA and PSA are used for local subspace
representation of data in pattern recognition. In [100,101,96], local PCA is also
used for fitting a number of lines and hyperplanes.

Provide that m; 1s the center of the j-th cluster, the diagonal elements of
the diagonal matrix A; are the d; largest eigen-values, and the d; row vectors of
W; are the corresponding eigen-vectors, we define the following subspace based
distance

dj(w) = [Wj(a — my)]" A7 W (2 — mj), (34)
and then use eq.(33) for implementing local PCA with
Aj =88], ASj = S diag[(hI + Wi(x —my)(z —my)" W) — A5, (35)

J 3



where S; is diagonal and diag[A] means a diagonal matrix that takes the diagonal
part of A. Moreover, at each location we update as follows

S'tep 3 - Wﬂew — Wpld,' 4 HCAWPCGJ Wnew — ngd 4 WTAWmCG, (36)

where AW’D can use one ex1st1ng stable adaptive PCA learning rule on $j =

ro—mj, Wlth a linear net Wp j , and AWM can use one existing stable
C

adaptive MCA learning rule on xj = r — m‘7 with a linear net Wz "7 i
Particularly, we can get local PSA as a special case by simply setting A = A

e Competitive ICA Instead of exploring local de-correlation structures by
Local PCA, we can also explore local independent structures via a so called

competitive ICA algorithm:
Step 1: j, = argmax[0.5In |WjoT| + Ing(Wz + p;10,)], (37)
j

Step 2: W = WJP*M + [l + qb(y*)(Wf)ld )T]ng*ld;
o(y) = VyInq(ylby), y* = Wile 4+ ult,
'U’?fw = '“’;')id +né (1), ngw = Hzld + 1V, Ing(Wjx + p;10,).

For a fixed j, Step 2 is the same as the learning parametric mixture based ICA
[88,86], where a finite mixture is used as q(y(j)|9£,j)), with 6, updated by an
EM-like algorithm during updating W;. Moreover, we can also generalize it to
competitive temporal ICA for handling temporal situation [80].

e Modular Supervised Learning: RBF nel, mixture-of-experts, and support vec-
tors Local dependence structures can also be built via supervised learning on
modular models such as the radial basis function (RBF) [59,61,102], nonpara-
metric kernel regression [20, 102], the mixture-of-expert (ME) models [34, 37, 38],
and support vector machine [79]. Similar to the previously discussed unsuper-
vised learning examples, these supervised modular models also build dependence
structures among components based on local properties of data. E.g., the con-
ventional learning on RBF nets is made usually in two sequential steps. The
first step decides the centers of basis functions usually via certain clustering al-
gorithm, and the second step determines the parameters of the output layers by
the least square learning. Such a two-step algorithm actually provides a subop-
timal solution. Extensive literatures are available on these supervised learning
models. For a more detailed introduction, readers are referred to [108] for an
early survey and to [81] for a recent discussion on the relation between these
models.

Here we summarize several results on training these models by either adaptive
EM-like algorithms or RPCL related algorithms:

(a) The mixture-of-expert (ME) model [34,37, 38] implements forward map-
ping by a number of local experts that are engaged in via a probabilistic con-
trolling of a so called gating net, with each individual expert being a three layer
net. Moreover, an alternative ME model is further proposed [98,69,84] such that
learning can be made completely by the EM algorithm in the case that each ex-
pert i1s described by a Gaussian with a linear regression, while the training on



the gating net of the original ME is trained by a gradient-based algorithm but
not by the EM algorithm.

(b) The normalized RBF nets and the extended normalized RBF nets are
shown in [84] to be regarded as special cases of the alternative mixture-of-expert
(ME) model, and thus can be trained by ML learning by the EM algorithm,
instead of the conventional two-step method. Moreover, the hard-cut EM algo-
rithm and adaptive EM-like algorithms have been proposed for fast learning on
not only these RBF nets but also both the original and alternative ME models
in help of a so called coordinated competition [84].

(c) In [82,81], all the above studies are be related to the Bayesian Ying-
Yang harmony learning as special cases. As a result, their learning algorithms
can be replaced by their corresponding RPCL-type learning algorithms that
perform parameter learning with automated model selection on experts or basis
functions. Also, criteria are obtained in a way similar to eq.(19).

(d) In [102], nonparametric kernel regression [20] is shown to be a special
case of the normalized RBF nets such that several previous results on kernel
regression can be brought to provide certain understandings on the normalized
RBF nets. Recently in [81], such a link is revisited from the perspective of using
the above discussed learning algorithms on generalizing kernel regression tech-
nique, resulting in not only an easily implemented approach for determining the
smoothing parameter in kernel regression, but also an alternative approach to
select supporting vectors in the popular supporting vector machines for a better
generalization.

4.2 Local MCA-MSA and Curve Detection
As a dual to local PCA-PSA discussed in Sec.4.1, local MCA-MSA can be used

for local subspace representation of data [109], for fitting curve, hyperplane and
hypersurface [107] and detecting a number of curves, hyperplanes and hypersur-
faces at different locations [104,100,101, 96].

Moreover, as a dual to the RPCL algorithm in Sec.4.1, local MCA-MSA can
also be implemented by RPCL learning. Specifically, we can replace eq.(34) by

dj () = ||(1 = W Wy)(x —my)|]*, (38)

and then use eq.(33) with eq.(35) for learning. The difference is that eq.(36) is
replaced by

Step 3: WIS = WY 4 n AW, WP = Wi+, AW, (39)

where the positions of using a PCA rule and a MCA rule are swapped.

Taking curve detection as an example, this technique provides an alternative
to the Hough transform-like technique on detecting curves on image in noisy
environment [111,105]. Such tasks may be implemented in two ways. One is
to use the trick in [107] to transfer a curve into a form such that the above
local MCA can be used directly. E.g., for detecting a quadratic curve such as
circles or ellipses, we consider the equation a;z* + b;zy + c;y° + djxr + e;y +



3 = 0 and rewrite it into w?

w; = [a;,b;,¢;,d;, ej]T, and then. Therefore, we can perform a local MCA by
the above algorithm at a special case that each T/, consists of only one vector
of w;. After learning, we turn each resulted w; into parameters of curve with
fi = w mj.

Another way 1s to define d(x, @;) as the shortest distance from « to the j-th
curve represented by #;, and then use RPCL learning as follows

(x — my) = 0 with « = [2? 2y, y* 2, y]" and

Step 1: j. = argmaxd(x,0;), j. = arg H;&Xd($,9j), (40)
j j#je

Step 2: 077 = 05 + 9.V, dj(x,0;.), 075 =034 — Vo, d;i(x,0;,).

More generally, in the so called Multi-sets modeling [95], d(x, ;) can be the
shortest distance from x to the j-th object described in a general set, and we
use eq.(40) for learning.

4.3 Local Backward Mapping and Competitive LMSER

e Backward mapping: Local DFA and Local Independent FA The advantage
of using a Gaussian mixture for mining groups and the advantage of using the
factor model eq.(20) for mining the dependence structure can be combined. We
consider the following two possibilities:

|Gz |Agy+m;], Y)G(ylo, Hdy, (a),
pledl?) = Z {IG e[ Ay, DGyl Ay, (b). (41)

In the case (a), at each location mj;, each Gaussian is decomposed into a local

DFA model
r=m; + A;y; +ej, (42)

where ¢; 1s a (Gaussian noise of zero mean and covariance matrix ;. Thus,
similar to a DFA previously discussed in Sec.2.4, there is still indeterminacy on
rotation and scale at every location. This situation is removed by in the case (b)
in eq.(41) where a Gaussian mixture factor 2?21 a;G(ylp;, 1) is mapped to
via a common x = Ay + e or equivalently each local DFA locates at Ay;. Due to
the constraint of this common mapping, the indeterminacy on rotation at every
location is removed except the singular case that the distribution is same at each
location.

Moreover, the local structure based Gaussian mixture in eq.(41) can be fur-
ther extended to nonGaussian finite mixture p(x|f) = 25:1 a;p(x]0;) by letting
G(y;10, 1) or G'y|p;, A;) replaced by the independent factor eq.(1), which leads
to two corresponding local independent FA models.

Furthermore, we can combine eq.(31) and eq.(21) to get a double loop EM-
like adaptive algorithm for implementing learning on local DFA and independent



FA. Taking the case (a) as an example, we have

E Step : j. = arg max[Ilnp(x|f;) + In o],
J

p(z]0;) = { [ G(z|Ajy; + mj, X)G(y; |0, Idy;, Gaussian, ‘
! J Gl Ajy; +my, Xi)g(yl0y j)dy,  q(ylby ;) given by eq.(1),
M Step : implement the inner E step and M step in eq.(21) once, with
Aj oas A, x—my_ asx, X; as Y., 0,; as 0y,
Then, update m;*" = m?id +n(x — m}’id). (43)

o Bi-directional Mapping: Compelitive LMSER We can extend the LMSER
learning eq.(26) to the local models at different m;. Similar to eq.(43), we can
get the following double loop EM-like adaptive algorithm for learning, with its
E step in the outer loop implementing competition each time a sample comes:

L Step : j. = arg mjaxJ(Aj, Wi dair D), v =Wz, —my),
J(A; Wi g }) = 05dIne + 0.50; %|lwe — A;S(w )]

d,
=3l fo g+ (1= g0) I (1= )],
M Step: implement the inner E step and M step in eq.(27) once, with
A;oas A, Wi o as W,z —m;, as xy, 0',72\: as o2, q;.r GS qr,
new old

Then, update m;*" = m] " +n(r — m;-'id). (44)

5 Tasks 4 & 5: Topologically Organized Groups and
Local Dependence Structures

Another important data structure consists of topological relations among groups
or clusters. Early efforts can also be traced back several decades. Roughly, these
studies originated along two lines. One is for reducing high dimensional data into
lower dimension such that topological relations among samples can be reserved
for statistic data analysis and engineering purpose. Several heuristic techniques
were proposed. Among them, a typical representative is called Samon mapping
[73]. The other line is motivated by mathematical modeling biological striate
cortex. A typical work is Malsburg’s self-organization of orientation sensitive
cells [62]. A breakthrough advance, that is able both to model self-organized
formation of topological feature maps in biological system and to apply to data
analysis with efficient computing, is the well known Kohonen map [43,42].

In the past decade, several efforts have been further made in the literature
of neural networks for implementing Samon-type mapping in help of nonlinear
architecture of neural networks [66,53, T1]. Moreover, very extensive studies on
topological map have been made on Kohonen map, which actually forms a major
stream of unsupervised learning in the literature of neural networks, as shown
by the main theme of this series of workshops. Readers are referred to papers in
the workshops’ proceedings and other vast volumes on this theme in the neural
network literature.



Here, we only incompletely mention three lines of developments that relate
to the local dependence mining methods discussed in Sec.4. One is extending the
lattice map architecture to more sophisticated architectures. An early attempt
1s made in 1990 for training a number of Kohonen maps that are automatically
organized in a pipe-line architecture during learning [110]. Further developments
along this direction include Kohonen map tree [44] and the Growing Grid or gas
[25]. The another line is to combine the feature of Kohonen map with Gaussian
mixture such as given in [7]. Another line that deserves to mention is applying
certain advanced mathematical results on deformation analyses to interpret and
evolve self-organization map [50].

It may deserve to mention that few efforts has been made in the existing
literature on combining the tasks of mining local dependence structures into the
formation of topological structure yet, which should be a promising direction of
developments of studies on self-organizing map.
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