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Abstract A unified learning framework is proposed. Its different special cases will automatically
lead us to current existing major types of neural network learnings, e.g, data clustering, various PCA-
type self-organizations and their localized extensions, self-organizing topological map, as well as supervised
learning for feedforward network and modular architecture. Not only this new framework is useful for a deep
understanding of the existing learnings, but also it provides new insights that can guide the extensions of
the existing learning methods. With the new insights, we have obtained several new intersting unsupervised
learnings, and introduced regularization or generalization to unsupervised learnings, particularly proposed
approaches for solving a classical hard problem—how to decide the number of clusters in clustering analysis
or competitive learning.

1. Introduction
Unsupervised and supervised learnings are regarded being essentially different and have been studied sep-

arately. Unsupervised learning alone has even three major types: clustering, Principal Component Analysis
(PCA)-type self-organizing, and topological map. They are developed from different motivations and based
on different theories or heuristics, and considered to be basically different from each other.

Multisets Modeling Learning (MML) proposed in Xu (1994) intends to unify all these learnings into one
single framework. The key idea is to use a general real set specified by a given property as the representation
of a model and a number of such sets as the joint representation of multiple models. The purpose of
learning is to determine each model set, which is specified by some parametric equation, to minimize the
error of this model on approximating a data set. Using the framework, we can naturally unify various
unsupervised learning such as clustering, standard PCA, local PCA, Minor Component Analysis (MCA),
local MCA, k-PCA, Principal Subspace Analysis (PSA) , k-MCA, Minor Subspace Analysis (MSA) and
their localized extensions. This paper presents further development on the MML framework such that
self-organizing topological map (Kohonen, 1989) and supervised learning on feedforward networks and on
modular architecture of local experts (Jacobs, Jordan, Nowlan, & Hinton , 1991) can also naturally unified.
With the new framework, we have also obtained several new intersting unsupervised learnings, introduced
regularization or generalization to unsupervised learnings, and proposed the approaches for how to decide
the number of clusters in clustering analysis or competitive learning. We have also shown that the framework
can be related to Maximum likelihood learning of finite non-gaussian mixtures.

2. The General Framework of MML
Given a finite or continuous set S of real points in Rd, we represent a neural network model by a set:

M = {x : p(x) and x ∈ S}, (1)

where p(x) means that x satisfies the properties specified by a general predicate proposition p. For examples,
p(x) may mean that x is a root of an equation F (x) = 0, or that x = [ξ, η] satisfies an explicit function
η = f(ξ), as well as that x makes F (x) > 0 or F (x) < 0. Moreover, p(x) can also be a combined proposition
that consists of a number of such simple propositions p1(x), · · ·, pr(x) via logic connectives ∧,∨,¬. As a
result, a model M can be a point, a curve, a surface, an area or volume with any shape or any of their
combinations and it is either able or unable to be described by mathematical equations. Moreover, it even
can be described by languages. In summary, this model can be any set in Rd.

To use such M to model a given data set, we define that M represents xi with an error given by

εq(xi, M) = min
y∈M∩R

|T (xi − y)|q, q ≥ 1, (2)

where |u|q =
∑n

i=1 |ui|q for u = [u1, · · · , un]T , and T is an d× d nonsingular matrix. We have εq(xi,M) = 0
when xi ∈ M ∩R. R ⊆ M acts as some constraint on y. One common case is R = M , in this case y ∈ M ∩R
becomes y ∈ M and there is no constraint. The other case is that

R = R(xi) = {x : ξ = ξi, x = [ξ, η], xi = [ξi, ηi], x ∈ M} (3)

with ξ, ξi consisting of k variables of x, xi respectively (0 < k < d). When q = 2, |T (xi − y)|2 = (xi −
y)tΣ(xi − y) is Mahalanobis distance since Σ = T tT is positively defined. The function of T is a linear
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transformation of coordinate system. When T = I, ‖T (xi− y)‖2 = ‖xi− y‖2 is the square distance between
xi, y. When R = M , there is no extra constraint. In this case, eq.(2) becomes

ε2(xi,M) = min
y∈M

‖xi − y‖2, (4)

The followings are some interesting special cases:

ε2(xi,Ma) = ‖xi − a‖2, M = Ma = {a};
ε2(xi, ML) = ‖[I − (w − a)(w − a)t](x− a)‖2, M = ML = {x : x− a parallels w − a};

ε2(xi,MP ) =
[(w − a)t(xi − a)]2

‖w − a‖2 , M = MP = {x : (x− a)t(w − a) = 0};

ε2(xi,MM ) = ‖(I − P )(x− a)‖2, P = W (W tW )−1W t. MM = {y : y = x + a, x ∈ S};
W = [w1 − a, · · · , wk − a], subspace S spanned by independent vectors w1 − a, · · · , wk − a;

ε2(xi,MS) = |c2 − ‖x− a‖2|, M = MS = {x : ‖x− a‖2 = c2}. (5)

ML is a line passing through a point a, MP is a hyperplane passing through a point a, and MM is a linear
manifold — a shifted subspace that locates at a point a. Moreover, MS is a sphere of radius c that locates at
a. The corresponding error ε2(xi,M) is actually the shortest distance of the point xi to the line, hyperplane,
linear manifold and sphere respectively.

More generally, we can modify eq.(2) by adding a regularization term r(M) > 0 to penalize the complexity
of M :

eq(xi, M) = βrr(M) + εq(xi) = βrr(M) + min
y∈M∩R

|T (xi − y)|q, q ≥ 1, βr > 0. (6)

Given a data set Dx = {x1, · · · , xN}, the aim of learning is to specify M such that
∑N

i=1 eq(xi) is
minimized, we concentrate on cases that M can be determined by a set of parameters Ψ, e.g., Ψ = {a} for
Ma, Ψ = {a, w} for ML and MP , Ψ = {W} = {a1, · · · , ak, w1, · · · , wk} for MM . Our aim is to minimize the
following Jq with respect to Ψ:

Jq =
N∑

i=1

eq(xi,Ψ) =
N∑

i=1

[βrr(Ψ) + εq(xi, Ψ)]. (7)

Further generally, for a multi-modes data Dx that comes from a mixture of several different objects or
models. We propose to use a number of models Mm(Ψm),m = 1, · · · , Nc to deal with these cases. The
learning problem is now specified by the minimization of the mixture error with respective to Ψ1, · · · ,ΨNc :

Jq
Nc

=
Nc∑

m=1

Jq
m, Jq

m =
∑

x∈Sm

[βrr(Ψm) + εq(xi,Ψm)], Sm = {xi : eq(xi, Ψm) < eq(xi, Ψj), j 6= m} (8)

The direct minimization Jq
Nc

is a combinatorial problem of partitioning Dx into subsets {Sm}Nc
1 so that

Jq
Nc

reaches its minimum. A Hard Cut Iterative (HCI) Algorithm can be proposed for this minimization.
Initially, we divide Dx into exclusive subsets {Sm}Nc

1 , and then repeat the two steps to find a local minimum
of Jq

Nc
:

Step 1 Take x ∈ Dx, assume it is currently in Si, we check the possibel changes ∆i = −∆Jq
i and

∆j = ∆Jq
j , j 6= i that may result in if we remove it from Si to Sj for j 6= i. The changes can be calculated

according to eq.(8).
Step 2 Find Sr with ∆r = minj ∆j , put x into Sr, then, goto Step 1. The iteration stops until no

change for all x ∈ Dx.
An alternative for eq.(8) is to soften the hard cut partition by a set of auxiliary variables {ωmi,m =

1, · · · , Nc; i = 1, · · · , N} and changing eq.(8) into

Jq
Nc

=
Nc∑

m=1

N∑

i=1

ωmi[βrr(Ψm) + εq(xi,Ψm)] + β

Nc∑
m=1

N∑

i=1

ωmi ln ωmi,

Nc∑
m=1

ωmi = 1. (9)

Where 1 ≥ ωmi ≥ 0 denotes the probability of xi generated from Mm(Ψm). ωmi’s are unknown and need
to be determined through the above minimization. The above 2nd term is used for avoiding the problem
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of over-sized unknowns. The term can be interpreted as the negative entropy of distribution ωmi. It means
that we try to keep those unknowns instead of imposing some additional constraints. β is a given weight
variable which controls the portion of the 2nd term in the whole cost.

The minimization eq.(9) can be implemented by two iterative steps of the following Alternative Opti-
mization (AO) algorithm :

Step 1 With the parameters Ψ(k)
m ,m = 1, · · · , M fixed, considering the constraint

∑Nc

m=1 ωmi = 1 and
by ∇ωmiJ

q
Nc

= 0, we can get

ωmi = e−β−1[εq(xi,Ψ
(k)
m )+βrr(Ψm)]/

Nc∑
m=1

e−β−1[εq(xi,Ψ
(k)
m )+βrr(Ψm)]. (10)

Step 2 With the parameters ωmi’s fixed, the minimization of Jq
M with respect to Ψm,m = 1, · · · ,M

can be decomposed into each of the independent minimizations with respect to Ψm

Jq
Mm

(Ψm) =
N∑

i=1

ωmi[εq(xi,Ψm) + βrr(Ψm)], (11)

which is just the weighted version of eq.(7) and can be solved in the same way as in single model, resulting
in the updated Ψ(k+1)

m ,m = 1, · · · , Nc.
Given the initial Ψ(0)

m ,m = 1, · · · , Nc, we can repeatedly implement the above two steps. The iteration
will converge to at least a local minimum of Jq

M as long as the second step let Jq
Mm

(Ψ(k+1)
m ) ≤ Jq

Mm
(Ψ(k)

m ),m =

1, · · · , Nc with Jq
Mm

(Ψ(k+1)
m ) 6= Jq

Mm
(Ψ(k)

m ) for a number of iterations. The reason is that each step is actually
doing a descent search of Jq

Nc
.

3. Unifying the Existing Major Types of Learnings
We show that the different special cases will automatically led to existing major types of learnings.

3.1 Unsupervised Learning: Single Model
We first consider the case of single model, i.e., Nc = 1. We consider the special case that βr = 0, T = I,

R = M and q = 2 in eqs.(6)(7), i.e., the unconstrained square error without the regularization term r(Ψm).
For the special cases given in eq.(5), the cost eq.(7) becomes

J2
a =

N∑

i=1

‖xi − a‖2, for M = Ma

J2
L =

N∑

i=1

‖[I − (w − a)(w − a)t](x− a)‖2, for M = ML

J2
P =

N∑

i=1

[(w − a)t(xi − a)]2

‖w − a‖2 , for M = MP

J2
M =

N∑

i=1

‖(I − P )(x− a)‖2, P = W (W tW )−1W t, for M = MM

J2
M1 =

N∑

i=1

‖(I −WWT )(x− a)‖2, for M = MM and P = WWT ,

J2
M2 =

N∑

i=1

‖(I −WWT )(x− a)‖2W T W=I , for M = MM , P = WWT , WT W = I. (12)

These minimizations with respect to a give the mean vector a = 1
N

∑N
i=1 xi, which represents the learned

location of data Dx. For Ma, this is a simplest unsupervised learning task. As to the minimization with
respect to w or W , we have

(1) PCA For a line ML, w− a is the eigenvector of Σ = 1
N

∑N
i=1(xi− a)(xi− a)T that corresponds to

the largest eigenvalue. That is, the minimization led to PCA (Oja, 1982,89; Xu, 1991, 93, 94). When a = 0,
J2

L also becomes a special case of the LMSER rule proposed in (Xu, 1991,93) for a single linear neuron.
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(2) MCA For a hyperplane ML, w − a is the eigenvector of Σ that corresponds to the smallest
eigenvalue. That is, the minimization led to MCA, which has been used for curve fitting (Xu & Oja, 1992).

(3) k-PCA, PSA For a linear manifold MM that corresponds to J2
M , J2

M1
and J2

M2
, we have the

solution W = ΦR, Φ consists of the eigenvectors corresponding to the k largest eigenvalues of Σ as its column
vectors, and RtR = I. That is, the learning performs PSA (Oja , 1989; Xu, 1991, 93, 94). Particularly,
for J2

M2
we will have R = I and W = Φ, i.e, the learning finds the first k principal components (k-PCA).

Moreover, J2
M1

with a = 0 becomes the special case of the LMSER proposed in (Xu, 1991, 93) for one layer
linear network that performs PSA.

(4) k-MCA, MSA If we replace the subspace S in MM by its orthogonal complement subspace S̄,
then the above learning will performs k-MCA or MSA.

3.2. Unsupervised Learning: Multiple Models
We consider the case of multiple model with Nc > 1. Now we could not get analytical solution, and the

solutions are obtained through the iterative algorithm HIC or AO. Again, we fix βr = 0, T = I, R = M and
q = 2 in eqs.(8)(9).

Clustering or Vector Quantization (VQ) For the special case that each Mi is a point ai, eq.(8)
becomes the minimization of

J2
Nc

=
Nc∑

m=1

Jq
m, Jq

m =
∑

x∈Sm

‖xi − am‖2, Sm = {xi : ‖xi − am‖ < ‖xi − aj‖, j 6= m} (13)

which is the classical Clustering or in other words, Vector Quantization (VQ). It is not difficult to see that
the HCI algorithm returns to the conventional k-mean algorithm.

The learning problem eq.(9) will become the minimization of

J2
Nc

=
Nc∑

m=1

N∑

i=1

ωmi‖xi − am‖2 + β

Nc∑
m=1

N∑

i=1

ωmi ln ωmi, s.t.

Nc∑
m=1

ωmi = 1 (14)

For the algorithm AO, the two steps eq.(10) and eq.(11) will become

ωmi = e−β−1‖xi−a(k)
m ‖2/

Nc∑
m=1

e−β−1‖xi−a(k)
m ‖2 , a(k)

m =
1

nm

N∑

i=1

ωmixi, nm =
N∑

i=1

ωmi. (15)

This is identical to the EM algorithm for Gaussian mixtures with equal prior probabilities and given equal
covariance (Xu & Jordan, 1993b), or can be regarded as a soft k-means algorithm.

Local LMSER or Local PCA For the special case that each Mi is a line ML given in eq.(5), we
have that eq.(8) becomes the minimization of

Jq
Nc

=
Nc∑

m=1

Jq
m, Jq

m =
∑

x∈Sm

‖[I − (wm − am)(wm − am)t](x− am)‖2

Sm = {xi : ‖[I − (wm − am)(wm − am)t](x− am)‖ < ‖[I − (wj − aj)(wj − aj)t](x− aj)‖, j 6= m} (16)

which becomes the Local Least MSE Reconstruction (LLMSER) learning proposed in Xu(1995). The result is
that each of a1, · · · , aNc becomes a cluster center and each of (w1−a1), · · · , (wNc−aNc) becomes the principal
component of the corresponding cluster. That is, it performs local PCA (Xu, 1994; Leen & Kambhatla, 1993).
The HCI algorithm becomes the Hard Cut Local LMSER-VQ algorithm given in Xu(1995).

The learning problem eq.(9) will become the minimization of

J2
Nc

=
Nc∑

m=1

N∑

i=1

ωmi‖[I − (wm − am)(wm − am)t](xi − am)‖2 + β

Nc∑
m=1

N∑

i=1

ωmi ln ωmi, s.t.

Nc∑
m=1

ωmi = 1 (17)

For the algorithm AO, eq.(10) becomes

ωmi = e−β−1‖[I−(wm−am)(wm−am)t](xi−a(k)
m )‖2/

Nc∑
m=1

e−β−1‖[I−(wm−am)(wm−am)t](xi−a(k)
m )‖2 (18)

4



and eq.(11) can be explicitly solved such that a
(k)
m = 1

nm

∑N
i=1 ωmixi, nm =

∑N
i=1 ωmi and (w(k)

m − a
(k)
m ) is

the eigenvector of

Σ(k)
m =

1
nm

N∑

i=1

ωmi(xi − a(k)
m )(xi − a(k)

m )T ,m = 1, · · · , N. (19)

that corresponds to the largest eigenvalue. This algorithm is actually the Soft Local LMSER-VQ II proposed
in Xu(1995).

3.3 Supervised Learning
Feedforward Net We consider the single model eq.(2) with R = R(xi) given in eq.(3). Also we let

T = I.
For the case that M is specified by an explicit function η = f(ξ,Ψ), we partition y in eq.(2) into y = [ξ, η]

according to the training set Dx = D[ξ,η] = {[ξ1, η1], · · · , [ξN , ηN ]}. Under the constraint eq.(3), the cost
eq.(7) becomes

Jq =
N∑

i=1

{|[ηi − f(ξi, Ψ)|q + βrr(Ψ)}, (20)

with f(ξi,Ψ) represented by a feedforward network and Ψ being it parameters. The problem of minimizing
this Jq or particularly J2 to decide Ψ is just the usual supervised learning by the least Lp error or square
error with a regularization term r(Ψ), which can be done by backpropagation method.

Mixtures of Experts For the cases that multi-sets Mm,m = 1, · · · , Nc are specified by explicit
functions fm(ξ, Ψm), m = 1, · · · , Nc, eq.(9) becomes the problem of minimizing

Jq
Nc

=
Nc∑

m=1

Jq
m, Jq

m = |ηi − fk(ξi, Ψm)|q + βrr(Ψm), Sm = {[ηi, ξi] : Jq
m < Jq

j , j 6= m} (21)

This is a modularized supervised learning. In general, its solution by the HCI algorithm is difficult when
fj , j = 1, · · ·Nc are nonlinear functions.

Alternatively, the learning problem eq.(9) will become the minimization

Jq
Nc

=
Nc∑

m=1

N∑

i=1

ωmi[|ηi − fm(ξi, Ψm)|q + βrr(Ψm)] + β

Nc∑
m=1

N∑

i=1

ωmi ln ωmi, s.t.

Nc∑
m=1

ωmi = 1, (22)

For the algorithm AO, eq.(10) and eq.(11) becomes

ωmi = e−β−1[|ηi−fm(ξi,Ψm)|q+βrr(Ψm)]/

Nc∑

j=1

e−β−1[|ηi−fj(ξi,Ψj)|q+βrr(Ψm)]

Jq
Mm

(Ψm) =
N∑

i=1

ωmi[|ηi − fm(ξi,Ψm)|q + βrr(Ψm)], (23)

When q = 2 and βr = 0 (i.e., no the regularization term). this supervised learning framework eq.(22) and
the AO algorithm are actually the mixtures of experts and its EM learning algorithm ( Jordan & Jacobs,
1994; Xu, Jordan & Hinton, 1994).

3.4 Self-Organizing Topological Maps
We reconsider the special case that each Mi is a point ai, with the regularization term added in eq.(14),

J2
Nc

=
Nc∑

m=1

N∑

i=1

ωmi[‖xi − am‖2 + βrr(am)] + β

Nc∑
m=1

N∑

i=1

ωmi ln ωmi, s.t.

Nc∑
m=1

ωmi = 1 (24)

We re-arrange a1, · · · , aNc on a lattice structure {ai,j , i = 1, · · · , N (1)
c , j = 1, · · · , N (2)

c }, N
(1)
c N

(2)
c = Nc ,

and re-arrange eq.(24) into

J2
Nc

=
N(1)

c∑

i=1

N(2)
c∑

j=1

N∑
t=1

ωi,j,t[‖xi − ai,j‖2 + βrr(ai,j)] + β

N(1)
c∑

i=1

N(2)
c∑

j=1

N∑

i=1

ωi,j,t ln ωi,j,t, s.t.

N(1)
c∑

i=1

N(2)
c∑

j=1

ωi,j,t = 1,

r(ai,j) =
∑

p,q∈N(i,j)

‖ap,q − ai,j‖2. (25)
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where N(i,j) is a pre-specified neighbor set of the unit (i, j), for example, for the 4-neighbors of (i, j) we have
N(i,j) = {(i, j − 1), (i, j + 1), (i, j), (i− 1, j), (i + 1, j)} and r(ai,j) becomes

r(ai,j) = ‖ai,j − ai,j−1‖2 + ‖ai,j − ai,j+1‖2 + ‖ai−1,j − ai,j‖2 + ‖ai+1,j − ai,j‖2 (26)

We minimize this J2
Nc

by the algorithm AO, with eq.(10) becoming

ωi,j,t = e−β−1[‖xi−a
(k)
i,j
‖2+βrr(ai,j)]/

N(1)
c∑

i=1

N(2)
c∑

j=1

e−β−1[‖xi−a
(k)
i,j
‖2+βrr(ai,j)] (27)

eq.(11) becoming

min
{ai,j}

N∑
t=1

ωi,j,t[‖xt − ai,j‖2 + βrr({ai,j})] (28)

The solution of this algorithm will be a topological map, similar to Kohonen map (Kohonen, 1989).
Actually, via several steps of approximate simplifications, we can obtain Kohonen map algorithm from

the above algorithm. First, we let β → 0, all the ωi,j,t’s above will tend to 0 except that one tends to 1, i.e.,
one becomes the winner. Suppose that the winner is ωi∗,j∗,t. Second, we consider minai∗,j∗ ‖xt − ai∗,j∗‖2 +
βrr(ai∗,j∗) by stochastic approximation. we update ai∗,j∗ by gradient descent ∆ai∗,j∗ = −α(xt − ai∗,j∗)
through neglecting the 2nd term in eq.(28). Third, we minimize this 2nd term by letting the neighbors of
ai∗,j∗ to approach ai∗,j∗ , which gives that ap,q = ai∗,j∗ for p, q ∈ N(i∗,j∗). In summary, we have the following
stochastic approximation algorithm—Kohonen map algorithm:

∆ai,j =
{
−α(xt − ai,j), if (i, j) ∈ N(i∗,j∗),
0, otherwise. (29)

It is also no difficulty to re-arrange a1, · · · , aNc on an one dimensional or high dimensional structure to
self-organize the corresponding topological structures.

4. Providing New Results and Research Topics for Learning
This framework provides a unified understanding on various existing neural network learning. Although

they may look quite different, the deep basic mechanism behind them is the same at the level of modeling
by sets. Their surficial differences are due to the different detail structures and constraints on each model
set. Moreover, as will be shown below, this framework also provides new results and new research topics for
learning studies.

4.1 Local Unsupervised Learnings By Sets With Increasing Complexities
In sec. 3.2, we have shown that clustering is actually a localized modeling with points and that Local PCA

or LMSER is actually a localized modeling with lines. Similarly, we can increase the complexity of set Mm
to the hyperplane MP , the linear manifold MM , the sphere MS as well as many other sets with increasing
complexities. Along this direction, many interesting new results and research topics can be obtained. Some
examples are given below.

Local PCA and Multi-line Total Least Square Fitting For the special case that each Mi is a
hyperplane MP given in eq.(5), we have that eq.(8) and eq.(9) become the minimizations of

Jq
Nc

=
Nc∑

m=1

Jq
m, Jq

m =
∑

x∈Sm

[(wm − am)t(x− am)]2

(wm − am)t(wm − am)

Sm = {xi :
[(wm − am)t(x− am)]2

(wm − am)t(wm − am)
<

[(wj − aj)t(x− aj)]2

(wj − aj)t(wj − aj)
, j 6= m} (30)

J2
Nc

=
Nc∑

m=1

N∑

i=1

ωmi
[(wm − am)t(x− am)]2

(wm − am)t(wm − am)
+ β

Nc∑
m=1

N∑

i=1

ωmi ln ωmi, s.t.

Nc∑
m=1

ωmi = 1 (31)

Eq(30) and eq(31) can be solved by the algorithms HCI and AO respectively, which result in am as the local
cluster center, and (wm − am) as the minor component direction of this cluster [see Xu (1994) for detail].
That is, this learning performs local MCA. Actually, this provides a new approach for detecting and fitting
a number of lines or hyperplances in the sense of the total least square error. The approach extends those
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methods proposed in Xu, Oja & Suen (1992) and Xu, Krzyzak & Oja (1993), and it will be very useful for
line and plane detection for image recognition and computer vision.

Local Subspaces For the special case that each Mi is a linear manifold MM that corresponds to J2
M ,

J2
M1

and J2
M2

, and are given in eqs.(5) (12), then similarly by solving eq.(8) or eq.(9) via the algorithm HCI
or AO, we can obtain each subspace located at each cluster’s center am. That is, the learning performs local
k-PCA or local PSA. Moreover, Replacing MM , MM1 , MM1 by their corresponding orthogonal complements,
we can also get local k-MCA or local MSA. These new results make it possible to extend the so called
Subspace Pattern Recognition and Dual Subspace Pattern Recognition (Oja, 1983; Xu & Oja, 1991) from
supervised learning based approaches to unsupervised learning based approaches, so that more practical
pattern recognition problems can be attacked.

Multi-circles or spheres Total Least Square Fitting For the special case that each Mi is a sphere
MS given in eqs.(5) (12), by solving eq.(8) or eq.(9) via the algorithm HCI or AO, we can let each Mi to
detect and represent one of spheres that locates at different points a1, · · · , aNc . This property can be applied
to computer vision for robust detection of circle (Xu & Oja, 1993).

We can further increase the complexity of Mi to ellipse or any other shapes as well as ball, cubic and any
volumes. Different types of sets can also be mixed together in the same modeling. As a result, we can get
many interesting local unsupervised learning, such as local surface fitting, local volumes fitting, for tackling
various density estimation, pattern recognition and computer vision problems.

4.2 Regularization or Generalization for Unsupervised Learnings
In the literature of neural network learning, the issues on regularization or generalization for supervised

learning on feedforward networks have been investigated vastly, such as adding a regularization term, VC
dimension and generalization error, MDL, Bayesian modeling.

However, few efforts have been maded on unsupervised learnings like clustering, PCA type learning and
topological map. Here, the unification of supervised and unsupervised learning in a same framework makes
it possible to extend the studies on regularization or generalization to various unsupervised learnings, which
will give us many new results and interesting topics. In sequel, we discuss two simple but interesting cases.

The regularization term r(Ψ) = tr(ΨtΨ). This regularization has been widely used in training
feedforward network for better generalization. How the cases discussed in sec.3 are influenced by adding
such a term ?

For M = Ma, r(Ψ) = ‖a‖2, J2
a given in eq.(12) will become J2

a+βr‖a‖2 with solution a′ = N
N+βr

1
N

∑N
i=1 xi,

i.e., it biases towards zero with its norm reduced by N
N+βr

. In the same time, the variance has reduced also
by the factor N

N+βr
.

For the case of multi-sets with each Mm = {am}, apparently each center am = 1
nm

∑N
i=1 ωmi should

also contract by nm

nm+βr
. However, the change of am will also change ωmi, which in turn will change am

again. How the solution is actually affected ? It may shrink the spreading of the center’s locations. It is
an interesting topic for a further study. It is also interesting to investigate how the other cases discussed in
sec.3 are affected by the term r(Ψ) = tr(ΨtΨ).

Minimum description length (MDL). For multi-sets case, such as clustering, PCA, local PCA, one
of a key problem is how to select an appropriate Nc. The classical problem of selecting the number of clusters
for a clustering algorithm (e.g., k-mean) is a typical example. With the unified framework, we know that the
generalization approaches for supervised learning can also be used to unsupervised learnings. This motivates
us to use MDL approach for this purpose.

Considering eq.(13), we examine the case of transmitting each data xi from a sender to a receiver.
Assume that {am}Nc

1 are sent to the receiver in advance. For each data xi, we first find an Sm such that
xi ∈ Sm, then we transmit two sets of coding bits to the receiver. One indicates which one of {am}Nc

1
corresponds to xi ∈ Sm, this needs ln Nc bits. The other are the bits for coding the residual rim =
xi − am. Suppose rim is from Gaussion N(0, σI), the coding bits of its j-th component are approximately
− ln{[√2πσ]−1exp[−0.5(r(j)

im)2/σ2]δ} = 0.5(r(j)
im)2/σ2 +0.5 ln(2πσ2/δ), where δ is quantization accuracy. The

total bits for residuals of Sm are 0.5
∑

x∈Sm
‖xi − am‖2/σ2 + 0.5#Sm ln(2πσ2/δ). Therefore, the total bits

for the first set is N ln Nc and the total bits for the second set are 0.5
∑Nc

m=1

∑
x∈Sm

‖xi − am‖2/σ2 +
0.5N ln(2πσ2/δ). Sum up them, we have that the MDL is equivalent to minimize

Jg2
Nc

=
1
N

Nc∑
m=1

∑

x∈Sm

‖xi − am‖2 + 2σ2 ln Nc + σ2ln(2πσ2/δ). (32)

The last term is independent of choosing Nc and determining {am}Nc
1 . By comparing with eq.(13), Jg2

Nc
has

the 2nd term which penalizes the large Nc. The larger the Nc is, the smaller the first term, but the larger
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the second term. This penalty also increases with the variance σ2—the size of each cluster. The larger each
cluster is supposed to be, the big the penalty is, the less the cluster’s number. When σ2 is known or can be
specified, we can use eq.(32) to select a suitable Nc.

Eq.(32) can be further improved. In the first set of coding bits, each xi uses ln Nc bits which implies
that the probablity of assigning xi ∈ Sm is assumed to be 1/Nc. But it is actually ωmi given by eq.(15). So
the first set of coding bits are

∑Nc

m=1

∑N
i=1 ωmi ln ωmi instead of N ln Nc. As a result, eq.(32) becomes

Jg2
Nc

=
1
N

Nc∑
m=1

∑

x∈Sm

‖xi − am‖2 +
2σ2

N

Nc∑
m=1

N∑

i=1

ωmi ln ωmi + σ2 ln(2πσ2/δ), (33)

Again only the first two terms are related to the minimization with respect to Nc and {am}Nc
1 . Surprisingly,

the first two terms form the J2
Nc

in eq.(14) by regarding β = 2σ2. In other words, our model eq.(14) for
clustering is equivalent to do clustering based on MDL.

Further studies on eq.(32) and eq.(33), including how to decide σ2 and experimental results, are given
in (Xu, 1995b). In addition, the studies on the other cases given in sec.3 are provided in (Xu, 1995c).

4.3 Generalized Finite Mixture Models
When r(Ψm) = − β

βr
ln αm

Zm
with αm = 1

N

∑N
i=1 ωmi, Zm = Zm(β, Ψm) =

∫
exp(−εq(xi, Ψm)/β)dxi, the

problem of minimizing Jq
M is equivalent to the maximum likelihood learning of mixture distribution

p(x) =
Nc∑

m=1

αmpm(x/Ψm), pm(x/Ψm) =
1

Zm
exp(−εq(xi, Ψm)/β).

This sets up connections of MML learning to finite mixture and EM learning (Dempster, Laird & Rubin,
1977, Hathaway, 1986). The connection between EM and statistical physics is also explored recently by
Yuille, Stolorz and Utans (1994). Via MML learning and particularly eq.(33), we can further connect the
EM learning to MDL learning. In addition, the 2nd term in eq.(9) was used in Yuille and Kosowsky (1992)
as barrier function; It suggests that MML learning may also be connected to optimization.

5. Conclusions
A unified learning framework is proposed. It has been shown that the different special cases of this

framework will automatically led us to current existing major types of neural network learnings, e.g, data
clustering, various PCA-type self-organizations and their localized extensions, self-organizing topological
map, as well as supervised learning for feedforward network and modular architecture. With this new
framework, we can get a deep understanding on the existing learnings, we can also be guided to extend
the existing learnings for new topics and results. We have laid a path for introducing regularization or
generalization to various unsupervised learnings, particularly, we have developed approaches for a classical
unsolved problem—how to decide the number of clusters in clustering analysis or competitive learning.
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