
A Trend on Regularization and Model
Selection in Statistical Learning:
A Bayesian Ying Yang Learning Perspective

Lei Xu

Department of Computer Science and Engineering, Chinese University of Hong
Kong, Shatin, NT, Hong Kong, P.R. China

Summary. In this chapter, advances on regularization and model selection in
statistical learning have been summarized, and a trend has been discussed from a
Bayesian Ying Yang learning perspective. After briefly introducing Bayesian Ying-
Yang system and best harmony learning, not only its advantages of automatic model
selection and of integrating regularization and model selection have been addressed,
but also its differences and relations to several existing typical learning methods
have been discussed and elaborated. Taking the tasks of Gaussian mixture, local
subspaces, local factor analysis as examples, not only detailed model selection crite-
ria are given, but also a general learning procedure is provided, which unifies those
automatic model selection featured adaptive algorithms for these tasks. Finally, a
trend of studies on model selection (i.e., automatic model selection during para-
metric learning), has been further elaborated. Moreover, several theoretical issues
in a large sample size and a number of challenges in a small sample size have been
presented. The contents consist of
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1 Best Fitting vs Over-fitting

Statistical learning is usually referred to a process that a learner discovers
certain dependence relation underlying a set of samples XN = {xt}Nt=1. The
learner is equipped with a device or modelM to accommodate this dependence
relation. Such a relation is featured by a specific structure So and a specific
setting θo taken by a set of parameters θ. Keeping the same structure So, we
can get a family of specific relations So(θ) by varying θ within a given domain
Θ that includes θo. Provided that every xt comes from So(θo) without noise
or disturbance, if we know So but do not directly know θo, we can get θ = θo

via the principle of searching one θ ∈ Θ such that So(θ) best fits the samples
in XN , as long as N is large enough. Usually, samples come from So(θo)
subject to certain uncertainties, e.g., noises, disturbances, random sampling,
etc. When N is large enough, we may still get a unique estimate value θ∗ to
approximate θo via this best fitting principle. Such a task of determining θ is
usually called parameter learning.

The task becomes not so simple in the cases that either So is unknown or
N is not large enough even when So is known. If we do not know So, we have to
assign an appropriate structure to M . More specifically, a structure is featured
by its structure type and its complexity or scale. E.g., considering relations
described by y(x) = a3x

3 +a2x
2 +a1x+a0, its structure type is a polynomial

and its scale is simply an integer that is equal to 3. For two structures Sa

and Sb of a same type, Sa is actually a sub-structure (or Sa is included in Sb,
shortly denoted by Sa ≺ Sb) if Sa has a scale smaller than that of Sb. E.g.,
a polynomial of the order 2 is a sub-structure in a polynomial of the order 3.
For two structures Sa and Sb of different types, if one is not a sub-structure of
the other, we can always enlarge the scale of one structure to a large enough
one such that it includes the other as a sub-structure. For this reason, we
let M to consider a family of structures S(θk,k), where S may not be same
as the unknown one of So, but is pre-specified by one of typical structures,
depending on a specific learning task encountered. Readers are referred to [41]
for a number of typical structure types. k is a tuple that consists of one or
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Fig. 1. Fitting error vs generalization error

several integers. By enumerating in a certain manner the values that k takes,
we can get a series of embedded structures S1 ≺ S2 ≺ · · · ≺ Sk · · · such that
Sk∗−1 ≺ So ≺ Sk∗ .

It is not difficult to find k∗ if XN comes from So(θo) without noise or
disturbance. Searching a best value of θ1 such that S1(θ1) best fits the samples
in XN , there will be a big fitting error. This fitting error will monotonically
decrease as k increases. Also, it reaches zero when k = k∗ and remains to be
zero as k further increases. That is, k∗ can be found by the smallest k where
a zero fitting error is reached. However, the best fitting error by Sk∗(θk∗) will
still be nonzero, if the samples in XN have been infected by noises while N
is a finite size. As shown in Fig. 1(a), the fitting error will keep to decrease
monotonically as k further increases, until it reaches zero at kN that relates
to N and but is usually much larger than k∗. In other words, a large part
of structure with a much larger scale has actually been used to fit noises or
disturbances. As a result, we can not get k∗ by the principle of finding the
smallest scale at which the best-fitting error is zero. This is usually called
over-fitting problem.

We also encounter the same problem even when we known that the samples
XN = {xt}Nt=1 come from So(θo) without noise but the size N is not large
enough. In such a case, we are unable to determine a unique θ∗ via the best
fitting principle, because there will be infinite many choices of θ by which the
best fitting error is zero. In other words, the samples in XN actually come
from a unknown sub-structure inside So. That is, we are lead to the same
situation as the above ones with So unknown.

2 Trends on Regularization and Model Selection

2.1 Regularization

In the literatures of statistics, neural networks, and machine learning, many
efforts in two directions have been made on tackling the over-fitting problem
in the past 30 or 40 years. One direction consists of those made under the
name of regularization that is imposed during parameter learning [35, 24].
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Though we do not know the original structure underlying the samples in
XN , we may consider a structure Sk(θk) with its scale large enough to include
the original structure, which is also equivalent to the cases that the samples
XN = {xt}Nt=1 come from a known structure So(θo) but with N being not
large enough. Instead of searching an appropriate substructure, we impose
certain constraint on θ or certain regularity on the structure S(θ) = Sk(θk)
with a scale k such that we can find a unique θ∗ by best fitting to get a
specific structure S(θ∗) but still with a scale k as an effective approximation
to a substructure in a lower scale.

The existing typical regularization techniques can be roughly classified into
two types. One is featured by a corrected best fitting criterion in a format of
best-fitting plus correction, as summarized below:

• Tikhonov regularization One popular approach relates to the well known
Tikhonov regularization [24, 11, 35], featured by the following format

θ∗ = argmin
θ

[F (S(θ),XN ) + λP (S(x, θ))], (1)

where F (S(θ),XN ) denotes the fitting error for implementing the best
fitting principle, and P (S(x, θ)) is usually called a stabilizer that describes
the irregularity or non-smoothness of the manifold S(x, θ) specified by the
structure S(θ). Moreover, λ is called a regularization strength that controls
how strong the stabilizer is in action.

• Ridge regression It has been widely used in the literature of neural net-
works (see a summary by Sec. 2.3 in [67]), featured by the following format

θ∗ = argmin
θ

[F (S(θ),XN ) + λΩ(θ)], (2)

where Ω(θ) denotes a regularized term that attempts to shrink the dyna-
mic range that θ varies. One typical example is Ω(θ) = ‖θ‖2.

• Bayesian approach Another widely studied apporach is called maximum
a posteriori probability (MAP), featured by maximizing the posteriori
probability

p(θ|XN ) = p(XN |θ)p(θ)/p(XN ), (3)

or equivalently minimizing −[ln p(XN |θ) + ln p(θ)] with ln p(XN |θ) taking
the role of F (S(θ),XN ), while ln p(θ) takes the role ofΠ(S(x, θ)) and Ω(θ).

This type has both one crucial weakness and one key difficulty. The crucial
weakness comes from the choices of P (S(x, θ)) in eq.(1), Ω(θ) in eq.(2), and
p(θ) in eq.(3), which usually have to be imposed in an isotropic manner.

Thus, regularization works only to a single mode data set in a symmet-
rical, isotropic, or uniform structure. However, such a situation is usually
not encountered for two main reasons. First, a data set may include multi-
ple disconnected substructures. Second, even for a single mode data set in a
symmetrical, isotropic, or uniform structure, we need to use a structure with
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an appropriate scale k∗ to fit it. If a structure with a larger sale k > k∗ is
used, it is desired that the part corresponding to those extra scales can be
ignored or discarded in fitting. For an example, given a set of samples (xt, yt)
that come from a curve y = x2 + 3x + 2, if we use a polynomial of an order
k > 2 to fit the data set, i.e. y =

∑k
i=0 aix

i, we desire to force all the para-
meters {ai, i ≥ 3} to be zero. In other words, we have to treat the parameters
{ai, i ≥ 3} differently from the parameters {ai, i ≤ 2}, instead of being in an
isotropic or uniform way.

In addition to the above problem, we also encounter a key difficulty on how
to appropriately control the strength λ of regularization, which is usually able
to be roughly estimated only for a rather simple structure via either handling
the integral of marginal density or in help of cross validation, but with very
extensive computing costs [31, 32, 33].

The second type of regularization techniques consists of those not directly
guided by a corrected best fitting criterion, but rather heuristically based.
While some are quite specific problem dependent, some are generally applica-
ble to many problems, for examples we can

• add noises to the samples in XN ;
• add noises to a solution θ∗ obtained by certain approach;
• terminate a learning process before it converges.

Though the adding noise approaches can be qualitatively related to the
Tikhonov regularization [5], we do not know what type of noises to add and
thus usually add a Gaussian noise with a variance λ, which is still an isotropic
type regularization. In other words, we still can not avoid being suffering from
the previously discussed crucial weakness. Also, it is very difficult to determine
an appropriate variance λ.

As to the early termination approach, it has also been qualitatively related
to Tikhonov regularization in some simple structure. However, it is very diff-
icult to guide when to terminate.

Actually, all the regularization efforts suffer the previously discussed cru-
cial weakness and difficulty, which come from its nature of searching a struc-
ture S(θ∗) with a scale k to approximate a substructure in a lower scale,
while the part related to those extra scales has not been discarded but still in
action to blur those useful ones. To tackle the problems, we turn to consider
the other direction that consists of those efforts made under the name of model
selection, featured by searching a structure with an appropriate scale k∗.

2.2 Model Selection

As discussed previously in Fig. 1, we can not find an appropriate k∗ according
to the best fitting principle. Several theories or principles have been proposed
to guide the selection of k∗, which can be roughly classified into two categories.

One directly bases on the generalization error, i.e., the fitting error of an
estimated Sk(θ∗k) not only on the samples in XN but also on all the other
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samples from So(θo) subject to noises and certain uncertainty. Using po(x) =
p(x|So(θo)) to describe that x comes from So(θo) subject to certain noises or
uncertainty, and letting ε(x, k) to denote the fitting error of x by Sk(θ∗k), if
we measure the following expected error (also called generalization error):

Eg(k) =
∫
ε(x, k)po(x)dx, (4)

which takes in consideration not only the best fitting error on the samples in
XN but also all the other samples from So(θo).

However, it is impossible to estimate the generalization error by knowing
all the samples from So(θo). We have to face the difficulty of estimating the
generalization error merely based on the samples in XN . Two representative
theories for this purpose are as follows:

• Estimating generalization error by experiments Studies of this type are
mostly made under the name of cross-validation (CV) [31, 32, 33, 28], by
which generalization error is estimated in help of experiments of making
training and testing via repeatedly dividing a same set of samples into a
different training set and a different testing set.

• Estimating bounds of general error via theoretical analysis Though it is
theoretically impossible to get an analytical expression for the general-
ization error merely based on the samples in XN , we may estimate some
rough bound ∆(k) on the difference between the best fitting error and the
generalization error. As shown in Fig. 1(b), we consider

k̂ = argmin
k
J(k, θfit

k ), J(k, θfit
k ) = F (XN , θ

fit
k ) +∆(k), (5)

where θfit
k = argminθk

F (XN , θk), and F (XN , θk) is a cost measure for
implementing a best fitting, e.g., it is usually the negative likelihood func-
tion − ln p(XN |θk). One popular example for this ∆(k) is the VC dimen-
sion based learning theory [39]. A bound ∆(k) relates to not only N and
the fitting error F (XN , θ

fit
k ), but also a key index called VC dimension.

Qualitatively, such a bound ∆(k) is useful for theoretical understanding.
However, it is usually difficult to implement because the VC dimension is
very difficult to estimate except for some simple cases.

The other category summarizes all the other efforts not directly based
on estimating the generalization error. They are closely related but proposed
from different aspects, as summarized below:

• Minimizing information divergence The discrepancy between the true
model and the estimated model is minimized via minimizing KL(po‖pθk

),
where pθk

= p(x|θk) = p(x|Sk(θk)) and KL(p‖q) is the well known
Kullback-Leiber information, i.e.,

KL(p‖q) =
∫
p(x) ln

p(x)
q(x)

dx. (6)
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It further follows that KL(po‖pθk
) = H(po‖po)−H(po‖pθk

), where

H(p‖q) =
∫
p(x) ln q(x)dx. (7)

Its negation −H(p‖q) is also called the cross entropy, and −H(p‖p) is the
entropy of p(x). Since H(po‖po) is constant, minimizing KL(po‖pθk

) is
equivalent to maximizing H(po‖pθk

). If the unknown true density po(x) is
simply replaced by the empirical density from the sample set XN , i.e.,

pXN
(x) =

1
N

∑N
t=1δ(x− xt), (8)

maximizing H(pXN
‖pθk

) becomes the maximum likelihood function, which
gives θML

k = argmaxθk
H(pXN

‖pθk
). However, as discussed before, the

best fitting measure H(pXN
‖pθML

k
) will monotonically decrease as k and

thus is not good to be used for selecting k. A better choice is to use the
unknown EXN

[H(pXN
‖pθk

)]θk=θML
k

. To estimate it, we consider the bias

b(k,N) = EXN
{EXN

[H(pXN
‖pθk

)]θk=θML
k
} − EXN

H(po‖pθML
k

), (9)

which relates to both k and N . With this bias b(k,N) estimated, we are
lead to eq.(5) with

F (XN , θ
fit
k ) = H(pXN

‖pθML
k

), ∆(k) = b(k,N) (10)

for selecting k. Along this line, we are further lead to the well known
Akaike information criterion (AIC) with b(k,N) = 0.5dk/N [1, 2, 3] and a
number of its extensions AICB, CAIC, etc, [34, 6, 7, 14, 8].

• Optimizing marginal likelihood Introducing a prior p(θk), we consider to
maximize the likelihood of the following marginal distribution:

p(x|Sk) =
∫
p(x|Sk(θk))p(θk)dθk. (11)

Instead of solving this integration, we consider h(θk) = ln p(x|Sk(θk)) that
is expanded into a second order Taylor series with respect to θk around
θML

k . Let p(θk) = 1 noninformatively inside the intergal, we get

p(x|Sk) = p(x|Sk(θML
k ))

∫
p(θk)e−0.5N(θk−θML

k )T I(θML
k )(θk−θML

k )dθk,

= p(x|Sk(θML
k ))(2π)0.5dk |I(θML

k )N |−0.5 (12)

where dk is the dimension of θk, and I(θk) is the observed Fisher infor-
mation matrix. After ignoring some terms approximately, we are lead to
eq.(5) again with

F (XN , θ
fit
k ) = H(pXN

‖pθML
k

), ∆(k,N) = 0.5
dk lnN
N

, (13)

which is usually referred as Bayesian inference criterion (BIC) [29, 15, 23].
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• Ockham Razor (minimizing two parts of coding) The idea is to mini-
mize the sum of the description length for the model and the description
length for residuals that the model fails to fit. Typical examples include
those studies under the name of Minimum Message Length (MML) the-
ory [36, 37, 38] and the name of Minimum Description Length (MDL)
[26, 27, 22, 9, 13]. Though being different from the above BIC type app-
roach conceptually, the implementation of either MML or MDL actually
crash back to be exactly equivalent to the above BIC type approach.

Though each of the above approaches can provide a criterion J(k, θ∗k)
in a format of eq.(5), we still have to face two problems for selecting an
appropriate scale k∗. First, in the cases that the size N of samples is small or
not large enough, each criterion actually provides a rough estimate that can
not guarantee to give k∗, and even results in a wrong result especially when k
consists of several integers to enumerate. Moreover, one criterion works better
in this case and the other criterion may work better in that case, none can
be said to be better than the others. Second, in addition to the performance
problem, another difficulty is its feasibility in implementation, because it has
to be made in the following two phases:

Phase 1: Enumerate k within a range from kd to ku, that is assumed to
contain the optimal k∗. For each specific k, we make parameter learning
to get θfit

k = argminθk
F (XN , θk) according to the best fitting principle

(e.g., minimizing a square error or maximizing a likelihood function).
Phase 2: Select k∗ = argmink J(k, θfit

k ) for every k within [kd, ku].

This two-stage implementation is very expensive in computing, which makes
it infeasible in many real applications.

2.3 Model Selection: from Incremental to Automatic

There are also efforts made in literatures towards the difficulty of the above
two-stage implementation. One type of efforts is featured by an incremental
implementation. Parameter learning is made incrementally in a sense that it
attempts to incorporate as much as possible what learned at k into the learning
procedure at k+1. Also, the calculation of J(k, θ∗k) is made incrementally. Such
an incremental implementation can indeed save computing costs in certain
extent. However, parameter learning has to be made still by enumerating
the values of k, and computing costs are still very high. As k increases to
k+ 1, an incremental implementation of parameter learning may also lead to
suboptimal performance because not only those newly added parameters but
also the old parameter set θk have to be re-learned.

Another type of efforts has been made on a widely encountered category
of structures, with each consisting or composing of k individual substructures,
e.g., a Gaussian mixture structure that consists of k Gaussian components.
A local error criterion is used to check whether a new sample x belongs to each
substructure. If x is regarded as not belonging to any of the k substructures,
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the k + 1-th substructure is added to accommodate this new x. This incre-
mental implementation for determining k is much faster. However, the local
evaluating nature makes it very easy to be trapped into a poor performance,
except for some special cases that XN = {xt}Nt=1 come from substructures
that are well separated from each other.

Another new road has also been explored for more than ten years, with a
feature that model selection can be implemented automatically during para-
meter learning, in a sense that making parameter learning on a structure
Sk(θk) with its scale large enough to include the correct structure, will not only
determine parameters but also automatically shrink its scale to an appropriate
one, while those extra substructures are discarded during learning. It combines
the good feature of regularization and the good feature of model selection. On
one hand, it takes the good feature of regularization (i.e., parameter learning
is only implemented on a structure Sk(θk) with a larger scale), but discards
the crucial problem of regularization (i.e., those extra substructures are still
kept to blur the useful ones). On the other hand, it takes the good feature
of model selection, i.e., only a structure with an appropriate scale is in action
without any extra substructures to deteriorate its performance. Moreover, it
not only keeps the model selection performance as good as that by a two-
stage implementation, but only performs parameter learning only once with
a drastic reduction in computing costs.

One early effort along such a new road started from Rival Penalized Com-
petitive Learning (RPCL) for clustering analysis and detecting curves in an
image [64, 66]. A structure in a scale k consists of k individual substructures,
with each being simply one point as one cluster’s center. Initially, k is given
a value larger than the appropriate number of clusters. A coming sample x
is allocated to one of the k centers via competition, and the winning center
moves a little bit to adapt the information carried by this sample. Moreover,
the rival (i.e., the second winner) is repelled a little bit away from the sample to
reduce a duplicated information allocation. Driving those extra centers away,
this rival penalized mechanism will keep an appropriate number of centers. In
other words, RPCL makes the number of clusters determined automatically
during learning. This is a favorable feature that the conventional competi-
tive learning or clustering algorithm (e.g., k-means) does not have. RPCL has
been further extended from spheral clusters to elliptic clusters via Gaussian
mixture [55, 52, 49]. Readers are referred to [40, 47] for a recent elaboration
and to [17, 18, 16] for successful applications.

RPCL learning was heuristically proposed on a bottom level (i.e., a
level of learning dynamics or updating rule), which is quite different from
our previous discussions on a global level of using one learning principle
or theory to guide parameter learning and model selection in a top-down
manner. Proposed firstly in [59] and systematically developed in past years
[53, 51, 52, 49, 47, 42, 43, 41], the Bayesian Ying-Yang (BYY) harmony learn-
ing is such a global level theory that guides various statistical learning tasks
with model selection achieved automatically during parameter learning.
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3 BYY Harmony Learning: A Trend on Regularization
and Model Selection

3.1 Bayesian Ying-Yang System

Instead of letting M to consider a parametric structure for directly best fitting
the observed samples XN , M is considered or designed as a system that jointly
describes the observed samples and their inner representations Y via two dif-
ferent but complementary parts. As shown in Fig. 2(a), one is named as Yang
that consists of one component for representing XN and one component for
describing a path from XN to Y. The other part is named as Ying that con-
sists of one component for representing Y and one component for describing
a path from Y to XN . Each of the four components may have several choices
for its corresponding structure. The four components can be integrated into
a system in more than one choices under the name of architecture. In such a
Ying-Yang system, a principle of using a structure in a specific type to best fit
X can be generalized into a principle for a Ying-Yang system to best match
each other, which includes using a structure to directly best fit X as a subtask.

The Ying-Yang system can be further formulated in a statistical framework
by considering the joint distribution of X and Y, which can be described via
the following two types of Bayesian decomposition:

p(X ,Y) = p(Y|X )p(X ), q(X ,Y) = q(X|Y)q(Y). (14)

In a compliment to the famous Chinese ancient Ying-Yang philosophy, the
decomposition of p(X ,Y) coincides the Yang concept with p(X ) describing
samples from an observable domain (called the Yang space) and p(Y|X )
describing the forward path from XN to Y (called the Yang pathway). Thus,
p(X ,Y) is called the Yang machine. Similarly, q(X ,Y) is called the Ying ma-
chine with q(Y) describing representations in an invisible domain (thus re-
garded as a Ying space) and q(X|Y) describing the backward path (called the

building up input-response
type dependence 

Y → XX → Y
Describing invariant dependence
underlying a set of all samples 

The World
XN

YN

P(Y|X) P(X|Y)

The World
P(X)

P(Y)

(a) (b)

Fig. 2. (a) Ying-Yang system, (b) Bayesian Ying-Yang system
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Ying pathway). As shown in Fig. 2(b), such a pair of Ying-Yang machines is
called Bayesian Ying-Yang (BYY) system.

Each of the above four components may have more than one choices for
its structure, as summarized below:

• p(X ) is either a nonparametric estimation via data smoothing, e.g.,

ph(XN ) =
∏N

t=1G(xt|x̄t, h
2I), (15)

or a direct use of the samples in XN , i.e., by p0(XN ) = ph(XN )|h=0.
That is, each specific sample x̄t is blurred or smoothed by a Gaussian noise
with a variance h2, resulting in a Gaussian random variable xt.

• The structure of q(Y) takes at least three crucial roles. One is bridging the
Ying and Yang two parts. The other is specifying the nature of learning
tasks via a number of choices summarized by a general structure [41]. The
third role is that the scale of its structure actually dominates the scale of
the system architecture, as to be introduced in the next subsection.

• With the settlements of q(Y) and p(X ), each of p(Y|X ) and q(X|Y) has
also more than one different choices.

Moreover, there are different ways for integrating the four components
together, which result in different system architectures.

As a result, p(X ,Y) and q(X ,Y) in eq.(14) are actually not the same
though both represent the same joint distribution of X and Y. In such a for-
mulation, the best fitting principle is generalized into a principle that p(X ,Y)
and q(X ,Y) best match each other. This match can be measured by the
Kullback divergence [59] and several non-Kullback divergences [57, 45], sum-
marized in the following general expression:

D(p‖q, θk) =
∫
p(Y|X )p(X )f(

p(Y|X )p(X )
q(X|Y)q(Y)

)dXdY, (16)

where f(r) is a convex function. Particularly, we have the Kullback divergence
when f(r) = ln r. In this setting, our task becomes to specify each of the four
components via determining all the unknowns subject to all the known parts,
i.e., XN and the pre-specified structure of each component. In a summary,
we have

min
p(X ), p(Y|X ), q(X|Y), q(Y), and θk subject to

their pre-specified structures and XN

D(p‖q, θk). (17)

In the special case that p(Y|X ) is free of any pre-structure, minimizing
D(p‖q, θk) with respect to p(Y|X ) will lead to a special case that is equivalent
to using q(X ) =

∫
q(X|Y)q(Y)dY to best fit XN in a sense of the maximum

likelihood principle. This nature, together with the feature that the special
settings of q(Y) as well as of other three components q(X|Y), p(Y|X ) and
p(X ) lead to specific structures of a number of existing typical learning tasks,
makes a number of existing statistical learning approaches summarized in a
unified perspective with new variants and extensions [44, 45, 41].
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3.2 BYY Harmony Learning

Still, we encounter an over-fitting problem for such a best Ying-Yang match
by eq.(17). Similar to what discussed in Sec. 1, we consider the BYY system
with a family of system architectures of the same type but in different scales.

A system architecture type is an integration of the four components with
each in its own specific structure type. As introduced in the previous subsec-
tion, the structure type of q(Y) takes a leading role, and the scale of the entire
system architecture is dominated by the scale of the structure for q(Y). We
can denote this scale by an integer k that usually represents an enumeration
of a set of integers k embedded within the structure of q(Y). Also we can use
θk to denote all the unknowns in an architecture of a scale k. Suffering an
expensive computing cost, we may learn a best value θ∗k∗ at a best scale k∗

via the following two-phase implementation:

Phase 1: Enumerate a series of architectures of a same type but in diff-
erent scales. For each one at k, we make parameter learning to get θ∗k =
argminθk

D(p‖q, θk).
Phase 2: Select k∗ = argmink J(k, θ∗k) according to one of the existing model

selection criteria.

Much more importantly, the Ying-Yang system is motivated together with
the ancient Chinese philosophy that the Ying and the Yang should be best
harmony in a sense that two parts should not only best match but also are
matched in a compact way. Applying this philosophy into a BYY system, we
have a best harmony principle in the following twofold sense:

• Best matching the difference between the two Bayesian representations
in eq.(14) should be minimized.

• Least complexity the resulted architecture for the BYY system should be
in a least complexity, i.e., its inner representation has a least complexity.

The above can be further mathematically measured by the following functional

H(p‖q, θk) =
∫
p(Y|X )p(X )f(q(X|Y)q(Y))µ(dX )µ(dY)− lnZ, (18)

where f(r) is again a convex function as in eq.(16), and a most useful case is
f(r) = ln r. Instead of eq.(17), we specify the four components via determining
all the unknowns subject to all the known parts as follows [59, 51, 49]:

max
p(X ), p(Y|X ), q(X|Y), q(Y), and θk subject to

their pre-specified structures and XN

H(p‖q, θk), (19)

which guides not only learning on θ∗k but also model selection on k∗. This
is a significant difference from the conventional approaches, by which θ∗k is
learned under a best fitting principle but k∗ is selected in help of another
learning theory.
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The term lnZ imposes certain regularization into learning on XN with
a small size N , which will be discussed in Sec. 3.5. Here, we give a further
insight on H(p‖q) via the following decomposition

H(p‖q, θk) = Hx|y +Hy,
Hx|y =

∫
p(Y|X )p(X ) ln q(X|Y)µ(dX )µ(dY),

Hy =
∫
p(Y) ln q(Y)µ(dY), p(Y) =

∫
p(Y|X )p(X )µ(dX ). (20)

On one hand, the term Hx|y accounts for a best fitting of the samples in XN by
q(X|Y) in help of the corresponding inner representation Y. If p(X ) is given
by eq.(8) and a set YN is given for pairing XN , Hx|y degenerates into the
likelihood function of q(X|Y). On the other hand, the term Hy accounts for
two purposes. When the structure of q(Y) is not pre-imposed with too much
constraint, maximizing Hy results in q(Y) = p(Y) such that −Hy becomes
exactly the entropy of the inner representation. Thus, maximizing Hy leads
to an inner representation in a least complexity. Usually, q(Y) is pre-imposed
with different structures for different learning tasks, maximizing Hy forces the
resulted p(Y) to satisfy these constraints correspondingly. It can be observed
that Hx|y increases while Hy decreases as the scale k increases, which trades
off for an appropriate k∗. In other words, H(p‖q, θk) can be used at Phase 2
of a two-phase implementation given at the beginning of this subsection, in
place of a model selection criterion. That is, we get θ∗k = argminθk

D(p‖q, θk)
at Phase 1, and then, as shown in Fig. 3(a), we select a best k∗ at Phase 2 by

k∗ = argmin
k

J(k), J(k) = −H(p‖q, θk)|θk=θ∗
k
. (21)

With this two-phase implementation as a link, we can compare the perfor-
mances of this new criterion with those typical model selection criteria dis-
cussed in Sec. 2.2.

3.3 BYY Harmony Learning and Automatic Model Selection

The BYY harmony learning by eq.(19) has a salient advantage that an appro-
priate scale k∗ can be obtained by implementing parameter learning only once
on an architecture in a larger scale.

Considering q(Y) in a scale reducible structure that its scale k can be
effectively reduced into a smaller one by forcing a critical subset of parame-
ters within the structure becoming zero. That is, we consider a distribution
q(y|θy

k), θy
k ∈ Θ

y
k that demonstrates its maximum scale ky when θy

k takes val-
ues within some specific domain Θ̂k

y
of Θy

k while it effectively reduces into a
smaller scale when a critical subset φk of θy

k becomes zero. For an example, a
mixture distribution q(y|θy

k) =
∑k


=1 α
q(y|φ
) has a scale k when α
 > 0 for
all �, but will reduce into a scale k − 1 if one α
 = 0. For another example,
an independent product q(y|θy

k) =
∏m

j=1 q(y
(j)|θy(j)

k ) has a scale m in general
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J(k)=−minqk 
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Fig. 3. Selection of an appropriate k∗

but a reduced scale m − 1 when there is one j with var(y(j)) = 0, i.e., the
variance parameter of y(j) becomes zero. Readers are referred to Sec. 22.5 in
[44], Sec. 23.3.2 in [45], Sec. II(B) in [42], and Sec. III(C) in [41].

For q(Y) in a scale reducible structure, we have two different types of
choices. First, let

J(k) = − max
θk, subject to θy

k
∈Θ̂k

y
H(p‖q, θ∗k), (22)

we are lead to a case as shown in Fig. 3(a) for a two-phase implementation.
E.g., we get such a case when α
 = 1/k for all � or var(y(j)) = 1 for all j.
Second, we let J(k) = −maxθk

H(p‖q, θk) without any constraint, maximizing
Hy will push the part θy (2)

k of those extra substructures to zeros such that
q(Y) effective shrinks to a scale smaller than k. As a result, the curve shown
in Fig. 3(a) becomes the curve shown in Fig. 3(b).

In other words, considering q(Y) in a scale reducible structure with an
initial scale k that is larger than an appropriate one, we can implement the
following parameter learning

max
θk

H(p‖q, θk), (23)

which results in not only a best θ∗k but also an appropriate k∗ determined
automatically during this learning. Readers are referred to [41, 43, 44, 49].

3.4 BYY Model Selection Criteria on a Small Size of Samples

In a situation that the sample size N is too small, the performance of auto-
matic model selection by the BYY harmony learning will deteriorate, and we
have to turn back to a two phase implementation. For this purpose, we seek
to find improved model selection criteria from eq.(21).

We consider a more general BYY system with an augmented inner-system
representation R that consists of not only Y featured by a per sample pairing
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relation between XN and YN (i.e., each xt gets its inner representation yt),
but also all the unknown parameters θk (including h in eq.(15)). With such
an extension, eq.(14) becomes

p(X ,R) = p(R|X )p(X ), q(X ,R) = q(X|R)q(R). (24)

Specifically, q(R) = q(Y, θk) = q(Y|θk)q(θk) that consists of two parts. One
is q(θk) that describes a priori distribution for the values that θk may take.
The other is actually the previous one under the notation q(Y), which is
featured by a family of parametric functions that vary as a set of parame-
ters θy

k that is a subset of θk. That is, q(Y) = q(Y|θk) = q(Y|θy
k). Coupling

with the representation of Y, q(X|R) = q(X|Y, θk) = q(X|Y, θxy
k ) is actually

the previous one under the notation q(X|Y), defining a family of parametric
functions with a set of parameters θxy

k that is also a subset of θk. More-
over, p(R|X ) = p(Y, θk|X ) = p(Y|X , θk)p(θk|X ) that comprises of two parts.
p(Y|X , θyx

k ) is actually the previous one under the notation p(Y|X ), associated
with a set of parameters θyx

k that is another subset of θk too. The other part
p(θk|X ) describes the uncertainty of estimating θk from X , which is actually
the posteriori counterpart of the a priori q(θk).

Correspondingly, we can observe that the harmony functional by eq.(18)
actually comes from

H(p‖q) =
∫
p(R|X )p(X )f(q(X|R)q(R))µ(dX )µ(dR). (25)

In the case f(r) = ln r, it can be further rewritten into

H(p‖q) =
∫
p(θk|X )H(p‖q, θk)dθk

H(p‖q, θk) =
∫
p(Y|X , θyx

k )ph(X ) ln [q(X|Y, θxy
k )q(Y|θy

k)]dXdY − Z(θk),

Z(θk) = − ln q(θk), (26)

where H(p‖q, θk) is actually the one given in eq.(18) at the case f(r) = ln r.
Given the structures of q(Y|θy

k), q(X|Y, θxy
k ), and p(Y|X , θyx

k ), the task of
learning is featured by max{p(θk|X ), k} H(p‖q). By expanding H(p‖q, θk) with
respect to θk around the following θ∗k up to the second order and ignoring
its first order term since ∇θk

H(p‖q, θk) = 0 at θk = θ∗k, the task can be
approximately decomposed into the following two parts:

θ∗k = argmax
θk

H(p‖q, θk), k∗ = argmin
k
J(k), J(k) = −H(p‖q),

H(p‖q) = H(p‖q, θ∗k)− 0.5d(θ∗k),

d(θk) = −Tr[Σθk

∂2H(p‖q, θk)
∂θk∂θk

T
]θk=θ∗

k
, (27)

Σθk
=
∫

(θk − θ∗k)(θk − θ∗k)T p(θk|X )dθk.
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That is, to get rid of the difficulty of estimating p(θk|X ) and the related
computing cost, we can implement learning in two phases as follows:

Phase 1: Enumerate k for a series of architectures of a same type but in diff-
erent scales. For each candidate, we estimate θ∗k = argmaxθk

H(p‖q, θk).
Phase 2: Select a best architecture by k∗ = argmink J(k), where d(θ∗k) can

be further approximately simplified into an integer as follows:

d(θk) =

{
dk, (a)an under − constraint choice,
2dk, (b)an over − constraint choice,

(28)

where dk is the number of free parameters in θk.

Eq. (28) comes from a reason related to the celebrated Cramer-Rao
inequality. We roughly regard that the obtained θ∗k suffers a uncertainty
under p(θk|X ) with a covariance matrix Σθk

such that Σθk

∂2H(p‖q,θk)

∂θk∂θk
T ≈ I

at θk = θ∗k, especially when we consider a noninformative priori q(θk) = 1
or ln q(θk) = 0, which leads to eq.(28)(a). Generally, it may be too crude
to simply count the number of parameters in θk. Instead, d(θ∗k) is an effec-
tive number closely related to how p(θk|X̄N ) is estimated. For an estimator
θ∗k = T (X̄N ) basing on a sample set X̄N , if this estimator is unbiased to its true
value θo, it follows from the celebrated Cramer-Rao inequality that p(θk|X̄N )
can be asymptomatically regarded as p(θk|X̄N ) = G(θk|θo, [NF (θo)]−1) with
F (θ) = − 1

N
∂2 ln q(X̄N |θ)

∂θ∂θT , and thus we have Σθk
=
∫

(θk−θo +θo− θ̂k)(θk−θo +
θo− θ̂k)TG(θk|θo, [NF (θo)]−1)dθk ≈ 2[NF (θo)]−1. Moreover, if we roughly re-
gard that ∂2H(p‖q,θk)

∂θk∂θk
T |θk=θo = [NF (θo)]−1 as N becomes large enough, we are

alternatively lead to eq.(28)(b).

3.5 BYY Learning Integrates Regularization and Model Selection

Recall Sec. 2.1 and Sec. 2.2, the conventional regularization approaches have
only a limited help on those learning problems due to a small sample size.
Also, these regularization approaches suffer one crucial weakness caused by
an isotropic regularization and a key difficulty on controlling a regulariza-
tion strength. The conventional model selection approaches aim at tackling
the weaknesses, but it suffers a huge cost to enumerate a number of candi-
date models with different values of k. Associated with a BYY system under
the best harmony principle, the roles of regularization and model selection
can be integrated in a sense that the crucial weakness caused by an isotropic
regularization can be avoided by the model selection ability of the best har-
mony principle, while types of companion regularization can still be imposed
to improve the weakness caused by the model selection mechanism of the
BYY harmony learning. Moreover, some of these companion regularization
approaches can also be decoupled from a BYY system and become directly
applicable to the conventional maximum likelihood learning on a parametric
model p(x|θ).
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Considering H(p‖q, θk) =
∫
ph(X )HX (p‖q, θk)dX − Z(θk) in eq.(19), we

can also expand HX (p‖q, θk) with respect to X around X̄N up to the second
order, resulting in

H(p‖q, θk) = HX̄N
(p‖q, θk) + 0.5h2Tr[

∂2HX (p‖q, θk)
∂X∂X T

]X=X̄N
− Z(θk),

HX (p‖q, θk) =
∫
p(Y|X , θyx

k ) ln [q(X|Y, θxy
k )q(Y|θy

k)]dY. (29)

The term 0.5h2Tr[·] is usually negative and thus increases as h2 → 0. What
a value h will take depends on what type of the priori term Z(θk), for which
there are three typical situations.

The simplest and also most usual case is q(θk) = 1 or Z(θk) = 0.
In this case, maxhH(p‖q, θk) will force h = 0, and thus we simply have
H(p‖q, θk) = HX̄N

(p‖q, θk). When the function forms of q(X̄N |Y, θxy
k ) and

q(Y|θy
k) are given while there is no priori constraint on the function form

p(Y|X , θyx
k ), we can consider the learning task in a sequential maximization,

i.e., maxθk
{maxp(Y|X )H(p‖q)}. It follows from maxp(Y|X )HX (p‖q, θk) that

p(Y|X̄N ) = δ(Y − ȲN ), ȲN = argmax
Y

[q(X̄N |Y, θxy
k )q(Y|θy

k)],

HX̄N
(p‖q, θk) = HX̄N ,ȲN

(p‖q, θk),

HX̄N ,Y(p‖q, θk) = ln [q(X̄N |Y, θxy
k )q(Y|θy

k)]. (30)

That is, maxθk
{maxp(Y|X )H(p‖q)} becomes maxθk

HX̄N ,ȲN
(p‖q, θk).

On one hand, the winner-take-all (WTA) maximization in eq.(30) indirectly
implements a mechanism of selecting an appropriate value k that enables the
automatic model selection discussed in Sec. 3.3. Readers are referred to
Sec. 22.5 in [44], Sec. 23.3.2 in [45], Sec. II(B) in [42], and Sec. III(C) in
[41]. However, there is also an other hand. If we subsequently implement
maxθk

HX̄N ,ȲN
(p‖q, θk) by ignoring the relation of ȲN=argmaxY [q(X̄N |Y, θxy

k )
q(Y|θy

k)] to θk, we have to re-update maxp(Y|X )HX (p‖q, θk) by eq.(30).
Though such an alternative maximization will gradually increase HX (p‖q, θk),
it cannot avoid to get stuck in a local maximum or perhaps even a saddle point.
Moreover, such an iterative maximization has to be made on the whole batch
X̄N per step and thus is computationally very expensive. In an actual imple-
mentation [59, 53, 51, 52, 49, 47, 42, 43, 41], such an iteration is made per
sample per step in a form ȳt = argmaxyt

[q(x̄t|yt, θ
xy
k )q(yt|Yt−1, θ

y
k)], where

Yt−1 is either an empty set or a set that consists of a number of past samples
of yt−1, · · · , yt−p.

When ȲN = argmaxY [q(X̄N |Y, θxy
k )q(Y|θy

k)] becomes an explicit expres-
sion with respect to X̄N and θk or ȳt = argmaxyt

[q(x̄t|yt, θ
xy
k )q(yt|Yt−1, θ

y
k)]

becomes an explicit expression with respect to xt, Yt−1 and θk, we can take
these explicit expressions into maxθk

HX̄N ,ȲN
(p‖q, θk) by considering a com-

pound dependence on θk, which will be helpful to improve the problem of local
maximum. However, except for certain particular cases, it is usually difficult
to get such explicit expressions. Therefore, we have to ignore the dependence
of ȲN with respect to θk.
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The local maximum problem can be remedied by a unique regulariza-
tion type coped with a BYY system, structural regularization or shortly BI-
regularization. Details are referred to Sec. 3 in [46].

The key idea of the BI-regularization is to let p(Y|X ) in an appropriately
designed structure, three examples are given as follows:

(a) Let the optimization procedure for ȲN in eq.(30) to be approximated by
a parametric function:

ȲN = F (X̄N , θ
yx
k ), p(Y|X̄N ) = δ(Y − ȲN ),

HX̄N
(p‖q, θk) = HX̄N ,Y(p‖q, θk)Y=F (X̄N ,θyx

k
), (31)

where two examples of F (X̄N , θ
yx
k ) are as follows,

(1) ȳt = f(xt, θ
yx
k ) for i.i.d. samples,

(2) ȳt = f(xt, Ξt, θ
yx
k ) for temporal samples,

Ξt consists of past samples from either or both of X̄N and ȲN .
(b) We can also consider jointly a number of functions Y = F
(X̄N , θ

yx

,k),

� = 1, · · · , nyx as follows

ȲN = F
∗(X̄N , θ
yx
k ), �∗ = argmax



[q(X̄N |Y, θxy

k )q(Y|θy
k)]Y=F�(X̄N ,θyx

�,k
),

HX̄N
(p‖q, θk) = HX̄N ,Y(p‖q, θk)Y=F�∗ (X̄N ,θyx

�∗,k
). (32)

(c) In the special cases that Y is represented in discrete values or both
q(X̄N |Y, θxy

k ) and q(Y|θy
k) are Gaussian, it is also possible to let

p(Y|X ) =
q(X̄ |Y, θxy

k )q(Y|θy
k)∫

q(X|Y, θxy
k )q(Y|θy

k)dY . (33)

In these two cases, the integral over Y either becomes a summation or
is analytically solvable. Readers are referred to Sec. 3.4.2 in [40] some
discussions on the summation cases.

Another type of regularity lost comes from that HX̄N ,ȲN
(p‖q, θk) is com-

puted only based on the samples in XN via p0(XN ) = ph(XN )|h=0 by eq.(15).
Though the above discussed structural regularization is helpful to remedy this
problem indirectly, another regularization type coped with a BYY system is
the Z-regularization featured by the term Z(θk) �= 0 in eq.(29), with two
typical examples as follows:

• When q(θk) is irrelevant to h but relates to a subset of θk, maxhH(p‖q, θk)
will still force h = 0, and thus force the second term 0.5h2Tr[·] disapp-
eared, while Z(θk) will affect the learning on θk. A typical example is

q(θxy
k , θy

k) ∝ [
N∑

t=1

∫
q(x̄t|yt, θ

xy
k )q(yt|θy

k)dyt]−1, (34)

or q(θk) = q(θxy
k , θy

k) ∝ [
N∑

t=1

q(x̄t|ȳt, θ
xy
k )q(ȳt|θy

k)]−1, if we get ȳt per x̄t,
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which normalizes a finite size samples of q(x̄t|yt, θ
xy
k )q(yt|θy

k). Thus, it
is called normalization learning. Readers are referred to Sec. 2.2 in [52],
Sec. 22.6.1 in [44], and [47].

• Another typical case is q(θk) = q(h) ∝ [
∑N

t=1

∑N
τ=1G(xt|xτ , h

2I)/N ]−1

that merely relates to h but is irrelevant to any other parameters in θk. In
this case, the term Z(θk) together with the term 0.5h2Tr[·] will trade off to
give an appropriate h, which then affects the learning on other parameters
in θk via 0.5h2Tr[·]. This type of regularization is equivalent to smoothing
the samples in XN via adding Gaussian noises with a noise variance h2.
Thus, it is called data smoothing. Details are referred to Sec. II(B) in [51],
Sec. 23.4.1 in [45], and Sec. III(E) in [41].
Furthermore, data smoothing can also be imposed on ȲN given by eq.(31)
or eq.(32) by considering

phy (Y|X̄N ) = G(Y|ȲN , h2
yI),

HX̄N
(p‖q, θk) = HX̄N ,ȲN

(p‖q, θk) + 0.5h2
yTr[

∂2HX̄N ,Y(p‖q, θk)

∂Y∂YT
]Y=ȲN

,

q(θk) = q(h, hy) ∝ [

N∑
t=1

N∑
τ=1

G(xt|xτ , h2I)G(yt|yτ , h2
yI)/N ]−1. (35)

In this case, the term Z(θk) together with the term 0.5h2Tr[·]+0.5h2
yTr[·]

will trade off to give both h and hy, which will affect the learning on other
parameters in θk via 0.5h2Tr[·] + 0.5h2

yTr[·].
Both the above Z-regularization approaches can be decoupled from a BYY
system and become directly applicable to the conventional maximum likeli-
hood learning on a parametric model p(x|θ), featured by their implementable
ways for controlling regularization strength. For data smoothing, the regular-
ization strength h2 (equivalently the noise variance) is estimated in an easy
implementing way. For normalization learning, the regularization strength is
controlled by the term Z, with a conscience de-learning behavior. Readers are
also referred to [71] for a rationale for the priors by eq. (34) and eq. (35).

In addition to all the above discussed, regularization can also be imple-
mented by appropriately combining the best match principle and the best
harmony principle. Readers are referred to Sec. 23.4.2 in [45] for a summary
of several methods under the name KL-λ-HL spectrum, and also to [43] for the
relations and differences of the best harmony principle from not only the best
match principle but also several existing typical learning theories. In addition,
the ln(r) function in eq.(19) can also be extended to a convex function f(r),
and a detailed discussion can be found in Sec. 22.6.3 of [44].

3.6 Best Harmony, Best Match, Best Fitting: BYY Learning
and Related Approaches

The differences and relations between the BYY learning and several typical
approaches have been discussed in [50, 43]. Here we further elaborate this
issue via more clear illustrations in Fig. 4 and Fig. 5.
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For a number of
Learning tasks
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Fig. 4. BYY learning and related approaches (I)

p(X,R)=p(R|X)p(X)  q(X,R)=q(X|R)q(R)
R={Y,q }

•Variational Bayes

•Marginal Likelihood
 (MDL/BIC)

R=q

MAP/
MML
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R=Y

p(R|X)
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R=f(X)

•ML
•MMI
•BB-MDL
•HM/VA

For a number of
Learning tasks

 In architectures of 

• Bi-directional

• Forward
• Backward

Fig. 5. BYY learning and related approaches (II)

As introduced in Sec. 3.1 and Sec. 3.2, learning in a BYY system can be
implemented via either the best match principle by eq.(16) or the best har-
mony principle by eq.(18). The key difference of the best harmony principle by
eq.(18) from the best match principle by eq.(16) is its model selection ability
such that it can guide both parameter learning and model selection under
a same principle, while the best match principle by eq.(16) can only guide
parameter learning while model selection needs another different criterion.
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This difference can be further understood in depth from a Projection
Geometry Perspective (See Sec. III in [43]). The two principles correspond
to two different types of Geometry, which become equivalent to each other
only in a special case that H(p‖p) is fixed at a constant H0 that is irrelevant
to both k and θk (see eqn(45) in [43]). For a BYY system, this case means
that p(Y|X ) in a format p(Y|X ) = δ(Y − f(X )) or Y = f(X )†, as shown by
the overlap part of two big circles in Fig. 4.

This common part has not been studied in the literature before it is studied
under the best harmony principle in the BYY harmony learning on H(p‖q, θk)
by eq.(18) with Z = 1. We say that this case has a backward architecture since
only the backward direction Y → X has a specific structure while p(Y|X ) is
free from any structural constraint. In these cases, we get eq.(30) from eq.(19).
Ignoring − lnZ, it equivalently considers

max
{θk,k, Y}

ln [q(XN |Y, θxy
k )q(Y|θy

k)]. (36)

That is, we implement a best fitting of samples in XN by a joint distribution
via maximizing the extreme of the joint likelihood of X ,Y with respect to the
unknown inner representation Y. So, we call eq.(36) the maximum extremal
joint likelihood or shortly Max-EJL, which will be further discussed in Sec. 5.2,
especially after eq.(62).

In the BYY Best Match domain shown in Fig. 4, the other part of learn-
ing on a BYY system includes the widely studied Maximum Likelihood
(ML), Minimum Mutual Information (MMI), the bits-back based MDL [13],
Helmholtz Machine and Variational Approximation [10, 12]. The detailed dis-
cussions are referred to Sec. II in [43]. There are also other cases that have
not been studied previously, e.g., data smoothing and normalization learning,
which have already been introduced in Sec. 3.5.

Furthermore, we consider the most general case with Y replaced by
R = {Y, θk} such that the best harmony principle is turned from eq.(18)
into eq.(25), by which we got eq.(26), eq.(27), and eq.(29), as well as those
studied in Sec. II(B) of [43].

Similarly, the best match principle is turned from eq.(16) into

D(p‖q) =
∫
p(R|X )p(X )f(

p(R|X )p(X )
q(X|R)q(R)

)dXdR, (37)

which shares with eq.(25) a common part that p(R|X ) in a format p(R|X ) =
δ(R− f(X )) or R = f(X )†, as shown by the overlap part of two big circles in
Fig. 5. This common part includes not only Max EJL at R = Y but also what
† Strictly speaking, H(p||p) is still relevant to k even when p(Y|X ) or P (R|x)

becomes a δ density, since it can be regarded as a limit of a type −(c + ln h)k
as h → 0. In such a sense we should regard the above discussed common part in
Fig. 4 and Fig. 5 is actually not common but only belongs to BYY Best Harmony
domain, e.g., Max-EJL is a special case of BYY harmony learning only but not
of BYY matching learning.
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is usually called MAximum Posterior (MAP) at R = θk, as well as closely
relates to Minimum Message Length (MML) [36, 38].

In the BYY best match domain shown in Fig. 5, the other parts includes
not only those listed in Fig. 4 at its special case R = Y, but also the existing
marginal likelihood related Bayesian approaches at R = θk, such as MDL,
BIC, and Variational Bayes.

4 Typical Examples

4.1 Gaussian Mixture

The first example that has been studied in [59] under the BYY harmony
learning principle is the following Gaussian mixture, that is,

p(x|θk) =
k∑

j=1

αjG(x|µj , Σj). (38)

In the literature, its parameters θ is learned via the maximum likelihood by
the EM algorithm [25, 58], which has been widely studied in the literature of
machine learning and neural networks. Readers are referred to Sec. 22.9.1(a)
and Sec. 22.9.2(1) in [44] for a summary on a number of further results on the
EM algorithm.

To determine k, we need one of typical model selection criteria such as
AIC, BIC/MDL in help of a two-phase implementation. In [59], studies on
the BYY learning for eq.(38) have been made in the common part shown in
Fig. 4. On one hand, a criterion

J(k) = 0.5
k∑

j=1

αj ln |Σj | −
k∑

j=1

αj lnαj , (39)

and its special cases have been obtained [56]. On the other hand, an adaptive
algorithm for implementing eq.(23) is firstly proposed in [59] under the name
of the hard-cut EM algorithm for learning with automatic selection on k.

In eq.(38), xt is a d-dimensional vector and y takes only discrete values
j = 1, · · · , k. When p(X ) is given by eq.(15), from eq.(18) we have

H(p‖q) =
N∑

t=1

k∑
j=1

∫
p(j|x)G(x|xt, h

2I)ρj(x|θj)dx,

ρj(x|θj) = ln [αjG(x|µj , Σj)]. (40)

In its simplest case that h = 0 and Z = 1, from eq.(21) we can get J(k) in
eq.(39) after discarding a constant 0.5d ln (2π) and ignoring a term

0.5
N

k∑
j=1

Tr[
N∑

t=1

p(j|xt)(xt − µj)(xt − µj)TΣ−1
j ] = 0.5

d(N − k)
N

. (41)
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When N is small, we can no longer regard 0.5d(N − k)/N as constant but
need to consider −0.5dk/N . For eq.(27) and eq.(28), we have dk = dk+k−1+∑k

j=1 dΣj
, where dA denotes the number of free parameters in the matrix A.

It further follows that

JC(k) = 0.5
k∑

j=1

αj ln |Σj | −
k∑

j=1

αj lnαj − 0.5
kd

N
,

JR(k) = JC(k) + ck
dk

N
, dk = dk + k − 1 +

k∑
j=1

dΣj
, (42)

dΣj
=

⎧⎪⎨
⎪⎩

1, for Σj = σ2
j I,

d, for Σj is diagonal,
0.5d(d+ 1), for Σj in general,

where it follows from eq.(28) that

ck =

{
0.5, (a) corresponding to the case (a) in eq.(28),
1, (b) corresponding to the case (b) in eq.(28).

(43)

Moreover, it follows from eq.(23) and eq.(40) that the updating formulae
on αj , µj , Σj are same as their counterparts in the EM algorithm, while it
follows from eq.(30) that

p(j|xt) = δ̄jj∗
t
, j∗t = argmax

j
ρj(xt|θj), where δ̄ji =

{
1, if j = i,

0, otherwise,
(44)

which is a hard-cut version of the posteriori probability of j upon xt

p(j|xt, θj) =
e−ρj(xt|θj)∑k

j=1 e
−ρj(xt|θj)

, (45)

in the conventional EM algorithm. Thus, an algorithm that uses p(j|xt) in
eq.(44) to replace the above one is named the hard-cut EM algorithm [59].

Generally, we consider to regularize learning on a small size N by

Z =

⎧⎨
⎩

1
N

∑N
t=1

∑N
τ=1G(xt|xτ , h

2I), (a) data smoothing with h �= 0,
1∑N

t=1

∑k

j=1
eρj(xt|θj) , (b) normalization with h = 0. (46)

Interestingly, as shown in [52, 49], it follows from the above case (b) that
we can get an algorithm from eq.(23) to demonstrate a mechanism similar to
RPCL learning previously introduced in Sec. 2.3.

The type of bi-directional regularization by eq.(33) can also be imposed.
E.g., as suggested by Eqn.(40) in [52], it follows from eq.(7) that we also get
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an algorithm that demonstrates another RPCL-like mechanism [19]. Actually,
different types of bi-directional regularization demonstrate different versions
of RPCL-like mechanism [46]. Readers are referred to Sec. 23.7 in [45] for a
historic remark on RPCL-like mechanisms versus the BYY harmony learn-
ing, and to Eqn.(28) in [47] for a unified procedure to implement RPCL and
adaptive EM as well as the hard-cut EM algorithm.

4.2 Local Subspaces and Local Factor Analysis

We further consider Σj in the following decomposition

Σj = σ2
j I +

mj∑
i=1

λ
(i) 2
j a

(i)
j a

(i) T
j , a

(i) T
j a

(i)
j = 1, a(i) T

j a
(ι)
j = 0, i �= ι, (47)

where λ(1) 2
j ≥ λ

(2) 2
j · · · ≥ λ

(mj) 2
j with each λ

(i) 2
j being the variance of

the projection a(i) T
j x on the direction of the i-th principal vector a(i)

j . This
expression actually represents a subspace located at µj , shown in Fig. 6(a).
Here, our task becomes finding several subspaces at different locations, which
is thus called local subspace analysis. Readers are referred to Secs. 3.2 & 3.3
of [49] for not only other variants of elliptic RPCL but also RPCL based local
subspaces.

When only the first principal component is considered, we can use this local
PCA for collectively detecting multiple lines in an image, as shown in Fig. 6(b).
We can also detect multiple planes in an image as shown in Fig. 6(c), as well
as multiple curves and surfaces. Some applications are referred to [17, 18].

As illustrated in Fig. 6(a), the subspace obtained via the decomposition by
eq.(47) is equivalent to orthogonally projecting each sample x onto a subspace
that is located at µ and spanned by vectors a1, a2, a3, such that the average
square error ‖e‖2 between x and its projection x̂ is minimized. It follows from
e = x− x̂, x̂ = Ay + µ that this subspace analysis is equivalent to the special
case Σj = σ2

j I of the following Factor Analysis (FA) [4]:

x = Ajy + µj + ej , ej ∼ G(ej |0, Σj), y ∼ G(y|0, I), E(ejy
T ) = 0, (48)

e
e

a1

a3
a2

x

y1
y2

3y

x̂

 µ

e

(a) (b) (c)

Fig. 6. Subspaces
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where u ∼ p(u) means that u comes from the distribution p(u). In a general
case Σj �= σ2

j I, the project x → x̂ is still linear but its direction is no longer
orthogonal to the subspace. Also, the average square error ‖e‖2 is no longer
minimized.

Since a rotation transform on y ∼ G(y|0, I) results in y′ ∼ G(y|0, I) still, it
has no difference to p(x) by eq.(48) whether Aj is a general matrix or subject
to the following constraint

Aj = UjΛj , UjU
T
j = I, Λ2

j = diag[λ(1) 2
j , · · · , λ(mj) 2

j ] (49)

When p(X ) is given by eq.(15), putting eq.(48) into eq.(18) we have

H(p‖q) =
N∑

t=1

k∑
j=1

∫
p(y|x, j)p(j|x)G(x|xt, h

2I)ρj(x, y|θj)dxdy − lnZ,

ρj(x, y|θj) = ln [αjG(x|UjΛjy + µj , Σj)G(y|0, I)]. (50)

Similar to eq.(44), it follows from eq.(30) that

p(y|xt, j) = δ(y − ŷj(xt)), ŷj(xt) = argmax
y
ρj(xt, y|θj),

ŷj(xt) = Wj(xt − µj), Wj = ΛjU
T
j (UjΛ

2
jU

T
j +Σj)−1. (51)

Also, we can get p(j|xt) by inserting ρj(xt|θj) = ρj(xt, ŷj(xt)|θj) into eq.(44).
Again, p(y|xt, j) in eq.(51) can be regarded as a hard-cut version of the fol-
lowing posteriori probability of y upon getting xt and j

p(y|xt, j) = G(y|ŷj(xt), I −Πj), Πj = Wj(UjΛ
2
jU

T
j +Σj)WT

j . (52)

In a way similar to eq.(39) and eq.(41), it follows from eq.(21) in the case
h = 0 and Z = 1 that

J(k, {mj}kj=1) + cN,k = 0.5
k∑

j=1

αj{ln |Σj |+ Jy
j +mj ln (2π)} −

k∑
j=1

αj lnαj ,

Jy
j =

{
Tr[I −Πj ], (a) for p(y|xt, j) = G(y|ŷj(xt), I −Πj),
T r[Γj ], (b) for p(y|xt, j) = δ(y − ŷj(xt)),

where cN,k =
0.5
N

(kd+
k∑

j=1

mj),

Γj =
1

αjN − 1

N∑
t=1

p(j|xt)ŷj(xt)ŷT
j (xt) = WjSjW

T
j ,

Sj =
1

αjN − 1

N∑
t=1

p(j|xt)(xt − µj)(xt − µj)T . (53)

Specifically, the case (a) of Jy
j comes from

∫
yyT p(y|xt, j)dy, and the case (b)

of Jy
j comes from

∑k
j=1

∑N
t=1 p(j|xt)ŷj(xt)ŷT

j (xt), while cN,k comes in a way
similar to eq.(41).
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Moreover, similar to eq.(42) we have

JR(k, {mj}kj=1) = J(k, {mj}kj=1) + ck
dk

N
,

dk = dk + k − 1 +
k∑

j=1

(mj + dUj
+ dΣj

). (54)

where ck is same as in eq.(43), and dUj
= dmj − 0.5mj(mj + 1).

Next, it follows from eq.(48) that the distribution p(x) still remains un-
changed when

Aj = Uj , y ∼ G(y|0, Λ2
j ) (55)

where the components of y remain uncorrelated. Correspondingly, eq.(50),
eq.(51), eq.(52), and eq.(53) are modified with the following replacements

ρj(x, y|θj) = ln [αjG(x|Ujy + µj , Σj)G(y|0, Λ2
j )], (56)

Wj = Λ2
jU

T
j (UjΛ

2
jU

T
j +Σj)−1,

p(y|xt, j) = G(y|ŷj(xt), Λ2
j −Πj),

Jy
j =

{
ln |Λ2

j −Πj |+mj , (a) for p(y|xt, j) = G(y|ŷj(xt), Λ2
j −Πj),

ln |Γj |+mj , (b) for p(y|xt, j) = δ(y − ŷj(xt)).

Still, we can get p(j|xt) by inserting the above ρj(xt|θj) = ρj(xt, ŷj(xt)|θj)
into eq.(44), and also get JR(k, {mj}kj=1) by eq.(54).

There are two specifical cases that deserve a particular mention. One is
the special case Σj = σ2

j I of eq.(48), which becomes local subspace analysis.
The other is the special case k = 1, which becomes factor analysis. In the
latter case, J(k, {mj}kj=1) and JR(k, {mj}kj=1) are degenerated into J(m1)
and JR(m1) for determining the number of factors. Moreover, if we jointly
have k = 1 and Σ1 = σ2

1I, the problem becomes equivalent to Principal
Component Analysis (PCA), J(m1) and JR(m1) can be used for determining
the subspace dimension.

4.3 A Unified Learning Algorithm

On one hand, learning on the local factor analysis model by eq.(48) can be
implemented in a two-phase implementation. That is, the first phase consid-
ers a set of possible candidate models by enumerating k, {mj}kj=1 and then
learns parameters in every candidate model in help of the EM algorithm under
the maximum likelihood principle. The second phase selects a best candidate
k∗, {m∗

j}k
∗

j=1 by either J(k, {mj}kj=1) or JR(k, {mj}kj=1) given in the previous
subsection. However, not only the computing cost will be impractically huge,
especially for selecting {mj}kj=1, but also this criterion type of multiple dis-
crete variables becomes unable to provide a correct minimum point due to a
finite sample size.
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On the other hand, we can implement learning by eq.(23) in the cases
of eq.(49) or eq.(55), during which k∗, {m∗

j}k
∗

j=1 is able to be automatically
determined. For eq.(49), learning is made via eq.(50) during which mj is
determined via minimizing − lnG(y|0, I) = c + 0.5‖y‖2 that pushes y(j) 2 of
an extra dimension to 0. For eq.(55), learning is made via eq.(50) modified
with eq.(56), during which mj is determined via minimizing − lnG(y|0, Λ2

j )

that directly pushes each extra λ(r) 2
j to 0. From eq.(23), eq.(50), and eq.(56),

we can obtain the detailed implementing algorithms. One example is the one
given by Eqn.(72) plus Table 2 in [42] with Bj = 0,∀j.

A general adaptive learning procedure is introduced in the sequel, which
includes not only the one for implementing BYY harmony learning by eq.(23)
in the form of eq.(50) and eq.(56) with Z = 1 and h = 0, but also an adap-
tive EM algorithm for the maximum likelihood learning, as well as a RPCL
learning algorithm via the following rival penalized competition:

pj,t =

⎧⎪⎪⎨
⎪⎪⎩

1, if j = c, c = argmaxj ρj(xt|θj),

−γ, if j = r, r = argmaxj �=c ρj(xt|θj),

0, otherwise,

(57)

where ρj(xt|θj) is either the one in eq.(40) or ρj(xt|θj) = ρj(xt, ŷj(xt)|θj) by
eq.(50) or eq.(56).

The general procedure consists of iterating the following two steps:

Yang step: take a sample xt, get yj(xt) = Wj(xt−µj) with Wj by eq.(51) for
eq.(49) or by eq.(56) for eq.(55). Then, with ρj(xt|θj) = ρj(xt, ŷj(xt)|θj)
by eq.(50) or eq.(56), further get pj,t as follows

pj,t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(j|xt) by eq.(45), (a) ML− Learning,

p(j|xt, θj) by eq.(44), (b) BYY harmony,

by eq.(57), (c) RPCL− Learning,

p(j|xt, θj)− γq(j|xt), (d) RPCL− BYY harmony,

(58)

where γ > 0 is a small number, and q(j|xt) ≥ 0,
∑k

j=1 q(j|xt) = 1 are
either pre-specified or estimated by some means, e.g., via a normalizing
term Z.

Ying step: adaptively update all the parameters, check and discard extra
dimensions. The details consist of

(a) x̂j,t = Uold
j yj,t + µold

j , ej,t = xt − x̂j,t, µ
new
j = µold

j + ηpj,tej,t,

gUj
= yte

T
j,tΣ

old −1
j , Unew

j = Uold
j + η(gT

Uj
− Uold

j gUj
Uold

j ),

(b) λ(i) new
j = λ

(i) old
j + ηpj,t

y
(i) 2
j,t − (λ(i) old

j )2

λ
(i) old
j

,
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if λ(i)
j → 0 is detected, remove the i-th coordinate in the j-th

subspace, mj ← mj − 1;

(c) αj =
β2 new

j∑k
j=1 β

2 new
j

, βnew
j = βold

j + η
pj,t − αold

j

∑k
j=1pj,t

βold
j

, (59)

if αj → 0 is detected, discard the j-th subspace, k ← k − 1.
(d) Σj = SjS

T
j , S

new
j = Sold

j + ηpj,tG
old
Σj
Sold

j ,

GΣj
= Σ−1

j ej,te
T
j,tΣ

−1
j −Σ−1

j .

For Σj = σ2
j I, simply σ

new
j = σold

j + ηpj,t

‖ej,t‖2/d− σold 2
j

σold
j

.

The updating on Unew
j guarantees the satisfaction of UjU

T
j = I. Moreover,

even when pj,t < 0, the updating rules (d)&(c) guarantee the satisfaction
of αj ≥ 0,

∑k
j=1αj = 1 and that Σj remains non-negative definite.

4.4 Other Examples

The above general procedure degenerates back to the unified learning proce-
dure by Eqn.(28) in [47] for Gaussian mixture by eq.(38) at Uj = 0, Λj = I.
The above procedure also directly applies to the following two special cases:

• Local subspace analysis at the special case Σj = σ2
j I, which actually pro-

vides a unified scheme as well as improvements on the previous studies
under the name of local PCA, local subspaces, and multi-sets mixture
learning (MML) [62, 60]. Also, it can be applied to detecting lines, planes,
curves, and surfaces in pattern recognition tasks [17, 18, 16].

• Factor analysis at the special case k = 1 that also includes principal
components analysis (PCA). Readers are referred to Secs.2.2-2.4 in [48]
and Sec. IV in [41] for recent summaries.

Advances on the BYY harmony learning have also been made along the
following directions:

• Independence subspace analysis Extensions have been made from the
specific case G(y|0, Λ2

j ) to a general case
∏m

j=1 q(y
(j)), including inde-

pendence components dependence (ICA), binary factor analysis (BFA),
nonGaussian factor analysis (NFA), and LMSER, as well as three layer
net. Readers are referred to Secs.4 & 5 in [48] and Sec. IV in [41].

• Independence state space analysis Extensions have further been made
from G(y|0, Λ2

j ) and
∏m

j=1 q(y
(j)) to temporal state spaces by taking

temporal relations in consideration, including temporal factor analysis
(TFA), independent hidden Markov model (HMM), temporal LMSER,
and variants. Readers are referred to [42] and Sec. 6 in [48].

• Mixture of shape-structures In the computer vision field, finding multiple
shapes is an important task called object detection. In [69], a new approach
was proposed under the name of randomized Hough transform (RHT)
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[65]. In [62, 60], a multi-set modelling method has been proposed, under
situations of strong noise, partially observable objects, and a large amount
of objects. In [40], a unified problem solving paradigm has been developed.

• Combination of multiple inference In [68], an early systematic study has
been made on multiple classifier combination. In [63], a number of results
have been obtained on statistical consistency and convergence rates for
RBF nets. An alternative model of mixture of experts has been proposed
and easily implemented by the EM algorithm [61], which is further applied
to replace the existing suboptimal two stage algorithm for RBF nets [54].
Also, the number of basis functions are determined via either RPCL or
BYY harmony learning. Readers are referred to Sec. 22.9.1(d) in [44].

5 A Trend and Challenges

5.1 A Trend for Model Selection

Summarizing the discussions on model selection in Sec. 2.2, Sec. 2.3, and
Sec. 3, we roughly have two categories of studies. One is local cost based,
usually for a learning task on a model that consists of several individual
units or components. There is a local cost measure for each individual, e.g.,
− ln[αjG(x|µj , Σj)] can be such a local cost for the j-th component in the
Gaussian mixture by eq.(38). A sample x is excluded from one individual if
its corresponding local cost is higher than a pre-specified threshold. If this
x is excluded by all the current individual components, a new component
is created to accommodate this x. As a result, a number of components are
allocated to a set of samples. However, it is difficult to appropriately assign
such a pre-specified threshold.

The other category is a global cost based, which is applicable to any model
selection tasks. That is, after all its unknown parameters have been learned,
a model with a scale k is globally evaluated by a cost J(k) that is com-
puted based on the learned parameters. Studies of this category can be further
classified according to the configuration of J(k).

When we have a large sample size N , as discussed in Sec. 1, a negative
likelihood and a best fitting error, as well as a best matching error, will vary
in a way illustrated by the top part of Fig. 7(a). That is, a correct scale k∗ can
be determined at the smallest k that either makes J(k) reach its minimum
or equivalently makes ∆J(k) = J(k + 1)− J(k) = 0. However, as the sample
size N drops below a limit, this negative likelihood type J(k) will degenerate
into those shown by the top cases of Fig. 7(b) and Fig. 7(c). As a result, a
correct scale k∗ can not be obtained via searching a minimum or detecting
a zero. One heuristic remedy is to check whether ∆J(k) is smaller than a
pre-specified threshold. Alternatively, the conventional learning theories aim
at modifying the top cases of Fig. 7(b) and Fig. 7(c) into the bottom cases
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Fig. 7. Best matching error vs model selection criteria as the sample size N reduces

of Fig. 7(b) and Fig. 7(c) such that k∗ can still be obtained via searching a
minimum.

At each k, a cost J(k) is computed once all the unknown parameters in
the corresponding model have been estimated. Except for certain special task
(e.g., determining the dimension k of orthogonal subspace), the estimated
unknown parameters at one value of k usually can not be carried over to
another value of k. More specifically, neither the estimated parameters at a
lower value k′ can be directly used as a part of the parameters at a higher
value k′′, nor the estimated parameters at a higher value k′′ can be directly
adopted for a use at a lower value k′. Therefore, all the unknown parameters
have to be estimated completely at each different value k. That is, the model
selection has to be implemented expensively.

On one hand, the BYY harmony learning provides us new criteria J(k)
by eq.(21), eq.(22), and eq.(27). Illustrated in the middle of Fig. 8 are those
J(k) curves by eq.(21) at different sample sizes of N , which are usually same
or slightly worse than the popular model selection criterion BIC or equiva-
lently MDL. The curve J(k) by eq.(21) or eq.(22) are used as a bridge to
illustrate the equivalent performance of automatic model selection by eq.(23)
in a comparison with those existing conventional criteria, instead of being
actually used in a two phase implementation for model selection. In a two
phase implementation, it is suggested to use J(k) by eq.(27), as illustrated
in the bottom of Fig. 8, which are usually better than several typical criteria
such as AIC, CAIC, BIC/MDL, CV, etc.

On the other hand, more important is that the BYY harmony learning
provides a new trend that integrates model selection and parameter learning
into one single process with a considerably reduced computing cost, that is,
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size N reduces

a trend of seeking automatic model selection during parameter learning. Fur-
ther efforts are deserved along this trend. Generally speaking, in additional
to the BYY harmony learning, an approach that follows this trend should be
either explicitly or implicitly featured by a cost measure that varies with both
the scale integer k and the parameters θk, in a format f(θk, k) or shortly f(θk)
with the following nature:

f(θk)

{
= f∗, when k ≥ k∗, θk∗ = θ∗k∗ and φk = 0,
> f∗, otherwise,

(60)

where f∗ = f(θ∗k∗) is reached at the correct k∗ and the correct value θ∗k∗ .
Moreover, θk = {θk∗ , θr

k−k∗} with θr
k−k∗ denoting the remaining part of θk

after removing the subset θk∗ , and φk is a critical subset φk ⊆ θr
k−k∗ . For

an example, we have φk = {αj}kj=k∗+1 in eq.(38). When φk = 0, a Gaussian
mixture with k components actually becomes one with only k∗ components.

Given a k ≥ k∗ initially, minimizing f(θk) with respect to θk will force
θk∗ = θ∗k∗ and φk = 0, such that a model with a higher scale k actually
becomes one with the correct k∗ effectively. That is, model selection is made
automatically during parameter learning. Moreover, it follows from eq.(60)
that J(k) = minθk

f(θk) will illustrate as shown by Fig. 3(b) and that J(k) =
minθk, s.t. φ′

k
=c f(θk) will illustrate as shown by Fig. 3(a), where c is certain
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constant and φ′k ⊃ φk is a subset in θk, e.g., we have c = 1/k and φk = {αj}kj=1

in eq.(38).

5.2 Theoretical Issues in a Large Sample Size

Corresponding to the studies on asymptotic natures (i.e., the behaviors as the
sample size N → ∞) of the maximum likelihood approach or a best fitting
type approach (e.g., the Kullback divergence based one by eq.(16)), it is also
an interesting problem to study asymptotic natures of the BYY harmony
learning. Such studies can be made in two stages.

First, we consider maximizing H(p‖q, θk) in eq.(18). Considering f(r) =
ln r and that samples of xt are i.i.d., we have Z → 1 as N → ∞ and thus
eq.(18) becomes equivalent to the following form

Ho(p‖q, θk) =
∫
p(y|x)po(x) ln [q(x|y, θx|y

k )q(y, θy
k)]µ(dx)µ(dy), (61)

where po(x) is the original density that samples of x come from, k is one or
a set of integers that represent the scale of y, and θk = {θx|y

k , θy
k} consists

of the unknown parameters sets in the distribution functions q(x|y, θx|y
k ) and

q(y, θy
k) respectively, with their structures pre-designed.

When p(y|x) is free of any constraint, maxp(y|x)Ho(p‖q, θk) results in

p(y|x) = δ(y − y(x, θk)), y(x, θk) = argmax
y

[q(x|y, θx|y
k )q(y, θy

k)], (62)

Ho(p‖q, θk) =
∫
po(x) lnQ(x, θk)µ(dx), Q(x, θk) = q(x|y(x, θk))q(y(x, θk)),

which was previously discussed after eq.(36), as well as in Fig. 4 and Fig. 5,
under the name Max-EJL.

In a comparison of the corresponding maximum likelihood counterpart,
i.e.,

Lo(θk) =
∫
po(x) ln q(x, θk)µ(dx),

q(x, θk) =
∫
q(x|y, θx|y

k )q(y, θy
k)µ(dy), (63)

we can observe that the above marginal integral q(x, θk) (i.e., a projected
sum of q(x|y, θx|y

k )q(y, θy
k) to the domain of x) is replaced by Q(x, θk) in

eq.(62) that is the peak point of q(x|y, θx|y
k )q(y, θy

k) in the domain of y per
each fixed x. Illustratively, we can regard q(x|y, θx|y

k )q(y, θy
k) as a mountain

in a x − y coordinate system, q(x, θk) lumps the total sum of all the masses
along the y-axis perpendicularly to the x-axis, while Q(x, θk) only places the
mass on the highest ridge of the mountain perpendicularly to the x-axis.
Noticing that the mountain is constrained to have a unit total mass, i.e.,∫
q(x|y, θx|y

k )q(y, θy
k)µ(dx)µ(dy) = 1, maximizing Ho(p‖q, θk) will force the

mountain shrink to concentrate swiftly to its highest ridge, while maximiz-
ing Lo can be achieved by those mountains with a unit mass that stretches
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along the y-axis in infinite many ways. This provides another perspective that
explains why the BYY harmony learning has a model selection ability while
the maximum likelihood learning has not.

Moreover, it follows from eq.(62) that

Ho(p‖q, θk) =
∫
po(x) ln Q̃(x, θk)µ(dx) + C(θk),

Q̃(x, θk) = Q(x, θk)/C(θk), C(θk) =
∫
Q(x, θk)µ(dx), (64)

MaximizingHo(p‖q, θk) not only forces the configuration of q(x|y, θx|y
k )q(y, θy

k)
to shrink into its highest ridge for a largest C(θk), but also forces Q̃(x, θk) to
match po(x) as close as possible.

Comparing eq.(64) with eq.(63), we observe that the asymptotic nature
of the BYY harmony learning can be investigated in two typical situations.
First, when C(θk) is only relevant to k but irrelevant to θk. The asymptotic
nature of the BYY harmony learning is similar to the asymptotic nature of
the maximum likelihood learning. That is, the key point is to investigate the
discrepancy between po(x) and Q(x, θk) versus the discrepancy between po(x)
and q(x, θk). We consider the notations:

Pq(k) = {q(x, θk) : for all θk ∈ Ξk},
PQ(k) = {Q(x, θk) : for all θk ∈ Ξk}, (65)

which denote the distribution families that can be represented by q(x, θk) and
Q(x, θk), respectively, where Ξk is the domain that θk takes values.

One typical asymptotic nature is the so called statistical consistency. For
the maximum likelihood learning, having statistical consistency means that
q(x, θ̂k)→ po(x) for a maximum likelihood estimator θ̂k as N →∞, or equiv-
alently po(x) ∈ Pq(k), which is always possible when k becomes large enough.
For the BYY harmony learning, when C(θk) is only relevant to k but irrele-
vant to θk, statistical consistency means po(x) ∈ PQ(k), which is also possible
when k become large enough.

It is interesting to further study the cases where a statistical consistency
is not satisfied. Such cases are encountered either when k is not large enough
or when C(θk) is relevant to θk. The following are several theoretical issues
to be explored:

(a) When C(θk) is only relevant to k but irrelevant to θk, it deserves to
investigate how the bias between po(x) and Q(x, θk) and the bias between
po(x) and q(x, θk) vary as k in the cases with N →∞.

(b) With the unknown original density po(x) replaced by the empirical density
by eq.(8) in the above case (a), it deserves to further investigate how the
bias between po(x) and q(x, θ̂k) and the bias between po(x) and Q(x, θ̂k)
vary as k and N vary, where θ̂k is obtained by the maximum likelihood
learning for q(x, θ̂k), and by the BYY harmony learning via eq.(19) or
eq.(23) for Q(x, θ̂k).
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(c) When C(θk) is relevant to θk, it follows from eq.(64) that the BYY har-
mony learning is somewhat similar to a Bayesian learning, with C(θk)
taking a role similar to a priori, which usually introduces certain bias.
It is interesting to investigate how the bias between po(x) and Q(x, θ̂k)
changes as k (or as both k and N , when po(x) is replaced by eq.(8)).

(d) In the above cases, there are no regularization taking its role. As intro-
duced in Sec. 3.5, several ways can be used for imposing certain regular-
ization, and it deserves to study how the asymptotic nature of the BYY
harmony learning is affected by regularization. Particularly, it deserves to
investigate how the bias between po(x) and Q(x, θ̂k) changes as k, N , and
h, with po(x) replaced by eq.(15). It also deserves to study how the bias
between po(x) and Q(x, θ̂k) changes as k and N , when p(y|x) is free but
in a structure as discussed in Sec. 3.5 (e.g., given by eq.(31) and eq.(32)).

(e) As discussed in [43], the maximum likelihood learning and the BYY har-
mony learning can be interpreted from two different views of geometry. It
is interesting to further investigate the nature of manifold of H(p‖q, θk),
as well as its relations to k, N , and h.

5.3 Challenges in a Small Sample Size

In the cases of a small sample size, we encounter more challenges on a number
of theoretic and algorithmic aspects for not only the BYY harmony learn-
ing but also other model selection approaches. In the following, we discuss a
number of typical challenges:

(a) One is to estimate H(p‖q) =
∫
p(θk|X )H(p‖q, θk)dθk by eq.(26) more

accurately. It is approximated by J(k) = −H(p‖q, θ∗k)+0.5d(θ∗k) in eq.(27)
via considering a noninformative priori q(θk) = 1 and a rough estimator
θ∗k = T (X̄N ) in help of the celebrated Cramer-Rao inequality. Interestingly,
this J(k) with d(θ∗k) in the case (a) of eq.(28) can also be reached in help
of using the idea of eq.(9) to estimate the bias

b(k,N) = EXN
{EXN

[H(p‖q, θk)]θk=θ∗
k
} − EXN

H(p‖q, θ∗k). (66)

Considering the case H(p‖q, θk) = HX̄N ,ȲN
(p‖q, θk) given by eq.(30),

i.e., H(p‖q, θk) = ln [q(X̄N |ȲN , θ
xy
k )q(ȲN |θy

k)] that can be approximately
regarded as the likelihood function jointly on X̄N , ȲN if we ignore the de-
pendence of ȲN on θk, we can directly get b(k,N) = 0.5dk/N from AIC
[1, 2, 3]. That is, this road also leads to J(k) by eq.(27) with d(θ∗k) in
the case (a) of eq.(28). Intuitively, the performance changing trend from
the case (a) to the case (b) in eq.(28) will be somewhat similar to the
changing trend from AIC to BIC [29, 15, 23]. A further improvement may
be obtained via mathematical analysis on one d(θ∗k) somewhere between
the case (a) and the case (b) in eq.(28). It may also deserve to consider
q(θk) in a priori distribution instead of simply setting q(θk) = 1.
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(b) In addition to making empirical comparisons with those typical model
selection criteria discussed in Sec. 2.2, it remains to be challenges to make
mathematical analysis on the chances and the magnitudes that k∗ devi-
ates from the correct one of the underlying distribution, with k∗ given by
eq.(21) and eq.(27) versus by those typical model selection criteria. More-
over, the studies on k∗ by eq.(21) illustrate the performances of automatic
model selection during parameter learning, while the studies on k∗ by
eq.(27) illustrate the performances in a two phase implementation. The
performance gain by eq.(27) should also been evaluated together with its
computation cost in a quantative way.

(c) More importantly, challenges lay on building up a mathematical link from
the BYY harmony measure by eq.(27) or eq.(23) to the generalization
error by eq.(4) either in a general sense or specifically for different learning
tasks with different structures [41]. In other words, how to mathematically
analyzes the performances of BYY harmony learning in the term of the
generalization error with respect to the sample size N . A possible direction
is to rewrite the BYY harmony measure in a format

∫
p(X )R(X , k)µ(dX ),

and then investigate it in an analogy of those studies on eq.(4). Similar
challenges apply to those typical model selection criteria in Sec. 2.2 too.

(d) As introduced in Sec. 3.5, the BYY harmony learning integrates the roles
of regularization and model selection. It is interesting to examine this
feature in term of generalization error, i.e., how the generalization error
is affected by regularization, especially how it varies as k, N , and h with
po(x) replaced by eq.(15), how it relates to p(y|x) in a structure given
by eq.(31) and eq.(32), as well as how accurate the scale k∗ obtained by
automatic model selection is, with respect to the sample size N and k∗.

(e) As discussed after eq.(30), alternatively making maxθk
HX̄N ,ȲN

(p‖q, θk)
and ȳt = argmaxyt

[q(x̄t|yt, θ
xy
k )q(yt|Yt−1, θ

y
k)] lead to the problem of local

maximum or saddle point. It needs further investigation on how this prob-
lem affects the accuracy of the obtained scale k∗ and the generalization
error with its relation to k, N , and h, via either an implementation with
automatic model selection or a two phase implementation.

(f) Also discussed after eq.(30), if we have an explicit expression for ȳt =
argmaxyt

[q(x̄t|yt, θ
xy
k )q(yt|Yt−1, θ

y
k)], we can use it to improve the prob-

lem of local maximum. It deserves to study such an improvement in term of
the accuracy of k∗ and the generalization error. As introduced in Sec. 3.5,
in the cases without such explicit expressions, one way to remedy is to
approximate the desired explicit expression by a parametric structure,
e.g., by eq.(31) and eq.(32). In this way, the relation of ȲN or of ȳt

to θk can be approximately taken in consideration during updating θk.
On the other hand, this pre-designed parametric structure may constrain
maxp(Y|X )HX (p‖q, θk) to reach its optimal solution by eq.(30). Thus, it
needs to examine the two-fold role of imposing such a pre-designed para-
metric structure.
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(g) The difficulty of getting the above discussed explicit expression also brings
an implementation difficulty. I.e., ȲN = argmaxY [q(X̄N |Y, θxy

k )q(Y|θy
k)]

or ȳt = argmaxyt
[q(x̄t|yt, θ

xy
k )q(yt|Yt−1, θ

y
k)] has to be iteratively solved

as an inner loop within a parameter learning process. It can be very ex-
pensive to wait for this iterative inner loop to converge. In practice, this
convergence is approximately replaced by running the iteration only for
a few steps, which can be far before its convergence. It would be also
a challenge on appropriately developing such an approximation and on
examining how it affects the performance.

(h) Related closely to the above case (f) and case (g), it would be helpful
to investigate the manifold of HX (p‖q, θk), especially on the distribution
of local maxima. Since the gradient based technique takes a major role
in implementing the BYY harmony learning, it is likely to be stuck at
a local maximum. Thus, it deserves to study how the global versus local
maximum issue will affect the accuracy of k∗ and the generalization error.

(i) As introduced in Sec. 2.3, Rival Penalized Competitive Learning (RPCL)
can also perform automatic model selection [64, 66]. Its relation to the
BYY harmony learning has been discussed in [52, 49, 47, 19]. Though the
convergence behavior of RPCL has already been qualitatively interpreted
in a top-down way via the BYY harmony learning (e.g., as discussed in
Sec. 4.1), it is interesting to investigate in a bottom up way on converg-
ing behaviors of both RPCL learning and adaptive algorithm for BYY
harmony learning. Some preliminary studies have been made in [20, 21].
However, challenges still remain on getting the conditions (especially the
penalizing strength) for guaranteeing a RPCL learning to correctly con-
verge with a correct scale k∗.

(j) As discussed in Sec. 5.1, the key point of automatic model selection comes
from the nature by eq.(60). That is, a critical subset φk of parameters,
e.g., the proportional parameter αj in eq.(38) and one component variance
λ

(r) 2
j of Λ2

j in eq.(55), will be driven towards 0 during the maximization
process. However, waiting for φk converging to zero will waste a large com-
puting cost, which is usually unnecessary. It deserves to develop effective
techniques to detect the evidences for φk → 0 (e.g., αj → 0, λ(r) 2

j → 0).
One possible direction is to develop some statistical test for this purpose.

(k) The BYY harmony learning has already been extended to model temporal
relations among samples [51, 48]. Many of the above discussed challenges
should also be investigated on these temporal extensions.

(l) In a two-stage implementation given at the end of Sec. 2.2, we have to
enumerate every k within [kd, ku] in a general case without considering
the internal structure of J(k, θfit

k ). Such an enumeration can be made in
either a forward way (i.e., increasing k from a small initial value) or a
backward way (i.e., decreasing k from a large initial value). In a forward
implementation, as k increases to k + 1, not only those newly appeared
parameters but also the existing parameter set θk have to be re-learned.
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In a backward implementation, as k + 1 decreases to k, we are unable
to directly take a subset θk from the set θk+1. However, J(k, θfit

k ) may
have a specific structure for certain learning tasks. As k increases to k+1,
only those newly appeared parameters need to be re-learned while the
existing parameter set θk remain unchanged. In other words, the learning
can be made in an incremental way. Furthermore, we may also consider
J(k, θfit

k ) with a more complicated structure in help of certain enumerat-
ing or searching technique that was developed for feature selection tasks
in the pattern recognition field [70].

6 Concluding Remarks

Advances, trends, and challenges on regularization and model selection in
statistical learning have been discussed from a Bayesian Ying Yang learning
perspective. After briefly introducing the Bayesian Ying-Yang system and the
best harmony learning principle, its advantage of automatic model selection
and of integrating regularization and model selection have been addressed,
and its differences and relations to typical existing learning methods have
been elaborated. Taking the tasks of Gaussian mixture, local subspaces, local
factor analysis as examples, not only detailed model selection criteria are
given, but also a general learning procedure is provided to unify adaptive
algorithms for these learning tasks. Finally, a new trend for model selection
has been elaborated; theoretical issues in a large sample size and challenges
in a small sample size have been further presented.

Acknowledgement

The work described in this paper was fully supported by a grant from the
Research Grant Council of the Hong Kong SAR (Project No:CUHK4173/06E).

References

[1] Akaike, H (1974), “A new look at the statistical model identification”,
IEEE Tr. Automatic Control, 19, 714-723.

[2] Akaike, H (1981), “Likelihood of a model and information criteria”, Jour-
nal of Econometrics, 16, 3-14.

[3] Akaike, H (1987), “Factor analysis and AIC”, Psychometrika, 52,
317-332.

[4] Anderson, TW, & Rubin, H (1956), “Statistical inference in factor analy-
sis”, Proc. Berkeley Symp. Math. Statist. Prob. 3rd 5, UC Berkeley,
111-150.

[5] Bishop, C.M., (1995), “Training with noise is equivalent to Tikhonov
regularization”, Neural Computation 7, 108-116.



402 Lei Xu

[6] Bozdogan, H (1987) “Model Selection and Akaike’s Information Crite-
rion: The general theory and its analytical extension”, Psychometrika,
52, 345-370.

[7] Bozdogan, H & Ramirez, DE (1988), “FACAIC: Model selection algo-
rithm for the orthogonal factor model using AIC and FACAIC”, Psy-
chometrika, 53 (3), 407-415.

[8] Cavanaugh, JE (1997), “Unifying the derivations for the Akaike and
corrected Akaike information criteria”, Statistics & Probability Letters,
33, 201-208.

[9] Cooper, G & Herskovitz, E (1992), “A Bayesian method for the induction
of probabilistic networks from data”, Machine Learning, 9, 309-347.

[10] Dayan, P. & Hinton, GE (1995), “The Helmholtz machine”, Neural Com-
putation 7, No.5, 889-904.

[11] Girosi, F, et al, (1995) “Regularization theory and neural architectures”,
Neural Computation, 7, 219-269.

[12] Hinton, GE, Dayan, P, Frey, BJ, & Neal, RN (1995), “The wake-
sleep algorithm for unsupervised learning neural networks”, Science 268,
1158-1160.

[13] Hinton, GE & Zemel, RS (1994), “Autoencoders, minimum description
length and Helmholtz free energy”, Advances in NIPS, 6, 3-10.

[14] Hurvich, CM, & Tsai, CL (1989), “Regression and time series model in
samll samples”, Biometrika, 76, 297-307.

[15] Kashyap, RL (1982), “Optimal choice of AR and MA parts in autore-
gressive and moving-average models”, IEEE Trans. PAMI, 4, 99-104.

[16] Z.Y. Liu, H. Qiao, & L. Xu, “Multisets Mixture learning based Ellipse
Detection”, Pattern Recognition 39, pp 731-735, 2006.

[17] Z.Y. Liu, K.C. Chiu, & L. Xu, “Strip Line Detection and Thinning by
RPCL-Based Local PCA”, Pattern Recognition Letters 24, 2335-2344,
2003.

[18] Liu, ZY, Chiu, KC, & Xu, L (2003), “ Improved system for object detec-
tion and star/galaxy classification via local subspace analysis”, Neural
Networks 16, 437-451.

[19] Ma, J, Wang, T, & Xu, L (2004), “A gradient BYY harmony learning rule
on Gaussian mixture with automated model selection”, Neurocomputing
56, 481-487.

[20] Ma, J & Xu, L (2002), “Convergence Analysis of Rival Penalized Com-
petitive Learning (RPCL) Algorithm”, Proc. of Intl. Joint Conf. on
Neural Networks (IJCNN ’02), Hawaii, USA, May 12-17, 2002, pp 1596-
1602.

[21] Ma, J & Xu, L “The Correct Convergence of the Rival Penalized Com-
petitive Learning (RPCL) Algorithm”, Proc. of Intl. Conf. on Neural
Information Processing (ICONIP’98), October 21-23, 1998, Kitakyushu,
Japan, Vo.1, pp239-242.

[22] Mackey, D (1992) “A practical Bayesian framework for backpropaga-
tion”, Neural Computation, 4, 448-472.



Model Selection versus Regularization 403

[23] Neath, AA & Cavanaugh, JE (1997), “Regression and Time Series model
selection using variants of the Schwarz information criterion”, Commu-
nications in Statistics A, 26, 559-580.

[24] T.Poggio & F.Girosi, “Networks for approximation and learning”, Proc.
of IEEE, 78, 1481-1497 (1990).

[25] Redner, RA & Walker, HF (1984), “Mixture densities, maximum likeli-
hood, and the EM algorithm”, SIAM Review, 26, 195-239.

[26] Rissanen, J (1986), “Stochastic complexity and modeling”, Annals of
Statistics, 14(3), 1080-1100.

[27] Rissanen, J (1989), Stochastic Complexity in Statistical Inquiry, World
Scientific: Singapore.

[28] Rivals, I & Personnaz, L (1999) “On Cross Validation for Model Selec-
tion”, Neural Computation, 11, 863-870.

[29] Schwarz, G (1978), “Estimating the dimension of a model”, Annals of
Statistics, 6, 461-464.

[30] Stone, M (1974), “Cross-validatory choice and assessment of statistical
prediction”, J. Royal Statistical Society B, 36, 111-147.

[31] Stone, M (1977), “An asymptotic equivalence of choice of model by cross-
validation and Akaike’s criterion”, J. Royal Statistical Society B, 39 (1),
44-47.

[32] Stone, M (1978), “Cross-validation: A review”, Math. Operat. Statist.,
9, 127-140.

[33] Stone, M (1979), “Comments on model selection criteria of Akaike and
Schwartz. J. Royal Statistical Society B, 41 (2), 276-278.

[34] Sugiura, N (1978), “Further analysis of data by Akaike’s information
criterion and the finite corrections”, Communications in Statistics A, 7,
12-26.

[35] Tikhonov, AN & Arsenin, VY (1977), Solutions of Ill-posed Problems,
Winston and Sons.

[36] Wallace, CS & Boulton, DM (1968), “An information measure for
classification”, Computer Journal, 11, 185-194.

[37] Wallace, CS & Freeman, PR (1987), “Estimation and inference by
compact coding”, J. of the Royal Statistical Society, 49(3), 240-265.

[38] Wallace, CS & Dowe, DR (1999), “Minimum message length and
Kolmogorov complexity”, Computer Journal, 42 (4), 270-280.

[39] Vapnik, VN (1995), The Nature Of Statistical Learning Theory, Springer.
[40] Xu, L., (2007), “A Unified Perspective and New Results on RHT

Computing, Mixture Based Learning, and Multi-learner Based Problem
Solving”, Pattern Recognition, Vol. 40, pp. 2129–2153, 2007.

[41] Xu, L., (2005), “Fundamentals, Challenges, and Advances of Sta-
tistical Learning for Knowledge Discovery and Problem Solving:
A BYY Harmony Perspective”, Keynote talk, Proc. of Intl. Conf. on
Neural Networks and Brain, Oct. 13-15, 2005, Beijing, China, Vol. 1,
pp. 24-55.



404 Lei Xu

[42] Xu, L. (2004), “Temporal BYY Encoding, Markovian State Spaces, and
Space Dimension Determination”, IEEE Tr. Neural Networks, V15, N5,
pp. 1276-1295.

[43] Xu, L (2004), “Advances on BYY harmony learning: information
theoretic perspective, generalized projection geometry, and indepen-
dent factor auto-determination”, IEEE Tr. Neural Networks, V15, N4,
pp. 885-902.

[44] Xu, L. (2004), “Bayesian Ying Yang Learning (I): A Unified Perspec-
tive for Statistical Modeling”, Intelligent Technologies for Information
Analysis, N. Zhong and J. Liu (eds), Springer, pp. 615-659.

[45] Xu, L. (2004), “Bayesian Ying Yang Learning (II): A New Mecha-
nism for Model Selection and Regularization”, Intelligent Technolo-
gies for Information Analysis, N. Zhong and J. Liu (eds), Springer,
pp. 661-706.

[46] Xu, L. (2004), “BI-directional BYY Learning for Mining Structures with
Projected Polyhedra and Topological Map”, Invited talk, in Proc. of
FDM 2004: Foundations of Data Mining, eds., T.Y.Lin, S.Smale, T.
Poggio, and C.J. Liau, Brighton, UK, Nov. 01, 2004, pp. 5-18.

[47] Xu, L. (2003), “Data smoothing regularization, multi-sets-learning, and
problem solving strategies”, Neural Networks, V. 15, No. 5-6, 817-825.

[48] Xu, L. (2003), “Independent Component Analysis and Extensions with
Noise and Time: A Bayesian Ying-Yang Learning Perspective”, Neural
Information Processing Letters and Reviews, Vol.1, No.1, 1-52.

[49] Xu, L (2002), “BYY Harmony Learning, Structural RPCL, and Topolog-
ical Self-Organizing on Mixture Models ”, Neural Networks, V15, N8-9,
1125-1151.

[50] Xu, L, (2002), “Bayesian Ying Yang Harmony Learning”, The Handbook
of Brain Theory and Neural Networks, Second edition, (MA Arbib, Ed.),
Cambridge, MA: The MIT Press, pp. 1231-1237.

[51] Xu, L (2001), “BYY Harmony Learning, Independent State Space and
Generalized APT Financial Analyses ”, IEEE Tr. Neural Networks, 12
(4), 822-849.

[52] Xu, L (2001), “Best Harmony, Unified RPCL and Automated Model
Selection for Unsupervised and Supervised Learning on Gaussian Mix-
tures, Three-Layer Nets and ME-RBF-SVM Models”, Intl J of Neural
Systems 11 (1), 43-69.

[53] Xu, L (2000), “Temporal BYY Learning for State Space Approach,
Hidden Markov Model and Blind Source Separation”, IEEE Tr. Signal
Processing 48, 2132-2144.

[54] Xu, L (1998), “RBF Nets, Mixture Experts, and Bayesian Ying-Yang
Learning”, Neurocomputing, Vol. 19, No.1-3, 223-257.

[55] Xu, L, (1998), “Rival Penalized Competitive Learning, Finite Mix-
ture, and Multisets Clustering”, Proc. of IJCNN98, Anchorage, Vol.II,
pp. 2525-2530.



Model Selection versus Regularization 405

[56] Xu, L (1997), “Bayesian Ying-Yang Machine, Clustering and Number of
Clusters”, Pattern Recognition Letters 18, No.11-13, 1167-1178.

[57] Xu, L, (1997), “New Advances on Bayesian Ying-Yang Learning System
with Kullback and Non-Kullback Separation Functionals”, Proc. IEEE-
INNS Intl. Joint Conf. on Neural Networks (IJCNN97), Houston, Vol.
III, pp. 1942-1947.

[58] Xu, L, & Jordan, MI (1996), “On convergence properties of the EM
algorithm for Gaussian mixtures”, Neural Computation, 8, No.1, 1996,
129-151.

[59] Xu, L, (1995), “Bayesian-Kullback Coupled YING-YANG Machines:
Unified Learnings and New Results on Vector Quantization”, Proc. Intl.
Conf. on Neural Information Processing, Oct 30-Nov.3, 1995, Beijing,
pp. 977-988.

[60] L. Xu, “A Unified Learning Framework: Multisets Modeling Learning”,
Invited Talk, Proc. of World Congress on Neural Networks (WCNN95),
Washington, DC, July 17-21, 1995, Vol.I, pp. 35-42.

[61] Xu, L, Jordan, MI, & Hinton, GE (1995), “An Alternative Model for
Mixtures of Experts”, Advances in Neural Information Processing Sys-
tems 7, eds, Cowan, JD, et al, MIT Press, 633-640, 1995.

[62] L. Xu, “Multisets Modeling Learning: An Unified Theory for Supervised
and Unsupervised Learning”, Invited Talk, Proc. of IEEE ICNN94, Or-
lando, Florida, June 26-July 2, 1994, Vol.I, 315-320.

[63] Xu, L, Krzyzak, A, & Yuille, AL (1994), “On Radial Basis Function Nets
and Kernel Regression: Statistical Consistency, Convergence Rates and
Receptive Field Size”, Neural Networks, 7, 609-628.

[64] Xu, L, Krzyzak, A & Oja, E (1993), “Rival Penalized Competitive Learn-
ing for Clustering Analysis, RBF net and Curve Detection”, IEEE Tr.
on Neural Networks 4, 636-649.

[65] Xu, L & Oja, E. (1993), “Randomized Hough Transform (RHT): Basic
Mechanisms, Algorithms and Complexities”, Computer Vision, Graph-
ics, and Image Processing : Image Understanding, Vol.57, No.2, pp. 131-
154.

[66] Xu, L, Krzyzak, A & Oja, E (1992), “Unsupervised and Supervised
Classifications by Rival Penalized Competitive Learning”, Proc. of 11th
Intl Conf. on Pattern Recognition (ICPR92), Hauge, Netherlands, Vol.I,
pp. 672-675.

[67] Xu, L, Klasa, A, & Yuille, A.L. (1992), “Recent Advances on Techniques
Static Feedforward Networks with Supervised Learning”, International
Journal of Neural Systems, Vol.3, No.3, pp. 253-290.

[68] Xu, L., Krzyzak, A., & Suen, C.Y. (1992), “Several Methods for Combin-
ing Multiple Classifiers and Their Applications in Handwritten Charac-
ter Recognition”, IEEE Tr. System, Man and Cybernetics, Vol. 22, No.3,
pp. 418-435.



406 Lei Xu

[69] Xu, L, Oja, E., & Kultanen, P. (1990), “A New Curve Detection Method:
Randomized Hough Transform (RHT)”, Pattern Recognition Letters,
Vol.11, pp. 331-338.

[70] Xu, L, P.F. Yan, & T. Chang (1988), “Best First Strategy for Feature
Selection”, Proc. of 9th Intl Conf. on Pattern Recognition (ICPR98),
Nov. 14-17, 1988, Rome, Italy, Vol.II, pp. 706-709.

[71] Xu, L, (2007), “Bayesian Ying Yang Learning”, Scholarpedia, p. 10469,
http://scholarpedia.org/article/Bayesian Ying Yang Learning.




