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Abstract

Major dependence structure mining tasks are overviewed from a gen-
eral statistical learning perspective. Bayesian Ying Yang (BYY) harmony
learning has been introduced as a unified framework for mining these de-
pendence structures, with new mechanisms for model selection and reg-
ularization on a finite size of samples. Main results are summarized and
bibliographic remarks are made. Two typical approaches for implementing
learning, namely optimization search and accumulation consensus, are also
introduced.

22.1 Introduction: Basic Issues of Statistical Learning

Statistical learning is a process by which an intelligent system M estimates
the underlying distribution and dependence structures among what is to be
learned (i.e., among the world X that M observes). Specifically, learning is
done via a certain medium that is usually a set of samples from the world X.
Statistical learning plays an essential role in the literature of neural networks.
It also acts as a major part in the field of intelligent data processing, or called
data mining, with an ever increasing popularity.

According to how a learning medium is used, studies on learning can be
further classified into two quite different domains. One is the so-called active
learning, with a feature that the strategy of getting samples varies according
to the current status of M. The other is the conventional statistical learning,
during which samples come from the world according to its underlying distri-
bution in help of a given sampling strategy that is independent of the status
of M. This paper focuses on the latter. In this case, learning is characterized
by the following basic issues, or ingredients:

– A world X, in the form of an underlying distribution with certain depen-
dence structures.

– A machine M in an appropriate architecture that is able to accommodate
or describe the underlying distribution.

– A finite size set X = {xt}N
t=1 of random samples that comes from the

underlying distribution.
– A learning principle or theory that coordinates the above three issues in

order to get the best estimate by M of the underlying distribution based
on X .

– An efficient algorithm that implements the above learning theory
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Though the entire world faced by M is usually very complicated, we
can conduct studies by decomposing a complicated task into a number of
learning tasks on much simplified small worlds, as discussed in the next two
subsequent sections.

22.2 Dependence Among Samples from One-Object
World

We start by considering a simple world X of only a single object that is
observed via a set X of samples, with each sample x = [x(1), · · · , x(d)]T from
the same underlying probability distribution or density p(x). Typically, we
can use one or more of the following five ways to describe the dependence
structures among X.

(a) Nonparametric joint density In general, dependence among vari-
ables x(1), · · · , x(d) can always be described by a nonstructural or nonpara-
metric joint density. Typical example are the empirical density:

p0(x) = 1
N

∑N
t=1δ(x− xt), δ(x) =

{
limδ→0

1
δd , x = 0,

0, x 6= 0,
(22.1)

where d is the dimension of x and δ > 0 is a small number. This p0(x)
is equivalent to memorizing and using a given data set X directly. Another
typical example is a non-parametric Parzen window density estimate [22.10]:

ph(x) = 1
N

∑N
t=1Kh(x, xt),Kh(x, xt) is a kernel located at xt, (22.2)

which means to use the data set X after certain smoothing by Kh(x, xt).
In the simplest case, Kh(x, xt) is a hyper cubic of volume hd with its cen-
ter located at xt, and ph(x) becomes the widely used histogram estimate
that is a smoothed version of Eq. (22.1). The smoothness is controlled by a
given parameter h > 0 that is called smoothing parameter. The other case is
Kh(x, xt) = G(x|xt, h

2I) and

ph(x) = 1
N

∑N
t=1G(x|xt, h

2I), (22.3)

where, and hereafter in this paper, G(x|m,Σ) denotes a Gaussian density
with mean vector m and covariance matrix Σ.

Such a nonparametric and non-structural joint density estimate, though
conceptually implying all dependence relations among variables, has three
major weak points. One is that it is usually a bad estimate when the size N
of samples is finite, especially when the dimension d of x is high. The second
is that dependence relations are not given directly. The third is the expensive
computing cost for each calculation on p(x) at any point x = x′.

To improve the weak points, efforts are made along two directions.

(b) Sample statistics The first direction is to describe dependen-
cies among variables x(1), · · · , x(d) collectively by sample statistics up to
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certain orders, instead of a joint density that conceptually implies statis-
tics of all possible orders. The most widely encountered case is statistics
up to the second order only, represented in the covariance matrix Σx =
E(x−mx)(x−mx)T ,mx = Ex, capturing the linear dependence structures
among all the variables subject to the mean square error, where (and through-
out this chapter) the notations E(u) = Eu = E[u] denotes the expectation
of the random variable u. Equivalently, this case actually assumes that the
underlying distribution is a parametric Gaussian density with parameters
mx and Σx. Of course, we can also similarly consider higher order statistics.
However, the number of such statistics increases exponentially, e.g., in the
order of dm for the m-th order statistics, which brings us to the weak points,
similar to those for estimating a nonparametric density.

(c) Co-occurrence and associations The second direction is to fo-
cus on the pair-wise dependencies between u and v that denote two or more
subsets of variables x(1), · · · , x(d). The simplest one is co-occurrence or asso-
ciation. That is, we are interested in finding those events u = U and v = V
that will co-occur with high probability, e.g., with the corresponding prob-
ability P (u = U, v = V ) higher than a pre-specified threshold. We are also
interested in an association rule (u = U) => (v = V ) that describes how we
can infer the occurrence of the event v = V from the occurrence of the event
u = U , which is measured by its support P (u = U, v = V ) and confidence
P (v = V |u = U), as defined in data mining literature for the market basket
analysis (Chap. 7 in [22.17]).

We can see that the task of association rule mining is actually a task
simplified from estimating the joint density p(x). It is not necessary, and also
expensive, to estimate p(x). What we are interested in are only those events
u = U and v = V with P (u = U, v = V ) > s and P (v = V |u = U) > c for
the pre-specified thresholds s > 0 and c > 0. In addition to those approaches
given in (Chap. 7 in [22.17]), we suggest a stochastic approach with its key
idea as follows:

– Find a way such that all the possible values of U and V can be sampled
with an equal probability, which is referred as random sampling;

– Make ns/s such random samples; if a specific pair, Ū and V̄ , appears more
than s × ns/s = ns times, we get (u = Ū) => (v = V̄ ) as a candidate
association rule;

– Conditioning on u = Ū , make nc/c random samples on V ; if the specific
value V̄ appears more than c×nc/c = nc times, we take (u = Ū) => (v =
V̄ ) as an association rule with its support larger than s and its confidence
larger than c.

(d) Regressions or fittings Instead of considering the conditional
probability P (v = V |u = U), we may also directly consider the average or
expected relation E(v|u) =

∫
vP (v|u)dv, which is non-probabilistic function

v = f(u) and usually called regression. The regression can be either linear or
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nonlinear. Particularly, when v is Gaussian from G(v|f(u), σ2
vI), the function

f(u) fits a set of pairs {ut, vt}N
t=1 in a sense that the average square fitting

error 1
N

∑N
t=1 ‖vt − f(ut)‖2 ≈ σ2

v is minimized.

(e) Linear and nonlinear generative structures We can also ex-
plore dependencies among all the variables x(1), · · · , x(d) in help of inner rep-
resentations via certain hidden or latent structures. One typical structure is
the following explicit stochastic linear function:

x = Ay + e, E(e) = 0, e is independent of y. (22.4)

The earliest effort on this linear model can be traced back to the be-
ginning of the 20th century by Spearman [22.41], and has been followed by
various studies in the literature of statistics. In this model, a random sample
x of observations is generated via a linear mapping matrix A, from k inner
representations or hidden factors in the form y = [y(1), · · · , y(k)]T from a
parametric density q(y), disturbed by a noise e. Generally, samples of e are
independently and identically distributed (i.i.d.) from a parametric density
q(e), and the function forms of q(y) and q(e) are given. The matrix A and
the statistics of yt and et are to be learned.

The problem is usually not well defined because there are an infinite
number of solutions. To reduce the indeterminacy, we assume that samples
of x and e are i.i.d., and, correspondingly, samples of y are also i.i.d. such
that dependence among variables of x is equivalently modeled by

q(x) =
∫

q(x−Ay)q(y)dy, (22.5)

which implies a parametric density of x, described via the matrix A, the
statistics of y and e, and the density forms of q(y) and q(e). Also, Eq. (22.4)
implies that all the statistics of x are subject to the constraint. For example,
with Σx, Σy, Σe being covariance matrices of x, y, and e, respectively, we have

Σx = AT ΣyA + Σe. (22.6)

Particularly, when y is Gaussian and uncorrelated with e, e also being un-
correlated with its components, the model Eq. (22.4) is called factor analy-
sis [22.32, 22.39], which was first formulated in [22.3]. In this case, the integral
q(x) is analytically solvable, and becomes simply Gaussian.

As discussed in [22.57], this constraint, Eq. (22.6), is not enough to
uniquely specify A and Σe. If we further impose the constraint

A = φD, φT φ = I, Σy = I, Σe = σ2
eI, (22.7)

it follows [22.3, 22.66] that the maximum likelihood learning on q(x) results
in φ consisting of the k principal eigenvectors of Σx and D2 consisting of the
corresponding principal eigenvalues. That is, it becomes equivalent to the
so-called principal component analysis (PCA). In recent years, such a special
case of factor analysis has also been reiterated in the literature of neural
networks under a new name, probabilistic PCA [22.45].
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When y is non-Gaussian, the Eq. (22.4) implies not only the constraint
Eq. (22.6), but also constraints on higher order statistics such that the in-
determinacy on A and Σe may be removed. However, the integral p(x) by
Eq. (22.5) becomes analytically unsolvable when y is real and non-Gaussian.

Generally, Eq. (22.4) can also be either a nonlinear structure

x = g(y, A) + e, q(x) =
∫

q(x− g(y, A))q(y)dy, (22.8)

or a general probabilistic structure

q(x) =
∫

q(x|y)q(y)dy. (22.9)

Actually, the above two cases are regarded as being equivalent via the link

g(y, A) = E(x|y)− Ee, e = x− g(y, A), (22.10)

where e generally relates to y, instead of being independent of y.

(f) Linear and nonlinear transform structures As a dual to gen-
erative structure, another typical structure for describing dependence among
variables is a forward transform or mapping, y = f(x,W ) to inner represen-
tations of y.

The simplest case is y = Wx when Ex = 0 (otherwise the mean can be
subtracted in preprocessing). It specifies a relation EyyT = Σy = WT ΣxW
between the second order statistics of y and x, such that dependence among
variables of x are implicitly specified via W and the statistics of y. When
Σy becomes diagonal, the mapping y = Wx is said to de-correlate the com-
ponents of x. Moreover, maxW T W=I E‖y‖2, E‖y‖2 = Tr[Σy], leads to the
well known principal component analysis (PCA) that extracts the principal
second order statistics. The study on PCA can be backtracked to as early as
in 1936 [22.19], and has been also widely studied in the literature of statis-
tics, pattern recognition, and neural networks [22.34]. Equivalently, PCA is
also reached under the constraint WT W = I by maximizing the following
entropy:

max J(W ), J(W ) = −∫
p(y) ln p(y)dy, (22.11)

when x comes from Gaussian and y = Wx is still Gaussian.
Moreover, when y = Wx satisfies

q(y) =
∏k

j=1q(y
(j)) (22.12)

with at most one component being Gaussian, the mapping y = Wx is said to
implement independent component analysis (ICA) [22.15, 22.46, 22.7] that
extracts statistics of the second order and those higher orders. Also, when
each component of yt is interpreted as a sample of a time series at time t, the
ICA solution ŷt = Wxt recovers yt from xt = Ayt, up to a scaling indeter-
minacy. That is, the waveform of each component series can be recovered by
ŷt = Wxt, by a process also called blind source separation (BSS) that blindly
separates the mixed signal xt = Ayt, with scaling indeterminacy [22.46].
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However, an ICA algorithm with q(y(j)) pre-fixed works well only on the
cases where either all components of y are super-Gaussians or all compo-
nents of y are sub-Gaussians [22.2, 22.4], but not on the cases where com-
ponents of y are partly super-Gaussians and sub-Gaussians. This problem
can be solved by learning q(y(j)) via a mixture of parametric densities, or
equivalently learning the cumulative distribution function (cdf) of q(y(j)) by
a mixture of parametric cdfs [22.87, 22.72, 22.73]. Efforts have also been
made on using a nonlinear mapping y = f(x, θ) to implement a nonlinear
ICA [22.42, 22.66]. However, the satisfaction of Eq. (22.12) will remain un-
changed after any component-wise nonlinear transformation on y. Thus, a
nonlinear ICA mapping y = f(x, θ) usually does not retain the feature of
performing BBS, since it is no longer able to recover the original y up to
scaling indeterminacy, unless in a specific situation with extra constraints
imposed [22.42].

Instead of considering nonlinear ICA, we consider in [22.53] a nonlinear
mapping y = f(x, θ) from the perspective of modeling the cumulative distri-
bution function (cdf) of input data x.

22.3 Dependence Among Samples from a Multi-Object
World

22.3.1 Dependence Among Samples from a Multi-Object World

We observe a world X with multiple objects that are either visible or invisible.
We start by considering the cases where all the objects are visible, with each
label ` in a set L denoting a specific object observed via a sample vector
x` = [x(1)

` , · · · , x(d)
` ]T .

We can discover dependence structures within each object ` ∈ L indi-
vidually, in the same ways introduced in the previous subsection. Moreover,
dependence structures also exist across different objects. They are described
both qualitatively by the topology of L, and quantitatively by dependence
structures among variables of x` across objects.

In those most complicated cases, where there are dependence structures
between any pair of objects, the topology of L is a complete graph with every
pair of nodes connected. Specifically, if there is no dependence between a pair
of objects, the connection between the corresponding two nodes is broken,
and can, thus, be removed. Usually, three types of simplified topology are
often encountered, described as follows:

(a) A linear or serial chain The simplest case is that the topology
is a simple chain, 1, 2, · · · , ` − 1, `, ` + 1, · · ·, with the object ` directly
connecting to only the object ` − 1 and the object ` + 1. In this case,
x1, x2, · · · , x`−1, x`, x`+1, · · · form a sequence called a time series, where `
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denotes the time. The task of learning is to estimate quantitatively the de-
pendence structures by the joint distribution of the whole sequence in a cer-
tain serial/temporal dependence structure. The task is often encountered in
signal processing and stochastic process modeling, such as time series predic-
tion and speech, audio, and text processing, via AR and ARMA models and,
especially, via the Hidden Markov model [22.36].

(b) An image and a d-dimensional lattice topology We further consider
the cases where labels in L are organized in a regular lattice topology, with
each object ` denoted by a coordinate (`1, `2, . . . , `d). It reduces to the above
chain and time series model when d = 1. Moreover, {x` : ` ∈ L} denotes
an image when d = 2 and a 3D array or video when d = 3, etc., x` being a
pixel. Similarly, the task of learning is to estimate the dependence structures
by the joint distribution of all the pixels (usually with the help of certain
dependence structures between a pixel and others in its neighborhood), which
actually leads to a stochastic field. Such tasks are often encountered in image
processing and computer vision.

(c) A tree topology Another typical case is where L has a tree topology,
with each object ` being a node on the tree, i.e., each node has direct depen-
dence only on its father or children. The task of learning is to estimate the
dependence structures by the joint distribution {x` : ` ∈ L} subject to this
tree dependence structure. This is a typical task that has been studied as
the popular topic of probabilistic graphical model or Belief networks in the
recent literature of AI, statistics, and neural networks; readers are referred
to the books [22.35, 22.22].

(d) A joint temporal topology and spatial topology A topology that com-
bines the above case (a) with either of the case (b) and case (c) is also widely
studied in the literature. Here, a topology of either of image, d-lattice, and
tree describes spatial relations among different objects, while a linear topol-
ogy describes temporal relations of each object that changes with time, such
as encountered in video processing.

22.3.2 Mining Dependence Structure Across Invisible
Multi-Object

Next, we further observe a world of invisible multiple objects, with each
sample vector x coming from one object ` ∈ L, but with its label ` missing.

Given a set of such samples, we want to discover the dependence structures
among the objects, which are again described both qualitatively by the topol-
ogy of L and quantitatively by the dependence structures among variables
of x within and across objects. Still, the tasks of learning can be classified
according to what types of topology of L are taken into consideration.

(a) Finite Mixture The simplest case is that we ignore the topology of
L, and consider only dependence structures among the variables of x, which
depends on the dependence structure between each sample x and each label `.
The general form of the dependence is described by a joint distribution q(x, `)
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that describes the joint occurrence of the events that a sample is valued by
x and that the sample comes from the object `.

Specifically, q(x, `) can be represented via the decomposition q(x|`)q(`),
which describes q(x, `) as a casual view on where x comes from. Each of
q(x|`), ` = 1, · · · , k, describes the dependence structures within the `-th ob-
ject, and

q(`) =
k∑

j=1

αjδ(`− j), with the constraint α` ≥ 0,
k∑

`=1

α` = 1, (22.13)

where α` denotes a priori probability that x comes from the `-th object.
The task of learning is to estimate α`, and to discover dependence struc-

tures within each q(x|`), which is equivalent to learning dependence structures
in the format

q(x) =
∑

`∈L

α`q(x|`). (22.14)

It is usually called finite mixture in the literature [22.9, 22.38, 22.33]. It is
also said to have modular structure in a sense that there are a number of
individual modules in an assembly.

As a by-product, we also have the Bayesian rule

q(`|x) = α`q(x|`)/q(x), (22.15)

and, thus, another decomposition, p(x, `) = p(`|x)p(x) with p(`|x) describing
an inference view on which object the observation x may come from. It results
in a partition of a set of samples into different objects, and, thus, is usually
called pattern recognition or clustering analysis [22.10]. Particularly, when
the dependence structure of q(x|`) is simply a Gaussian q(x|`) = G(x|µ`, Σ`),
Eq. (22.14) becomes the widely used Gaussian mixture [22.9, 22.38, 22.33],
and Eq. (22.15) is called Bayesian classifier [22.11]. Moreover, when Σ` = σ2I
and α` = 1/k, a hard-cut version of Eq. (22.15) leads to the conventional least
square clustering [22.77].

(b) Self-organizing map We further consider the cases where L has a
given regular d-dimensional lattice topology. Since the label ` associated with
x is invisible, we are not able to recover the dependence structures among the
variables of x across different objects. Alternatively, we re-establish depen-
dence structures according to a general belief that objects locating topologically
in a small neighborhood N` should be same as or similar to each other, where
a small neighborhood N` of a knot ` usually consists of 2d knots that are
directly connected to `.

The direct placement of all the objects on such a lattice, according to
a criterion or measure to judge whether two objects are same or similar, is
computationally an NP-hard problem. Instead, this placement can be imple-
mented approximately. Interestingly, a good approximation for this problem
is provided by biological brain dynamics of self-organization [22.31], featured
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by a Mexican hat-type interaction, namely, neurons in near neighborhood
excite each other with learning, while neurons far away inhibit each other
with de-learning. Computationally, such a dynamic process can be simplified
by certain heuristic strategies. Here, we consider two typical ones.

– One member wins, a family gains That is, as long as one member wins
in the winner-take-all competition, all the members of a family gain, re-
gardless of whether other members are strong or not. This direction is
initialized by a simple and clever technique, i.e., the well known Kohonen
self-organizing map [22.23]. In the literature, a great number of studies have
been made on extending the Kohonen map. Recently, a general formulation
of this strategy has also been proposed [22.54].

– Stronger members gain and then team together That is, a number of
stronger members in competition will be picked as winners, who not only
gain learning but are also teamed together to become neighbors [22.54]. It
can speed up self-organization, especially in the early stages of learning.
Also, we can combine the first and the second strategies by using the
second in the early stage, and subsequently switching to the first, which is
experimentally demonstrated in [22.8]

(c) Self-organizing graphical topology Following a similar line, we can
also extend the above studies to a more complicated but given topology of
either a tree or a general graph. The only difference is that a small neighbor-
hood N` of a specific ` consists of all the knots that are directly connected
to `. and that the number of elements in N` is not usually 2d, but equal to
the degree of the node `.

(d) Dynamic self-organizing map Another useful but even more compli-
cated case is a combination of a temporal topology (i.e., a line topology) with
either of the above cases (a), (b) and (c), which describes not only relations
across objects but also how the relations change with time.

22.4 A Systemic View on Various Dependence
Structures

Those dependence structures discussed in Sect. 1.2 and Sect. 1.3 can be sys-
tematically summarized according to which inner representation is adopted
and what kind of inner architectures is used.

Figure 22.1 shows the simplest family F0, by considering an object as a
whole without considering inner representation and inner architecture. The
types of dependence here can be classified according to differences in three
features. First, focus is put whether on dependencies among all the compo-
nents of observation as a whole or on the relation between two particular
parts of observation. Second, whether temporal dependencies among sam-
ples are ignored or considered. Third, whether multiple objects are jointly
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or distribution is considered as a whole without considering architecture, with the 
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Different types of dependences in this family come from three features

(observation, time, topology)
0  for observation: dependence among components of x are considered as a whole

1  for observation: dependence between two parts              of is focused

0  for time: no dependence between any two samples of x from different times

1  for time: dependences among samples from different times are considered

1  for topology: only a single object is considered

2  for topology: multiple objects without topology are considered

3  for topology: multiple objects are considered to be mapped onto a topology
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Fig. 22.1. The family F0

considered without or with a topology. As shown in Fig. 22.1, there are 12
combinatorial types in three groups. T1 consists of

– (0, 0, 1) (e.g., either a nonparametric density or a simple Gaussian density),
– (1, 0, 1) (e.g., co-occurrence, association, regression and fitting etc.),
– (0, 1, 1) (e.g., with time added, a Gaussian density is extended to a con-

ventional AR, ARMA models),
– (1, 1, 1) (e.g., multi-channel AR, ARMA models).

Moreover, T2 extends those of T1 to jointly consider multiple models but
ignoring topology, consisting of

– (0, 0, 2) (e.g., finite mixture or Gaussian mixture),
– (1, 0, 2) (e.g., mixture-of-experts [22.12, 22.13, 22.14]),
– (0, 1, 2) (e.g., finite mixture of AR, ARMA models [22.25, 22.48, 22.49,

22.43]),
– (1, 1, 2) (e.g., mixture-of-experts of AR, ARMA models [22.44]).

Furthermore, T3 extends those of T1 to jointly consider multiple models and
also map them onto a regular topology, with (0, 0, 3) as a self-organizing map
(SOM) and other three are further extensions of SOM.

Figure 22.2 shows more sophisticated alternatives of F0, featured by using
what type of five typical inner representations and which of three major
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architectures, indicated by a code (i, j), i = 1, 2, 3, j = 1, 2, 3, 4, 5. With this
notation, F0 can be regarded as a degenerated case with the code (0, 0).
Different types of inner representations encode different types of dependencies
and, thus, perform different pattern recognition and information processing
tasks. A same task can be implemented by either of three architectures. As
discussed in Sect. 2.1, a forward structure directly implements the mapping
x → y per sample and indirectly describes data distribution in a differential
manner, while a backward structure directly describes data distribution in
an integral manner and indirectly implements the mapping x → y with an
expensive computing cost. A bi-directional architecture trades off the features
of the two such that not only modeling data distribution and implementing
x → y can be both directly made but also each of the two provides a structural
constraint to the other as a role of regularization (see Item 3.4 in [22.74]). The
least mean square error reconstruction learning [22.94] is a simple example
of a BI-architecture that combines a sigmoid post-linear forward structure
and a linear backward structure by Eq. (22.4). In fact, this is the key sprit of
Bayesian Ying Yang system. The details will be given the subsequent sections.

Types of dependences, under the perspective of BYY system,  can be understood by five

families featured by a combination of the following two features:

(architecture, inner-coding)
architecture: 1 Forward 2 Backward 3 Bi-directional

inner-coding: 1 Gaussian 2 nonGuassian 3 binary 4 5 known,,1 ky,,1 myy ,,1 myy ,,1 myy
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Each family       consists of three sub-families with each in a format (*,*) 

Each subset (i,j) consists of types of dependence with at most 15 choices, featured by 

(observation, time, topology) 

In a total, (architecture, inner-coding) (observation, time, topology) has at most

choices121512

iF

Fig. 22.2. Types of Dependence from BYY System Perspective

As shown in Fig. 22.2, we can further group the 3× 5 combinations into
five families according to five types of inner representations, with each family
consisting of three sub-families featured by each of three architectures. From
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F1 to F5, constraints on the inner representation are gradually enhanced from
de-correlated to becoming independence and then to uniform or known such
that indeterminacy of the structures is gradually reduced. The details are
briefed as follows:

(a) F1 = {(1, 1), (2, 1), (3, 1)} is featured by a Gaussian vector y =
[y1, · · · , yk] with its components de-correlated from each other. Typical ex-
amples of (1, 1) includes PCA, MCA, and their degenerated case called de-
correlated component analysis (DCA) [22.53]. Typical example of (2, 1) is
factor analysis (FA) by Eq. (22.4), and that of (3, 1) is min E‖x − AWy‖2
that leads to a singular value decomposition (SVD) analysis [22.6]. In this
special case, both the linear mapping x → y and y → x can be directly
obtained. Interestingly, performing PCA is a common special case of three
architecture. Similar to Fig. 22.1, they can be further extended to not only
temporal PCA (see Eq. (87) in [22.57]; Eq. (163) in [22.53]), temporal FA
(see Eqs. (78) and (79) in [22.57]), and temporal SVD by adding in time, as
well as hidden layer aided temporal regression by focusing on two part rela-
tion, but also to local PCA, local MCA, and local FA [22.54], etc. by jointly
considering multiple models but ignoring topology, as well as further to their
self-organizing map versions by mapping them on a regular topology.

(b) F2 = {(1, 2), (2, 2), (3, 2)} is featured by a non-Gaussian vector y =
[y1, · · · , yk] with components independent from each other such that statistics
higher than the second order are also in consideration. A typical example of
(1, 2) is the ICA discussed at the end of Sect. 2.1. A typical example of (2, 2) is
non-Gaussian factor analysis (NFA) (see Sect. III in [22.57]), which is superior
to ICA via taking observation noise in consideration. An example of (3, 2) is
an extension of LMSER learning (Sect. 5.4 in [22.53]). Again, it follows from
Fig. 22.1 that they can be further extended to temporal versions by adding in
time, to local ICA, local NFA, and local LMSER [22.54] by jointly considering
multiple models but ignoring topology, as well as further to mapping them
on a regular topology.

(c) F3 = {(1, 3), (2, 3), (3, 3)} is featured by a binary vector y = [y1, · · · , yk]
with bits independent from each other, which is suitable for problems of en-
coding data into binary bits. The ICA algorithm made by [22.4] can be re-
garded as a typical example of (1, 3). An example of (2, 3) is binary factor
analysis (BFA), and that of (3, 3) is the LMSER learning [22.94]. Similar to
Fig. 22.1, they can be extended to temporal ICA, independent HMM, and its
Bi-directional version [22.53, 22.59, 22.57] by adding in time, to local ICA,
local BFA, and local LMSER [22.54, 22.55] as well as further to their SOM
extensions.

(d) F4 = {(1, 4), (2, 4), (3, 4)} is featured by a discrete label y = 1, · · · , k
that is suitable for making pattern classification via the mapping x → y. The
classic perceptron [22.11] and the recent SVM based perceptron [22.47] are
both examples of (1, 4) for a two classes problem (i.e., k = 2). The maximum
balanced mapping certainty principle proposed in [22.84] is another example
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of (1, 4) for k > 2. A typical example of (2, 4) is the finite mixture given by
Eq. (22.14), and that of (3, 4) is given by BYY learning with a Bi-directional
architecture [22.30].

(e) F5 = {(1, 5), (2, 5), (3, 5)} is featured by a uniform distribution for
y. It can be regarded as special cases of the above four families with the
distribution of y fixed uniformly in a sense that every value of y is taken with
an equal probability. As discussed at the end of Sect. 22.2, the mapping x → y
completely describes data distribution in a CDF form [22.53]. Moreover, we
may also fix y on a known distribution for specific tasks.

The above discussed perspective of jointly considering forward structure
and backward structure, together with typical types of inner representation,
provides a systematic view to model various dependence structures. What
discussed above is exactly the fundamental sprit of Bayesian Ying Yang sys-
tem that acts as a unified statistical learning framework. Actually, a quite
number of dependence structures mentioned above were initially brought into
studies under the guidance of this BYY system. In the rest of this chapter,
advances on BYY system and harmony learning will be further overviewed.

22.5 Bayesian Ying Yang System

The world that we consider above can be denoted by X = {X, L} that consists
of a number of objects to observe, with L denoting a set of labels with each
` ∈ L denoting one object. X is a set of samples with each sample x coming
from one of these objects. We have several special cases that correspond to
dependence structures previously discussed. The simplest case is that there
is only one object in L and X consists of a size N of samples that all come
from this object. Thus, L can be ignored. For the cases in Sect. 22.3.1, L has
a regular lattice topology and each object ` locates at each node n`. Also,
it is already known that each x comes from which node and, thus, can be
labeled explicitly, i.e., x`. Particularly, the topology L for the case (d) can be
decomposed into a direct product of a line Lt for time and a regular lattice
Lr, i.e., L = Lt × Lr. For the cases in Sect. 22.3.2, the label that indicates
where x comes from is actually missing. Through learning, either each sample
x is classified into one ` of a finite mixture or each sample x is mapped to a
node n` on L such that nodes located nearby describes similar samples. For
the case (d) with a topology L = Lt × Lr, x comes at which time is known,
and, thus, there is no need to allocate x to a time. Further noticing that the
cases of x = [ξ, η] are covered as special cases of the above discussed, all the
cases in Fig. 22.1 can be summarized by the notation X = {X, L}.

Types of dependencies in Fig. 22.2 are further considered via a corre-
sponding representation domain Y = {Y, L} of a BYY system. For simplic-
ity, we start at considering L that consists of a number of isolated objects
without any topology. In this case, each x = {x, `} denotes a joint event
of an observation x = [x(1), · · · , x(d)]T and an object `, subject to a joint
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underlying distribution p(x) = p(x, `). Corresponding to each x, there is an
inner representation y = {y, `} in the representation domain Y = {Y, L},
subject to a parametric structure of q(y) = q(y, `). Except of the family F5,
representation types of y are rather simple and correspond to the following
distributions:

q(y) = q(y, `) = q(y|`)q(`), q(`) =
k∑

j=1

αjδ(`− j), α` ≥ 0,
k∑

`=1

α` = 1,

q(y|`) =
∏m`

j=1q(y
(j)|`), y = [y(1), · · · , y(m`)]T , (22.16)

q(y(j)|`) =





G(y(j)|µ(j)
` , λ(j) 2), for F1,∑

i βjiG(y(j)|µ(ji)
` ,

λ(ji) 2),
∑

i βji = 1, 0 ≤ βji ≤ 1, for F2,
(q(j)

` )y(j)
(1− q

(j)
` )1−y(j)

, for F3,
δ(y(j) − µ

(j)
` ), for F4.

where k is the number of labels in L, and m` is the dimension of either a
binary or real vector y.

As shown in Fig. 22.3, we consider the joint distribution of x and y, which
can be understood from two complementary perspectives. On the one hand,
we can interpret each x generated from an invisible inner representation y
via a backward path distribution q(x|y), or a generative model

q(x) =
∫

q(x|y)q(y)dy (22.17)

that maps from an inner distribution q(y). On the other hand, we can inter-
pret each x as being mapped into an invisible inner representation y via a
forward path distribution p(y|x), or a representative model

p(y) =
∫

p(y|x)p(x)dx (22.18)

that matches the inner density q(y).
The two perspectives reflect the two types of Bayesian decomposition

of the joint density q(x|y)q(y) = q(x,y) = p(x,y) = p(x)p(y|x) on
X × Y . Without any constraints, the two decompositions should be theo-
retically identical. Considering real situations, however, the four components
p(y|x), p(x), q(x|y), and q(y) should be subject to certain structural con-
straints. Thus, we usually have two different but complementary Bayesian
representations:

p(u) = p(x,y) = p(y|x)p(x), q(u) = q(x,y) = q(x|y)q(y), (22.19)

As discussed in the original paper [22.88], thanks to the famous Chinese
ancient Ying-Yang philosophy, p(x,y) is called Yang machine, and consists
of the observation space (or Yang space) of p(x) and the forward pathway
(or Yang pathway) of p(y|x), and q(x,y) is called the Ying machine, and
consists of the invisible state space (or Ying space) of q(y) and the Ying (or
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Fig. 22.3. Bayesian Ying Yang System and Three Architectures

backward) pathway of q(x|y). Such a pair of Ying-Yang models is called the
Bayesian Ying Yang (BYY) system.

This BYY system provides a unified framework for describing various
dependence structures in Sect. 22.2 and Sect. 22.3, with details as follows:

– The distribution p(x) is obtained on a set X of samples from the observed
world X, either by the empirical density of Eq. (22.1) or by the nonpara-
metric estimate of Eq. (22.3) with an unknown smoothing parameter h.

– The Ying path, at the special case of only one object in L, covers Eq. (22.9)
that includes Eq. (22.5) and Eq. (22.8). Generally, the cases with k ≥ 2
extend Eq. (22.9) to modular generative structures.

– The Yang path provides the general form of Eq. (22.18) for describing
various modular linear and nonlinear transform structures, including those
in Sect. 22.2 at a special case of only one object in L.

– All the dependence structures in Sect. 22.3.1 are all covered when L has the
topology of a line, a lattice, and a tree, respectively, when the dependence
relation between X and L pre-specified. Moreover, they can be further
extended to their corresponding self-organizing maps when the dependence
relation between X and L is missing.

The task of learning on a BYY system consists of specifying all the aspects
of p(y|x), q(x|y), and q(y), as well as h (if applicable).
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First, it follows from Eq. (22.16) that q(y) is specified by both k that
consists of the scales k and {m`} of the representation domain Y and a set
θy of all parameters in q(y).

Second, we need to design the structures of p(y|x) and q(x|y). We say
p(u|v) is structurally free if p(u|v) ∈ P0

u|v, with P0
u|v consisting of all functions

in the form of p(u|v) that satisfy
∫

p(u|v)du = 1 and p(u|v) ≥ 0. One of
p(y|x), q(x|y) is designed as being structure-free, which means that there is
no priori constraint to impose on it, and it will be specified during learning by
other components in the BYY system. In contrast, a parametric p(u|v) ∈ PS

u|v
means that it comes from a family PS

u|v with a pre-specified structure based on
certain priori requirements or knowledge, and a particular density is specified
by a set θu|v of parameters. That is, the function form of p(u|v) is pre-
specified, while the value of θu|v remains unknown. As suggested in [22.66,
22.62, 22.60], when u is a binary vector, a typical example is

p(u|v) =
m∏

j=1

πj(v)u(j)
(1− πj(v))1−u(j)

,

π(v) = [π1(v), · · · , πm(v)]T = S(Wv + c), (22.20)
S(y) = [s(y(1)), · · · , s(y(m))]T , 0 ≤ s(r) ≤ 1 is a sigmoid function.

When u is a real vector, a typical example is

p(u|v) =
n∑

j=1

βj(v)pj(u|v),
n∑

j=1

βj(v) = 1, βj(v) ≥ 0,

pj(u|v) = G(u|fj(v|θu|v,j), Σu|v,j). (22.21)

Correspondingly, the function of a BYY system is featured by the repre-
sentation types of y and the implementing architecture of a BYY system is
featured by a combination of the specific structures of p(y|x) and q(x|y). As
shown in Fig. 22.3(b), we have

– A B-architecture when focusing on only dependence structures of a gener-
ative type, as discussed in Sect. 22.2, with a structure-free p(y|x),

– An F-architecture when focusing on only the linear and nonlinear transform
structures in Sect. 22.2, with a structure-free q(x|y),

– A BI-architecture when both types of dependence structures are explored
together.

The architecture in which both p(y|x) and q(x|y) are structure-free is
useless and, thus, ignored.

In a summary, our learning task includes two subtasks. One is parameter
learning for determining the value of θ that consists of all the unknown pa-
rameters in p(y|x), q(x|y), and q(y), as well as h (if applicable). The other
is selecting the representation scales k = {k, {m`}}, called model selection,
since a collection of specific BYY systems with different scales corresponds
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to a family of specific models that share the same system configuration but
in different scales.

The fundamental learning principle is to make the Ying machine and Yang
machine have the best harmony in a twofold sense:

– The difference between the two Bayesian representations in Eq. (22.19)
should be minimized.

– The resulting BYY system should be of the least complexity.

22.6 BYY Harmony Learning

22.6.1 Kullback Divergence, Harmony Measure, and
Z-Regularization

To implement the above harmony learning principle, we need to formalize it
mathematically. One possible measure is the well known Kullback divergence

KL(p‖q) =
∫

p(u) ln
p(u)
q(u)

du ≥ 0, KL(p‖q) = 0, iff p(u) = q(u),(22.22)

which is applicable to the cases where both p and q are discrete and con-
tinuous densities. The minimization of the Kullback divergence implements
the first point well, and this is why it has been used in early stages of the
BYY system [22.89, 22.82, 22.83, 22.85, 22.74, 22.75, 22.76, 22.77]. However,
it is not able to implement the least complexity nature. In other words, the
Kullback divergence can only be used for partial implementation. We need a
measure that implements both the points.

We consider the following cross entropy

H(p‖q) =
∑N

t=1pt ln qt, (22.23)

where both p(u) and q(u) are discrete densities of the form

q(u) =
∑N

t=1qtδ(u− ut),
∑N

t=1qt = 1. (22.24)

The maximization of H(p‖q) has two interesting natures:
• Matching nature with p fixed, maxq H(p‖q) pushes q toward

qt = pt, for all t. (22.25)

• Least complexity nature with q fixed, maxp H(p‖q) pushes p toward its
simplest form

p(u) = δ(u− uτ ), or pt = δ̄t,τ , with τ = arg max
t

qt, (22.26)

where, and throughout this paper, δ̄j,j∗ = 1 when j = j∗, δ̄j,j∗ = 0 otherwise.
As discussed in [22.57, 22.58, 22.54, 22.55], Eq. (22.26) is a kind of the least

complexity form from a statistical perspective. In other words, the maximiza-
tion of the functional H(p‖q) indeed implements the above harmony learning
principle mathematically.



632 L. Xu

Moreover, as shown in [22.57, 22.58, 22.54, 22.55], either a discrete or a
continuous density q(u) can be represented in the form of Eq. (22.24) via the
normalization

qt = q(ut)/zq, zq =
∑N

t=1q(ut), (22.27)

based on a given set {ut}N
t=1 of samples.

Putting Eq. (22.27) into Eq. (22.23), it follows that we can further get a
general form of the harmony measure [22.57]

H(p‖q) =
∫

p(u) ln q(u)du− ln zq, (22.28)

which degenerates to Eq. (22.23) when p(u) and q(u) are discrete, as in
Eq. (22.24).

To get a better insight, we further examine the maximization of H(p‖q)
from the aspects of its two natures discussed above.

Still, maxp H(p‖q), with q fixed, leads to the least complexity nature of
the form in Eq. (22.26). It is not directly observable that this nature has any
use, since δ(u−uτ ) has a very limited representation ability. This may be the
reason why the least complexity nature of Eq. (22.26) of the cross entropy
in Eq. (22.23) has been rarely studied in the literature. However, as will be
introduced in the next subsection, this nature makes a big difference on a
BYY system because it enables model selection.

In contrast, the matching nature by maxq H(p‖q), with p fixed, behaves
similarly in both the direct case of Eq. (22.28) and its use on a BYY system.
The details are discussed as follows:

– When p(u) is given by its empirical density in the form of Eq. (22.1),
considering a crude approximation zq = 1 will make H(p‖q) become the
likelihood

L(θ) =
∑N

t=1 ln q(ut). (22.29)

That is, it becomes equivalent to the maximum likelihood (ML) learning.
– Considering Eq. (22.28) with the normalization term zq in Eq. (22.27), it

follows from p(u), given by Eq. (22.1), and q(u), given by Eq. (22.27), with
u in the place of x, that

H(p‖q) = L(θ)− ln zq, zq =
∑N

t=1q(ut). (22.30)

By comparing the gradients

∇θL(θ) = Gd(γt)|γt=
1
N

, ∇θH(p‖q) = Gd(γt)|γt=
1
N−q̃(ut|θ),

Gd(γt) =
∑

tγt∇θ ln q(ut|θ), q̃(ut|θ) = q(ut|θ)/
∑

τq(uτ |θ), (22.31)

we see that the log-normalization term ln zq causes a conscience de-learning
on the ML learning, which is, thus, referred as normalization learning, in
a sense that the degree of de-learning on learning ut is proportional to the
likelihood that q(u|θ) fits ut. That is, the better it is fitted, the more con-
science it makes during learning, which actually provides a regularization
that prevents q(u|θ) from overfitting a data set of a finite size.
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– Considering p(u) given by the Parzen window estimate of Eq. (22.3), with
u in the place of x, we can also approximate zq under a weak constraint∑N

t=1p(ut) ≈
∑N

t=1q(ut), which leads to a regularized learning as shown
by Eqs. (28) and (33) in [22.57]. That is, Eq. (22.28) becomes

H(p‖q) = L̃S(θh) + 0.5d ln (2πh2) + lnN − JH(h, k),

JH(h, k) = ln[
N∑

τ=1

N∑
t=1

e−0.5
‖ut−uτ‖2

h2 ], (22.32)

L̃S(θh) =
∫

ph(u) ln q(u)du ≈ L(θ) + 0.5h2πq,

πq =
1
N

∑
tTr[

∂2 ln q(u|θ)
∂u∂uT

]u=ut
.

L̃S(θh) regularizes the ML learning by smoothing each likelihood ln q(ut)
in the near-neighborhood of ut, something referred to as data smoothing.
It can also be observed that the role of h2 is equivalent to that of the
hyper-parameter in Tikhonov-type regularization [22.5]. What is new here
is that the other terms in H(p‖q) balance L̃S(θh) such that an appropriate
h can be learned together with θ by Eq. (34) [22.54].

The fact that maxθ

∫
p0(u) ln q(u|θ)du leads to the ML learning of Eq.

(22.29) is well known in the literature. Moreover, maxθ

∫
p∗(u) ln q(u|θ)du,

with p∗(u) being the true distribution of samples, has also been studied in
developing the AIC criterion [22.1]. What is new here is that the term zq

introduces a regularization to the ML learning, which is shortly called the
z-regularization. This regularization is implemented by two techniques, i.e.,
either a conscience de-learning type or a Tikhonov-type term, with the hyper-
parameter h learned in an easily implemented way.

A further insight can be obtained by returning to the Kullback divergence
Eq. (22.22). When both p(u) and q(u) are discrete densities in the form of
Eq. (22.24), from Eq. (22.22) we can directly get

KL(p‖q) =
∑N

t=1pt ln
pt

qt
= −Ep −H(p‖q), Ep = −∑N

t=1pt ln pt.(22.33)

Helped by the form of Eq. (22.27) for both p and q, similar to Eq. (22.28) we
can get

KL(p‖q) =
∑N

t=1

p(ut)
zp

ln
p(ut)/zp

q(ut)/zq
≈ ∫

p(u) ln
p(u)/zp

q(u)/zq
du,

or KL(p‖q) = −H(p‖q)− Ep, Ep = −∫
p(u) ln p(u)du + ln zp. (22.34)

Obviously, KL(p‖q) becomes as in Eq. (22.22) when we have zq = zp, e.g.,
both p(u) and q(u) are discrete densities or approximately have zq = zp, e.g.,
when both p(u), q(u) are continuous densities with p(u) given by the Parzen
window estimate of Eq. (22.3) and q(u) given by a continuous parametric
model. That is, Eq. (22.22) is directly applicable to the cases where both
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p(u) and q(u) are discrete densities and that both p(u), q(u) are continuous
densities. However, Eq. (22.22) is not directly applicable when p(u) is discrete
and q(u) is continuous, with zp being infinite and zq remaining bounded. In
this case, p(u) should be replaced by its normalized version p̂(u) = p(u)/zp.

Also, it follows from Eq. (22.33) and Eq. (22.34) that minKL(p‖q) is
different from maxH(p‖q) in that it also maximizes the entropy Ep of p(u),
which prevents p(u) from approaching the form of Eq. (22.26). This explains
why Eq. (22.33) does not have the least complexity nature. Particularly, when
Ep = c is a constant that does not relate to learning, minKL(p‖q) become
equivalent maxs.t. Ep=c H(p‖q). Moreover, when p(u) is given by a Parzen
window, we get a regularized learning via data smoothing in a way similar to
Eq. (22.32) but with the team JH(h, k) replaced by a different term JKL(h, k)
that takes a similar role [22.54]. Furthermore, when p(u) = p0(u) given by
Eq. (22.1), we have Ep = 0 and, thus, minKL(p‖q) and max H(p‖q) become
equivalent completely. A detailed relation of the two types of learning is
referred to the next chapter.

22.6.2 BYY Harmony Learning

By putting Eq. (22.19) into Eq. (22.28), we have

H(p‖q) =
∫

p(y|x)p(x) ln [q(x|y)q(y)]dxdy − ln zq (22.35)

for the harmony learning on a BYY system. Here, we get a salient feature
that is not shared by Eq. (22.28). Now, only p(x) is fixed at a non-parametric
estimate, and p(y|x) is either free in a B-architecture or a parametric form
in a BI-architecture, and will be pushed into its least complexity form due
to the nature Eq. (22.26). For example, in a B-architecture p(y|x) will be
determined by maxp(y|x) H(p‖q), resulting in the following least complexity
form:

p(y|x) = δ(y − y(x)), y(x) = arg max
y

[q(x|y)q(y)]. (22.36)

On the other hand, the matching nature of harmony learning will further
push q(x|y) and q(y) toward their corresponding least complexity forms. In
other words, the least complexity nature and the matching nature collaborate
to make model selection possible such that k is appropriately determined.

Mathematically, the harmony learning is implemented by

max
θ,k

H(θ,k), H(θ,k) = H(p‖q), (22.37)

which is a combined task of continuous optimization for parameter learn-
ing and discrete optimization for model selection, both under the same cost
function H(θ,k). This feature makes it possible to simultaneously implement
parameter learning and model selection together. Actually, the least com-
plexity nature of Eq. (22.26) makes it possible for us to implement parameter
learning with automatic model selection.
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To get a further insight, it follows from Eq. (22.16) that α` = 0 for some
` implies that k is reduced by one. Also, we observe that a form

q(y|`) = δ(y(j) − µ0)q(y−|`), y = [y−, y(j)]T , µ0 is a constant, (22.38)

implies that the dimension of y(j) is not actually in action, and, thus, the
dimension m` is effectively reduced by one. Therefore, a value of θ with these
two types of settings is equivalent to forcing k and {m`} to be effectively
reduced to appropriate scales.

With Eq. (22.36) put into Eq. (22.35), we can observe that maxH(p‖q) is
equivalent to maximizing ln q(xt|yt, `), ln q(yt|`), and lnα` for each sample.
Specifically, in maximizing lnα`,

each extra α` is pushed toward zero, (22.39)

and in maximizing ln q(y|`),
q(y(j)|`) on each extra dimension is pushed toward δ(y(j) − µ0).(22.40)

Therefore, fixing the scales of k large enough, we can implement the harmony
learning by

max
θ

H(θ), H(θ) = H(θ,k), (22.41)

which will let θ take a specific value such that k = {k, m} is effectively re-
duced to an appropriate scale. In other words, the least complexity nature of
Eq. (22.26) automatically implies model selection during learning. As demon-
strated in Fig. 22.4(b), the learning by Eq. (22.41) will push a set of extra
parameters θ2 = θ∗2 such that a large k becomes effectively k∗, that is, a
smallest value of k at which the maximum of H(θ) is reached.

Fig. 22.4. (a) Model selection made after parameter learning on every k in a given
interval [kd, ku], (b) Automatic model selection with parameter learning on a value
k of large enough.

The above feature is not shared by existing approaches in the literature.
By the conventional approaches, parameter learning and model selection are
made in a two-phase style. First, parameter learning is made usually under the
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maximum likelihood principle. Then, model selection is made by a different
criterion, e.g., AIC, MDL, etc. These model selection criteria are usually not
good for parameter learning, while the maximum likelihood criterion is not
good for model selection, especially on a small size of training samples.

If one wants, the problem Eq. (22.37) can also be implemented in such a
two-phase style. In the first phase, we enumerate k = {k, {m`}} from small
values incrementally. At each k and {m`}, we perform parameter learning for
seeking a best value of θ∗. In the second phase, we select a best k∗, {m∗

`} by

min
1≤k≤ku, 1≤m`≤mu

` , ∀`∈L
J(k, {m`}), J(k, {m`}) = −H(θ∗,k), (22.42)

where ku, {mu
` } is a set of upper bounds. To get an insight, we consider a

Gaussian mixture by Eq. (22.14) with q(x|`) = G(x|µ`, Σ`). In this case, we
have [22.77]:

J(k) =
0.5
k

∑k
`=1 ln |Σ`|+ ln k. (22.43)

As k increases the number of samples that are allocated to each Gaussian
decreases. Thus, each |Σ`| decreases with k and the first term of J(k) de-
creases with k. However, ln k increases with k. The two terms trade off such
that J(k) first decreases with k and reaches a minimum, and then increases
due to ln k. As k further increases, there will be few samples available to be
allocated to a Gaussian such that Σ` becomes singular which brings J(k)
drops rapidly toward −∞. That is, J(k) generally has an inverse N shape
as shown in Fig. 22.4(a). We use ku to denote the smallest value of k that
makes J(k) rapidly tend to ∞. The best value k∗ is selected by Eq. (22.42)
within 1 ≤ k ≤ ku.

As above discussed, parameter learning by Eq. (22.41) usually (e.g., for
F1, F2, F3 in Fig. 22.2) leads to an automatic model selection and, thus, there
is no need to implement the selection by Eq. (22.42). However, for certain
learning tasks (e.g., for F4, F5 in Fig. 22.2), the inner representation is pre-
specified to be uniform across both different objects and different dimen-
sions [22.54]. That is,

α` =
1
k

,
∫

(y − µy,`)(y − µy,`)T q(y|`)dy = b0I, µy,` =
∫

yq(y|`)dy.(22.44)

For example, b0 = 1 for a real y(j) and b0 = 0.25 for a binary y(j). Due
to the constraint, automatic model selection will not happen during learning
by Eq. (22.41) in the first phase, we need to implement Eq. (22.42) in the
second phase.

Alternatively, we can also replace Eq. (22.41) by minimizing the Kullback
divergence Eq. (22.22), i.e.,

min
θ

KL(θ) =
∫

p(y|x)p(x) ln
p(y|x)p(x)
q(x|y)q(y)

dxdy, (22.45)

without the constraint by Eq. (22.44). Particularly, on a B-architecture, the
minimization of the above KL(θ) with respect to a free p(y|x) will result in
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p(y|x) =
q(x|y)q(y)

q(x)
, q(x) =

∫
q(x|y)q(y)dy,

KL(θ) =
∫

p(x) ln
p(x)
q(x)

dx, (22.46)

which becomes equivalent to ML learning on q(x) when p(x) = p0(x) is given
by Eq. (22.2) [22.88]. In this case, we actually implement the ML learning in
the first phase and then model selection by Eq. (22.42) in the second phase.

No longer holding the least complexity nature by Eq. (22.26), the imple-
mentation of Eq. (22.45) will not lead to a case of Fig. 22.4(b), and, thus,
there is no need to impose the assumption that q(y) comes from a family
with equal variances among components.

22.6.3 A Further Extension: From ln(r) to Convex Function

Extensions of the BYY harmony learning have been made either into tempo-
ral BYY system by taking temporal relation in consideration or into struc-
tural BYY system by considering the representation space y with certain
structure [22.90, 22.74, 22.65, 22.61, 22.64, 22.59, 22.57, 22.53, 22.50]. Exten-
sion has also been made with the log function ln(r) replaced by the following
convex function family [22.75, 22.77, 22.80, 22.81]

Fc = {f(r) :
d2f(r)

d2
< 0, f(r) monotonically increases with r} (22.47)

It is interesting to investigate what will happen when ln(r) is replaced with
any f(r) ∈ Fc.

Let us return back to consider such an extension from Eq. (22.23). That
is,

Hf (p‖q) =
∑N

t=1ptf(qt), (22.48)

It can be observed that the maximization of this Hf (p‖q) with respect to pt

still have the same least complexity nature as Eq. (22.26) while the match
nature by Eq. (22.25) is modified into

qt = f ′(
1
pt

)/
∑N

t=1f
′(

1
pt

), f ′(r) = df(r)/dr, (22.49)

which returns back to Eq. (22.25) when f ′(r) = 1/r. We can further classify
other f(r) ∈ Fc according to whether its f ′(r) decreases with r in a rate
slower than 1/r. If yes, it is said to be super-ln; otherwise it is said to be
sub-ln.

A typical family of super-ln is the so-called α-function [22.69, 22.77, 22.80,
22.81] as follows:

f(r) = rα, 0 ≤ α ≤ 1, and, thus, f ′(r) = α/r1−α. (22.50)

In this case, Eq. (22.49) can be rewritten as
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qt = p1−α
t /

∑N
t=1p

1−α
t , (22.51)

which returns to Eq. (22.25) with qt = pt when α = 0 and becomes qt = 1/N
when α = 1. In other cases, pt attempts to take qt with lower probabilities
increased but higher probabilities decreased in a certain degree that is con-
trolled by α. That is, pt becomes more spreading than qt as α increases from
0 to 1. It becomes uniform when α = 1. In other words, a super-ln function
leads to a conscience de-learning regularization.

An example family of sub-ln is the following inverted and negated α-
function as follows:

f(r) = −rα, α < 0, and, thus, f ′(r) = |α|/r1+|α|. (22.52)

which leads to

qt = p
1+|α|
t /

∑N
t=1p

1+|α|
t . (22.53)

Now, pt adopts qt with higher probabilities increased but lower probabil-
ities further decreased in a certain degree. That is, pt becomes more concen-
trated than qt as |α| increases. In other words, a sub-ln function leads to a
competition effectively similar to the least complexity nature.

The above discussions also apply to the continuous case by Eq. (22.28),
which becomes:

H(p‖q) =
∫

p(u)f(q(u)/zq)du. (22.54)

Now, not only the term zq provides a regularization, which is referred to the
next chapter in this book for a detailed discussion, but also zq and a super-ln
f(r) jointly introduce the above discussed regularization.

Even without zq (e.g., let zq = 1), a super-ln f(r) will also perform
a regularization role. With p(u) given by Eq. (22.1), Eq. (22.54) becomes
a f -likelihood function Lf = 1

N

∑N
t=1f(q(ut)) which differs from the log-

likelihood L = 1
N

∑N
t=1 ln q(ut) in that f(q(ut)) takes the position of ln q(ut).

Those unlikely samples with small q(ut) (e.g., outliers) locate within a drastic
varying range of ln q(ut) and, thus, contribute a big portion to affect L. That
is, the ML learning is vulnerable to the disturbance by outliers. In contrast,
for a super-ln f(r) such as given by Eq. (22.50), the varying range of f(q(ut))
with a small q(ut) is much smaller than that of ln q(ut). Thus, Lf will be much
less affected by those outliers with a small q(ut). In other words, we get a
type of robust ML learning [22.77, 22.80].

The Kullback divergence can also be extended. There are two ways. One
is simply replace ln r with f(r), resulting in

KLf (p‖q) =
∫

p(u)f(
p(u)/zp

q(u)/zq
)du. (22.55)

The other is considering its equivalent form of maximizing HKL(p‖q) =∫
p(u) ln q(u)/zq

p(u)/zp
du and then replace ln r with f(r), which results in the max-

imization of
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HKLf
(p‖q) =

∫
p(u)f(

q(u)/zq

p(u)/zp
)du. (22.56)

Being different from Eq. (22.55), it will return to exactly Eq. (22.54) when
p(u) is given by empirical density Eq. (22.1).

In the special case that zp = zq, we have

KLf (p‖q) =
∫

p(u)f(
p(u)
q(u)

)du, HKLf
(p‖q) =

∫
p(u)f(

q(u)
p(u)

)du. (22.57)

Detailed studies can be further made by considering certain specific fea-
tures of f(r). For example, for those f(r) ∈ Fc that satisfy

(a) f(ab) = f(a)f(b), (b) f(a−1) = f−1(a), (22.58)

e.g., for the case of Eq. (22.50) we can rewrite Eq. (22.54) into

H(p‖q) = f−1(zq)
∫

p(u)f(q(u))du, (22.59)

and Eq. (22.56) into

HKLf
(p‖q) =

f(zp)
f(zq)

∫
p(u)

f(q(u))
f(p(u))

du. (22.60)

All the above results can be applied to a BYY system, what needs to do is
simply put Eq. (22.19) into Eq. (22.54), Eq. (22.55), Eq. (22.56), Eq. (22.59),
and Eq. (22.60). First, maximizing H(p‖q) by Eq. (22.54) with respect to
a free p(y|x) will still lead to Eq. (22.36). Also, both minimizing KLf (p‖q)
by Eq. (22.55) and maximizing HKLf

(p‖q) by Eq. (22.56) with respect to a
free p(y|x) will lead to Eq. (22.46) too. Second, we are also lead to what will
be discussed in the next chapter on trading off the strength of regularization
and the ability of model selection in help of designing a parametric model for
p(y|x). Third, a new perspective we get here is that such a trading off may
also be achieved via choosing f(r) to be super-ln or sub-ln, in the matching
process of a Ying machine q(x|y)q(y) to a Yang machine p(x|y)p(y) with
p(y) =

∫
p(y|x)p(x)dx and p(x|y) = p(y|x)p(x)/p(y).

Learning can still be implemented by the Ying-Yang alternative procedure
in Sect. 22.7. For the Ying step, we no longer have the separated integral for-
mat as in Eq. (22.63). However, we can still get the gradient format similar to
those in Eq. (22.65). The only difference is that ηt(y) is replaced by ηf

t (y)ηt(y)
with

ηf
t (y) =





f ′( q(xt|y)q(y)
zq

) q(xt|y)q(y)
zq

, Harmony learning by Eq. (22.54),

f ′(p(u)/zp

q(u)/zq
)p(u)/zp

q(u)/zq
, KLf learning by Eq. (22.55),

f ′( q(u)/zq

p(u)/zp
) q(u)/zq

p(u)/zp
, KLf learning by Eq. (22.56),

(22.61)

where f ′(r) = df(r)/dr.
For the Yang step, the discussions on a B-architecture in Sect. 22.7 re-

mains the same. While for a BI-architecture, ηt(y) in Eq. (22.71) is also
replaced by ηf

t (y)ηt(y) with ηf
t (y) given by Eq. (22.61).
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22.7 Ying-Yang Alternative Procedure for Parameter
Learning

As discussed in [22.88], learning on the Yang machine p(x,y) and the Ying
machine q(x,y) can be implemented alternatively by

Ying step: fixing p(x,y),update unknowns in q(x,y),
Yang step: fixing q(x,y),update unknowns in p(x,y), (22.62)

such that −H(θ) from Eq. (22.41), or KL(θ) from Eq. (22.45), gradually
decreases until it converges.

This Ying-Yang alternative procedure also applies to the extension in the
previous section, i.e., every appearance of ln r is replaced by a convex function
f(r) ∈ Fc by Eq. (22.47). For clarity, we focus on the function ln r in this
section. However, all the discussions here directly applying to the cases with
ln r replaced by a convex function f(r).

(1) Ying step With p(y|x) fixed and the regularization term zq ig-
nored, both Eq. (22.41) and Eq. (22.45) share the same updating format, as
follows:

max
θx|y

L(θx|y), L(θx|y) =
∫

p(y|x)p(x) ln q(x|y)dxdy,

max
θy

L(θy), L(θy) =
∫

p(y|x)p(x) ln q(y)dxdy, (22.63)

where θx|y and θy consist of unknown parameters in q(x|y) and q(y), re-
spectively. We make the updates δθx|y and δθy such that L(θy + δθy) and
L(θx|y + δθx|y) either reach a local maximum or increase to certain extent.
Typically, an updating δθ that increases an index J(θ) is a step size along a
gradient-based direction gθ = ∇θJ(θ), i.e.,

δθ = ηTgθ, (22.64)

where η > 0 is a small positive number that defines a step size. This δθ is
along either the gradient direction when T = I is a unit matrix or a direction
that has a positive projection on the gradient direction when T is a positive
definite matrix. Particularly, δθ is the well known natural gradient direction
when T is the inverse of the metric tensor of J(θ).

When p(x) is given by Eq. (22.1), the integral over x in both Eq. (22.35)
and Eq. (22.45) will disappear. When p(x) is given by Eq. (22.3), this integral
over x can also be removed with the help of certain approximations [22.58,
22.54, 22.51, 22.52].

The integrals over y is either analytically solved when q(x|y) and q(y)
are both Gaussian or becomes a computable summation when y takes one of
discrete values 1, · · · , k or is a binary vector y = [y(1), · · · , y(m)]. Otherwise,
these integrals are difficult to compute. Still, even when it becomes a com-
putable summation for a binary vector y = [y(1), · · · , y(m)], the computing
cost will increase exponentially with m.
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The problem is tackled via letting the integral over the entire domain of y
to be approximated by a summation on a set Yt of a finite number of samples
of y, which are obtained according to p(y|x) in the Yang step. One typical
case is that Yt consists of only one sample yt = y(xt). In this case, we can
further make updating δθx|y, δθy in the form of Eq. (22.64) with ln q(xt|yt)
and ln q(yt) in the place of J(θ), respectively.

Without considering regularization, we have that both the harmony learn-
ing by Eq. (22.37) and the KL learning by Eq. (22.45) share a same format
in the following gradients:

gθx|y = 1
N

∑N
t=1

∫
ηt(y)∇θx|y ln q(xt|y)dy, (22.65)

gθy
= 1

N

∑N
t=1

∫
ηt(y)∇θy

ln q(y)dy,

ηt(y) =





p(y|xt) by Eq. (22.46), the KL learning by Eq. (22.45),
δ(y − y(xt)), the harmony learning by

Eq. (22.37),

which can be further put in Eq. (22.64) for updating.
(2) Yang step This could be implemented in one of four typical ways,

according not only to whether Eq. (22.41) or Eq. (22.45) is used for learning,
but also whether a B-architecture or a BI-architecture is in consideration.
The details are given as follows:

– In implementing the KL learning on a B-architecture with Eq. (22.45) for
parameter learning or, equivalently, the ML learning on q(x), the Yang
step is to get Eq. (22.46). This is exactly the E-step by the well known
EM algorithm [22.9, 22.38], with Eq. (22.63) being exactly the M-step. In
other words, the EM algorithm is a specific case of the Ying-Yang alterna-
tive procedure given by Eq. (22.62). An integral over y has to be encoun-
tered for getting q(x), which is either analytically solvable when p(y|x),
p(x|y), and p(y) are all Gaussian densities or becomes a computable sum-
mation when y takes one of discrete values 1, · · · , k or is a binary vector
y = [y(1), · · · , y(m)]. Moreover, even when it is computable for a binary vec-
tor y = [y(1), · · · , y(m)], the computing cost will increase exponentially with
m. In other cases, the integral is difficult to compute. It was as previously
suggested in 1997 to be implemented approximately via a computationally
expensive Monte Carlo simulation. That is, Yt is obtained via randomly
picking a set of samples of y according to p(y|xt), (see the choice (1) of Ta-
ble 2(C) in [22.76] and the choice (a) in Eq. (24) and Sect. 3.1 in [22.66]) or
even in a rough approximation according to q(y) (see Step 1 in TableII(B)
in [22.76]).

– In implementing the KL learning on a BI-architecture with Eq. (22.45) for
parameter learning, the Yang step is to update θy|x, which consists of all
the parameters in p(y|x), by either Eq. (22.21) or Eq. (22.20). The update
δθy|x is made such that KL(θy|x + δθy|x) either reaches a local minimum
or reduces to a certain extent. Here, the integral over y for getting q(x)



642 L. Xu

by Eq. (22.46) is avoided. However, we encounter not only the integrals in
Eq. (22.63) but also the following one

H(θy|x) =
∫

p(y|x)p(x) ln p(y|x)dxdy. (22.66)

It was also firstly suggested in 1997 under the name of the mean field
approximation (see the choice (3) of Table 2(C) in [22.76] and the choice
(c) in Eq. (24) of [22.66]) that we get Yt consisting of only one mean point

yt =
∫

yp(y|xt)dy (22.67)

which is computable for a p(y|x) given by either of Eq. (22.20) and
Eq. (22.21), but not applicable to a B-architecture with p(y|x) given by
Eq. (22.46) since another integral has to be encountered to get q(x).

– In implementing the harmony learning with Eq. (22.41) for parameter
learning, the Yang step is simply getting Yt that consists of only one peak
point

yt = arm max
y

p(y|xt). (22.68)

which was firstly suggested again in 1997 (see the choice (2) of Table 2(C)
in [22.76] and the choice (b) in Eq. (24) of [22.66]) and then further en-
countered in Eq. (22.36) on a B-architecture. This nonlinear optimization
is implemented in help of an iterative procedure:

ynew(xt) = ITER(yold(xt)). (22.69)

Specific algorithms of this type are proposed in [22.57, 22.54] to suit spe-
cific structures of q(x|y) and q(y). The complexity of making a nonlinear
optimization is considerably less than that of making the integrals over
y. Moreover, we usually need only a few iterations by Eq. (22.69) instead
of waiting it to converge. This is another salient advantage that the least
complexity nature of Eq. (22.36) provides us, in addition to making model
selection possible.

– In implementing the harmony learning on a BI-architecture, the Yang step
consists of two parts. One is simply implementing Eq. (22.68). For a p(y|x)
given by Eq. (22.21), we can get yt = y(xt) via a simple comparison that
reduces significantly the computational complexity for making a nonlinear
optimization by Eq. (22.36). For a p(y|x) given by Eq. (22.20), we can get
either

y(j) = πj(xt), or y(j) =
{

1, πj(xt) ≥ 0.5,
0, otherwise.

(22.70)

The second part attempts to increase ln [q(x|y)q(y)]y=fj∗(x)(x|θy|x,j∗(x))
or

ln [q(x|y)q(y)]y=π(xt,θ). In help of the chain rule for gradient, it can be
implemented via an update δθy|x,j∗(x) in the form of Eq. (22.64) as follows

δθy|x,j∗(x) = ηt(y)gT
θy|x,j∗(x)

[ψ(y) + φ(y)],
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ψ(y) =
∂ ln q(x|y)

∂y
, φ(y) =

∂ ln p(y)
∂y

, (22.71)

gθy|x,j∗(x) = ∇θy|x,j∗(x)fj∗(x)(x|θy|x,j∗(x)), or gθ = ∇θπ(x|θ).

22.8 Learning Implementation: From Optimization
Search to Accumulation Consensus

By Eq. (22.62), the process of implementing parameter learning can be re-
garded as an optimization process. Actually, many learning tasks are imple-
mented in a two-stage way with its first stage to form an objective function
J(θ) and with its second stage to maximize J(θ). At the second stage, any
optimization techniques developed in the nonlinear programming literature
are possible to be adopted for solving the problems. One typical class of
techniques is the gradient-based search, that is,

θnew = θold + η∇θJ(θ), (22.72)

where η > 0 is a small number as a pre-specified step size. The updating is
iterated until it is converged. Such a process is featured by one candidate
solution θold that is updated locally and iteratively, and also terminated ac-
cording to certain local property (i.e., it is a local maximum). However, the
local feature makes the process be easy to be trapped at a local maximum.

This problem may be remedied by implementing multiple search processes
of the type by Eq. (22.72) either in parallel or subsequently. In parallel, it
means that a set Θc of candidate solutions are considered with each being
iterated via the same way as in Eq. (22.72). Subsequently, it means that
once a convergence is reached, certain perturbation is made on the converged
solution to get a new initial candidate of the next iterative process, and
selecting the best among all the converged local maxima as the final solution.
The chance of finding the global solution increases as the number of such
search processes increases. However, the computational costs also increase
significantly. In the worst case, an exhaustive search of the entire space of θ
will guaranteed to find the global solution.

However, optimization should not be understood being same as learning.
The key challenge of learning is to find a principle for designing an objective
function such that the learning model can both fit a given set of training
samples and generalize as good as possible on new samples that are different
from the given training sample set but come from the same underlying distri-
bution. Even assuming such an objective function already available, learning
is also not simply an optimization.

Being different from an objective function J(θ) for optimization, an ob-
jective function J(θ|X) is not only a function of θ but also bases on a set X
of samples. Of course, we can treat J(θ|X) as J(θ) with learning made as an
optimization problem. However, we are not bounded to only this way. We can
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explore the specific structure of J(θ|X) for a different implementation. It can
be observed, from not only Eq. (22.29) or Eq. (22.45) but also Eq. (22.30) and
Eq. (22.35) with zq = 1 as well as from many existing learning approaches,
that an objective function formed under a learning principle usually has an
additive decomposition form

J(θ|X) =
∫

p(x|X)J(θ|x)dx = 1
N

∑N
t=1J(θ|xt), (22.73)

with p(x) estimated by the empirical density Eq. (22.1).
First, this additive decomposition makes learning able to be implemented

adaptively. Instead of forming the function J(θ|X) based on the entire set X
and then making an optimization, a candidate solution is updated to adapt
each current coming sample xt such that the objective function J(θ|xt) per
each sample xt increases by certain extent, e.g., via Eq. (22.72) but with J(θ)
replaced by J(θ|xt). This is usually called adaptive learning that is different
from directly optimizing J(θ) in that the objective function J(θ|xt) per each
sample xt actually varies. Since each sample xt comes via random sampling,
this learning process is also called stochastic approximation in the related
literature [22.37, 22.24]. Extension can also be made by each time considering
a set Xt that consists of several samples. Then, an adaptation is made by
Eq. (22.72) but with J(θ) replaced by

∑
x∈Xt

J(θ|x). With the learning step
size η reduces as learning proceeds, such an iteration will be terminated.
However, whether the resulted solution is same as a local or global maximum
solution of J(θ|X) usually turned out a difficult problem, except some simple
cases.

Second, the additive decomposition in Eq. (22.73) also provides a possi-
bility to develop a completely different solving strategy called accumulation
consensus that consists of the following ingredients:

(a) Quantization Considering a bounded space of θ in which the solution
is located, we quantize this bounded space into a set of discrete points with
a pre-specified resolution δ > 0. Each of these discrete points is considered
as a candidate solution with an accumulator attached. All the accumulators
forms an accumulation array.

(b) Sampling Getting a sample xt from the sample set X.
(c) Voting and accumulation At each time t, we let every accumulator

in the accumulation array to be increased by a score of J(θ|xt) with θ being
the discrete point that the accumulator locates at.

(d) Selection and Testing After a certain period, the accumulator with
the largest score is selected among the accumulation array and the corre-
sponding discrete point is tested by certain local statistical properties. If
passed, it is taken as the solution.

The main problem of this accumulation procedure is that the size of the
accumulation array increases rapidly with a fine resolution δ > 0 and expo-
nentially with the number of unknown parameters. Also, voting and accumu-
lating should be made on all the accumulators.
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However, to implement the BYY harmony learning by Eq. (22.35) on
those finite mixture related learning tasks in Sect. 22.3.2, we are lead to a
very different situation. With q(y) = q(y = `) = α` and q(x|y) = q(x|φ`),
the marginal density by Eq. (22.17) becomes equivalent to the finite mix-
ture model by Eq. (22.14), which includes not only various Gaussian mixture
based tasks for density estimation and clustering analysis [22.54, 22.58, 22.77]
but also various multi-sets mixture based tasks for curve and object detec-
tion [22.52]. Moreover, we have that Eq. (22.36) becomes

p(y|x = xt) = δ(y − `t), `t = arg max
`

[q(xt|φ`)α`], (22.74)

and we further have that Eq. (22.73) becomes

J(θ|X) = 1
N

∑N
t=1 ln [q(xt|φ`t

)α`t
], θ = {φ`, α`}k

`=1. (22.75)

As a result, the above voting and accumulating mechanism can be consider-
ably simplified. Only one of k parameter sets {φ`, α`}k

`=1 will be voted at each
time t. Thus, it only needs to consider accumulating the votes on φ`t , α`t .
Moreover, considering that the k sets of parameters share a same format φ, α
and thus the dimension of accumulation array can be reduced by k times, we
can simplify the above accumulation procedure as follows:

(a) Quantization Considering a bounded space of φ, α that is quantized.
(b) Sampling the same as above.
(c) Voting and accumulation At each time t, we let every accumulator,

that locates at θ = [φ, α], to be increased by a score of ln [q(xt|φ)α].
(d) Selection and Testing the same as above.
Specifically, the test can base on a known statistical property of q(xt|φ).

For simplicity, the test can also be ignored.
In the particular case that α` = 1/k and each q(xt|φ`) = δ(g(xt, φ`)) (i.e.,

g(xt, φ`) = 0 is a deterministic equation), only the accumulators locate at
those values of φ` that satisfing g(xt, φ`) = 0 are voted and accumulated. This
case leads us to the well known existing techniques developed in the literature
of pattern recognition. Specifically, at each time t if every sample in the
sample set X is enumerated, the above accumulation procedure will become
equivalent to the well known Hough Transform (HT) for curve detection
[22.20, 22.21]. For example, when xt is of a 3-dimension and g(xt, φ`) = 0 is
a line, we are lead to a HT for detection lines on an image. Furthermore, if
each xt is sampled randomly and the period in (d) covers an enough number
of samples, we are lead to a probabilistic variant of the HT [22.16].

The above accumulation procedure extends the HT and probabilistic HT.
Not only α` is no longer constrained to be equally 1/k such that the number
of pixels or samples on an object is considered together with their fitting er-
rors. But also with a probabilistic q(xt|φ`) in place of the deterministic model
g(xt, φ`) = 0 such that random noises and variations are taken in considera-
tion. For example, objects such lines, circles, ellipses, and even complicated
shapes can be detected under strong noises. Moreover, we can further reduce
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the complexity for voting and accumulating because only those accumulators
that locate on a smaller subset θt are increased by a score of J(θ|xt), where
θt is given as follows:

θt = {φ, α : q(xt|φ)α ≥ b, b > 0 is a pre-specified threshold,} (22.76)

which degenerates back to the entire space when b = 0.
One variant of the above accumulation procedure is obtained by mod-

ifying its sampling mechanism. At each t, a set Xt of several samples are
sampled randomly from X instead of only one sample xt is picked. In vot-
ing and accumulating, if the above hard-cutting is not considered, we simply
let every accumulator in the accumulation array to be increased by a score∑

x∈Xt
J(θ|x) in place of J(θ|xt). However, situation will become quite dif-

ferent by considering accumulators only on

θt = {φ, α : q(x|φ)α ≥ b, ∀x ∈ Xt}. (22.77)

As b > 0 increases and the number of samples in Xt increase, the cardinality
of θt will decrease, even possibly toward 1 or 0. Consequently, the voting
mechanism changes from one-to-many diverging mapping to many-to-one or
many-to-few converging mapping. As a result, the high space complexity of
the above quantization based accumulation array can be replaced by a dy-
namic accumulator structure A. At each time t, we increase the accumulator
at θ by a score

∑
x∈Xt

J(θ|x). If such an accumulator has not been included
in A yet, we add it in. Thus, the number of accumulators in A grows dy-
namically as the voting proceeds. Finally, solutions are selected among A
either via those accumulators with largest votes or via the cluster centers of
accumulators.

This modified accumulation procedure becomes equivalent to the random-
ized Hough Transform (RHT) [22.96, 22.95] in the particular case that each
q(xt|φ`) = δ(g(xt, φ`)) and α` = 1/k. The RHT was developed as an impor-
tant advance along the research direction of the conventional HT. Moreover,
the accumulation procedure here extends the RHT approach such that not
only the number of pixels or samples on an object is considered together
with their fitting errors but also random noises and variations are taken in
consideration.

Further improvements are possible along the following directions:
(1) Instead of deciding solution only based on those accumulators with

largest votes or the cluster centers of accumulators, a statistical test can be
imposed by jointly considering the local fitting property via q(xt|φ`) and the
global property via α`.

(2) Instead of implementing learning only based on either optimization
search or accumulation consensus, possible combinations of two can be inves-
tigated. For example, the final results of the above accumulation procedure
can also be used as initial points of a local adaptation based optimization
search to further refine these solutions. Also, the accumulation consensus may
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be implemented together with a parallel local adaptation based optimization
search.

(3) Instead of pre-specifying a threshold b > 0, b may also be dynamically
controlled during the above accumulation procedure.

22.9 Main Results and Bibliographic Remarks

22.9.1 Main Results on Typical Learning Problems

Bayesian Ying Yang (BYY) harmony learning was firstly proposed in 1995
[22.88] and then developed in past several years. New results can be summa-
rized on two aspects. One aspect is on those advances of the BYY harmony
learning as a general statistical learning framework with a new mechanism
for model selection and regularization, the details will be introduced in next
chapter of this book. The other aspect is on various specific cases of the BYY
harmony learning, which lead to various specific learning algorithms as well
as the detailed forms for implementing model selection and regularization,
which covers three main statistical learning paradigms, namely, unsupervised
learning, supervised learning, and temporal modeling. The major results are
summarized into the following list.

(a) Gaussian mixture and multi-sets-mixture based structures

– Smoothed EM (see Eq. (18) in [22.75]), Robust EM (see Eq. (33) in [22.77]),
Hard-cut EM (see [22.88, 22.82]), RPCL learning, Normalization RPCL-
type EM [22.58, 22.54, 22.51].

– Elliptic clustering [22.58, 22.54] and multi-sets mixture based multiple ob-
ject detection (see Sect. 3 in [22.82] and also see Sect. 3.3 in [22.52]).

– Criteria for the number k of clusters and of Gaussians [22.88, 22.82, 22.85,
22.77].

– Adaptive learning with automatic selection on k [22.88, 22.82, 22.77, 22.58,
22.54].

– Support vector based Parzen window estimate [22.58, 22.54].

(b) Independent structures

– Adaptive EM-like algorithms for independent binary or Bernoulli FA
(BFA) with hidden factors selected in either of two ways, that is, selected
either automatically during learning or alternatively via a criterion ob-
tained from Eq. (22.42)(see Sect. 3.2(B) in [22.71], Sect. 4.2.2 & 4.2.4 and
Fig. 2 in [22.66]).

– New insight on LMSER learning [22.94] for ICA and new adaptive al-
gorithm with hidden factors selected in either of two ways (see Sect. 8
in [22.74], Sect. 4.3.4 in [22.66], and also the recent [22.54, 22.51]).

– Extensions of the LMSER learning (see Sect. 3 in [22.66] and Sect. 3
in [22.68]).
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– Factor analysis and PCA with subspace dimension determined in either of
two ways (see Sect. 3.2(B) in [22.71], also see Sect. 4.2.4 in [22.66]).

– Adaptive algorithms that are able to effectively implement the non-Gaussian
factor analysis (NFA), with hidden factors selected in either of two ways
[22.57, 22.54, 22.51, 22.53].

– A learned parametric model (LPM) ICA algorithm that it works on any
combinations of super-Gaussian sources and sub-Gaussian sources [22.76,
22.78, 22.79, 22.72].

– The one-bit conjecture and its proof [22.26].

(c) Mixtures of independent structures

– Smoothed EM, Robust EM, Hard-cut EM, RPCL learning, Normalization
RPCL-type EM, with the number of local models and the subspace dimen-
sion of each model determined in either of two ways [22.54, 22.51].

– Extensions of BFA, NFA, LMM-ICA, LMSER to their local versions, with
both the number of local models and the number hidden factors selected
in either of two ways (see Item 7.6 and Item 7.7 in [22.74], and the recent
[22.54, 22.51, 22.52]).

– Extensions to self-organizing maps in collaboration with the BYY harmony
learning [22.54].

(d) Mixture-of-experts (ME), RBF nets, and kernel regression

– Cooperative competitive learning (CCL) for ME learning, with the number
of experts determined in either of two ways (see Sect. 4 in [22.82] and
Table 7 in [22.76], also see Sect. 2.2 in [22.67]).

– An alternative ME model [22.92] with its ML learning exactly implemented
by the EM algorithm. Criterion for the number of experts, as well as CCL
learning algorithms and normalization RPCL-type EM, with the number
of experts determined in either of two ways (see Sect. 4.3 in [22.83] and
Sect. 3.2 in [22.67], also see [22.58, 22.54]).

– Variants on both the ME model and the alternative ME model via intro-
ducing regularization of either data smoothing or normalization.

– RBF nets are linked to the alternative ME model as special cases. In-
stead of the conventional two step learning, i.e., making clustering and
then least square learning, learning is implemented not only by EM in
exactly a maximum likelihood sense with the number of basis functions
selected by a simple criterion from Eq. (22.42), but also by adaptive algo-
rithms in a BYY harmony learning sense with the number of basis func-
tions determined automatically during learning. Moreover, extensions are
made by introducing regularization of either data smoothing or normaliza-
tion [22.67, 22.58, 22.54].

– As the special cases of the normalized radial basis function (RBF), we can
get a support vector based kernel regression [22.58, 22.54].
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(e) Three layer nets and hidden units

– Regularized ML learning obtained via either normalization or data smooth-
ing [22.51].

– Three layer nets with hidden units are linked to independent factor struc-
tures as extended cases [22.51, 22.53].

– Easy implementing criterion obtained from Eq. (22.42) for determining
hidden units.

– An EM-like algorithms for a three layer net of stochastic hidden unit in
multivariate Bernoulli, with the number of hidden units determined (see
Table 4 and 5 in [22.76]).

(f) Temporal modeling

– Extensions of BFA to independent HMM and higher order independent
HMM (see Item 4.1 in [22.75], Sect. 2.4 in [22.65], Eq. (26) in [22.61], and
pages 839-849 of [22.57]).

– Extension of ICA to temporal ICA for blind separation of temporal sources
(see Eq. (29a) and (29b) in [22.65], Sect. 3 in [22.65], Sect. IV(A) & (B)
in [22.59], and Sect. III(B) in [22.57]).

– Extensions of FA to not only Kalman filter, but also temporal factor anal-
ysis (TFA) that has no rotation indeterminacy and, thus, can be used for
both not only implementing a real BSS with noise and but also making
model identification (see Sect. 2.3.1 in [22.65]), Sect. IV(C) in [22.59], and
Sect. III(A) in [22.57]).

– Extensions of TFA to temporal NFA, with the driving noises of the au-
toregressive state space being non-Gaussian and modeled via Gaussian
mixtures (see Sect. 4 in [22.61] and Sect. IV(B) in [22.59]).

– Easy implementing criterion obtained from Eq. (22.42) for determining
hidden states.

– Adaptive algorithms with the number of states determined automatically
during learning (see [22.57, 22.53]).

– Temporal extensions of LMSER, competitive ICA, local FA and local NFA
to [22.57, 22.53].

These results have been obtained as the progress of studies on BYY system
and harmony learning. Bibliographic remarks on the progress are provided in
the following two subsections from both the aspect of BYY system with the
KL learning and the aspect of computing techniques for implementing BYY
learning. In the next chapter of the present book, bibliographic remarks will
be also provided on the progress from the model selection and regularization
aspects of BYY harmony learning.
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22.9.2 Bibliographic Remarks on BYY System with KL Learning

As discussed in Sect. 22.5, acting as a unified framework for understanding
several existing major learning models, the BYY learning was firstly pub-
lished in 1995 with the following main issues [22.88]:

– The basic system as shown in Fig. 22.1 and three typical architectures as
shown in Fig. 22.2 were firstly proposed and studied under the KL learning
by Eq. (22.45).

– The equivalence of the KL learning on a B-architecture to the ML learning
on q(x) was found with Eq. (22.46), with the EM algorithm [22.9] revisited
and an alternative but much simpler mathematical proof on its convergence
(see Sect. 3.1 in [22.88], especially the part after Eq. (9) in [22.88]).

– The relationship of this KL learning on a BI-architecture to the Helmholtz
machine learning and variational approximation [22.40, 22.18] was estab-
lished (see Sect. 3.4 in [22.88]).

– The relationship of this KL learning on a F-architecture to the maximum
information preservation were established (see Sect. 3.3 in [22.88]).

In the same year, the key ideas were also proposed for extending the BYY
system under the KL learning by Eq. (22.45) to supervised learning (see
Sect. 5 in [22.90]) and temporal modeling (see [22.89] and Sect. 4 in [22.90]).
Specifically, advances of BYY system under the KL learning can be summa-
rized along the following directions:

(1) The equivalence between the KL learning on a B-architecture and the ML
learning on the marginal density q(x) was further elaborated as Theorem 1
in [22.77]. The Ying-Yang procedure discussed in Sect. 22.7 provides the gen-
eral form of the EM algorithm [22.9] from a new perspective, which not only
leads us to revisit the detailed forms of the EM algorithm on Gaussian mix-
ture [22.38], mixture of experts [22.13, 22.14, 22.92], factor analysis [22.39],
etc., but also brings us new results on several typical learning models in two
aspects:

(a) On those models that have not taken the advantages of the EM al-
gorithm yet, the detailed forms of the EM algorithm are developed for
implementing the ML learning. The following are two typical examples.
– The so-called multi-sets modeling is proposed in 1994 for modeling

these objects in typical shapes such as lines, circles, and ellipses, as
well as pre-specified templates [22.93] and [22.91]. At the beginning,
its learning is formulized as an extension of the conventional mean
square error (MSE) clustering analysis and then implemented via a
generalized version of the well known KMEAN algorithm [22.10]. In
help of a link, that was firstly built in [22.88], between the ML learning
with the EM algorithm on Gaussian mixture and the MSE clustering
with the KMEAN algorithm, this type of multi-sets is represented into
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a finite mixture that is also recently called multi-sets-mixture [22.52],
the detailed forms of the EM algorithm are proposed for implementing
its ML learning (see Sect. 3.2 in [22.88] and Sect. 3 in [22.82], also see
the recent elaboration in [22.52]).

– The alternative model [22.92] of the mixture-of-experts (ME) [22.12,
22.13] with the EM algorithm for its ML learning has been revisited.
As special cases of this alternative ME model, the detailed forms of
the EM algorithm is developed for implementing the ML learning on
the normalized RBF nets, the extended normalized RBF nets, as well
as their elliptic extensions (see Sect. 4 in [22.82] and Table 7 in [22.76],
also see Sect. 2.2 in [22.67]), in place of the conventional sub-optimal
two stage training algorithm (i.e., making clustering to locate basis
functions and then making linear regression for the output layer).

(b) The above EM algorithms as well as those existing EM algorithms on
several typical learning models are further extended to adaptive versions
(i.e., adaptation is made per a sample). Typical examples include those
adaptive algorithms on:
– Gaussian mixture (see Sect. 6.1 in [22.88]),
– factor analysis (see Sect. 3.2(B) in [22.71], also see Sect. 4.2.4 in [22.66]),
– binary factor analysis (see Sect. 4.2.2 and Fig. 2 in [22.66]),
– local PCA (see Item 7.6 and Item 7.7 in [22.74]),
– multi-sets mixture (see Sect. 3 in [22.82] and also see Sect. 3.3 in [22.52]),
– mixture-of-experts model and alternative mixture-of-experts model

(see Sect. 4.3 in [22.83] and Sect. 3.2 in [22.67]).

(2) Following a link initially made in [22.88] on the relationship between the
KL learning with a BI-architecture and the Helmholtz machine learning, the
detailed relationship between BYY system and Helmholtz machine is further
explored via a special BI-architecture for factorial encoding that leads both
special cases of the Helmholtz machine with one hidden layer and a regular-
ized version of LMSER [22.94] and auto-association [22.6]. This regularized
LMSER actually performs jointly a noisy-ICA and a LMSER learning (see
Sect. 8 in [22.74] and Sect. 4.3.4 in [22.66]). Its learning is implemented either
via a Monte-Carlo technique (see Table 2 in [22.76]) or in help of a mean-
field approximation based EM like algorithm (see Sect. 4.3.2 in [22.66]). With
a binary inner representation replaced with a real non-Gaussian, two other
advances have been achieved. One is a Monte-Carlo based EM algorithm
for implementing independent factor analysis with non-Gaussian factors (see
Sect. 3 in [22.66] and Sect. 3 in [22.68]) and the other is another extension
of nonlinear LMSER learning with a real non-Gaussian inner representation
(see Sect. 3.4 in [22.66]).

(3) Following a link initially made also in [22.88] on the relationship the
relationship between the KL learning with a F-architecture and the maximum
information preservation, subsequently it is further obtained that
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– The KL learning on a joint special case of both BYY F-architecture and
BYY BI-architecture leads the widely studied information theoretic based
ICA [22.86].

– With q(y) being a product of independent factors in a parametric model
that is learned together with the F-architecture, we were motivated on
getting an important improvement on the information theoretic based
ICA, under the name Learned Parametric Mixture based ICA (shortly
LMP-ICA) algorithm [22.87] that works well on any combination of super-
Gaussian or sub-Gaussian sources. Each independent factor can be modeled
via either a mixture of CDF [22.78, 22.79] or a mixture of Gaussian mixture
(see Table 3 in [22.76] and [22.72]).

– This LMP-ICA has also been extended to the cases with observation noises
via implementing jointly a noisy-ICA and either a non-Gaussian indepen-
dent factor analysis or a LMSER learning (see Eq. (10.8) and Eq. (10.9)
in [22.74]).

(4) The KL learning on a specific B-architecture also leads to the ML learning
and particularly the mean square error learning on a three layer network (see
Table 5(1) in [22.76]). With two types of stochastic hidden units, the ML
learning on three layer networks can be made by an EM like algorithm (see
Table 4 in [22.76]), which is implemented via either a Monte-Carlo technique
(see Table 5(4) in [22.76]) or a mean-field based technique (see Table 5(3)
in [22.76]).
(5) Studies on BYY systems for temporal modeling started from 1995 too
(see [22.89] and Sect. 4 in [22.90]), in which a preliminary framework was
proposed and the KL learning on temporal BYY system with a B-architecture
was shown to be equivalent to the ML learning on a temporal process. To
implement the learning, the following studies have been made:

– The KL measure on the entire temporal process has been turned into a
summation of the KL measure at every time instance t weighted by a
transfer probability from its past to the moment t.

– The integrals over each inner representation yt has been approximated via
a Monte-Carlo technique (see Sect. 5 in [22.75]).

– A fast implementation is further developed with the integrals over each
yt being approximated in help of a so-called CRP approximation that in-
cludes the mean-field approximation as one of three typical examples (see
Sect. 2.1 in [22.65]). Then, this CRP approximation is mathematically jus-
tified by considering

∫
p(u)T (u)du via the first order Taylor expansion of

T (u) around û =
∫

up(u)du (see Sect. 2.3 in [22.64]).
– A better approximation of the integrals over each yt has also be considered

via the above Taylor expansion of T (u) up to the second order (see Sect. 2.3
in [22.64] and Sect. II(D) in [22.59]).

(6) Furthermore, two types of particular temporal models have been studied.
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(a) One is that y is real and described by a state space model of an auto-
regressive (AR) process (e.g., a first order AR process) even the first
order auto-regressive process, with the following results:
– The well known Kalman filter on the state space is revisited as a spe-

cial case with extensions obtained (see Item 4.2 in [22.75], Sect. 2.2
in [22.65] and [22.64], and Sect. III(B) in [22.57]).

– ICA is extended to temporal ICA (see Eq. (29a) and (29b) in [22.65]),
and Sect. 3 in [22.65], also see Sect. IV(A) and (B) in [22.59] and
Sect. III(B) in [22.57]).

– The temporal factor analysis (TFA) has been proposed not only as an
extension of factor analysis with its rotation indeterminacy solved by
temporal relation and but also as an extension of Kalman filter with
the state space parameters determined via learning instead of requiring
them known in advance (see Sect. 2.3.1 in [22.65]), Sect. IV(C) in
[22.59], and Sect. III(A) in [22.57]).

– Temporal noisy-ICA that implements jointly a temporal ICA and a
temporal extension of non-Gaussian independent factor analysis (see
Sect. 4 in [22.61] and Sect. IV(B) in [22.59]).

(b) The other type is that y is discrete or binary and described by a Hidden
Markov process, with the following results:
– The well known Hidden Markov model (HMM) is revisited when y

takes a finite number of discrete labels, and the Ying-Yang procedure
leads to the well known Baum-Welch algorithm (see Item 4.1 in [22.75]
and Sect. 2.4 in [22.65]). Moreover, with the CRP approximation, a
fast algorithm was suggested for approximately implementing the ML
learning (see Sect. 2.4 in [22.65]).

– Temporal extension of binary FA is made into a type of independent
HMM, with its learning implemented by an EM-like algorithm (see
Eq. (26) in [22.61] and page 839–849 of [22.57]).

– When a B-architecture is replaced with a BI-architecture for directly
mapping xt → yt, temporal extension of the previously discussed reg-
ularized LMSER is made into another type of independent HMM,
with its learning implemented by an EM-like algorithm (see Sect. 4
in [22.64], Sect. IV(D) in [22.59], and Sect. III(B) in [22.57]).

(7) Extensions of the KL learning by Eq. (22.45) has also been made with the
KL-divergence replaced by f -divergence and the so-called weighted EM algo-
rithm was firstly proposed (see Item 1.4 in [22.75] and Sect. 4 in [22.75]), sup-
ported by experiments on Gaussian mixture [22.77] and ICA problems [22.80]
with advantage of being robust to outliers. Further studies have also been
made in [22.69, 22.70, 22.62, 22.63], especially with a systematic summary
in [22.60].
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22.9.3 Bibliographic Remarks on Computing Techniques

During the studies on BYY learning, the following specific computing tech-
niques have also been developed to support implementation:

– Ying-Yang Alternative implementation, as given by Eq. (22.62), pro-
vides a unified implementation procedure that facilitates the learning on
such a paired system. It not only includes the EM algorithm [22.9] as a
special case but also applies to various cases of learning on a BYY system
under either KL-divergence or harmony measure as well as other learning
costs.

– The technique of approximating
∫

p(u)T (u)du via the first order Talyor
expansion of T (u) around û =

∫
up(u)du (see Sect. 2.3 in [22.64]) provides

a very useful tool for tackling the integrals of
∫

p(u)T (u)du type, which
takes an important role in implementation of temporal BYY learning and
data smoothing regularization.

– The peak finding problem in Eq. (22.36) takes an important part in imple-
mentation of BYY harmony learning, which is solved by techniques given
in Table 1 of [22.57].

– An iterative updating on a covariance matrix Σ has to ensure its positive
definite nature. It is usually not guaranteed by a updating rule with both
learning and de-learning. Two techniques was firstly proposed in Table 1
of [22.58]. Namely, one bases on the decomposition Σ = BBT , which have
been adopted in [22.54, 22.56, 22.51, 22.52] and the other bases on the
eigen-decomposition, which have been adopted in [22.27, 22.28, 22.29].

– The accumulation consensus technique discussed in Sect. 22.8 can be traced
back to the RHT [22.96, 22.95] for detecting line and curves. The RHT
opened one new direction on studies of the conventional HT, which has
been widely studied and applied to various problems of curve detection
and object detection.

– The multi-set mixture based learning was developed in [22.93, 22.91].
The link between RHT and multi-sets mixture based learning was built
in [22.52] where the key ideas discussed in Sect. 22.8 were firstly initial-
ized.

22.10 Conclusions

Various dependence structures among data are important to many tasks of
statistical learning and data mining. Undertaking both a survey on major
tasks of dependence structure mining and a summary on fundamentals and
main results of BYY harmony learning, we observe that the BYY harmony
learning provides a unified framework for various dependence structures, with
new mechanisms for model selection and regularization on a finite size of
samples.
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