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Abstract� This paper is a sister paper of �
� published in this same pro�
ceeding� for further interpreting the Bayesian Ying�Yang �BYY� learning
system and theory through its uses on developing models and algorithms
for dependence reduction� independent component analysis� data dimen�
sion reduction� supervised classi�cation and regression with three�layer
net� mixtures�of�experts� and radial basis function nets	 Readers are re�
ferred to �
�� 
� for the details on BYY learning system and theory	 In
addition� the relation of BYY learning system and theory to a number
of existing learning model and theories has been discussed in �
��	

� BKYY Dependence Reduction System and Theory

In many applications� we want to implement a unsupervised mapping from ob	
servation x into y 
 �y���� � � � � y�k��T such that the dependence among the com	
ponents of y is reduced as much as possible� This aim is also regarded as a basic
principle in a brain perception system formed via unsupervised learning ���� This
process is studied in the literature under several names such as Dependence Re�
duction� Factorial Learning� Independent Component Analysis �ICA� � Factorial

� Supported by HK RGC Earmarked Grants CUHK������E and CUHK ������E and
by Ho Sin�Hang Education Endowment Fund for Project HSH �����	 The basic ideas
of the BYY learning system and theory in my previous papers started three years
ago� the �rst year of my returning to HK	 As HK in transition to China� this work
was in transition to its current shape	 The preliminary version of this paper and its
sister papers �
�� 
� are all completed in the �rst month that HK returned to China
and thus I formally returned to my motherland as well	 I would like to use my this
work� an e�ort on the harmony of an ancient Chinese philosophy and the modern
western science� as a memory of this historic event	



Encoding� These names are very closely related� although their detailed mean	
ings are slight di�erent� We consider that Dependence Reduction may be a more
general name because it covers the meanings of the other three names and also
maybe more appropriate to those e�orts that attempt to reduce dependence but
�nally may or may not really reach independence� Due to limited space� we omit
to mention a quite large volume publications related to these topics�

In ����� it has been shown that we can apply the BYY learning system and
theory at the special case of y 
 �y���� � � � � y�k��T with y�j� being binary to obtain
a so called BYY Factorial Encoding �FE� system and theory� Here� we consider
the general case that y 
 �y���� � � � � y�k��T is either binary or real such that not
only the previously proposed BYY FE system and theory has been further re�ned
and improved� but also a general Bayesian Ying�Yang Dependence Reduction
�BYY�DR� system and theory is suggested�

Generally speaking� we can design pMy �y� to be an independent parametric
density or free density�

pMy �y� �

�
p�yj�k� �

Qk

j�� p�y
�j�j�j�� p�y

�j�j�j� �
Pky�j

r�� �r�jp�y
�j�j�r�j��

p�y� �
Qk

j�� p�y
�j��� p�y�j�� is free�

�
�

where �r�j � ��
Pky�j

r�� �r�j 
 �� �k 
 f�jg
k
j��� We put this pMy �y� in

� eq�������
eq������ and eq����
� to get BYY	DR� BCYY	DR� BKYY	DR system and theory
as the special cases of BYY� BCYY� BKYY learning system and theory� respec	
tively� In this paper� we concentrate on the BKYY	DR system and theory only�
Generally speaking� it is just a direct application of using the above eq���� in
eq����
� with the general implementation technique given in Sec�� in ����

From Sec�� in ���� we further get the detailed algorithms and criteria in Tab��
with the following three architectures�

Forward 
 pMxjy
�xjy� � p�xjy� free� pMyjx

�yjx� � p�yjx� �yjx��
Backward 
 pMyjx

�yjx� � p�yjx� free� pMxjy
�xjy� � p�xjy� �xjy��

Bi� direction 
 pMyjx
�yjx� � p�yjx� �yjx�� pMxjy

�xjy� � p�xjy� �xjy�� ���

where a density is implemented directly by a physical computing device if it is
a parametric model� or indirectly by other components if it is free�

In Tab��� Part A is obtained from eq����
� and eq������� for the general im	
plementation� Part B provides the relation to some existing methods and will
be further discussed in the next section� The adaptive algorithm given in Part
C is obtained according to the general implementation technique given in Sec��
in ���� with pr�y� 
 pMy �y�� The model selection criteria are given in Part D�

� BKYY DR for ICA and Blind Source Separation

We consider the following noisy post	nonlinear instantaneous mixture that the
d dimensional observation x comes from k independent sources s���� � � � � s�k� via

x � g�Ay��e� Ey � �� Ee � �� EyeT � �� g�Ay� � �g���x
��� � � � � gd��x

d��� �x � Ay ���

� In this paper� we will frequently refer to the equations in paper �
�� which is published
in this volume too	 For convenience� we simply use eq	�
	n� to denote eq	�n� in �
�	



Table �� BKYY�DR System and Theory

Forward Bi�direction Backward

For KL�M��M�� given in eq	�
	�� � pMy �y� given by eq	�
�
pMx�x� is �xed at a nonparametric estimation based on Dx � fxig

N
i��

Part A� The Alternative Minimization Procedure

Fix pMxjy
�xjy�� pMy �y�� update

the parameter �yjx of pMyjx
�yjx� to reduce pMyjx

�yjx� �

Step 
 Kl�M��M�� in eq	�
	

�
pMxjy

�xjy�pMy �y�

pMxjy�y
�x�

e	g	� moving one step along pMxjy�y
�x� �

the gradient descent direction
R
pMxjy

�xjy�pMy �y�dy

Fix pMyjx
�yjx�� update

pMxjy
�xjy� � the parameter �xjy of pMxjy

�xjy� to increase
pMyjx

�yjx�pMx �x�

pMyjx�x
�y�

R
x�y

pMyjx
�yjx�pMx �x� ln pMxjy

�xjy�dxdy

Step � pMyjx�x
�y� � e	g	� moving one step alongR

pMyjx
�yjx�pMx�x�dx the gradient ascent direction

For pMy �y� free� let pMy �yj� �
R
pMyjx

�yjjx�pMx�x�dx� j � 
� � � � � k

For pMy �y� parametric� update its parameter to increaseR
x�y

pMyjx
�yjx�pMx �x� ln pMy �y�dxdy

e	g	� moving one step along the gradient ascent direction 	

Part B� minM��M� KL�M��M�� is equivalent to minimizeR
y
pMyjx�x

�y� ln
pMyjx�x

�y�

pMy �y�
dy

R
x
pMx �x� ln

pMx �x�

pMxjy�y
�x� dx

with pMyjx�x
�y� and with pMxjy�y

�x� and

pMxjy
�xjy� given above pMyjx

�yjx� given above

Part C� The Stochastic Approximation Adaptive Algorithm
Refer to Sec	� in �
�� use pMy �y� by eq	�
� as the Sampling Reference
density� get a sample xt and randomly take a sample yt from pMy �y�	

Fix pMxjy
�xjy�� pMy �y�� update

Step 
 �newyjx � �oldyjx �
�

pMy
�yt�

� Get pMyjx
�yjx�

��pMyjx
�ytjxt� ln

pMyjx
�ytjxt�

pMxjy
�xtjyt�pMy

�yt�
�

��yjx
j
�yjx��

old
yjx

the same as in Part A

Fix pMyjx
�yjx�� update

Get pMxjy
�xjy� above �newxjy � �oldxjy � �

pMy
�yt�

�

�in the batch way only�
�pMyjx

�ytjxt� ln pMxjy
�xtjyt�

��xjy
j
�xjy��

old
xjy

Step � When pMy �y� free� the same as in Part A�in the batch way only �	

For pMy �y� parametric� �
new
y � �oldy � �

pMy �yt�

�pMyjx
�ytjxt� ln pMy �yt�

��y
j�y��oldy

Part D� The Model Selection Criteria for k
After learning� denote the results by p�Myjx

�yjx�� p�Mxjy
�xjy�� p�My

�y�

Dx � fxtg
N
t�� and randomly take samples Dy � fy� g

N �

� from p�My
�y�

From eqs	�
	
��
��� get k� � argmink J��k� or k
� � argmink J��k�

J��k� �
�

NN�

PN

t��

PN�

���

p�
Myjx

�y� jxt�

p�
My

�y� �
ln

p�
Myjx

�y� jxt�

p�
Mxjy

�xtjy� �p
�
My

�y� �

J��k� � � �
NN�

PN

t��

PN�

���

p�
Myjx

�y� jxt�

p�
My

�y� �
ln �p�Mxjy

�xtjy� �p
�
My

�y� ���



Table �� BKYY DR for ICA and Blind Source Separation �BSS�

Forward Bi�direction Backward

Kl�M��M�� and pMx �x� are the same as in Tab	

Kl�M��M�� �

R
pMx �x��H�yjx� �Q�xjy�� C�y��dxdy� H�yjx� � pMyjx

�yjx� ln pMyjx
�yjx�

Q�xjy� � pMyjx
�yjx� ln pMxjy

�xjy�� C�y� � pMyjx
�yjx� ln pMy �y�

Part A� Architecture Design

For binary y� pMy �y� �
Qk

j��
qy

�j�

j �
� qj�
��y�j� � �k � fqj 
 � � qj � 
gkj��

For real y� pMy �y� � p�yj�k� given by eq	�
�
pMxjy

�xjy� is free pMxjy
�xjy� � G�x� g�Ay����

For binary y� pMyjx
�yjx� �

Qk

j��
�
yj
j �
 � �j�

��yj

�j � s�eTj �Wf�x��f � �By��� H�yjx� �

pMyjx
�yjx�

Pk

j��
�yj ln �j � �
� yj� ln �
� �j�� pMyjx

�yjx� is free

For real y� pMyjx
�yjx� �

Pnyjx
j�� �jG�y �Wf�x� �f �� 	��j�

Note
 
	 s�r� is sigmoid with its range on ��� 
�� e	g	� s�r� � 
��
 � e�r�
�	 eTj x gives the j�th element of the vector x	

�	 The nonlinear function f�x��f � can be implemented by a forward network	
Part B� Adaptive Algorithm

Step 

 the same as Part C in Tab	
� get a sample xt and randomly
take a sample yt from pMy �y�	 Fix pMxjy

�xjy�� pMy �y�� update

�yjx � fW�B� �f � f�jgg or �yjx � fW�B� �fg� pMyjx
�yjx� �

�newyjx � �oldyjx �
�

pMy �yt�
�H�ytjxt��Q�xtjyt��C�yt�

��yjx
j�yjx��oldyjx

pMxjy
�xjy�pMy �y�R

pMxjy
�xjy�pMy �y�dy

Step �
 Fix pMyjx
�ytjxt�� update

g��x� 	� � �g���x�� 	�� � � � � gd��xd� 	��� �x � Ay�

Gt �
�gT ��x���

��x j�x�Aoldyt����old
��old���

Anew � Aold � �
pMyjx

�ytjxt�

pMy
�yt�

Gt�xt � g�Aoldyt� �
old��yTt �

Ht �
�gT ��x���

�� j�x�Aoldyt����old
��old��� �

�new � �old � �
pMyjx

�ytjxt�

pMy
�yt�

Ht�xt � g�Aoldyt� �
old��


Get a�xt� yt� � xt � g�Anewyt� �
new��

�in batch way only� �new � ��� ���old � �
pMyjx

�ytjxt�

pMy
�yt�

a�xt� yt�a
T �xt� yt��

pMxjy
�xjy� � Particularly� for linear g�u� � u� we have

pMyjx
�yjx�pMx �x�R

pMyjx
�yjx�pMx �x�dx

Anew � Aold � �
pMyjx

�ytjxt�

pMy
�yt�

�xt � Aoldyt�y
T
t � �new �

��� ���old � �
pMyjx

�ytjxt�

pMy
�yt�

�xt � Anewyt��xt � Anewyt�
T

Wnew � Wold � �
pMyjx

�ytjxt�

pMy
�yt�

�yt �Woldxt�x
T
t � backward case��

For real y and pMy �y� is parametric

�newj � �oldj � 

pMyjx

�ytjxt�

pMy �yt�

� ln p�y
�j�
t

j�j �

��j
j�j��oldj

� j � 
� � � � � k�

For binary y� qnewj � �
��exp��rnew

j
� � rnewj � roldj � 


pMyjx
�ytjxt�

pMy �yt�
�y�j�� � qoldj �	

Part C� Three Ways of Recovery x� y

�
�	 Random sampling �y according to the resulted pMyjx
�yjx�	

���	 Maximum posterior decision	 �y � argmaxy pMyjx
�yjx�	

��� For linear g�u� � u� get a direct inverse mapping �y � Wx

Part D� The Criteria for Selecting k �the same as in Tab���



Table �� Adaptive Algorithm with Finite�Mixture for Noiseless ICA

Gaussian Mixture Derivative Sigmoid Mixture

With �oldk �xed� update Wnew � Wold � ��I � ��y�yT �Wold� ��y� � ����y��� � � � � �k�yk��
T

y � Woldx� y�j� � xTt w
old
j � �j �y

�j�� �
� ln p�y�j� j�j�

�y�j�
�

P
ky�j
r��

�old
r�j

�p�y�j�j�old
r�j

���y�j�Pky�j

r��
�old
r�j

p�y�j�j�old
r�j

�

p�y�j�j�r�j� � G�y�j�� 	r�j� 

�
r�j�� p�y�j�j�r�j� �

ds�y�j� j�r�j�

dy�j�
�

br�j e
�br�j �y

�j��ar�j �

���e
�br�j �y

�j��ar�j ���

�r�j � f	r�j� 

�
r�jg� s�y�j�j�r�j� �

�

��e
�br�j �y

�j��ar�j �
� �r�j � far�j � br�jg

�p�y�j�j�r�j�

�y�j�
� �

�y�j��	r�j�


�
r�j

p�y�j�j�r�j�
�p�y�j�j�r�j�

�y�j�
�

b�
r�j

e
�br�j �y

�j��ar�j ��e
�br�j �y

�j��ar�j ����

�e
�br�j �y

�j��ar�j����	

Step 

 y�j� � xTt w
new
j � hr�j �x� �

�old
r�j

p�y�j�j�old
r�j

�Pky�j
r��

�old
r�j

p�y�j� j�old
r�j

�
� �newr�j � ��� ���oldr�j � �hr�j �x�

�newr�j � �oldr�j � �
hr�j�x�

�new
r�j

� ln p�y�j� j�old
r�j

�

��r�j
� it takes the speci�c form as follows� respectively

Step �
 �newr�j � �
� ���oldr�j� Step �
 bnewr�j � boldr�j�

�
hr�j �x�

�new
r�j

y�j� � �
�r�j�
new � ��� ��� �

hr�j�x�

�new
r�j

� �

bold
r�j

� �y�j� � anewr�j � ��e
�bold

r�j
�y�j��anew

r�j
�

��e
�bold

r�j
�y�j��anew

r�j
�
�

�
�r�j�
old � �

hr�j�x�

�new
r�j

�y�j� � 	newr�j �� anewr�j � aoldr�j � �
hr�j�x�

�new
r�j

boldr�j
��e

�bold
r�j

�y�j��aold
r�j

�

��e
�bold

r�j
�y�j��aold

r�j
�

Then� let Wold � Wnew � �oldk � �newk �

We can even simply let 
�r�j � �� br�j � �� ky�j � � and �r�j � 	�
 such that the algorithms

can be simpli�ed considerably by removing the updating on 
�r�j � br�j� �r�j �

with x being strict wide stationary and ergodic and e being noise� The purpose
of Blind Source Separation �BSS� is to get �y which recovers y up to only constant
unknown scales and any permutation of indices� In the case that e 
 �� d 
 k and
g�u� 
 u linear� it reduces to the well known linear instantaneous mixture� which
is solved when �y 
Wx makes the components of �y becomes independent� Thus�
it is also called Independent Component Analysis �ICA�� studied widely in the
literature� Due to limited space� we omit to mention one by one all the existing
references and they can be found in a very recent overview paper ���� In the
case that e 
 �� d 
 k and g�u� nonlinear� eq���� reduces to the post	nonlinear
instantaneous mixture studied recently by ����� In this paper� we consider the
general case eq���� with e �
 �� d �
 k� nonlinear g�u� and unknown k� by directly
using the BYY DR introduced in Sec���

When e is gaussian G�e� �� ��� eq���� can be described by pMxjy
�xjy� 


G�x� g�Ay�� ��� Putting this speci�c setting in Tab�� and together with appro	
priate designs as given in Part A of Tab��� we can get adaptive algorithm for the
BSS problem eq���� directly� as given by Part B in Tab��� where the batch way
ICA algrotihm is also given for the forward case� Moreover� Part C in Tab�� sug	
gests three ways of recovering y from x� The �rst two are directly understandable�
In the backward case� there is originally noW for the third way� However we can
indirectly get one via minW J��W �� J��W � � Eky��yk� � Tr�E�y�Wx��y�Wx�T ��
This W can also be adaptively learned together with the adaptation on A� as
shown by the last line in the middle block of Part B� Finally� the criteria for



selecting the unknown number of sources keep the same as Part D in Tab���
It is interesting to consider the noiseless special case e 
 �� When k is smaller

than its correct value� we have e�ectively j�j �
 � during the learning� and thus
the situation is similar to the case with noise� When k becomes equal or larger
than its correct value�� will become singular as other parameters converge to the
correct values� In other words� we can still use the adaptive learning algorithm
in Tab�� for the backward and Bi	direction cases directly� � becoming singular
is just a signal that indicates the correct convergence� That is� we can start at a
small value for k and then gradually increase it� and then stop the learning once
� becomes singular�

For the forward case with linear g�u� 
 u and e 
 �� we have pMyjx
�yjx� �

��x �W��y��jW j� pMyjx�x
�y� �

R
x
pMyjx

�yjx�pMx�x�dx � pMx �W
��y��jW j � p�y��

thus from Part B in Tab��� minM��M� KL�M��M�� is equivalent to minimizeR
y
p�y� ln �p�y��

Qk

j�� pMy �y
�j���dy� y � Wx	 If we further let pMy �y

�j�� 
 p�y�j���

it reduces exactly to the minimum mutual information �MMI� criterion used
by ��� and also equivalent to maximum likelihood ICA �
� ���� INFORMAX ����
The MMI criterion is usually implemented by gradient algorithm� An improved
adaptive natural gradient algorithm is used in ����

Wnew �W old � 

W� 
W � �I � 	�y�yT �W�

	�y� � �	��y
����� � � � � 	k�y

�k���T � 	j�y
�j�� �

�lnp�y�j�j�j�

�y�j�
� ���

These mentioned e�orts have reached certain successes for sources of either only
super	gaussians or only sub	gaussians ��
�� The key point is the di�erence in the
use of the parameter form for p�y�j�j�j��

From Tab��� we can get a new adaptive noiseless ICA algorithm� based on
eq���� and eq����� Its speci�c versions for p�y�j�j�r�j� being either gaussian or
de�ned by sigmoid function are given in Tab��� This use of �nite mixture den	
sity for p�y�j�j�r�j� makes the algorithm become more �exible to adapt di�erent
sources� Experiments have shown that it works well for various kinds of sources�
including those on which those mentioned e�orts succeeded and failed ��
��

� BKYY Data Dimension Reduction �DDR�

In Sec�� of ����� it has been shown that we can also use the Basis BYY learning
theory eqs��������������
� as a general data dimension reduction �DDR� system
and theory with the following design�

pMy �y� �

nyX
j��

�jp�yj�j�� pMxjy
�xjy� �

nxjyX
j��

�jp�x� f�y�Aj�j	j��

pMyjx
�yjx� �

nyjxX
j��

�jp�yjx�g�x�Wj�� �j�� ���

for solving the problem of mapping the observed high dimension data x� gener	
ated from a unknown y 
 �y�� � � � � yk� � Rk under noise� back to its original Rk�



Table �� BKYY Learning for Three Layer Forward Nets � General Case�

�� Variable Types

y � �y�� � � � � yk� with either yj � R or yj � f�� 
g�
Binary�F
 z � �z�� � � � � zm� with either zj � R or zj � f�� 
g� without constraint	

Binary�E
 z of Binary�F plus the exclusive constraint
Pm

j�� zj � 
	

�� Architecture Design

pMzjy
�zjy� � p�zjy� �zjy� �
 pMyjx

�yjx� � p�yjx� �yjx� �
��
�
Qm

j�� �
zj
j �
� �j�

��zj � Binary�F z�Pm

j��
zj�j�

Pm

j��
�j� Binary�E z�

G�z� g�y�Wzjy���zjy�� Real z	

�Qk

j�� �
yj
j �
� �j�

��yj � binary y�

G�y� f�x�Wyjx�� I�� Real y	

�j � gj�y�Wzjy�� �j � fj�x�Wyjx�
g�y�Wzjy� � �g��y�Wzjy�� � � � � gm�y�Wzjy�� f�x�Wyjx� � �f��x�Wyjx�� � � � � fk�x�Wyjx��

nonlinear functions in general nonlinear functions in general
e	g	� gj�y�Wzjy� � s�eTj �Wzjyy�� e	g	� fj�x�Wyjx� � s�eTj �Wyjxx��

Free pMyjx�z
�yjx�z� � p�yjx� z�


p�yjx� z� �
p�zjy��zjy�p�yjx��yjx�

pM�
�zjx� � pM��zjx� �

R
y
p�zjy� �zjy�p�yjx� �yjx�dy

Parametric pMyjx�z
�yjx� z� � p�yjx� z� �yjx�z�


For binary y�
Qk

j�� �
yj
j �
� �j�

��yj � �j � s�hj�x� y�Wyjx�z��

h�x� y�Wyjx�z� � �h��x� y�Wyjx�z �� � � � � hk�x� y�Wyjx�z���
e	g	� hj�x� y�Wyjx�z� � eTj �Wyjx�z �x

T � zT �T �
For real y� p�yjx� z� �yjx�z� � G�y� h�x� y�Wyjx�z �� I�

Note
 
	 s�r� is sigmoid with its range on ��� 
�� e	g	� s�r� � 
��
 � e�r�
For Binary�E z� s�r� may be monotonic increasing � e	g	� s�r� � er

�	 eTj x gives the j�th element of the vector x	
�	 the equation for specifying the free p�yjx� z� is given by Theorem 
 in �
�

�� Learning	 i�e�	 minf�yjx�z��zjy ��yjx�kg J��yjx�z � �zjy� �yjx� k�

J��yjx�z� �zjy� �yjx� k� � �Hyjx�z � Lzjy � Lyjx
Hyjx�z �

R
x�z

Hyjx�z�x� z�pML
�
�z� x�dxdz�

Hyjx�z�x� z� � �
R
y
pMyjx�z

�yjx� z� ln pMyjx�z
�yjx�z�dy

Lzjy �
R
x�z

Lzjy�x� z�pML
�
�z� x�dxdz� Lzjy�x� z� �

R
y
pMyjx�z

�yjx� z� ln p�zjy� �zjy�dy

Lyjx �
R
x�z

Lyjx�x� z�pML
�
�z� x�dxdz� Lyjx�x� z� �

R
y
pMyjx�z

�yjx� z� ln p�yjx� �yjx�dy

For free pMyjx�z
�yjx� z� � p�yjx� z��

J��zjy� �yjx� k� � �Lzjx� Lzjx �
R
x�z

pML
�
�z�x� ln pM��zjx�dxdz

When pML
�
�z� x� � pMx �x�pMzjx

�zjx� given by eq	�
	�� and eq	�
	���

Hyjx�z �
P

�x�z��Dx�z
Hyjx�z�x� z�� Lzjy �

P
�x�z��Dx�z

Lzjy�x� z�

Lzjx �
P

�x�z��Dx�z
ln pM��zjx�� Lyjx �

P
�x�z��Dx�z

Lyjx�x�z�

�� Parameter Learning Algorithm at a 
xed k

Step 

 Fix �zjy� �yjx� either let the free p�yjx� z� given by Part � above
or update �yjx�z by min�yjx�z J��yjx�z� �zjy� �yjx� k�

e	g	� moving one step along the gradient descent direction	
Step �
 Fix pMyjx�z

�yjx� z�� update �zjy by max�zjy Lzjy and �yjx by max�yjx Lyjx�

e	g	� moving one step along the gradient ascent direction	

�� Model Selection �selecting the number k of hidden unit �
With ��yjx�z� �

�
zjy� �

�
yjx obtained by the above algorithm� select k� by

From eqs	�
	
��
��� by J��k� � J���yjx�z � �
�
zjy� �

�
yjx� k�

or J��k� � ��Lzjy � Lyjx�jf��
yjx�z

���
zjy

���
yjx

g



Table �� BKYY Learning for Three Layer Forward Nets � Special Cases�

�� ��Yang based system

pMyjx�z
�yjx� z� � p�yjx� z� free� p�yjx� �yjx� � ��y � f�x�Wyjx���

i	e	� x� y by a deterministic mapping y � f�x�Wyjx�	
From Part � in Tab	�� minf�zjy��yjxg J��zjy� �yjx� k� becomes

ML learning 
 maxf�zjy�Wyjxg
Lzjx� Lzjx �

P
�x�z��Dx�z

ln p�zjf�x�Wyjx�� �zjy�

For p�zjy� �zjy� � G�z� g�y�W��� �
�I�� it becomes

minfWzjy�Wyjxg

P
�x�z��Dx�z

kzi � g�f�xi�Wyjx��Wzjy�k
�

�� Smoothed Yang based system

pMyjx�z
�yjx� z� � p�yjx� z� free� p�zjy� �zjy� � p�zjE�yjx��yjx�� �zjy��

E�yjx� �yjx� �
R
y
yp�yjx� �yjx�dy � f�x�Wyjx�

pM��zjx� � p�zjf�x�Wyjx�� �zjy�� Hyjx�z�x� z� � �Lyjx�x� z�
J��zjy� �yjx� k� � �

P
�x�z��Dx�z

ln p�zjf�x�Wyjx�� �zjy�

thus the parameter learning is the same as in the above ��Yang based system
However� for selecting k� by eqs	�
	
��
�� J�k� � J���

�
zjy� �

�
yjx� k�� J���zjy� �yjx� k� �

�
P

�x�z��Dx�z
�ln p�zjf�x�Wyjx�� �zjy� �

R
y
p�yjx��yjx� ln p�yjx� �yjx�dy�R

y
p�yjx� �yjx� ln p�yjx� �yjx�dy � �

Pk

j����j ln �j � �
� �j� ln �
� �j��� binary y

�� Mean�Field Yang based system

pMyjx�z
�yjx�z� � p�yjx� z� free	 In all the integrals over y�

we let y approximately replaced by E�yjx� �yjx� � f�x�Wyjx�
pM��zjx� � p�zjf�x�Wyjx�� �zjy�p�f�x�Wyjx�jx� �yjx�

p�yjx� z� �
p�zjy��zjy�p�yjx��yjx�

p�zjf�x�Wyjx���zjy�p�f�x�Wyjx�jx��yjx�
� Hyjx�z�x� z� � ��

Lzjy�x� z� � ln p�zjf�x�Wyjx�� �zjy�� Lyjx�x� z� � � ln p�f�x�Wyjx�jx��yjx�

ln p�f�x�Wyjx�jx� �yjx� �

�
�� for real y�
�
Pk

j��
��j ln �j � �
� �j� ln �
� �j��� for binary y

J���zjy� �yjx� k� � J���zjy� �yjx� k� � J��zjy� �yjx� k��
J��zjy� �yjx� k� � �

P
�x�z��Dx�z

�ln p�zjf�x�Wyjx�� �zjy� � ln p�f�x�Wyjx�jx� �yjx��

�� The Stochastic Approximation Adaptive Algorithm

pMyjx�z
�yjx� z� � p�yjx� z� �yjx�z�� and p�zjy� �zjy�� p�yjx� �yjx� are parametric given in Tab��

Refer to Sec	� in �
�� use p�yjx��yjx� as the Sampling Reference density�
Get a sample xt� zt and randomly take a sample yt from p�yjxt� �yjx�	

Step 

 Fix �zjy� �yjx� �
new
yjx�z � �oldyjx�z�

�

p�yjxt ��yjx�

��p�ytjxt �zt��yjx�z� ln
p�ytjxt�zt��yjx�z�

p�ztjyt��zjy�p�ytjxt��yjx�
�

��yjx�z
j�yjx�z��oldyjx�z

Step �
 Fix �yjx�z� update �
new
zjy � �oldzjy � �

p�ytjxt�zt��yjx�z�

p�yjxt��yjx�

� ln p�ztjyt��zjy�

��zjy
j
�zjy��

old
zjy

�newyjx � �oldyjx � �
p�ytjxt�zt��yjx�z�

p�yjxt��yjx�

� ln p�ytjxt��yjx�

��yjx
j
�yjx��

old
yjx

Part � Three Ways of Mapping xt � zt
���� �zt � g�f�xt�Wyjx��Wzjy��

���� For binary y� �yt � argminy p�yjxt� �yjx� and then �zt � g��yt�Wzjy��

���� �yt �
R
Ep�zjy� �zjy�p�yjx� �yjx�dy � g�f�xt �Wyjx��Wzjy�p�f�xt�Wyjx�jx� �yjx�

�� Model Selection �selecting the number k of hidden unit �

D � fxt� ztgNt�� and randomly take samples Dy � fy��tgN
�

��� from p�yjxt� ��yjx�

From eqs	�
	
��
��� get k� � argmink J��k� or k
� � argmink J��k�

J��k� �
�

NN�

PN

t��

PN�

���
�

p�y� jxt��
�
yjx

�
p�y� jxt� zt� �

�
yjx�z� ln

p�y� jxt�zt��
�
yjx�z

�

p�ztjy� ��
�
zjy

�p�y� jxt��
�
yjx

�

J��k� � � �
NN�

P
N

t��

P
N�

���
�

p�y� jxt��
�
yjx

�
p�y� jxt� zt� �

�
yjx�z� ln �p�ztjy� � �

�
zjy�p�y� jxt� �

�
yjx��



This DDR theory aims at not only modeling the generating process of data x
by pMxjy

�xjy� and the backward	mapping by pMyjx
�yjx�� but also at discovering

the original dimension k as well as the structural scales ny� nxjy� nyjx�
This BYY DDR is closely related to the BYY DR discussed in Sec��� The key

point of DDR is to reduce the dimension of data � i�e�� k � d�� but the components
of y can be either independent or not� as observed from the di�erence of pMy�y�
in eq���� and eq����� while the key point of DR in Sec�� is to let the components
of y become independent and it can be either k � d or k � d�

To get some deep insights on DDR� we see the linear dimension reduction
with gaussian densities�the special case of eq���� with p�yj�j� � G�y�m�j�

y ��
�j�
y ��

p�x� f�y�Aj�j	j� � G�x�Ajy��
�j�
xjy�� p�yjx� g�x�Wj� � G�y�WT

j x��
�j�
yjx�� where x is

represented by a gaussian mixture in y via di�erent linear mapping Wj � which
can be regarded as a combined job of data dimension reduction and clustering
in Rk� We can also regard that x is generated from a gaussian mixture in y via
di�erent linear mapping Aj�

We further consider the simplest case that ny 
 �� nxjy 
 �� nyjx 
 � with

x � Ay� ex� ex is gaussian� Eex � �� E�exe
T
x � � ��xjyId� pMy �y� � G�y� �� �y��

pMxjy
�xjy� � G�x�Ay� ��xjyId�� pMx�x� � ph�x� is given by eq	�
	��	 ���

A particular example of this design has been discussed in Sec�� of ���� and
is shown to be related to the conventional PCA learning� In the following� we
consider an even more interesting example that pMyjx

�yjx� 
 p�yjx� is free�
Since p�yjx� is free� the minimization of eq����
� will result in

p�x� �� �

Z
G�x�Ay� ��xjyId�G�y� �� �y�dy � G�x� �� ��xjyId �A�yA

T ��

p�yjx� �
G�x�Ay� ��xjyId�G�y� �� �y�

p�x� ��
� KL��y� k� �

Z
x

ph�x� ln
ph�x�

p�x� ��
dx� ���

Moreover� it is not di�cult to see that this p�yjx� is actually in the form

p�yjx� � G�y�WT x��yjx�� WT � �yA
T ���xjyId � A�yA

T ����

�yjx � �y �WT ���xjyId �A�yA
T �W � �y ��yA

T ���xjyId �A�yA
T ���A�y� ���

That is� the situations are actually equivalent when pMyjx
�yjx� is either free or

gaussian with linear regression�
When h� �� min�KL��y � k� with � 
 f��xjy� A� �yg is equivalent to

min
�

J��k�� J��k� � ln j�xj� Tr����
x Sx�� �x � ��xjyId �A�yA

T � ���

with Sx 

�
N

PN
i�� xix

T
i � We �rst explore the property of its solution by

rAJ��k� � ���
x A�y ����

x Sx�
��
x �y� from rAJ��k� � ��

AT � AT���
x Sx� and Sx � �T�x���

T� � I� �x � diag��x� � � � � � �
x
d �� we have

AT����
x ���xjyId � �TA�yA

T�� � AT�� AT� � �Dj��� D � diag�d�� � � � � dk��

�Dj�����
x ���xjyId � �Dj��T�y�Dj��� � �Dj���

J��k� � ����

kX
j��

ln �d�j�
y
j � ��xjy� � �d� k� ln ��xjy � k �

dX
j�k��

�xj ��
�
xjy �� �
��



In other words� the solution is not unique and a typical example is that A consists
of k eigenvectors of Sx� corresponding to the k eigenvalues that minimizes

J��k� � ����

kX
j��

ln �xj � �d� k� ln ��xjy �� �
�
xjy �




d� k

dX
j�k��

�xj � �
y
j � �xj � ��xjy � �

�

Unfortunately� directly picking k among d eigenvectors of Sx for eq����� is
a di�cult combinatorial problem� Instead� we propose an iterative algorithm to
search a solution on ATA 
 I� With this constraint� we have ���

x � ���
xjy

�Id �

A���xjy�
��
y � Ik�

��AT � and

J��k� � ln j�y � ��xjyIkj� ln j��xjyId�kj� ���
xjyfTr�Sx � ���xjy�

��
y � Ik�

��ATSxA�g�

r�yJ��k� � ��y � ��xjyIk�
�� � ���xjyIk ��y�

��ATSxA��
�
xjyIk � �y�

���

r�yJ��k� � �� resulting in ATSxA � �y � ��xjyIk� or �y � ATSxA� ��xjyIk�

rAJ��k� � �����
xjySxA��

�
xjy�

��
y � Ik� � �����

xjySxA�
��
y �ATSxA�� �
��

Thus� by noticing ���
y ATSxA � ATSxA�

��
y � the gradient of J��k� with respect

to A on the manifold ATA � I is obtained as

rc
A � �I � AAT �rAJ��k� � �����

xjy�SxA�
��
y � A���

y ATSxA�A
TSxA�

vec�rc
A� � �Cvec�SxA�

��
y � A���

y ATSxA�� C � ���
xjy��A

TSxA�� Id�� �
��

Since C is positive de�nite due to the positive de�nite B� SxA���
y �A���

y ATSxA
is a direction that reduces J��k� on the manifold ATA � I� and we have the
following iterative algorithm for solving min� J��k� on this manifold�

Anew � Aold � 
�SxA
old��� old

y �Aold��� old
y Aold T SxA

old��

�newy � Aold TSxA
old � �� old

xjy Ik� �
��

�x � �� old
xjy Id �Aold�oldy Aold T � �� new

xjy � �� old
xjy � 
Tr����

x Sx�
��
x ����

x ��

where the updating for �� new
xjy is because from the original J��k� given by eq����

we have dJ��k�

d��
xjy

� �Tr����
x Sx�

��
x ����

x �� The updating formulae for �y� �x come

directly from eq����� and eq����� As long as the learning step size 	 is controlled
small enough� the algorithm keeps to decrease J��k� until �nally converged�

We can also modify the algorithm eq����� into an adaptive one for each xi�

z � Aold�T xi� Anew � Aold � 
�xiz
T��� old

y �Aold��� old
y zzT ��

�newy � �
� 
��oldy � 
�zzT � �� old
xjy Ik�� �
��

�x � �� old
xjy Id �Aold�oldy Aold T � �� new

xjy � �
� 
��� old
xjy � 
�k���

x xik
� � Tr����

x ���

For a solution A�� diag��x� � � � � � �
x
k � � ��

y � �� �
xjy Ik by the above algorithms� we

can get the best dimension by k� 
 mink J��k� from eq������ Also� from eq�����
�
R
p�yjx�ph�x� ln p�yjx�dxdy � ����k � ln j�y�I � AT ���xjyId �A�yA

T ���A�y�j�	 By
eq�������� after ignoring some terms that are irrelevant to k� we can get

J��k� � ����d ln �



d� k

dX
j�k��

�xj � � k �

kX
j��

ln ��xj �



d� k

dX
j�k��

�xj ��� �
��



Finally� from the last equation in eq������ we get the PCA if �y is �xed at
any posotive diagonal matrix with di�erent elements� and the Minor component
analysis �MCA� if ��xjy is �xed at any large constant� Thus� eq����� or eq�����
act as a uni�ed algorithm for linear dimension reduction that includes the PCA
and MCA as special cases�

� BKYY Learning for Three Layer Forward Nets

Three�layer perceptron or three	layer forward net is usually trained by the max	
imum likelihood �ML� or particularly its special case called the least squares
learning via back propagation �BP� technique� which is simple to be understood
and thus very popular in the literature� However� its generalization ability de	
pends on the appropriate selection of the number of hidden units or a good
regularization technique on its parameter estimation� bases on some heuristics
or the complicated upper	bound approximation of generalization error�

Given in Tab�� are the detailed form of the FullyMatched Yang	based BKYY
learning given by eqs�������������������� on the cascade architecture �a gen	
eral form of three layer forward net that includes three layer perceptron as a
special case� The implementation of its parameter learning algorithm involves
the integral or summation operations over all the values of y which can be
very expensive for a large k except the analytically integrable case that both
p�zjy� �zjy�� p�yjx� �yjx� are Gaussians and f�y�Wyjx�� g�z�Wzjy� are linear� Thus�
we need either to develop some e�cient algorithmor to make some simpli�cation�

Given in Tab�� are four such examples� The �rst is exactly the conventional
ML learning or particularly the least square learning for a three layer perceptron
which can be trained by back	propagation technique� The second is obtained by
letting p�zjy� �zjy� be conditioned on the smoothed regression E�yjx� �yjx� instead
of on y directly� These �rst two examples are equivalent in parameter learning�
However� the second also provides an important new result � a new criterion for
selecting the best number k� of the hidden units by J��k� that contains an extra
term to penalize a large k during its ML �tting on pM��zjx�� Interestingly� this
criterion J��k� is much simpler than many of the existing hidden unit selection
criteria based on the estimations of the upper bound of generalization error� The
third example is to use Mean�Field approximation on y for all the integral or
summation operations over y� For real y� it turned out to be exactly the same
as the �rst example� However� for binary y� the penalizing term appeared in the
second example in J��k� now appears in J��zjy � �yjx� k� too� In other words� this
term not only penalizes k increasing in selecting the best k� but also regularizes
the parameter learning at a given �xed k�

The �rst three examples are made by either simpli�cation or approximation�
In the general cases� by using the general random sampling implementation
technique eq������� and eq������� given in Sec�� of ���� we can get a stochastic
approximation adaptive algorithm given in Part � of Tab��� for avoiding the
integral or summation operations over y during learning�

On the testing phase� three ways of implementing mapping x� z are given



in Part � of Tab��� Moreover� via randomly sampling� we can also get new criteria
for selecting the best number k� of the hidden units�

� BKYY Learning for Mixture of Experts

As discussed previously� the cascade architecture of three layer perceptron en	
counters the integral or summation over y� which causes an impractical cost
unless y takes only a few values� However� if y takes just a few values� the repre	
sentation ability of the network is limited since y functions as a bottle	neck that
the entire information �ow must go through�

In the case of the Fully Matched BKYY learning� when pMzjx�y
�zjx� y� �


pMzjy
�zjy�� eq������� will become pM��x� z� 


R
pMzjy

�zjx�y�pML
�
�x� y�dy �

�R
pMzjy

�zjx�y�pMxjy
�xjy�pMy �y�dy� Ying based�R

pMzjy
�zjx�y�pMyjx

�yjx�pMx �x�dy� Yang based�

pM��zjx� �
pM�

�x�z�R
z
pM�

�x�z�dz
�

�R
y
pMzjy

�zjx�y�pMxjy �My �yjx�dy� Ying based�R
y
pMzjy

�zjx�y�pMyjx
�yjx�dy� Yang based�

pMxjy �My �yjx� �
pMxjy

�xjy�pMy �y�R
y
pMxjy

�xjy�pMy �y�dy
� �
��

In this case� each pMzjx�y
�zjx� y� itself builds a direct link x � z� gated via

the internal variable y such that a weighted mixture pM��zjx� is formed in a
parallel architecture� with a gate by pMyjx

�yjx� for a Yang based system and
pMxjy�My�yjx� for a Ying based system� Although we still encounter the sum	
mation over all the values of y� here y only takes a small number of values�
Because each pMzjx�y

�zjx� y� has a direct link x � z and y only functions as a
gate that weights information �ows from di�erent experts� we can trade	o� the
complexity of y and the structural complexity of each pMzjx�y

�zjx� y� such that
the number of values that y should take are signi�cantly fewer than it should
take on the cascade architecture� This is an advantage the cascade architecture
does not have�

In Tab�
� we let y take only k discrete values� From Part 
� we see that
the Yang based system is actually the model of Mixture of Experts ��� ���
�� ��� ��� with each pMzjx�y

�zjx� y� being an expert net and pMyjx
�yjx� be	

ing the so called softmax gating net� and that the Ying based system is ac	
tually the alternative model of Mixture of Experts proposed in ���� ���� with
p�yjx� � p�xj	j�p�yj � 
��

Pk

j��
p�xj	j�p�yj � 
� as an alternative model for the

gating net� Moreover� the algorithm in Part � for the Yang and Ying based
systems is actually the EM algorithm for the original model for mixture of ex	
perts ��� �� and the EM algorithm for the alternative model of mixture experts
proposed in ���� ���� respectively� This fact can also directly be observed from
J��� 
� k� 
 �Lzjx in Part �� Actually Part � indicates that minf����kg J��� 
� k�
is equivalent to the maximum likelihood learning on pM��zjx� or pM��z� x��

One inconvenience of using EM on the original model is the nonlinearity of
softmax gating net� which makes the maximization with respect to the param	
eters in the gating net become nonlinear and unsolvable analytically even for



Table �� BKYY Learning for Mixture of Experts

�� Variable Types

y � �y�� � � � � yk� with yr � f�� 
g�
Pk

r�� yr � 
� z is the same as in Tab	�
�� Architecture Design

pMyjx�z
�yjx�z� �

Pk

j��
yjp�yj � 
jx�z� and pMy �y� �

Pk

j��
yjp�yj � 
� are free

pMzjx�y
�zjx�y� �

Pk

j�� yjp�zjx� �j� pMyjx
�yjx� �

Pk

j�� yjp�yj � 
jx� 	�

p�zjx��j� �
 p�yj � �jx��� � 	j

Pk

j��
	j � 	j � fj�x� V ��Qm

r��
�zrj�r��� �j�r�

��zr � Binary�F zP
m

r��
zr�j�r


P
m

r��
�j�r� Binary�E z�

G�z� g�x�Wj ���j�� Real z�

p�xj�j� �

n
G�x�mj ��j �� Real x�Qd

r��
qxrj�r��� qxrj�r�

��xr � binary x�

�j�r�x�Wj� � gr�x�Wj�� pMxjy
�xjy� �

Pk

j��
yjp�xj	j��

g�x�Wj � � �g��x�Wj �� � � � � gm�x�Wj�� f�x� V � � �f��x� V �� � � � � fk�x� V ��

e	g	� gj�x�Wj� � s�eTj �Wjx�� e	g	� fj�x�V � � s�eTj �V x�

�� Learning	 i�e�	minf����kg J��� �� k�� � � f�j � j � �� � � � � kg� � � f�j� j � �� � � � � kg

The Yang based system The Ying based system

J��� �� k� �

n
�Hyjx�z � Lzjx�y � Lyjx�
�Lzjx


J��� �� k� �

n
�Hyjx�z � Lzjx�y � Lxjy �Hy �
�Lx�z 


p�yj � 
jx�z� �
p�zjx��j �p�yj��jx�	�

pM�
�zjx� p�yj � 
jx�z� �

p�zjx��j �p�xj	j �p�yj���

pM�
�x�z�

pM� �zjx� �
P

k

j��
p�zjx� �j�p�yj � �jx��� pM� �x� z� �

P
k

j��
p�zjx� �j�p�xj�j�p�yj � ��

Lyjx �
R
Lyjx�x� z�pML

�
�z� x�dxdz� Lyjx�x� z� Lxjy �

R
Lxjy�x� z�pML

�
�z� x�dxdz

�
P

k

j��
p�yj � �jx� z� ln p�yj � �jx��� Lxjy�x� z� �

P
k

j��
p�yj � �jx� z� ln p�xj�j�

Lzjx �
R
pML

�
�z� x� ln pM� �zjx�dxdz Lx�z �

R
pML

�
�z� x� ln pM��x� z�dxdz

Hyjx�z �
R
Hyjx�z�x� z�pML

�
�z� x�dxdz� Hyjx�z�x� z� � �

P
k

j��
p�yj � �jx� z� ln p�yj � �jx�z�

Lzjx�y �
R
Lzjx�y�x� z�pML

�
�z� x�dxdz� Lzjx�y�x� z� �

Pk

j��
p�yj � �jx� z� ln p�zjx� �j �

Hy � �
Pk

j��
p�yj � 
� ln p�yj � 
�� p�yj � 
� �

R
p�yj � 
jx�z�pML

�
�z�x�dxdz

When pML
�
�z� x� � pMx �x�pMzjx

�zjx� given by eq	�
	�� and eq	�
	���

the same as in Tab	� except Lzjy is replaced by Lzjx�y �
P

�x�z��Dx�z
Lzjx�y�x�z�	

�� Parameter Learning Algorithm at a 
xed k

Step 

 Fix �� 	� get p�yj � 
jx� z� above

Step �
 Step �
 p�yj � 
� �
For j � 
� � � � � k �

�Dx�z

P
�x�z��Dx�z

p�yj � 
jx� z�

update �newj � argmax�j Lzjx�y �newj � argmax�j Lzjx�y� j � �� � � � � k� mnew
j �

	new � argmax	 Lyjx �
p�yj���
Dx�z

P
�x�z��Dx�z

p�yj � �jx� z�x

e	g	� moving one step along the �new
j � �

p�yj���
Dx�z

P
�x�z��Dx�z

�

gradient ascent direction	 p�yj � 
jx�z��x�mnew
j ��x�mnew

j �T

�� Model Selection �selecting the number k of hidden unit �
With ��� 	� obtained by the above algorithm� select k� by

From eqs����������� by either J��k� � J���� ��� k� or J��k� � J��k� �Hyjx�zjf�����g

When p�zjx��j� is gaussian� they actually take the speci�c form

J��k� �

P
�x�z��Dx�z

P
k

j��
p��yj � �jx�z� ln p��yj � �jx�z� � J��k��

J��k� � �
P

�x�z��Dx�z

Pk

j��
� J��k� � ln p�yj � �jx����

Pk

j��
�

��p��yj � �jx� z� ln p�yj � �jx����� ��p��yj � �� ln p��yj � �� � 	�
p��yj � ��

	�
p��yj � �� ln j��
j j� � ln j��

j j� 	�
p��yj � �� ln j��
j j�

�� The Output of Nets pM� �zjx� �
Pk

j�� p�zjx��j�p�yj � 
jx�	�

For Ying based case� p�yj � �jx��� � p�xj�j�p�yj � ��

P

k

j��
p�xj�j�p�yj � ��



Table 
� BKYY Learning for Normalized RBF Nets

�� Variable Types and Architecture Design

All are the same as the Ying�based system in Tab	�� with speci�cally


p�zjx� �j� � G�z� cj ��j�� or p�zjx� �j � � G�z�W t
j x� cj ��j�� p�yj � �� �

p
j�jjPk

j��

p
j�jj

�� The Batch Way EM Algorithm at a 
xed k

Step 

 roldj �

n
coldj � for a NRBF net�

�Wold
j �tx� coldj � for an ENRBF net


h�jjx� � p�yj � �jx�z� �
e
�����x�mold

j
�T ��old

j
����x�mold

j
�
G�z�rold

j
�
old
j

�P
k

j��
e
�����x�mold

j
�T ��old

j
����x�mold

j
�
G�z�rold

j
�
old
j

�

Step �
 First� for both NRBF and ENRBF nets� get Ne �
P

�x�z��Dx�z
h�jjx�� update

mnew
j � �

Ne

P
�x�z��Dx�z

h�jjx�x� �new
j � �

Ne

P
�x�z��Dx�z

h�jjx��x�mnew
j ��x �mnew

j �T 


NRBF net� cnewj � �
Ne

P
�x�z��Dx�z

h�jjx�z�

�new
j � �

Ne

P
�x�z��Dx�z

h�jjx��z � cnewj ��z � cnewj �T 


ENRBF net� Ezj � �
Ne

P
�x�z��Dx�z

h�jjx�z�

Rxz � �
Ne

P
�x�z��Dx�z

h�jjx��z �Ez��x � �mj �
new �T �

Wnew
j � ���j �

new ���Rxz � c
new
j � Ezj � �Wnew

j �t�mj �
new

�new
j � �

Ne

P
�x�z��Dx�z

h�jjx��z � �Wnew
j �tx � cnewj ��z � �Wnew

j �tx � cnewj �T �

When �j � 
�j I� 

�
j � �

Ne

Pk

j��

P
�x�z��Dx�z

h�jjx�kz � rnewj k��

�� The Adaptive EM Algorithm at a 
xed k

Step 

 get the same h�jjx� as in the batch way case�

update �newj � ��� ����
old
j � ��h�jjx� �

then get I�jjxi� �

n
�� if j � argminrf� logh�rjxi�g�
	� otherwsie�

� �j�i � ��h�jjxi�
�j 


Step � 
 Update mnew
j � mold

j � �j�i�xi �mold
j �� �

�new
j � ��� �j�i��

old
j � �j�i�xi �mold

j ��xi �mold
j �T

NRBF net� cnewj � coldj � �j�i�zi � coldj �� �new
j � ��� �j�i��

old
j � �j�i�zi � cnewj ��zi � cnewj �T 


ENRBF net� Eznewj � Ezoldj � �j�i�zi �Ezoldj �� cnewj � Eznewj �Wold T
j mold

j 


�new
j � �� � �j�i��

old
j � �j�i�zi �Wold T

j xi � cnewj ��zi �Wold T
j xi � cnewj �T �

Wnew
j � Wold

j � �j�i�zi �Wnew T
j xi � cnewj �xTi

�� Model Selection �selecting the number k of radial basis functions �

J��k� �
P

�x�z��Dx�z

Pk

j��
p��yj � �jx� z� ln p��yj � �jx� z� � J��k��

J��k� � ln
Pk

j��

p
j��

j j �
Pk

j��

p
j��

j
jPk

j��

p
j��

j
j
ln
p

j��
j j

piecewise linear case� An algorithm called Iteratively Reweighted Least Squares
�IRLS� is proposed for the nonlinear optimization ��� ���� However� IRLS is a
Newton	type algorithm and thus needs some safeguard measures for conver	
gence� which is a big di�erence from the guaranteed convergence of the pure EM
algorithm� This inconvenience has been overcome by the alternative model� As
shown in Part �� the learning on the gate can be made analytically�

Another important open problem of using both the original and alternative
mixture of experts is how to select the number of experts� Based on the BKYY



learning theory� we proposed a criteria for this task by Part � in Tab�
� We can
intuitively observe J��k�� As k increases� I ts �rst term will increase which trades
o� the monotonically decreasing by the second term for a best k��

� BKYY Learning for Normalized RBF Nets

We consider an interesting special case of the Ying	based system in Tab�
� with
a speci�c architecture design by Part � in Tab��� In this case� from pM��zjx� by
Part 
 in Tab�
� we have E�zjx� 


R
pM��zjx�dz given by

E�zjx� �

�Pk

j��
cj	�x�mj��Pk

j���W
t
jx� cj�	�x�mj�

� 	�u� �
e
�	

uT���

j
uPk

j��
e
�	

uT���

j
u
� �
��

We can easily �nd that they are just the standard normalized RBF �NRBF�
net and extended normalized RBF �ENRBF� nets with k hidden units� which
have been widely studied in the literature� see the reference list of ����� In other
words� the maximum likelihood �ML� learning on the normalized RBF nets is a
special case of the ML learning on the alternative model of mixture of experts by
the EM algorithm�

In the existing literature� RBF net is expected to be trained by the least
square learning � a special case of ML learning� However� due to the di�culty
of determining the parameters �j� mj of basis functions� in practice the learning
is usually made approximately by two separate steps� First� �j 
 ��gj �

�I with

��gj �
� being estimated roughly and heuristically� and some cluster analysis �e�g��

the k	means algorithm� is used to group data set Dx 
 fxig
N
i�� into k clusters�

and then use the cluster centers as mj � j 
 �� � � � � k� Second� the output layer
parameters cj� j 
 �� � � � � k are determined by the least square learning� By this
two	stage training approach� the centers mj � j 
 �� � � � � k are obtained directly
from input data without considering how to get the best regression E�zjx��

Moreover� there is also another major problem� how to select the number of
basis functions� which will a�ect the performance considerably� In ����� via setting
up the connections between RBF nets and kernel regression estimators� a number
of theoretical results have been obtained for the upper bounds of convergence
rate of the approximation error with respect to the number of basis functions�
and the upper bounds for the pointwise convergence rate and L� convergence rate
of the best consistent estimator with respect to both the samples and the number
of basis functions� However� these theoretical results are not directly usable in
practice� Rival Penalized Competitive Learning �RPCL� is able to automatically
select the number of clusters and thus suggested for RBF nets ����� However�
although it experimentally works well� RPCL is a heuristic approach and still in
lack of theoretical justi�cation�

From the connection eq����� between the BKYY Ying	based learning for
mixture of experts� we can solve all the above problems� First� we can directly
use the EM algorithm in Tab�
 to train the NRBF and ENRBF nets to get all
the parameters �j� mj � Wj � cj� �j such that a globally more optimal solution is



obtained� Speci�cally� the detailed form of the EM algorithm is given in Tab���
together with its adaptive variants� Second� we can select the number k of radial
basis functions by the criterion by Part � in Tab���

� BCYY Learning and Partially Matched Learning

��� BYY Learning with Convex Divergence

Instead of eq������� we use the Convex Divergence eq����
� for the Bayesian
Convex Ying�Yang �BCYY� learning� In this case� most of the results given in
Theorems ���	��� in ��� do not hold anymore� However� we can still use eq�������
and the general implementation technique by Sec�� in ��� for the minimization of
Ftwo�M��M��� Here� we only discuss such a learning for the mixture of experts
given in Tab�
�

The key point is to still use the same Step � in Tab�
� and then in Step ��
we directly maximize

Lz�x �

Z
x�z

pML
�
�z�x�f�pM��x� z��dxdz� for a Y ing based system�

Lzjx �

Z
x�z

pML
�
�z� x�f�pM��zjx��dxdz� for a Y ang based system� �
��

with pM��x� z�� pM��zjx� still given by Part � in Tab�
� resulting in�

Step � �Yang 	based �� get w�j� x� 
 f ��pM��zjx��pM��zjx�p�yj 
 �jx� z��

f ��u� 
 df�u�
du � update �newj via solvingP

�x�z��Dx�z
w�j� xi�

d ln p�zjx��j �

d�j
� ��

P
�x�z��Dx�z

w�j�xi�
d ln p�yj��jx�	�

d	
� ��

Step � �Ying 	based �� get w�j� x� 
 f ��pM��z� x��pM��z� x�p�yj 
 �jx� z��

update �newj via solving
P

�x�z��Dx�z
w�j� x�d ln p�zjx��j�

d�j

 �� and then get

mnew
j � �

p�yj����Dx�z

P
�x�z��Dx�z

w�j�x�x�

�new
j � �

p�yj����Dx�z

P
�x�z��Dx�z

w�j�x��x�mnew
j ��x�mnew

j �T �

For the same reason as in ����� when f�u� is monotonically increasing for
positive u� e�g�� f�u� 
 u�� � � � � �� the learning will give a more robust
estimation for data of multi	modes with outliers or high overlap between clusters�

��� Partially Matched BKYY Learnings

We relax the satisfaction of eq������� and consider the learning eq������ on the
architecture of mixture of experts�

��� Yang based system� In this case� pMxjy
�xjy� and pMy�y� are both free�

From Theorem � in ���� Lyjx�x� z� in Lyjx of Tab�
 should be replaced by

Lyjx�x� z� �

kX
j��

p�yj � 
jx� z��ln p�yj � 
jx� 	� � ln �
 �
p�yj � 
jx� z�

p�yj � 
jx� 	�
��� ����



for parameter learning� Moreover� for model selection we need to add to J��k�
an extra term given by

Ja�k� �
X

�x�z��Dx�z

kX
j��

p��yj � 
jx� z� ln �
 �
p��yj � 
jx�z�

p�yj � 
jx� 	�
�� ��
�

��� Ying based system� In this case� pMyjx
�yjx� 
 p�yjx� and pMy �y� are

free� From Theorems � � � in ���� we have

p�yj � 
jx� � p�xj	j�p�yj � 
��

kX
j��

p�xj	j�p�yj � 
��

p�yj � 
� � ����



�Dx�z

X
�x�z��Dx�z

p�yj � 
jx�z� �



�Dx

X
x�Dx

p�yj � 
jx��� ����

Therefore in Tab�
 we should replace p�yj 
 �jx� z� in Lxjy�x� z� by p�yj 

�jx� z�� p�yjx�� let p�yj 
 �� in Hy given by eq������ and replace Hyjx�z�x� z� by

Hyjx�z�x�z� � �
Pk

j�� p�yj � 
jx� z� ln p�yj � 
jx� z��
Pk

j�� p�yj � 
jx� z� ln p�yj � 
jx�

Then we modify the algorithm in Tab�
 into�
Step �� Run the original step � plus getting p�yj 
 �jx� by eq������
Step �� Get p�yj 
 �� by eq������ update �newj as in the original step � and
update

mnew
j � �

�p�yj����Dx�z

P
�x�z��Dx�z

�p�yj � 
jx�z� � p�yj � 
jx��x

�new
j � �

�p�yj����Dx�z

P
�x�z��Dx�z

�p�yj � 
jx� z� � p�yj � 
jx���x�mnew
j ��x�mnew

j �T 	

Also� the selection of k should be made by �with h�j 
 p��yj 
 �jx� z��

J��k� �
X

�x�z��Dx�z

kX
j��

�h�j ln h
�
j � p��yj � 
jx� ln p��yj � 
jx�� � J��k�� ����

J��k� �

kX
j��

���p��yj � 
� ln p��yj � 
� � p��yj � 
� ln j�jj� ���
X

�x�z��Dx�z

h�j ln j�
�
j j��

	 Conclusions

This paper has further interpreted the theory through its uses on developing
models and algorithms for dependence reduction� ICA and blind source separa	
tion� linear dimension reduction� supervised classi�cation and regression by feed
forword net� mixture of experts and RBF nets�
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