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Abstract. This paper is a sister paper of [1] published in this same pro-
ceeding, for further interpreting the Bayesian Ying- Yang (BYY) learning
system and theory through its uses on developing models and algorithms
for dependence reduction, independent component analysis, data dimen-
sion reduction, supervised classification and regression with three-layer
net, mixtures-of-experts, and radial basis function nets. Readers are re-
ferred to [14, 1] for the details on BYY learning system and theory. In
addition, the relation of BYY learning system and theory to a number
of existing learning model and theories has been discussed in [14].

1 BKYY Dependence Reduction System and Theory

In many applications, we want to implement a unsupervised mapping from ob-
servation z into y = [y(l), . ~,y(k)]T such that the dependence among the com-
ponents of y is reduced as much as possible. This aim is also regarded as a basic
principle in a brain perception system formed via unsupervised learning [3]. This
process 1s studied in the literature under several names such as Dependence Re-
duction, Factorial Learning, Independent Component Analysis (ICA) , Factorial
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Encoding. These names are very closely related, although their detailed mean-
ings are slight different. We consider that Dependence Reduction may be a more
general name because it covers the meanings of the other three names and also
maybe more appropriate to those efforts that attempt to reduce dependence but
finally may or may not really reach independence. Due to limited space, we omit
to mention a quite large volume publications related to these topics.

In [14], it has been shown that we can apply the BYY learning system and
theory at the special case of y = [y(l), cee y(k)]T with yU) being binary to obtain
a so called BYY Fuactorial Encoding (FE) system and theory. Here, we consider
the general case that y = [y(l), cee y(k)]T is either binary or real such that not
only the previously proposed BYY FE system and theory has been further refined
and improved, but also a general Bayesian Ying-Yang Dependence Reduction
(BYY-DR) system and theory is suggested.

Generally speaking, we can design pas, (y) to be an independent parametric
density or free density:

plox) =TT, p1€), Py [€) = Y027 arsp(yt [€5),
pay () = E ) 0y 4
p(y) =11, p(y"), p(y"?) is free.

where o, ; > O,Zfi{ ap; =1,0, = {gj}§:1~ We put this par, (y) in? eq.[1.4],
eq.[1.5] and eq.[1.6] to get BYY-DR, BCYY-DR, BKYY-DR system and theory
as the special cases of BYY, BCYY, BKYY learning system and theory, respec-
tively. In this paper, we concentrate on the BKYY-DR system and theory only.
Generally speaking, it is just a direct application of using the above eq.(1) in
eq.[1.6] with the general implementation technique given in Sec.3 in [1].

From Sec.3 in [1], we further get the detailed algorithms and criteria in Tab.1
with the following three architectures:

(1)

Forward :pley(x|y) = p(z|y) free, pMylz(y|x) = p(ylz,b,z),
- Backward : par, (ylr) = plylz) free, pa,, (2]y) = p(ely, bz1y);
Bi — direction : pu,,, (ylo) = p(yle, 0y1.), pu,,, (2ly) = p(2ly, 0u)y), (2)

where a density is implemented directly by a physical computing device if it is
a parametric model, or indirectly by other components if 1t is free.

In Tab.1, Part A is obtained from eq.[1.6] and eq.[1.17] for the general im-
plementation. Part B provides the relation to some existing methods and will
be further discussed in the next section. The adaptive algorithm given in Part
C is obtained according to the general implementation technique given in Sec.3
in [1], with p.(y) = par,(y). The model selection criteria are given in Part D.

2 BKYY DR for ICA and Blind Source Separation

We consider the following noisy post-nonlinear instantaneous mixture that the
d dimensional observation # comes from & independent sources s(1) ... s(F) via
v =g(Ay)+e, By =0, Be =0, Eye’ =0, g(Ay) = [g1(&"),- -, ga(#)], & = Ay (3)

2 In this paper, we will frequently refer to the equations in paper [1], which is published
in this volume too. For convenience, we simply use eq.[1.n] to denote eq.(n) in [1].



Table 1. BKYY-DR System and Theory

Forward

|Bi—directi0n | Backward

For K L(Mi, M) given in eq.[1.6] , par,(y) given by eq.(1)
par.(7) is fixed at a nonparametric estimation based on D, = {#;}{L,
Part A: The Alternative Minimization Procedure

Step 1

Fix Py, (z]y), par, (y), update
the parameter 6, of pMylz(y|x) to reduce

pMy'(”(lyﬂx) W
. . Py, (#19)pary (v
KM, M) in eq.[1.11] YRE)
e.g., moving one step along g, ,(2) =
the gradient descent direction

[ Py, (@ly)pa, (y)dy

Step 2

Fix par, ), (y|z), update
pMz|y('r|y) =

Par

the parameter 8., of pley(x|y) to increase
yl= YD) Par, (2)
PMy|, oY)
pMylz)z(y) = e.g., moving one step along
fPMy|I(y|l")PMz (x)dx the gradient ascent direction
For pa, (y) free, let pu, (y;) = [ pa,, (vile)pm, (w)de, j=1,-- k
For pu, (y) parametric, update its parameter to increase
vy PMy 1 WlE )P () In par, (y)dady
e.g., moving one step along the gradient ascent direction

oy PV YT )P, (2) Inpa,, (wly)dody

Part B: miny;, a, K L(M1, M) is equivalent to minimize

fpry|a:,a: (y)In %dy LPMI (z)In %dm
with pMylz)z(y) and with pley)y(x) and
pley(x|y) given above pMylz(y|x) given above

Part C: The Stochastic Approximation Adaptive Algorithm

Refer to Sec.3 in [1], use pas, (y) by eq.(1) as the Sampling Reference
density, get a sample x; and randomly take a sample y; from pas, (y).

Fix prly(a:|y),pJ\/1y(y)7 update
Step 1 by = 00l ~ T Gt pasy. (yz)
olons . (vilep)in o 2ule V0
|z P (z¢ly)p (vt) .
d Moy Tt TPy _old the same as in Part A
CI I 8ylo=?
yl==0 e
Fix par, ), (y|z), update
Get pu,,, (z|y) above oy =621 4+ WX
. orag,, ile) Inpag  (=elye)
(in the batch way only) vl T, l 0.1, =00t
Step 2 When pa, (y) free, the same as in Part A(in the batch way only ).

For pu, (y) parametric, 87" = ¢3¢ +

n  Opny (weledInpag, (3
Py (1) 06y

)
|9y:9§ld
Part D: The Model Selection Criteria for k

After learning, denote the results by p}“wylz(y|x),p}“w

o1y (E19): P, (9)
D, = {x,}{L, and randomly take samples D, = {y,}? from p}“wy (y)

From egs.[1.13&14], get k* = arg miny J1 (k) or k* = arg ming J2(k)

1 P, (yrleg) phr  (yrley)
Ti(k) = = SO0 3 yle In —— 2
1(k) = w7 Zt:l Zr:1 PMy(yr) P ly(ItIyr)pMy(yr)
N N PM Z(yrlrt) . .
T2 (k) = = K7 D ms D Wln [P, (@elyr)pin, (vo)l-




Table 2. BKYY DR for ICA and Blind Source Separation (BSS)

Forward | Bi-direction | Backward

KI(M,, M2) and pu, (v) are the same as in Tab.1
KU(My, M2) = [ par, (2)(Hylo) = Q(ely) = C(v))dwdy, H(yle) = par,, (ylz) Inpar, (yle)
Qzly) = pmy,, Wlz)Inpar,, (ely), Cly) = pmy, (yle) Inpary (y)

Part A: Architecture Design

R k [€2)] N E))
For binary y, par, (y) = [[,_, @/ (1—a)' ™", 6x={g;: 0<q; <1},

For real y, par, (y) = p(y|fx) given by eq.(1)
pa, ), (z]y) is free | P, (zly) = Gz, 9(Ay), X)
For binary y, Py, (ylz) = Hle ufj(l — u])l_yj
i = s(e) [Wf(e,8p) + Byl), H(yle) =
Pty (ul2) S0 [y gy + (1= ;) In (1= p1j)]
For real y, par, ) (yle) = Y7 5,Gly — Wi, 85),0,11;)

Note: 1. s(r) is sigmoid with its range on [0,1], e.g., s(r) =1/(1 +e™")
2. e]Tx gives the j-th element of the vector z.
3. The nonlinear function f(z,f¢) can be implemented by a forward network.
Part B: Adaptive Algorithm
Step 1: the same as Part C in Tab.1, get a sample x; and randomly
take a sample y; from pu, (y). Fix prly(a:|y),pJ\/1y(y)7 update

Py, (y|z) is free

eylm = {W7 Bvefv {HJ}} or Gylm = {W7 Bvef}v PMy|Z(y|l‘) =
new _ gold _ __n___ 0H(yilre) =Qleily) =Clur) » Py, (#19)Pary (0)
vle = Tule b, (vo) 9y 1e=% 1| [par, @lo)par, (9)dy
Step 2: Fix pMylz(yt|l‘t)7 update
Py Py ~d Py
g('r7¢) = [gl('r17¢)7' o 7gd(l‘ 7¢)]7 r = Ay7
T/a
G = %g?illionldyt@:(ﬁold(Eold)_l
pary, (velee)
AT = A%t 4 Uipz\l/[y(yt) Gz — g(A° Yy, 67 T,
T(z, oldy—
H; = %ﬁlg}(:Alold)yt@:zﬁold(z ld) .
Pprr = Ytlr ° °
pre = ¢l 4 nipj'/[y(yt) Hyze — g(A% My, 671 )]
Get a(@y, Y1) = oy — g(A" My, 9™V,
. Par,, (Vilee)
(in batch way only) rew = (1 — )zt 4 n%a(fh yi)aT (ze,y1).
pley(x|y) = Particularly, for linear g(u) = u, we have
par,, . (wlE)par, (2) p (yiley)
yle Anew = g0l 4 ]V;yh: (yt : t o1 — A%y T Zrew =
[ par,, Wo)par, (o) da My (5t
pary, (velee)
(1- n)Eold + UW(M — ATy (5 — Anewyt)T
p ytley)
wrew — wetd 4 n% Yy — Woldxt)x? ( backward case).

For real y and pas, (y) is parametric

()¢
new __ eold PuM |Z(yt|-’ﬁt) 9ln p(y |‘fj) s
J =&t pijy(yt) a,ftj |.5j=§]91d7 J=1,--,k,
. new __ 1 new __ . old pMylz(ytlmt) (5) old
For binary y, ¢ = oprmeny, 177" =07 +n— 05— (07 — 4.

Part C: Three Ways of Recovery = — y
(1). Random sampling § according to the resulted pMylz(y|x).
(2). Maximum posterior decision. § = arg max, pMylz(y|x).
(3) For linear g(u) = u, get a direct inverse mapping § = Wz
Part D: The Criteria for Selecting k (the same as in Tab.1)




Table 3. Adaptive Algorithm with Finite-Mixture for Noiseless ICA

Gaussian Mixture | Derivative Sigmoid Mixture
With 63 fixed, update W™ = W' 4 n(1 + ¢(y)y" W', ¢(y) = [$1(y1), -, b (yr)]”
. ky, i old i) eold i
y= Woldp, yO) = gTyold g (y()) = olnpv ey _ Zrif:rqap(l’“)'?r,j)/ay“)
J oy () Zri,{7 aﬁz;ip(y(J)Mi(z%i
) ) ) s(w@ e, . b e tr (W —apn )
e ) = Gy o2 Dyg. = 3@ NEr ) brj v
p(y"16r,5) (y 7“7').770-7‘,])7 Py €r,5) FNE)) (1+e_br,j(y(])_ar,j))2
- 52 () = 1 I R
&ri = Abrg, 0051 sy 1Er,5) 1+e—br,j(y(J)—ar,j)7 &rj = {arj brj}

orw@Dlg, ) _ ¥2 je_b")j(y(J)_a";j)(e_b";j(y(])_a";j)—l)
oy
o2ldp(y (D g2l )

Fy,i qoldy(y(d) [gold)’

v aoldp(yl) jeotd)

r=

ap( (j)|§r ) ( () = - ) .
z yay(j) 2= -2 02’J d P(y(])|§r,j)

rJ

Step 11y =sTwre™, by () =

1 )

(e=br i W —ar ) s

are® = (L= v)ayld + vhe;(x)

rJ

By (x) @ In p(y(9) I&ﬁlf)

5,7}6]“1 = §ﬁlf + Y —Hew e it takes the specific form as follows, respectively
i ’ r.i r,J
. new __ old . id
Step 2: p75" = (1 = v)urj+ Step 2 epg ey
. ) —pold (y(7) _qrew)
hri®) (5 Ay, (@) ; —e nJ rd
’Y;n+my“)7 (Ui,j)new = (1 -v)x ¥ tew o — (v - ar5®) = G) _anew ]
i ri o o0 —b2' % (yI) —altew)
g > rJ 14e rl,dj o rl,;
. ) —potd (y(7) —qotldy
2 \old hri(®) 0 () new12 new _ _old e (@) org1—e i rd
(@) H e v = ui] arg’ = ey SEe b T T Zaeldy
? i 1te T3 r,J

Then, let Weold = Wwnew, Gzld B
We can even simply let o'f)j =1,br; =1, ky,; =2and a,; = 0.5 such that the algorithms

can be simplified considerably by removing the updating on af)j, br i, 0p .

with & being strict wide stationary and ergodic and e being noise. The purpose

of Blind Source Separation (BSS)is to get § which recovers y up to only constant
unknown scales and any permutation of indices. In the case that e = 0, d = k and
g(u) = u linear, it reduces to the well known linear instantaneous mixture, which
is solved when y = Wa makes the components of y becomes independent. Thus,
it is also called Independent Component Analysis (ICA), studied widely in the
literature. Due to limited space, we omit to mention one by one all the existing
references and they can be found in a very recent overview paper [8]. In the
case that e = 0, d = k and g(u) nonlinear, eq.(3) reduces to the post-nonlinear
instantaneous mixture studied recently by [13]. In this paper, we consider the
general case eq.(3) with e # 0, d # k, nonlinear g(u) and unknown k, by directly
using the BYY DR introduced in Sec.1.

When e is gaussian (/(e,0,Y), eq.(3) can be described by par,, (zly) =
G(z,g(Ay), X). Putting this specific setting in Tab.1 and together with appro-
priate designs as given in Part A of Tab.2, we can get adaptive algorithm for the
BSS problem eq.(3) directly, as given by Part B in Tab.2, where the batch way
ICA algrotihm is also given for the forward case. Moreover, Part C in Tab.2 sug-
gests three ways of recovering y from x. The first two are directly understandable.
In the backward case, there is originally no W for the third way. However we can
indirectly get one via minw Jo(W), J(W) = E|ly—9|*> = Tr[F(y—Waz)(y—Waz)T].
This W can also be adaptively learned together with the adaptation on A, as
shown by the last line in the middle block of Part B. Finally, the criteria for



selecting the unknown number of sources keep the same as Part D in Tab.1.

It is interesting to consider the noiseless special case e = 0. When k is smaller
than its correct value, we have effectively |X| # 0 during the learning, and thus
the situation is similar to the case with noise. When k becomes equal or larger
than its correct value, X' will become singular as other parameters converge to the
correct values. In other words, we can still use the adaptive learning algorithm
in Tab.2 for the backward and Bi-direction cases directly. X' becoming singular
is just a signal that indicates the correct convergence. That is, we can start at a
small value for k& and then gradually increase it, and then stop the learning once
Y} becomes singular.

For the forward case with linear g(u) = u and e = 0, we have Py, (ylw) =

8o =W IW], pu,, () = [, payy, (yl2)pas, (9)ds = par, (W) /[IW] = p(y),
thus from Part B in Tab.1l, mina, s, KL(My, M2) is equlvalent to minimize
fy ply)In /HJ Py (y ))]dy y = Wa. If we further let pMy(y( )) = p(y( )),

it reduces exactly to the minimum mutual information (MMI) criterion used
by [2] and also equivalent to maximum likelihood ICA [6, 12], INFORMAX [4].
The MMI criterion is usually implemented by gradient algorithm. An improved
adaptive natural gradient algorithm is used in [2]:

Wner = W L n AW, AW = (I + é(y)y" )W,

np(y®
6(y) = [61(yV), - on ™)), 6,y = 2nPWIE)

Dy0) (4)

These mentioned efforts have reached certain successes for sources of either only
super-gaussians or only sub-gaussians [16]. The key point is the difference in the
use of the parameter form for p(y/) 1€5).

From Tab.2, we can get a new adaptive noiseless ICA algorithm, based on
eq.(4) and eq.(1). Tts specific versions for p(y(j)|€r7j) being either gaussian or
defined by sigmoid function are given in Tab.3. This use of finite mixture den-
sity for p(y(j) |, ;) makes the algorithm become more flexible to adapt different
sources. Experiments have shown that it works well for various kinds of sources,
including those on which those mentioned efforts succeeded and failed [16].

3 BKYY Data Dimension Reduction (DDR)

In Sec.9 of [14], it has been shown that we can also use the Basis BYY learning
theory eqs.[1.4][1.5][1.6] as a general data dimension reduction (DDR) system
and theory with the following design:

M|y

Py (y Zajp Yl&s), pa,, (@ly) = Zvjp Aj)les),
=1

Tyl

Pty (W) = D Biplyle, gle, Wi), ), (5)

=1

for solving the problem of mapping the observed high dimension data z, gener-
ated from a unknown y = [y1, - - -, yx] € R under noise, back to its original R*.



Table 4. BKYY Learning for Three Layer Forward Nets ( General Case)

1. Variable Types
y = [y1, -, yx] with either y; € R or y; € {0, 1},
Binary-F: z = [21, - -, 2m] with either z; € R or z; € {0, 1}, without constraint.
Binary-E: z of Binary-F plus the exclusive constraint Z]=1 z; = 1.
2. Architecture Design
pu,, (2ly) = p(z]y,0.,) = Py (Y]%) = plylz, 0y)0) =:
™ %71 —m;)'7%, Binary-F z, )
szl J ( i) y { Hk yj(l _ H])1_yj7 binary ¥,

m m . _ “
>oimizm/ YL, 7w, Binary-E z, j=1+3

. B G Wie), I Real y.
G(z,9(y, W.1y), Z21y),  Real 2. (v, f (2, Wypa), 1), eal y

75 = g5(y, Wapy), Hy = fi(@, W)
9 Wayy) =010 Wayy)s - gm (U, Wo)] | F(@ Wype) = (e, Wype), - fr(@, Wye)]
nonlinear functions in general nonlinear functions in general
eg g5y, Weyy) = 5(€JT(WZ|yy)) eg, filx, Wy.) = 5(€JT(Wylrx))

Free pMylz)z(y|x,z) = p(y|z, 2):
p(z1y,0, 1) p(yl2,6y|4)
p(y|x,z) = p]\l/jyz(zu) 2! ) PMz(Z|x) = fyp(z|y7 HZIy)p(y|x70y|$)dy
Parametric PMy, . (ylz, z) = plylz, 2, 04,5 ):
For binary u, [T}, 67 (1= ;)" ;= a(h;(, 9, W,o.0))
h(CL‘, Y, Wy|m,z) = [hl(xv Y, Wylmq,ﬂz)v ) hk(Txv yq:?ylm,z)L
e.g, hy(e,y Wyas) =¢; Wyp[o7,27]")
For real y, p(y|x, Z, eylm,z) = G(y7 h(CL‘, Y, Wylm,z)v ])
Note: 1. s(r) is sigmoid with its range on [0,1], e.g., s(r) = 1/(1 +e7")
For Binary-E z, s(r) may be monotonic increasing , e.g., s(r) =¢€”
2. e]Tx gives the j-th element of the vector z.

3. the equation for specifying the free p(y|z, z) is given by Theorem 1 in [1]
3. Learning, i.e., minge o, 0,5,k J(Oy1z,2, 05190 0y B)
J(eylmyzvezlyveylrvk) = _Hylr,Z - LZIy - Lylm
Hypoe = [, Hyjoro (2, 2 )pgs (2, 2)dlndz,

Hyyo(x,2) = — fy My, . (y|z, 2) Inpum,, . (y|z, z)dy
L.y= fz . Lz|y(xvz)pM1L (z,¢)dvdz, L,y (z,z2) = fprylr)z(ylx,Z)lnp(ZIy, O21y)dy
Lyz = fz . Ly|a:(xvz)pM1L (z,@)dvdz, Ly (z,2)= fprylz)z(ylxyz)lnp(ylxﬁyu)dy
For free pa,, . (ylz, z) = ply|z, 2),

J(0.1y, 012 k) = —Loje, La.jp = fm,szlL (z,2) Inpar, (2z|w)dzdz
When p,,.(z,%) = pu, (x)plez(z|x) given by eq.[1.2] and eq.[1.8],

1
Hyla,z = Z(m,z)GDz)z Hyjoz(w,2), Lz = Z(m,z)GDz)z Lpy(x, 2)
Lie = S 1), Le = Yoo Lo,
4. Parameter Learning Algorithm at a fixed k
Step 1: Fix 0.}y, 0|4, either let the free p(y|z, z) given by Part 2 above
or update 8|, . by ming,_ J(Oy12,21 02145 0y12r B)
e.g., moving one step along the gradient descent direction.
Step 2: Fix pJ\/fylx)z(yh:,,z)7 update .|, by maxe,, L.}, and 0,), by maxe, Ly,
e.g., moving one step along the gradient ascent direction.
5. Model Selection (selecting the number k of hidden unit )
With 67, .,0%,,9,, obtained by the above algorithm, select &* by
From eqs.[1.13&14], by Ji(k) = J(05, ., 0%, 05)0r k)
or Ja(k) = —(Lajy + Lyja)lger 01 0t 3




Table 5. BKYY Learning for Three Layer Forward Nets ( Special Cases)

1. /-Yang based system
PMy.,. (y|x7 Z) = p(y|:E, Z) free, p(y|:E, Hylf) = 5(y - f(l“, Wylm))v
i.e., = y by a deterministic mapping y = f(z, W,|,).
From Part 3 in Tab.4, min{gzlyygylz} J(0:1y, 94|z, k) becomes
ML learning : maxi(e, w, .} Log, Liz= (4,2) €D Inp(z|f(z,Wyiz),8:1y)
For p(z|y,0.),) = G(z, g(y, W2), a?I), it becomes
min{Wz|y7Wy|a:} Z(m,z)eDz . llzi = g(f(wi, Wya), V[/Zly)”2
2. Smoothed Yang based system
pum, . . (Yl 2) = plylz, 2) free, p(zly,02)y) = P(Z|E(y|$73y|r)vez|y)7
s (2|w) = p(#| f (=, Wy|$)7 62|y)7 Hylfyz(xv z) = Lylm( z)
J(HZvaeyIrvk) = Z(m,z)GDz)z lnp(z|f(x7 ylz ) HZIy)
thus the parameter learning is the same as in the above §-Yang based system
However, for selecting k, by eqs.[1.13&14] J(k) = J2(07),, 0}, k), J2(0.1y, Oy)er k) =
> temyen, Pl (2, Wy ), 020y) + [, pyl, 8,10 Inp(yla, 8,12 )dy]
fyp y|=z, 49y|$)lnp(y|a:7 by)dy = — Zle[u] Inp; + (1 — py)In (1 — py)], binary y
3. Mean-Field Yang based system
My, . (y|z, z) = p(y|w, z) free. In all the integrals over y,
we let y approximately replaced by E(y|z,0,,) = f(x, W, z)
par (2]0) = p(2] f (@, Wy ), 021 )P( (2, Wy 2|7, 0y1)

_ (29,0, 1y)P(y]2,04|0 _
PUl?, %) = S, 0 ey ey Hales(2,2) =0,
Loy, 2) = Inp(z|f(z,Wy12),021y)s Lypa(2,2) = —Inp(f(z, Wy2)|z,0y)2)
0, for real y,
In p(f(z, Wyo)|, 0y)0) =

_ Zle[u] Inpj + (1 — py)In (1 — p5)], for binary y
Jl(HZvaeylrvk) = J2(62|y76ylrvk) = J(HZvaeylrvk)v
J(HZva Hylrv k) = - Z(‘ryz)eDz . [lnp(z|f(x, Wylr)v HZIy) + lnp(f(x W, Ir)|x Hylm)]
4. The Stochastic Approximation Adaptive Algorithm

pMylz)z(y|x,z) =p(ylz, 2, €y|I)z), and p(z|y, €z|y), pylz, €y|z) are parametric given in Tab.4

Refer to Sec.3 in [1], use p(y|z,0,,) as the Sampling Reference density,
Get a sample ©¢, z; and randomly take a sample y; from p(y|z:,8,).)
Step 1: Fix ¢

new _ gold _
O le,: = Oy,
p(ytl=e,24,8y|0,5)

p(211y1,8,|,)p(vz |‘rt)0y|g:)]

21y Oyl

Olp(ytlet,z¢,0y|c,.) In

p(ylee,0y)5) 9y, s |9y|z z—9yl|i R
- new _ gold p(ytlee,21,8y)0 5) Olnp(2¢lye0,)y)
Step 2: Fix Oyle,=, update 07757 = 07,7 + PTe1, 0y 1) 27, lo e
grew _ gold P(yilet 24,0 10 ;) Olnp(yiles,0,),)
e = Oyle T 50T, EL |oy|z=o;’|j
Part 5 Three Ways of Mapping z; — z:
(1): 2 = g(f (e, Wy ), Way),
(2): For binary y, §; = argminy p(y|z, 84|.) and then 2, = g(g:, W.|y),

(3): 90 = [ Ep(zly, 0.1)p W], 0410)dy & g(f (14, W), Wa )P (e, W)l 8410)

6. Model Selection (selecting the number k of hidden unit )

D ={w, 2z}, and randomly take samples D, = {yryt}i\f:ll from p(y|z:, er)
From egs.[1. 13&14] get k™ = arg miny J1 (k) or k* = arg ming J2(k)

ez’
zly)p(yrlrt N |I)

— T Zt 127— . th*l) p(yrles, 2e, 05, ) Inlp(2ely-, 07, )p(y-lee, 6]

p(yrles 2,87

_ o "
Ji(k) = w7 Zt 1 Zr 1 P(yr|It o )p(y"lxt’zt’eymz)ln p(z¢lyr,6
Jo(k) =




This DDR theory aims at not only modeling the generating process of data =
by pum,,,(z|y) and the backward-mapping by par,, (y|z), but also at discovering
the original dimension k as well as the structural scales ny, ng|y, nye-

This BYY DDR is closely related to the BYY DR discussed in Sec.1. The key
point of DDR is to reduce the dimension of data ( i.e., k < d), but the components
of y can be either independent or not, as observed from the difference of pas, (y)
in eq.(1) and eq.(5), while the key point of DR in Sec.1 is to let the components
of y become independent and it can be either £ < d or k > d.

To get some deep insights on DDR, we see the linear dimension reduction
with gaussian densities—the special case of eq.(5) with p(y|¢&;) = G(y, mgj),Ez(/)),
plo = [y, A))|6,) = Glo, Ay, 29, plylw, g(w,W;) = Gy, W]z, 5)), where  is
represented by a gaussian mixture in y via different linear mapping W;, which
can be regarded as a combined job of data dimension reduction and clustering
in R¥. We can also regard that z is generated from a gaussian mixture in y via

different linear mapping A;.
We further consider the simplest case that ny, = 1,ng, =1,ny, = 1 with

r = Ay + ez, € 1s gaussian, Fe, =0, E[emef] = Ui|yld7 par, (y) = G(y,0, Ay),
pu,, (zly) = Gz, Ay, Ui|y]d)7 pu,(x) = pn(z) is given by eq.[1.2]. (6)

A particular example of this design has been discussed in Sec.9 of [14] and
is shown to be related to the conventional PCA learning. In the following, we
consider an even more interesting example that par,, (y|z) = p(y|z) is free.

Since p(y|z) is free, the minimization of eq.[1.6] will result in
]d)G(y7 07 Ay)dy = G(l‘, 07 in]d + AAZIAT)v

2
x|y

plz,8) = /G(m,Ay,a
G(z, Ay, aily]d)G(y,O,/ly) pr(w)
r) = , KL(Ay k)= z)In dr. (7
pyle) o) (Ay, b) / pr(@)In r gy e (7)
Moreover, it is not difficult to see that this p(y|#) is actually in the form
plylz) = Gy, WTxv Zyle)s wt = AyAT(in]d + AAyAT)_17
Dy = Ay = WH(ad Lo+ AAATYW = Ay — A AT (02,10 + AN, AT)TH AN, (8)

That is, the situations are actually equivalent when PMy|I(3/|l‘) is either free or
gaussian with linear regression.

When h — 0, ming K L(A,, k) with 6 = {Uzly, A, Ay} is equivalent to

min J (), J (6x) = In | 2] + Tr(27' 8], So = ohp,la+ AAGAT, (9)

with S, = % Zf\;l z;x] . We first explore the property of its solution by
Val(0r) = X7 AN, — DTS, NS Ay, from VaJd(8:) =0,
AT = ATS1S,, and S, = T AP, 8T D = I, A, = diag[A],---, \%], we have
ATOAT (o2, 1o+ DT AN AT D) = ATD, AT® =[D|0], D = diaglds, -, dx],
[DI0]AZ ! (03, Ta + [D]0]" A, [D]0]) = [D]0],
k

d
J(85) = 05 In(d3NY +03y,) + (d—K)Inody, +h+ Y AT/o%,). (10)
=1

J=k41



In other words, the solution is not unique and a typical example is that A consists
of k eigenvectors of S;, corresponding to the k eigenvalues that minimizes

k d
x 1 x x
Ji(k) = 0503 In X} + (d— k) Ina3y,], o3y, = — DTN N =N —ady,. (1)
j=1 j=k+1
Unfortunately, directly picking k among d eigenvectors of S, for eq.(11) is

a difficult combinatorial problem. Instead, we propose an iterative algorithm to
search a solution on AT A = I. With thls constraint, we have X7!' = ¢-2[I; —

A(o? A7 4+ 1x) 7' AT] and

zly

Taly
J(ek):1n|/1y+ai|ylk|+1n|ai|yld Wl + oo ATr[Se — (a5, A7 +1k) 'ATS, A,
Va, J(8k) = (Ay + oo, Ie) ™" —( ooy Ik + Ay) AT S, Ao m|y1k+/1 )

Va,J(8r) =0, resulting in ATS A = Ay + Ui|ylk7 or Ay = =ATS, A— a$|ylk,
Vad(Oh) = =202 So A2, A" + I) = —202 S, ANy (ATSEA). (12)

Thus, by noticing A;'ATS, A = ATS, AA;!, the gradient of J(6) with respect
to A on the manifold AT A =1 is obtained as
Vi =(I—AATYV AT (0r) = =20 (S AA — AN AT S, A)AT S, A,

x|y

vee[V4] = —Coec[S AN, — AAS 1ATSEA], C = amly((ATS A) @ 1q). (13)

Since ' is positive definite due to the positive definite B, S, AA;' — AA;' AT S, A
is a direction that reduces J(fy) on the manifold A” A = I, and we have the
following iterative algorithm for solving ming J(f) on this manifold:

Anew — Aold + T](S;EAOldA_l old AoldAzjl oldAold TS;EAOld)7

A;Lew — Aold TS;EAOld 2 olcl[k7 (14)
2 old old gold 40ld T 2 new 2 old —1 —1 —1
Yo =o0qy da+ ATATA v Taly =gy T[N S N = X0,

2 new

where the updating for o, *** is because from the original J(61) given by eq.(9)
we have 20l — _7p[x71 5, U7 — £ The updating formulae for A, 2, come

do 2
x|y
directly from eq.(12) and eq.(9). As long as the learning step size 7 is controlled
small enough, the algorithm keeps to decrease J(f) until finally converged.

We can also modify the algorithm eq.(14) into an adaptive one for each x;:

1d,T 1d T (—1 old 1d s—1 old__T
2= A"z, A"V = AT+ n(ziz Ay otd_ A Ay Sz,

Ay =(1- n)AZld +n[zz" — aigld]k], (15)
Ea: — ailgldld 4 AOldAZldAOld T7 a'i|;lew — (1 _ 77) i|;ld 4 77(”2_11‘1”2 _ TT[E_l]).

For a solution A*, diag[Af,--- A}l = A + %|y *Ix by the above algorithms, we
can get the best dimension by &* = miny, Jy (k) from eq.(11). Also, from eq.(8),
— [ p(yl)pn(x) Inp(y|z)dsdy = 0.5[k + In |A, (I — A" (02, Ia + AA,AT)""AA)|]. By
eq.[1.13], after ignoring some terms that are irrelevant to k, we can get

(7= kZ)\m —i—k—i—ZIn X - == kZ)\m (16)

g=k+1 g=k+1

J>(k) = 0.5[dIn (




Finally, from the last equation in eq.(10), we get the PCA if A, is fixed at
any posotive diagonal matrix with different elements, and the Mwnor component
analysis (MCA) if o2, is fixed at any large constant. Thus, eq.(14) or eq.(15)
act as a unified algorithm for linear dimension reduction that includes the PCA
and MCA as special cases.

4 BKYY Learning for Three Layer Forward Nets

Three-layer perceptron or three-layer forward net 1s usually trained by the max-
imum likelihood (ML) or particularly its special case called the least squares
learning via back propagation (BP) technique, which is simple to be understood
and thus very popular in the literature. However, its generalization ability de-
pends on the appropriate selection of the number of hidden units or a good
regularization technique on its parameter estimation, bases on some heuristics
or the complicated upper-bound approximation of generalization error.

Given in Tab.4 are the detailed form of the Fully Matched Yang-based BKYY
learning given by eqs.[1.10][1.27]&[1.28] on the cascade architecture —a gen-
eral form of three layer forward net that includes three layer perceptron as a
special case. The implementation of its parameter learning algorithm involves
the integral or summation operations over all the values of y which can be
very expensive for a large k except the analytically integrable case that both
p(zly,0.1y), p(ylz, 0y),) are Gaussians and f(y, Wy ), 9(z, Wy),) are linear. Thus,
we need either to develop some efficient algorithm or to make some simplification.

Given in Tab.5 are four such examples. The first is exactly the conventional
ML learning or particularly the least square learning for a three layer perceptron
which can be trained by back-propagation technique. The second is obtained by
letting p(z|y, 0.}y) be conditioned on the smoothed regression £(y|x, 0y, ) instead
of on y directly. These first two examples are equivalent in parameter learning.
However, the second also provides an important new result — a new criterion for
selecting the best number &* of the hidden units by J2(k) that contains an extra
term to penalize a large k during its ML fitting on par, (z|x). Interestingly, this
criterion Jz(k) is much simpler than many of the existing hidden unit selection
criteria based on the estimations of the upper bound of generalization error. The
third example is to use Mean-Field approximation on y for all the integral or
summation operations over y. For real y, 1t turned out to be exactly the same
as the first example. However, for binary y, the penalizing term appeared in the
second example in Jo (k) now appears in J (0., 0y|., k) too. In other words, this
term not only penalizes k increasing in selecting the best &, but also regularizes
the parameter learning at a given fixed &.

The first three examples are made by either simplification or approximation.
In the general cases, by using the general random sampling implementation
technique eq.[1.22] and eq.[1.23] given in Sec.3 of [1], we can get a stochastic
approximation adaptive algorithm given in Part 4 of Tab.h, for avoiding the
integral or summation operations over y during learning.

On the testing phase, three ways of implementing mapping x — z are given



in Part 5 of Tab.5. Moreover, via randomly sampling, we can also get new criteria
for selecting the best number £* of the hidden units.

5 BKYY Learning for Mixture of Experts

As discussed previously, the cascade architecture of three layer perceptron en-
counters the integral or summation over y, which causes an impractical cost
unless y takes only a few values. However, if y takes just a few values, the repre-
sentation ability of the network is limited since y functions as a bottle-neck that
the entire information flow must go through.

In the case of the Fully Matched BKYY learning, when pyr, . (z|z,y) #

o, (z|y), eq.[1.27] will become par, (%, z) =

z|y

fpj\/ley(,zh:7 y)prly(a:|y)pJ\/1y(y)dy7 Ying based,

d =
fPMz|y(Z|CE7y)PM2L(CE7y) Yy {prz|y(Z|x7y)pMylz(y|(L‘)pMI(x)dy7 Yang based;

pans (2lo) = pary(,2) fy pley(z|x,y)pMI|y7My (y|z)dy, Ying based,
2 Py (@,2)dz f pley( |x y)pj\/jylx(yh:)dy7 Yang based;
Py, (@19 Pary, (9)
= . 17
PM .y, My (ylo) = f puy (2ly)par, (v)dy (17)

In this case, each pyr,, (2|2, y) itself builds a direct link * — z, gated via
the internal variable y such that a weighted mixture par,(z]z) is formed in a
parallel architecture, with a gate by pa,, (ylz) for a Yang based system and
pM,,, M, (ylz) for a Ying based system. Although we still encounter the sum-
mation over all the values of y, here y only takes a small number of values.
Because each pyr, |, (2|z,y) has a direct link # — z and y only functions as a
gate that weights information flows from different experts, we can trade-off the
complexity of y and the structural complexity of each plez)y(z|x, y) such that
the number of values that y should take are significantly fewer than it should
take on the cascade architecture. This is an advantage the cascade architecture
does not have.

In Tab.6, we let y take only % discrete values. From Part 6, we see that
the Yang based system is actually the model of Mizture of Experts [9, 10,
5, 17, 18] with each pu,,,  (2]7,y) being an expert net and par,, (y|z) be-
ing the so called softmaz gating net, and that the Ying based system is ac-
tually the alternative model of Mizture of Fxperts proposed in [17, 18], with
p(ylr) = p(z|¢;)p(y; = 1)/Zf:1p(x|¢J)p(yj =1) as an alternative model for the
gating net. Moreover, the algorithm in Part 4 for the Yang and Ying based
systems 1s actually the EM algorithm for the original model for mixture of ex-
perts [7, 9] and the EM algorithm for the alternative model of mixture experts
proposed in [17, 18], respectively. This fact can also directly be observed from
J(0,¢,k) = —L,|, in Part 3. Actually Part 3 indicates that mingg 4 »} J(0, ¢, k)
is equivalent to the maximum likelihood learning on pas, (z|2) or par, (2, z).

One inconvenience of using EM on the original model is the nonlinearity of
softmaz gating net, which makes the maximization with respect to the param-
eters in the gating net become nonlinear and unsolvable analytically even for



Table 6. BKYY Learning for Mixture of Experts

1. Variable Types

, yk] with y, € {0, 1}, Zle yr = 1, z is the same as in Tab.4

y=I[y,-
2. Architecture Design

= Zle y;p(y; = 1) are free

Py, (Wle,2) =30 yply; = 1|z, %) and par, (y)
13 13
Py, (2lesy) =300 vip(z]n, 85) Py (ylz) = ijlkyjp(yj = 1|z, )
pzlz,0;) = ply; = 1z, ¢) = uj/z,_l wi, py = fi(e, V)
r"?l 7T] r(l - 74, ")l_zrv B?nary—F Z xr rn]7 i Real x,
e ? Wj,r/zr_l mj,r, Binary-E z, (wl¢si) = {H 1 _ q )1 ®r  binary «.
Real 2.

Gz, g(w, W), Xy),

w0 (2, W5) = gr (2, W), pMm(xly) = ZFl yip(x]dy),

© gm (@, Wil fle, V) =[fa(®, V), -, fu(z, V)]
e.g., fi(z,V)= s(e]T(Vx)

g(z, W;) = [g1(z, W), - B
g, g;(x,W;) = s(e; (Wjz))
3. Learning, i.e.,ming sx3 J(8, 0, k), 0 = {6;,5=1,--- k}, ¢={¢;,i=1, -, k}
The Yang based system The Ying based system
J(6, ¢, k) H |IZ—L2|I;?J_L?J|Z’ J(8, 6, k) = _fy|z,z_LZ|z,y_Lz|y+Hyv
e Y
z,6; i=1|z,¢ z|z,0; x|d; i=1
ply; = 1'”“""1) = MRS | plyy = 1ls,s) = HemeE s
pary (o) = 00 p(ele, 65)p(ys = Lo, 8) | pary(w,2) = ) 0 p(ele, 05)p(eld)p(y; = 1)
Ly = fLyh:(x,z)leL (2,@)dedz, Ly (=, 2) Loy = sz|y(x,z)pM1L (z, z)dedz
= Zllep(yj =1le,2)Inp(y; = 1o, ¢) ely(?,2) = ijlp(yj =1, z) Inp(z|¢;)
L. = pr1L (z, %) In par, (z|z)dzdz Ly.= pr1L (z,z)Inpar, (z, z)dedz
lo,z = ny|a:,z(xvz)pM1L (z,0)dwdz, Hy|p .(v,2) = - ijlp(yj =1le,2)Inp(y; = 1w, 2)
le,y = sz|z,y(xvz)pM1L (2, w)dwdz, le,y(@, 2) = Zj L Plys =1z, 2) Inp(z|e, 6;5)
Hy==30_ ply; = Dinp(y; = 1), ply; = 1) = [ ply; = |z, 2)pa (=, 2)dwdz
(z]z) given by eq.[1.2] and eq.[1.8],

When Part (z,2) = pu, (l“)Psz:

the same as in Tab.5 except L., is replaced by L., , = Z(m )en Loy (2, 2).

4. Parameter Learning Algorithm at a fixed k
Step 1: Fix 6, ¢, get p(y; = 1|z, z) above
Step 2: Step 2: p(y; =1) =
For =1,k = e P =l
k: mnew =

new _ s
6 = arg maxg, Ljz,yd =1,

update 07°" = argmaxo; L.|ay
plyy = 1z, 2)w

[ S
p(y;=1)#Dz, Z(I,Z)GDZ)Z

¢"" = argmaxy Ly,
e.g., moving one step along the TP = s=h#ne s (0r0)eDa *
7= T,z T,z x,z
new new]T
Iz = m7]

gradient ascent direction. ply; = 1z, 2)[z — m]
5. Model Selection (selecting the number k of hidden unit )

With 6%, ¢* obtained by the above algorithm, select k* by
, % k) or Ja(k) = Ju(k) + Hye zlqor 043

From eqs.[1.13&14], by either Jy(k) = J(8"
When p( |z,8;) is gaussian, they actually take the specific form

k N "
p*(y; = 1z, 2) Inp* (y; = 1|z, 2) + J2(k),

Z(z :)€De. - 2
=lnp(y; = 1z, ¢%) ijl X

Ta(k) =

E<“)€D“ Do X
[-p" (yj =1le,z)Inp(y; = 1|z, ¢" )+ [-p"(y; = D)Inp*(y; = 1)+ 0.5p"(y; = 1)
0.5p* (y; = 1) In| 3] xIn|IT%] +0.5p* (y; = 1)In| 3]
13
=, Pzl 8i)p (yj = 1z, ¢)

6. The Output of Nets ps, (z|z) =
For Ying based case, p(y; = 1|e, ¢) = p(@|¢j)p(y; = 1) /Z] L Plelop(y; = 1)




Table 7. BKYY Learning for Normalized RBF Nets

1. Variable Types and Architecture Design
All are the same as the Ying-based system in Tab.6, with specifically:

NG

p(zlz,85) = G(z,¢5,X;5), or p(z|z,0;) = G(z,W}x +c¢i, %), ply; =1) = =Fr—F+——
Zj:l VAREL

2. The Batch Way EM Algorithm at a fixed k
otd for a NRBF net
Step 1: rotd =4 7 > '
b " (Wjold)tx + c?ld, for an ENRBF net;
_D.S[Z_m?ld]T[Hjovld]—l[I_m?ld]

G(z)rqud)zqud)

h(jle) = ply; = 1, 2) = -
7 Zk e_D'S[Z_mﬁld]T[HJD'M] l[z_m?ld]G(z,reld)qud)
=1 i J

Step 2: First, for both NRBF and ENRBF nets, get N, = Z( yeD h(jlz), update
MI = N een,,, MlE)E TF =g 30 ) = eI = mye T
. amew _ 1 :

NRBF net: c7 =~ Z(z,z)eDI,z h(jlz)z,
T = S D e epn., MAlR)E = ) = o)
ENRBF net: Ezj = & Z(Z’Z)GDZ’Z h(jle)z,
- ; _ (. ymew]T
oo = 330, MU = B2lle — (my)"*17,
W;zew — [(Hj)new]_le;,C?ew — E,Zj _ (W;zew)t(mj)new
B2 Y epe . PUIRE = (WFE%) 0 = c2v e — (W)t — crev]t,
L 52 2 _ 1 k . new (|2
When X; = 071, 07 = Zj:l Z(I,Z)GDZ L hGlellz =017,
3. The Adaptive EM Algorithm at a fixed &
Step 1: get the same h(j|e) as in the batch way case,
update a?¢" = (1 — nu)O(?ld + noh(jlz),

. 1, if j = argmin,.{—logh(r|z;)},
then get I(jlz:) = {0 ot{lerwsig. f ghirles
old

Step 2 : Update myeY = m?ld +n5,i(z —m3Y),
290 = (12 g VT3 4, s =m0 (o = mt)T

» 4,0 = noh(Glei)/ay;

)

NRBF net, ¢ = c?ld + 05,z — c?ld), prew=(1- nj),)Fjold +nj,i(zi — ) (20 — c;‘ew)T;
ENRBF net, Ez7°" = Ezjovld + 05,z — Ez]ovld), e = B2y — Wjold Tm?ld;
E;LS’UJ — (1 _ nj)l)zqud + nj,z(zz _ Wjold Tl‘, _ c;zew)(zl _ Wjold Tl‘, _ c;zeu.r)’l"7

new _ yirold ) new T newy T
W =W +77]),(z,—Wj T, — ¢ )N

4. Model Selection (selecting the number k of radial basis functions )
TiR) =20 e 2opa P = Uz ) Inp* (g = 1z, 2) + Ja(k),

i=1

/1
Ja(k) = In ijl ] + Zle Wln NVPH
j=1 J

plecewise linear case. An algorithm called Iteratively Reweighted Least Squares
(TRLS) is proposed for the nonlinear optimization [9, 10]. However, IRLS is a
Newton-type algorithm and thus needs some safeguard measures for conver-
gence, which 1s a big difference from the guaranteed convergence of the pure EM
algorithm. This inconvenience has been overcome by the alternative model. As
shown in Part 3, the learning on the gate can be made analytically.

Another important open problem of using both the original and alternative
mixture of experts is how to select the number of experts. Based on the BKYY



learning theory, we proposed a criteria for this task by Part 5 in Tab.6. We can
intuitively observe Ja(k). As k increases, I ts first term will increase which trades
off the monotonically decreasing by the second term for a best k*.

6 BKYY Learning for Normalized RBF Nets

We consider an interesting special case of the Ying-based system in Tab.6, with
a specific architecture design by Part 1 in Tab.7. In this case, from par, (z]x) by
Part 6 in Tab.6, we have E(z|) = [ pa,(z|x)dz given by

k —0.5uT Tty
B(zlr) = { Ly o) W= e (9
Z]=1(ij +c;)p(x — my) Zle P

We can easily find that they are just the standard normalized RBF (NRBF)
net and extended normalized RBF (ENRBF) nets with & hidden units, which
have been widely studied in the literature, see the reference list of [19]. In other
words, the mazimum likelihood (ML) learning on the normalized RBF nets is a
special case of the ML learning on the alternative model of mizture of experts by
the EM algorithm.

In the existing literature, RBF net is expected to be trained by the least
square learning — a special case of ML learning. However, due to the difficulty
of determining the parameters II;, m; of basis functions, in practice the learning
is usually made approximately by two separate steps. First, II; = (0'?)2] with

(0'?)2 being estimated roughly and heuristically, and some cluster analysis (e.g.,
N

the k-means algorithm) is used to group data set D, = {®;};L, into k clusters,

and then use the cluster centers as m;,j = 1,.---, k. Second, the output layer
parameters c¢;, j = 1,---, k are determined by the least square learning. By this
two-stage training approach, the centers m;,j = 1,---, &k are obtained directly

from input data without considering how to get the best regression E(z|z).

Moreover, there is also another major problem — how to select the number of
basis functions, which will affect the performance considerably. In [19], via setting
up the connections between RBF nets and kernel regression estimators, a number
of theoretical results have been obtained for the upper bounds of convergence
rate of the approximation error with respect to the number of basis functions,
and the upper bounds for the pointwise convergence rate and Lo convergence rate
of the best consistent estimator with respect to both the samples and the number
of basis functions. However, these theoretical results are not directly usable in
practice. Rival Penalized Competitive Learning (RPCL) is able to automatically
select the number of clusters and thus suggested for RBF nets [20]. However,
although it experimentally works well, RPCL is a heuristic approach and still in
lack of theoretical justification.

From the connection eq.(18) between the BKYY Ying-based learning for
mixture of experts, we can solve all the above problems. First, we can directly
use the EM algorithm in Tab.6 to train the NRBF and ENRBF nets to get all
the parameters I7;, m;, W;, ¢;, 2; such that a globally more optimal solution is



obtained. Specifically, the detailed form of the EM algorithm is given in Tab.7,
together with its adaptive variants. Second, we can select the number & of radial
basis functions by the criterion by Part 4 in Tab.7.

7 BCYY Learning and Partially Matched Learning

(1) BYY Learning with Convex Divergence

Instead of eq.[1.7], we use the Conver Divergence eq.[1.6] for the Bayesian
Conver Ying-Yang (BCYY) learning. In this case, most of the results given in
Theorems 3.1-3.4 in [1] do not hold anymore. However, we can still use eq.[1.17]
and the general implementation technique by Sec.3 in [1] for the minimization of
Frwo(My, Ms). Here, we only discuss such a learning for the mixture of experts
given in Tab.6.

The key point is to still use the same Step 1 in Tab.6, and then in Step 2,
we directly maximize

L..= / Pk (z,2)f(pa,(z,2))dzdz, for a Ying based system,

L. :/ Pk (z,2) f(pum,(z|2))dzdz,  for a Yang based system. (19)

with par, (2, 2), par,(z|x) still given by Part 3 in Tab.6, resulting in:
Step 2 (Yang -based ): get w(j,z) = f'(pa, (2|2))par, (2|2)p(y; = 1|z, 2),

fu) = %uﬂ, update 07 via solving

. dln p(z|z,6; . dln i=1|z,¢
Z(m,z)GDz)z ’LU(],.Z‘,) pc(lej 2 = 07 Z(m,z)GDz)z 'LU(],.’L‘,) p(yd]qb ) =0.
Step 2 (Ying -based ): get w(j,z) = f'(par.(z, 2))par, (2, 2)p(y; = 1z, 2),
update 67°" via solving Z(x 2eD w(y, x)% =0, and then get
) 2 7

new __ 1 .
My = e EDey 2w s)en.,. V()T

NP = =t Lemen,,, W) — mi ]l — mye”.

For the same reason as in [15], when f(u) is monotonically increasing for
positive u, e.g., f(u) = v’, 0 < 3 < 1, the learning will give a more robust
estimation for data of multi-modes with outliers or high overlap between clusters.

(2) Partially Matched BKYY Learnings

We relax the satisfaction of eq.[1.24] and consider the learning eq.[1.9] on the
architecture of mixture of experts:

(1) Yang based system. In this case, par,, (|y) and par, (y) are both free.
From Theorem 4 in [1], Ly, (x, z) in Ly, of Tab.6 should be replaced by

k
Lys(x,2)= Zp(y] =1z, z)[lnp(y; = 1z,¢)+In (1 +

j=1

P(y] = 1|.1,‘7Z) )]7

oy =m0



for parameter learning. Moreover, for model selection we need to add to Jy (k)
an extra term given by

rw= Y S p = e s P =) (21)

(z,z)€D 3=1 p(yJ :1|l‘7¢)

(2) Ying based system. In this case, par | (y|z) = p(y|z) and puy,(y) are
free. From Theorems 2 & 3 in [1], we have

ply; =1]2) = p(alé,)p(y; = 1)/ Y plelé;)ply; = 1),
P =D =05lgp— Y pln =)+ gy D pl = Ul (22)

z
(,2)EDg,» 2ED,

Therefore in Tab.6 we should replace p(y; = 1|z, 2) in Ly, (x,2) by p(y; =
Lz, z) + p(ylz), let p(y; = 1) in H, given by eq.(22), and replace ), .(x, z) by
Hyjoz(2,2) = =0 p(y; = 1z, 2)Inp(y; = 1|z, 2) = 30_ plyy = e, 2)In p(y; = 1]x)

Then we modify the algorithm in Tab.6 into:
Step 1: Run the original step 1 plus getting p(y; = 1|z) by eq.(22),
Step 3: Get p(y; = 1) by eq.(22), update 67°* as in the original step 2 and
update
My = T TE DT 2o (e s en, . P = Lz, 2) 4+ ply; = L))

new new]T

e = m Z(m,z)eDz,z[P(yJ = Uz, 2) + ply; = Uz)llz — m]"][z — m]

Also, the selection of k should be made by (with h} = p*(y; = 1|z, z))

k
LR =S ST Ik 4 p" (= 1e)npt (g, = 1e)] + Ba(k), (23)
(,2)EDg,, =1
k
Ta(k)y = [=2p"(y; = DInp*(y; = 1)+ p"(y; = D[] +05 > A},

3=1 (,2)EDg,»

8 Conclusions

This paper has further interpreted the theory through its uses on developing
models and algorithms for dependence reduction, ICA and blind source separa-
tion, linear dimension reduction, supervised classification and regression by feed
forword net, mixture of experts and RBF nets.
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