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Abstract. A unified statistical learning approach called Bayesian Ying-
Yang (BYY) system and theory has been developed by the present author in
recent years. This paper 1s the first part of a recent effort on systematically
summarizing this theory. In this paper, we show how the theory functions as a
general theory for unsupervised learning and its semi-unsupervised extension
on parameter learning, reqularization, structural scale or complexity selection,
architecture design and data sampling. Specifically, it 1s shown how the general
theory provides new theories for unsupervised pattern recognition and cluster-
ing analysis, factorial encoding, data dimension reduction, and independent
component analysis, such that not only several existing popular unsupervised
learning approaches, (e.g., finite mixture with the EM algorithm, K-means
clustering algorithm, Helmholtz machine, principal component analysis plus
various extensions, Informax and minimum mutual information approaches
for independent component analysis, ..., etc), are unified as special cases
with new insights and several new results, but also a number of new unsu-
pervised learning models are obtained. In a sister paper [12], this theory is
further shown to function as a general theory for supervised learning too,
from which we get new theories for supervised classification and regression
such that the existing approaches for multilayer net, mixtures-of-experts, and
radial basis function nets are unified as special cases, with not only new in-
sights and new learning algorithms but also new selection criteria for the
number of hidden units and experts. In another sister paper [13], this theory
is further shown to function as a general theory for learning on time series
also, not only with the hidden Markov model and the linear state space based
Kalman filter as special cases, but also with several temporal learning models
and algorithms obtained.

1. Introduction

Perception and Association are two primary tasks of a brain-like system for
intelligent interactions between the inner activities in the system and the
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external environment that the system is facing. Given a pattern or object z in
an external environment X, the task of perception is to build a representation
y for z in the internal representation domain Y of the intelligent system as
the foundation of subsequent high level intelligent activities. According to
the difference of the numeric type of y, the task is usually called pattern
recognition, encoding, feature extraction ..., etc, respectively. Given ¢ in X
and z in another external environment 7, the task of association is to build
an associative link from z to z via the intelligent system, which represents
the system’s response to external environment under a given external input.
According to the numeric type of z, the task is usually called classification,
regression, function approrimation, control action, ..., etc, respectively. The
intelligent system’s ability of implementing the two tasks are obtained via
unsupervised and supervised learning.

In the past two decades, various models and theories have been proposed
for each of the two primary intelligent tasks and related learning problems. In
the recent three years, a new statistical approach called Bayesian Ying-Yang
(BYY) system and theory has been developed by the present author[12-16,
20-23, 25-27]. Not only the two intelligent tasks and their related learning
issues can be systematically described in a single framework, but also several
existing major statistical models and theories for both unsupervised learn-
ing and supervised learning can be naturally unified with deep insights and
cross-fertilizations. Furthermore, as stated in the previous abstract section,
this approach also provides a general theory on parameter learning, regular-
ization, structural scale or complexity selection, architecture design and data
sampling in various major areas of statistical learning, with a considerable
number of interesting new results obtained.

This paper concentrates on the BYY learning system and theory for imple-
menting various perception tasks via unsupervised learning and its extension
called semi-unsupervised learning, with the fundamental issues introduced
in Secs 2-6 and new systems and theories proposed in Secs. 7-10 for unsu-
pervised pattern recognition and clustering analysis, factorial encoding, data
dimension reduction, and independent component analysis, respectively. A
sister paper [12] will concentrate on introducing the BYY learning system
and theory for various association tasks via supervised learning. Moreover,
how this general theory works for learning on time series will be given in
another sister paper [13].

2. Basic Bayesian Ying-Yang System and Its Learning

The perception tasks can be summarized into the mappingz € X -y €Y,
which is described by the conditional distribution p(y|z) in the probabilistic
formulation. p(y|x) is implemented by a device or passage My|,.

As shown in Fig.2.1, in our framework the learning of this par,,, (y|z)
is not independent, but regarding as a part of the problem of estimat-
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ing joint distribution p(z,y),x € X,y € Y. Under the Bayesian frame-
work, we have two complementary representations p(z,y) = p(y|z)p(x) and
p(x,y) = plxly)p(y). We use two sets of models My = {My,, M} and
My = { My, My} to implement each of the two representations:

pan, (2, ) = pa,, Wl2)par, (2),  pan, (2, y) = par,, (2lY)oa, (v). (2.1)

We call M, as a Yang/(visible) model, which describes p(z) on the visible
domain X, and M, as a Ying!/(invisible) model which describes p(y) on the
invisible domain Y. Also, we call the passage M|, for the flow z — y as a
Yang/(male) passage since it performs the task of transferring a pattern/(a
real body) into a code/(a seed). We call a passage My, for the flow y — x as
a Ying/(female) passage since it performs the task of generating a pattern/(a
real body) from a code/(a seed). Together, we have a YANG machine M; to
implement par, (z,y) and a YING machine M to implement par, (2, y). A
pair of YING-YANG machines is called a YING-YANG pair or a Bayesian
YING-YANG system. Such a formalization compliments to a famous Chi-
nese ancient philosophy that every entity in universe involves the interaction

between YING and YANG.

Fig. 2.1. The joint input-representation spaces X,Y and the Ying-Yang system.

The task of specifying a Ying-Yang system is called learning in a broad
sense, which consists of the following four levels of specifications:

(1) Representation Domain Y and Its Complexity

We will encounter both the cases that y is discrete as in Item 2.1 and Item
2.2 and that y is real as in Item 2.3. Strictly speaking, we can only use p(.) as in
p(y),p(y|a:),pjx/1y|x(y|a:)7 and pas, (y) to denote densities when y is real. When y is
discrete, they should be probabilities instead of densities and we should use P(.)
to replace p(.). However, for convenience, even for a discrete y we still use p(.) for
denoting probabilities. Readers may identify the difference according to whether y

L It should be “Yin” in the current Mainland Chinese spelling system. However, I prefer to
use “Ying” for the beauty of symmetry.
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is real or discrete. Moreover, in the cases that x can be either real or discrete, we
also use the same convention for p(z), pu, (z), and pley(x|y).

With this preparation, we are ready to introduce the following choices for
the design of Y domain, corresponding to different types of z — y tasks:

— Item 2.1 Y consists of a number of discrete labels or equivalently y €
[1,2,---,kr]. That is,  is mapped into one of k. labels, which is usually called
pattern recognition in general or classification in particular. Also, it i1s called
clustering when all the input samples x € X that bear the same label in y forms
a connected subset in X.

— Item 2.2 Y consists of the k. bits binary vectorsy = [y1,-- -, yx, ], y; € {0,1}.
That is, x is mapped into one binary code of k, bits, which is called as encoding.
The following two special cases are of particularly interesting:

— (a)  Factorial encodingif the bits of y are independent p(y) = Hf;l plyi).
— (b)  Exclusive encodingif it is constrained that Zf;l y; = 1 with

Zf;lp(y,' = 1) = 1, which is actually the equivalent form of the above y €
[1,2,---,k,;] and thus corresponds to pattern recognition.
— Item 2.3 Y consists of the k. dimensional real vectors y = [y1, -, Yk, ],
y; € R. In this case, usually X is also assumed to be real in R?. That is, an
d dimensional vector x is mapped into a k(< d) dimensional real vector y,
which 1s called data transformation in general. Also, it is called data dimension
reduction or feature extraction when k. < d. The following two special cases are
of particularly interesting:
— (a) Independent Component Analysis (ICA). In this case, it is assumed that

each dimension of y is independent, i.e., p(y) = Hf;lp(y,) The well known
Principal Component Analysis (PCA) is a special example in this case.

— (b)  Distributed dimension reduction and Visualized map. That is, z is
mapped into one of ¢, localized distributions in R*", i.e., p(y) is a finite mix-
ture model or a mixture of gaussians. Particularly, when k, = 2 or 3, we got
an 2D or 3D visualized map for the distribution of the original high dimension
data.

In all the cases above, the integer k. represents the scale or complexity of

representation, and its selection will be discussed later.

(2) Architecture Design.

We need to specify the architectures of four components pas, (%), pu,,, (y|)
pm,,, (zly) and par,(y), based on the given set of training samples together
with some previous knowledge and assumption. For convenience, we let a
denote one of elements in {z, z|y, y|e, y} and S, denote the architecture of
pu, (a). Roughly speaking, each pas, (@) has three choices:

— Item 2.4  Fized or Partially Fized . It means that par, (a) is simply fixed at
some empirical estimation, based on a given set of training samples. In the case
that the given set is only D, = {#;}L, from an original density p°(z), i.e., for
a pure unsupervised learning problem, pas, (z) is fixed on some parametric or
nonparametric empirical density estimation of the original p°(z), e.g., pu, (z) =
Ph, (z) given by a nonparametric kernel estimate [4]:

1 1
Pro(@) = g Y Knale =), Kn, () = 7 K(0), (22)
©; €Dy

with a prefixed kernel function K (.) and a prefixed smooth parameter h;.
In some practical cases, we may have a hybrid data set Dy = {Ds,y, D} with

Dyy = {x,',y,'}f\fl, D, = {x,}f\gl That is, for some input = we know y, so we
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can use not only D, = {xi}f\gl to get pn, (z) by eq.(2.2), but also D, to make
pMylz(y|x) partially fixed at on some parametric or nonparametric empirical
density estimation of the original p°(y|z), e.g., by the kernel estimates:

ph, () = #;H Z Kn(o—2') = #;H[ Z i Z 1K (z — '), (2.3)

= €Dy /€Dy (=!,y)€Dyg,y
daly=y'),  (#,y') € Do,y (Item 2.1), | fory=o:
PhyWI?) = ) o K(%), (@,y) € Day (Ttem 2.2) o 9alV) = {0, myzo
v

with a prefixed smooth parameter h,. We call this learning problem as semi-
unsupervised learning problem.

— Item 2.5  Free. It means that par, (a),a € {z]y, y|z, y} is a totally unspecified
density or probability function in the form p(a) without any constraint by itself.
Thus, it 1s free to change such that it can be specified through other components
indirectly. However, in order to have a useful Ying-Yang pair, its each part (i.e.,
either M, or M2) should has no more than one component free in the same time.
In this paper, we will simply use p(a) to denote that pas, (a) is free.

— Item 2.6 Parameterized Architecture. It means that par, (a), a € {z|y, ylz, y} is
either a simple parametric density, e.g., a gaussian pley(x|y) = Gz, my)y, Tyy)

with mean m,, and variance matrix X;|,, or a compounded parametric density

with some of its parameters defined by a complicated function with a given para-
metric architecture consisting of a number elementary units that are organized
in a given structure. Taking a three layer perceptron as an example, we have the

following S(x, W)

kb
S(@, W) = [myy, - my, 1, my, = S(wa}s(ﬂw;l) +uw)), (2.4)
j=1

as the mean m |, oprylz(y|x) = G(y, my|z, cr2])7 where W = {wl(i) , Wj(l) , w](}())},

s(u) is a sigmoid function, and k? represents the scale or complexity of the para-
metric architecture.

Generally speaking, the design of a parameterized architecture consists of

— (a) Specification of density function form pq(a), e.g., we have pMylz(y|x) =

Gy, S(z, W), a*T) in eq.(2.4).

— (b) Specification of one or several types of elementary units in a fixed basic
structure with a complexity k4. For example, it can be a simple sigmoid neuron
or a gaussian unit with &% ignored, or it can be a m,, given by eq.(2.4) with
a complexity k%.

— (¢) Specification of a structure on how to organize those elementary units
into the architecture. For example, by the cascade organization of sigmoid
neurons, we can get a three layer perceptron eq.(2.4).

(3) Model Selection

More precisely, it should be called as Structural Scale Selection for select-
ing the set of scale parameters k = {k,, ¢., {k%}} with each elements defined
as above. For the simple cases, some of the elements in & can disappear. Par-
ticularly, for eq.(2.2) we have k, = N and k% is indirectly specified by the smooth
parameter hy. That is, hy = h(kL) or k% = kl(hs). Actually, if we quantize h into
a number of discrete values hy < hy < ~~~hk§ < .-+, we get a definite mapping

between k2 and hyo.
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(4) Parameter Learning or Estimation

After the above three levels of specifications, the only unspecified part
for each component pyr, (a), a € {z|y, ylz, y} is a set 6, of parameters in
certain domains. Putting all of them together, we get the parameter set @ to
specify, which is usually done automatically by some optimization algorithm.
In the literature, this task is also called learning simply in a narrow sense.

(5) A Summary

The learning in a BY'Y system is a process of the above four levels of
specifications, based on the nature of the perception task, the given set of
training samples, and some previous knowledge and assumption. This process
consists of the following parts:

— (a) Based on the nature of the perception task, the domain Y and its complexity
k, are designed;

— (b) Based on the given set of training samples, pas, () is prefixed at some non-
parametric empirical estimate pp, (), e.g., by eq.(2.2) or eq.(2.3), and sometimes
pMylz(y|x) is partially fixed by eq.(2.3);

— (¢) Based on some previous knowledge, assumption and heuristics, architecture
design is made on S = {S;,, Syjz, Sy} to specify whether each of them is free,
and if not free, to further specify its parameterized architecture;

— (d) We also need to select structural scale {k2|yv k;lm, kS

— (e) Then, we implement parameters learning on @ = {8,,,0,s, 0y}

The entire process will be guided by the theory given in the next section.

3. Basic Bayesian Ying-Yang Learning Theory

Our basic theory is that the specifications of an entire Ying-Yang system
should best enhance the so called Ying-Yang Harmony or Marry, through
minimizing a harmony measure called separation functional:

Fe(My,M2) = Fs(pm (wly)pary (¥)) > 0, (3.1)

Wle)pnr, (#) = P

wie YlP)P M (), P
Fo(My,M3) = 0, if andonly if pm

x|y

yle o1y TPy (y),

which describes the harmonic degree of the Ying-Yang pair. Such a learning
theory is called as Bayesian Ying-Yang (BYY) Learning Theory. Particularly,
if we only know D, and the learning is based on prefixing par, (z) at some
estimate from D, , we call it BYY Unsupervised Learning; if we know a hybrid
data set Dy = {Dy 4, D} and the learning is based on prefixing par, (z) and
prefixing par,, (y[z) partially at some estimates from Dy, we call it BYY
Semi-unsupervised Learning.

Generally speaking, F(My, M3) should increase as the discrepancy be-
tween par, ., (2|y)pam, (v) and par,,, (y|z)pum, (z) increases. Three categories of
separation functionals, namely Conver Divergence, L, Divergence, and De-

correlation Index, have been suggested in [14, 17]. Particularly, the Conver
Divergence is defined as

(@|y)pary, (v)
))dxdy, (3.2)

pley

Fo(My, Ms) = £(1) —/ pMylx(ylx)PMz(x)f(pM Wle)pa, (z

z,y yle
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where f(u) is strictly convex on (0,400). When f(u) is twice differentiable
with f(1) = 0, eq.(3.2) is equivalent to Csiszar general divergence [1]. The
BYY learning is called Bayesian Convex YING-YANG (BCYY) learning.

For convenience, in this whole paper we adopt such a convention that
(a) [, denotes the integral operation when w is known to be a real ; (b) in
general when whether u is real or discrete is unclear yet, fu denotes either
the integral operation for a real u or the summation operation for a discrete
u; (c) we explicitly use >, if v is already known to be discrete.

When f(u) = u®,0 < 3 < 1, eq.(3.2) becomes

Fo(My, Mz) =1 - / oy, 120 aee @1 [, (elo)pae, () dedy,  (33)

we call it as Positive Convex (PC) divergence, which is closely related to Renyi-a
divergence. Interestingly, when 3 = 0.5, it leads to the Hellinger distance [1], which
has a nice symmetric feature and can also be shown to be the only common special
case of the above mentioned L, Divergence and De-correlation Index [14, 17].

o When f(u) = Inwu, eq.(3.2) reduces into the well known Kullback Diver-
ence:

PMy|I(y|x)PMz(x)
—)dxdy. (3.4)

KL(MI,MQ):/ pa,, (Yle)par, (@) In
T, Y pM

o1y (TP (y

In this special case, the BYY learning is called Bayesian-Kullback YING-
YANG (BKYY) learning.

Although the major function of a BYY system is determined by architec-
ture design and a BYY system learned with different separation functionals
under the same architecture design usually performs the same task, different
separation functionals indeed bring some different features in learning and

implementation.

The nice property Inzy = Inz + Iny makes the Kullback divergence
the most elegant one for implementation. For example, we can decompose
[{L(Ml, Mz) mnto

KL(My,M2) = —Hur — Q(Myjo, M2) + Cpyary 53 — Hay,
Hary, = /PMz(x)HMyh:(x)dx, Hary) (2) = —/PMy|I(y|x)lnPMy|z(y|x)dyy
T Y
Clyny oy = —/le(y)lany(y)dy, Py (y) = /pMylx(ylx)pMz(x)dx,
Y T
Q(Myje, M2) = /pMa:(x)Q{Mylz,ley}(x)dxv Har, = _/pMz(x)lanz(x)dxy
Q{Mylz,ley}(x) = PMy|I(y|x)lanz|y(x|y)dy~ (3.5)

Yy

As will be observed in the following sections, this decomposition brings us
at least two advantages. First, it helps us to get further deep insights in
the level of each or some combination of the four components. Second, the
decomposition on the level of components usually will result in considerable
saving in computation. In addition, from the next section, we can also observe
that the property Inxzy = Inx + In y and the decomposition also help to best
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exploit the structural features in the BYY systems with more complicated
architectures.

Thus, BKYY learning is the most useful case and has been extensively
studied in [12-23, 25-27]. In this paper, most cases will also concentrate on it
and just consider some other separation functional at one specific occasion.

More formally, the theory given by eq.(3.1) provides theoretical guides on
the following specific aspects:

— Item 3.1 Parameter estimation or learning, which is usually called
learning in the narrow sense. That is, given S and k fixed, we determine

g
@" = argmin F,(@, S, k),
e

“«

g
“arg” means augment, min” denotes the global minimization. (3.6)

— Item 3.2 Structural scale selection, or called model selection. Given
S, we determine

kY = argminK, K=1{j:0i(j) =mnJi(k)}, Ji(k)=F (O kS). (3.7
k k

That is, to pick the smallest one among those values of & that makes

Jy (k) reach its smallest value. In other words, we select the most economic

structural scale when we have multiple choices. Usually, once Jy (k) reaches

its smallest value at k*, it will keep this smallest value for all &k > k*.
We also have an alternative way for selecting k*

* g
k™ = argmin Jo(k), Jg(k):—/ Pary (7, Y)| e Inpar, (2,y)]|e+ dedy, (3.8)
k
©,y

where par, (%, y)]e+,i = 1,2 denote the learned joint densities given in
eq.(2.1) with the parameter ©* given by eq.(3.6). This Jz(k) is a kind of
complexity measure of the BYY system and is expected to be the smallest
for the least complicated system. Usually, J2(k) reaches its smallest only
at one value of k. In the most cases, the results of eq.(3.7) and eq.(3.8) are
the same. However, each way has a different feature. For eq.(3.7), because
J1 (k) is actually random also, we should consider this issue when getting
K, especially for a limited number of samples. While for eq.(3.8), at some
special cases, Jz(k) may provide a wrong result because it biases to k = 1.
In fact, Jo(k) is just a part of Jy (k).
— Item 3.3 Architecture evaluation. That is, for a set of architecture
S={S" i=1 .. N,}, we select the one SC*) with

i =min J(50), g5 = _/ pary (2, 9) | gor oy I pary (2, 9)| (o0 xey dody,  (3.9)
T,y
where the meaning is similar to the case of eq.(3.8) above.
— Item 3.4 Regularization. For a limited number N of samples, regular-
ization can be obtained via the following three ways:
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— (a) Impose some structural constraint on one component to regularize the
other components. For example, for a forward net we can design S,|, with

more freedom to ensure its representation ability, but design S, with less

freedom to regularize the learning to get a good generalization. Similarly, for
a backward net or generative model, we can design S,|, with more freedom to

ensure its representation ability, but design S, |, with less freedom to regularize
the learning to get good generalization.

— (b) If we have several possibilities for estimating pas, () and pMle(y|l‘)7
we choose a best one that minimizes F.(M;, M2). For example, pas, (z)
and pMylz(y|x) are estimated by par, (z) = pn,(z) given by eq.(2.2) and
pMylz(y|x) = pn,(y|z) by eq.(2.3), the smooth parameters hy,h, can also
be optimized by

g *
{hL h3} = arg{hmi}r: }Fs(@*,k*, ST he hy). (3.10)
oihy

— (¢) Even interestingly, we can improve the generalization via Re-sampling.
At the beginning, we can use some simple methods to get some estimates on
pu,(x) and pMylz(y|x) (e.g., to avoid the implementation difficulty of integral

operations, we simply let pas, (2) = pn, (z) given by eq.(2.2) with h, =0 and
Py, (y|z) = pn, (y|z) by eq.(2.3) with h, = 0such that the integral operations
are turned into summations). After learning, we can get new estimates on
pMylz(y|x) and pa,(z) = fprzly(ﬂy)pMy(y)dy. Then, we re-sample from

them a number of new samples to add in the original training set, and use
the enlarged training set to estimate pas, (z) and pMylz(y|x) by the kernel

estimates with h, = 0 and h, = 0 again. We can repeat the similar procedure
if necessary until the resulteﬁ F, reaches its most smallest value.

4. Structuralized BYY Systems and Theories

(1) The Architecture of YING-YANG System with Output Action for
Supervised Learning. In a sister paper by the present author [12], the above
basic BYY learning system and theory have been naturally extended into a
more sophisticated form with three new components added for implement-
ing various supervised classification and regression tasks such that not only
the existing learning methods and theories for multilayer net, mixtures-of-
experts, and radial basis function nets are unified as special cases with new
learning algorithms, but also new selection criteria obtained for the number
of hidden units and experts. Readers are referred to [12] for details.

(2) The Cascade or Ladder Architecture of YING-YANG Pairs. We con-
sider the case that y consists of m subsets y = {y(j),j =1,---,m} with each
forming a layer that satisfies

Item 4.1 y) is only dependent to the immediate lower layer ¥~ and imme-
diate upper layer yUY and y¥ =Y and yU*Y are independent under a given y).
That is p(y(J—1)7y(J+1)|y(J)) - p(y(J—l)|y(J))p(y(J+1)|y(J))7 p(y(J+1)7y(J)|y(J—1)) —

p(yY |y =), and p(yt?), yU =N |yt ) = p(y) [yl tY).
In this special case, we have
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pary (y) = pary (y™) HpMy(y(j_l)ly(j)), pary, (yle) = HpMy|z(y(j)|y(j_1))~ (4.1)
3=2 j=1

Moreover, we make the notations changes (a) z) =y~ and pMy(y(J_l) |y(J)) =
pMz|y('r(J)|y(J)) » (b) ) =z and PMy|I(y(1)|l“(1)) = pMle_(y(l)|l‘), and then sub-
stitute them into eq.(4.1), we further get

m

pary @) = pary () [ [ pargy, P19, ooy (wle) = [ [ a0 P10y (a2)
j=1

i=2

Next, we put them into eq.(3.4), we can get

m

KL(M, M) = ZKLj(Ml,MQ),
=1

KLj(My, M) = / pary, (WOl D)par, (29 |2070)
o)y

pMylx(y(j)lx(j))pMylx(x(j)lx(j_l))

R R de@ gy, (4.3)
pley(x(J)|y(J))pMy(y(J)|y(J+1))

Still, we make the notations changes pas, (zV)) = pMylz(x(j)M(j_l)) and
pMy(y(j)) = pMy(y(j)|y(j+1)), and put them into eq.(4.3), we finally get

(€16 ()
Py, (W1, (o ;dx(j)dy(j),

KL;(M.,Ms3) = P y(j) @) DML 21 - - -
5 (M1, M2) /z(j) S My|z( | P ( ) PMz|y(x(])|y(]))pMy(y(])

(4.4)

Therefore, we see that the entire Ying-Yang system can be regarded as
consisting of m Ying-Yang pairs in a cascade or ladder architecture. As a
whole the entire system implements the following cascade bi-directional map-

pings:

O (N B e O SR OB C 0%
g™ () e g Ome ) e () () Z (45

Thus, the minimization of K L(My, M) for the entire system is simply the
minimization of the summation Z;n:l K L;(My,Ms). This kind of property
makes us possible to concentrate on the learning of the basic form given in
the previous section.

(3) The Star Architecture of YING-YANG Pairs. We consider the case
that = consists of m subsets x = {x(J),j =1,---,m} that satisfies

Item 4.2 The subscts ) becomes independent to cach other under a given
y. That is, p(x(l),~~~,x(m)|y) = H;nzlp(xm|y). In this special case, we have
par, (oly) =TT, paryy, (2)]y).

This property will simplify the term Q(M,),, M2) in eq.(3.5) into

Q(Myje, M2) = E /pMa:(xj)Q{Mylz,ley}(xj)dxjv
j=1 Y %5
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Qary Mg 3 (T5) = /pMy|z(y|xj)lanz|y(xj|y)dy (4.6)

Yy

(4) The Tree Architecture of YING-YANG Pairs. By combining the above cas-
cade and star architectures, we can obtain various tree architectures. In those cases,
we can also exploit the architecture’s features to facilitate the learning, in help of
eq.(4.3), eq.(4.4), and eq.(4.6).

Finally, we should point out that for the cases that non-Kullback separation
functionals are used, we cannot get the above nice features anymore. However, we
can still heuristically enforce some of these features such that the learning on the
above structuralized architectures can also be facilitated to some extent.

5. BKYY: Understandings and Implementations

In the case of Kullback divergence eq.(3.4), for a fixed pas_(x) based on Dy,
the term —Hps, in eq.(3.5) is irrelevant and thus can be ignored. That is,
minag, ar, K L(M7, Ms) is equivalent to min{Myh:,MQ} KIl(My, Mz) with

—Har Q(My|z7M2)+C{y;M1,2}’

yle

KI(M, Ms) = fz Pate () KLy (e)de — Lo, ary,
—Q(Myjo, Ma) + Inay, + KLy, Inry = Huey = Hary)
par,, (yle)
KLy|I(x) = PM lr(y|x)ln ————dy, Lo, = pMI(x)lanQ(x)dx,
. pary (yle) .
Paay, (2lY)pary ()
pusy(yle) = T o) pary(w) = yPMI|y(x|y)PMy(y)dyy
Py (Y)
Hyp,y y = P Ay (y)lan1 (y)dy, KLy = P Ay (y)In ;dy. (5.1)
) ] ] paty (y)

with the other notations kept the same as in eq.(3.5).

Here, we have three decompositions for KI(M;, Ms). This first one is the
most convenient one for implementation. The other two are useful in some
specific cases. Moreover, they also provide us two other types of interesting
interpretations for the BKYY learning as follows:

— Item 5.1 py, (z) is an approximation of the true density p®(z), while pas, (z) is
the marginal density or called mixture density by the Ying model. Thus, Ly ar,
is the log-likelihood function of pas, (z). Moreover, pas,(y|z) can be regarded as
the Ying model’s mirror of pMylz(y|x). Therefore, the BKYY learning attempts
to do maximum likelihood fitting on = with pns,(x) and to minimize the expected
discrepancy K L, (x) between the Yang passage and its mirror.

— Item 5.2 Q(M,);, M2) is an approximation of the expectation of the mixed log-
likelihood Q{My|z7Mz|y}(x)7 which represents the fit between a pattern generated
via the Ying passage from y and the current input € X, and the fit is weighted
or coordinated by the probability pMylz(y|x) of the y under the current x by
the inverse mapping via the Yang passage. K L, represents the discrepancy be-
tween pas, (y)(i.e., the original density in Y') and pas, (y) (i.e., the density in Y
described by the Yang model). Moreover, ]Myla: is the information transmitted

via the Yang passage. Therefore, the BKYY learning is equivalent to minimize
the weighted fit between the input pattern x and the pattern generated from the
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Ying passage and to minimize the discrepancy between the original density in
Y and the density in Y described by the Yang model, as well as to minimize
the information transmitted via the Yang passage. The last minimization seems
counter-intuitive at first glance. Actually, it is a regularization to avoid the over-
fit of the Ying-Yang system on the current pas, (z) through preventing the Yang
passage from over-coordination.

Moreover, from eq.(5.1) we can also easily get the following two facts

which will be used in the subsequent sections:

— Item 5.3 When pur,,_(y|z) is free, min{Myh:,Mz} KI1(M,, M2) will result in

ylz
Py, (ylw) = pary (yl®) = par,, (2]y)Paa, (v) /P, (2) (5.2)

This point can be easily observed from KL, ,(z) =0.
— Item 5.4 When pu, (y) is free, min{Myh:,Mz} KI1(M,, M2) will result in

paty (4) = pan, (4) = / par,p (vl o, () (5.9)

This point can be easily observed from KL, = 0.

In eq.(3.5) and eq.(5.1), to avoid the difficulty of computing integral in
implementation, we approximately let par () = pn,(z) given by eq.(2.2)

and puy,,, (y|lz) = pa,(y|z) by eq.(2.3) simply with h; = 0 and h, = 0, and
obtain:
u 1 su u
Lian = gpm D meaaa(@) Ll =milla 4 gp— Y, e,
©€Dg (z,y)€EDg,y
u 1
QY (My|y, M2) = #D. Z Qaay, 0y, (@)
z€Dy
Q" (Myte, Ma) = Q" (M1, Ma) + 55— D 7 Inpary, (olo);

(2,y)EDg,y

u 1 su u Y2
H = — H H = H - 1 MM N
Myle T #D, Z ayie (@) Hary, = v, #Dg Z naty e (012

€Dy (,y)€Dg,y
u _ 1 su _ u Y2 N,
Par, () = D, E par,, (WlT), par (¥) = mipay, (9) + #D.. g daly —v');
2€Dg (z,9')€Dz,y
D Do,
Y1 = # Y2 = # Y ) (5.4)
#De + #Doy #De + #Dz,y

where the superscript “*” and “*“” denote the cases of unsupervised and
semi-unsupervised learning respectively. That is, it is equivalent to use the
empirical averages to approximate the above mentioned expectations.
Correspondingly, we have that minys, ar, KL(M:1, M3) is equivalent to
mingayr,, . M.} KIl(My, Mz) with
- KL, (z) - LY
#Dg ZreD ylz x, Mg . .
Ki(M,, M3) = v z, , for unsupervised learning; (5.5)
—HMy|I = Q¥ (My., M2) + C{y,M1,2}
" KL ve | pMylz(ylr) L
KI(My, M) = #Dz ZIGDT_ y|”(x) + #Dzg,y Z(z,y)eDz)y n P, (vle) ~ Fe,My
_H]qu;ylx - QSH(JMyIE7 M2) + C{y,M1,2};
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for semi-unsupervised learning.

In summary, K L(My, Ms) given by eq.(3.4) or eq.(3.5) is the most general
case for BKYY learning. K{(M7, M3) given by eq.(5.1) is a special case for
a completely fixed pas_(2) based on D, such that the possibilities given by
the previous Ttem 3.4(b)&(c) are omitted. K{(My, M3) given by eq.(5.5) is a
further specific case with pas, (z) = p. (*) given by eq.(2.2) and par,, (y|z) =
Ph, (y]x)) by eq.(2.3) simply with h, = 0 and hy = 0.

As some indirect evidences for the justification of BKYY learning, in the
following we show that several different specific expressions of K{(My, M2)
given by eq.(5.1) or eq.(5.5) have actually been used under different specific

semantics and from different perspectives in the literature within the past
decade already:

— Item 5.5 In the special case of finite mixture with the specific design eq.(7.1) in
Sec. 7, we can get that the KI(M;, M2) given by eq.(5.5) for the unsupervised
case is actually equivalent to the cost function D(W, §) proposed heuristically in
[5], and also #173: ZEGDI KL, ;(x) is equivalent to F(W,8) in [5] too.

— Item 5.6 In the special case of gaussian mixture with same spherical variance,
KI1(Mi, M) in the above Item 5.5 at the special case, or equivalently DgVV,@)7
can be shown to be equivalent to the cost function F' termed as Helmholtz free
energy [6] derived from the minimum description length (MDL) principle for
auto-encoders, if we ignore a constant part in F' due to the quantization width.

— Item 5.7 Denoting pley(x|y)pMy(y) = p(y,z|d). In the special case that
pMylz(y|x) = p(ylz) is free, by combining the two terms —Q"(M,,, Mz2) +
Cyy ar, ) into one, we can see that the KI(Mi, M2) given by eq.(5.5) for the
unsupervised case is actually equivalent to the cost function F(P,6) given by
equation (5) in [10], derived heuristically but linked to  free energy” again.

— Item 5.8 In the special case of finite mixture in general as well as gaussian mix-
ture as an example, by ignoring some constants, the special case of KI(M;, M2)
in the above Item 5.5, or equivalently D(W,§), is also equivalent to a vector
quantization cost function derived from minimizing the uncoded (i.e., error) bits
and the wasted bits for the transmission channel’s capacity [29].

— Item 5.9 In the special case that y is a binary vector for representing all the
hidden states of a multilayer networks with both bottom-up and top-down con-
nection weights, pMylz(y|x) and pley(x|y) are two factorial (or factorizable
within each layer) probability distributions corresponding to the both bottom-
up and top-down connections, respectively, the instantaneous version of the
KI(M,, M) given by eq.(5.5) for the unsupervised case, i.e., KI(M, Mz)(z) =
_HMy|z(x) — Q{My|z7Mz|y}(x) + Cy a1, 5} can be shown to be equivalent to the
free energy F(d;6,Q) used in Helmholtz Machine [7, 2], obtained in the moti-
vation of using it as a upper bound of the negative log-likelihood function of
generating a data by the top-down connections as a generative model.

In this paper, KI(M;, Ms) given by eq.(5.1) or eq.(5.5) is obtained as special
cases of K L(My, Ms) given by eq.(3.4), which is proposed as a harmony
measure of a Ying-Yang pair in a BY'Y system for a unified general statistical
learning framework. Not only it is interesting that

— (a) KI(M;, M>) from this new perspective coincides with those existing criteria
in several specific cases above,

— (b) In comparison with K1(M;, M>), the general form K L(M;, M) is not a
trivial generalization because the part contributed by pas, (z) cannot be omitted
for many cases, e.g, the case of the cascade architecture given in eq.(4.4) and
the cases of improving the generalization as suggested by the previous Item

3.4(b)&(c);
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But also from this new perspective we can obtain a number of new insights
and a number of new uses just from KI(M;, Ms) given by eq.(5.1) or eq.(5.5),

as have been stated in Sec.3 and will be further elaborated later.
efore closing this section, we briefly discuss the Conver Divergence

eq.(3.2), with which unfortunately we cannot get the decomposition simi-
lar to that in eq.(3.5). Therefore, minps, ar, Fs (M7, M>) should be made as a
whole. In its implementation, to avoid the difficulty of integral operation in
implementation, we also approximately let pas_ (2) = pp, (z) given by eq.(2.2)
with h; = 0 and pa,, (ylz) = pr,(ylz) by eq.(2.3) with h, = 0. However,
this time we can only do so for pa,, (ylz)py, (z) outside f(.); Otherwise,
letting A — 0 for the pas, (y|z)par, (x) inside f(.) will result in a nonsense
result. Basically, with the constant f(1) ignored, we let

#D pay, (Yle)pn ()

My, (ElY)P My (Y)
P M) = - S /pMW(ymf(w)dy, (5.7)
c€DL Y Y

Fo(My, M) = v1 F¥ My, My —

v o Py @y (v)
o D =y EICR

Pn
yle
(z,y')EDg,y l

As will be discussed sometimes later, BCYY learning has some interesting
features different from BKYY learning.

6. Features of Basic BYY Learning System and Theory

The above proposed Basic BY'Y learning system and theory have the following
favorable features:

(1) Implemented by Alternative Minimization. The specific structure
of the Ying-Yang system given in Fig.2.1 facilitates the implementation of
minas, m, £s, which can be made by an iterative procedure to modify @, S, k
in My, Ms alternatively, namely we have

Step 1 : Fiz MQ:MSM, get M"Y = argmin Fs;
My

Step 2 : Fizc M, = Mlold, get MY = argmin Fq, (6.1)
Mg

which is guaranteed to reduce F; until converged to one local minimum.

(2) A Unified Statistical Theory for Unsupervised and Semi-unsupervised
Learning. Different designs on domain Y and on architecture S = {Sz)y, Sy,
Sy}, as well as different choices on specific forms of separation functionals
will lead us to quite a large number of different specific types of Ying-Yang
system and thus a large number of specific learning models. Therefore, the
BYY system with the above learning theory actually can function as a unified
general statistical learning theory which can provide the specific systems and
theories for the following major areas of unsupervised learning and its semi-
unsupervised extension on the hybrid set Dy discussed in Item 2.4:

— (a) BYY Pattern Recognition System and Theory. It is the special case given by
Item 2.1 or equivalently Item 2.2(b).
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— (b) BYY Factorial Encoding System and Theory. It is the special case given by
Item 2.2(a).

— (¢) BYY Data Dimension Reduction System and Theory. It is the special case
given by Item 2.3, including Distributed dimension reduction and Visualized
map, which is a new data analysis tool.

— (d) BYY Independent Component Analysis System and Theory, which includes

Principal component analysis (PCA) as a special case. It is the special case given
by Item 2.3(a) and Item 2.2(a).

As will be shown in the subsequent sections, these BY'Y specific systems and theories
will not only include the existing major learning models and theories in each area
as special cases, but also provide them new theories for modeling or structural scale
selection as well as architecture evaluation. Moreover, many new variants and new
models can also be obtained with new interesting features.

(3) A New Framework for Improving Generalization in Finite Sam-
ples. For improving the generalization ability, the existing regularization ap-
proaches or generalization error’s up-bound estimation methods (e.g., VC
dimension method) introduce an extra penalty term to the original error cost
function to be minimized together; and the existing Bayesian type approaches
introduce a priori density on the parameters. Being different from all these
existing approaches, the BYY learning system and theory holds the following
interesting features for improving generalization:

— (a) The BYY learning system and theory introduce two complement architec-
tures to regularize each other and use the selection criteria eq.(3.7) and eq.(3.9)
to optimize the architectures such that the generalization can be improved.

— (b) Instead of targeting on minimizing the expected generalization error as an
absolute standard by the existing approaches, the BYY learning system and
theory aims at a relative standard — minimizing the discrepancy of the two
learned complement models under the current set of finite samples.

— (¢) The BYY system and theory only bases on the two complement Bayesian
representations, there is no use of a priori on the parameters. Instead, a priori is
embedded via the designs of the two complement architectures.

— (d) In addition, the two Bayesian representations may not be equal, i.e., the
Bayesian rule may not be exactly true but only approximately holds. Therefore,
our approach should not be confused with the existing Bayesian approach, but
can be regarded a new type of Structural and Relared Bayesian approach.

(4) Being Easily Extended Into A Unified Statistical Theory For Various
Structuralized Architectures for supervised learning as well as various struc-
turalized learning purposes, as shown in Sec.4.

7. BYY Pattern Recognition System and Theory

(1) Finite Mixture, Pattern Recognition or Clustering Analysis

We consider the special case of Item 2.1 with y = 1,--- k. and denote
k = k,. Moreover, we assume that = € R? and pys, (z) = ps,(x) given by
eq.(2.2), with other architectures being par,,, (z|y) = p(z|0y) and

k k
Pymy(Y) = ay >0, E oy =1, pary, (¥le) =pyle) >0, E p(yle) = 1. (7.1)
y=1 y=1
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That is, we have pyr,,, (z|y) is parametric, par,  (y|z) and par,(y) are free
probability functions. We also denote Oy = {«y, Hy}gzl.
As shown in [16], we can obtain a number of interesting results:

— Item 7.1 Since pMylz(y|x) is free, from Item 5.3 and eq.(5.2) we have pMylz(y|x) =
par, (y|lo) and K L, (x) = 0. Thus, for a given k it follows also from eq.(5.4) that
minp(y|c),o, } KI(My, M>) is equivalent to maxe, L(@)) with :

k

1 (4
L(O) = Ll = g5 O 0o, 00, p(e,00) = 3 cyplaldy), nlyle) = D70,
c€Dg y=1
(7.2)

where L(@}) is the log-likelihood function of the finite mixture p(z, @). That is,
the parameter estimation part on Oy is equivalent to maximum likelihood learning
of the finite mizture p(z, O)[3, 5].

— Item 7.2 Since pas, (y) is free, from Item 5.4 we have eq.(5.3). It further follows
from eq.(5.4) that the Alternative Minimization algorithm eq.(6.1) becomes

Step 1 ¢ From eq.(7.2), get p"" (y|r) =p(y|x)|@k=@]2u;
new 1 new new u
Step 2 1 o« "= E P (yle), 0, =arg max{Q“ (M., M2)}; (7.3)
#Do 6y
©€Dyg

which is exactly the well known EM algorithm [3, 5, 24]. Here, we obtain it via
a much simpler way with its convergence proved very easily.

— Item 7.3 More interestingly, we can solve a long unsolved open problem—to
select the best k* by eq.(3.7) or eq.(3.8) with their specific forms as follows:

B = o 3OSl e o) + Ja (),

©€Dy; y=1
k k
1 * * * *
Jo(k) = _#D E E p (ylz)Inp(c|d,) — E aylnog. (7.4)
©€Dy; y=1 y=1

where for each prefixed k, p*(y|z),0; and o are the results of BYY learning
eq.(7.2) by a given learning algorithm, e.g., the EM algorithm eq.(7.3).

Assume that k° is the true number of the original mixture that  comes from.
Under a very mild condition on p(x|8,) that can be satisfied by gaussian and
other exponential family densities, we can prove that Jy(k°) < Ji(k) for k < k°
and Jy(k°) = Ji(k) for k > k°, as Nh? = 00 and h — 0[16]. Moreover, we can
also prove J2(k°) < Jz2(k) for any k # k for those cases that the densities in a
mixture are not highly overlapped [14, 16].

— Item 7.4 For the Gaussian mixture, ie., p(z|8,) = G(x, my, Zy), the above
EM algorithm eq.(7.3) will be simplified to the more specific form as given in
[24]. More importantly, we can select the best number of gaussians by a further
simplified form of Ji(k) or Jo(k) with [16, 20, 23, 25]:

k k
Ja(k) = E ochn\/|E; - E ochnocZ. (7.5)
y=1 y=1

— Item 7.5 For the Gaussian mixture at the special case that ¥, = ¢°/ and
ay = 1/k, using m, as the center of a cluster and letting the corresponding
p(y|z) to be hard-cut into
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I(ylz) = {é; gtﬁe?w?;‘g maz;p(jlz) = arg min;||le — m;||%; (7.6)

then using I(y|z) to replace p(y|z) in the EM algorithm for Gaussian mixture
in this special case, we will obtain exactly the well known k-means algorithm
for the Mean Square Error (MSE) clustering analysis or vector quantization
[16, 20, 23]. In the existing literature, however, k must be pre-given manually
or heuristically [33]. More importantly, from eq.(7.5) we can get the following
criterion for selecting the best number of k—a solution for an open problem
unsolved for decades [16, 20, 23, 25]:

JIh(k) = dlne" +1Ink, or Jgh(k):k\/E]‘fdgE,

Eyse 1
2 E E 2
o = d#D, Eyse = #D. I(ylz)||le — myl|”. (7.7)

€Dy y=1

Moreover, the k-means algorithm for the MSE clustering is for the clusters of
spherical shape with X, = ¢°I only. For various special cases of X, # oI, from
the EM algorithm for Gaussian mixture we can obtain various types of extensions
of the k-mean algorithm, including those so called Weighted MSE clustering,
Mahalanobis distance clustering or elliptic clustering etc. Furthermore, we can
also get various specific forms of the criterion eq.(7.5) for detecting the number
of clusters [16, 23].

Item 7.6 More generally, we consider the finite mixture p(z, @) given by eq.(7.2)

. 2 2 _ 2 2
with o7 ; # 03 ; and §; = {w;, m;, 07 ;,05 ;}

wl (z—m )

7
|

Hl

T
2 il A[12
, = 2 = )l
16 —0.5d(r.,oj)7 d(z,0,) = + 7 )
p(e]8;) = Vomorions” (w,05) =y =y
In this case, the EM algorithm eq.(7.3) has the following specific form:

Stepl: Trom eq.(7.2), get p"**(jlo) = p(i|7)ls, _gota;
k

1 1
Steps . qmew — mew (i) mew _ new i1y
P ; %D, E P (le), mj e gD, E P (fle)

z€Dg z€Dg

new 1 § : new T
Ej = W P (le)(@ — my) (e — mj)",

€Dy

w;zew is a solution of eigen — equatwn Enewwnew = A ,w?‘ew

2 \new 2 ynew new w (x _ mj)
O2"" = i or (020" = e D #™ Gl

€Dy

2 new __ ne'u.r ; 2

©2.) __nw#D > Gl |mn”“—m””' (7.9)
€Dy

where A; is either the largest or the smallest eigenvalue.

To have a deep insight on the result of this EM algorithm, we start to consider

a simplest case of a single density & = 1. In this case, it is easy to know that m;

is the mean vector of D,. Moreover, wy, cri],cr;] have two possible solutions as

follows:

— (a)  When J; is chosen as the largest eigenvalue in solving the above eigen-
equation, cri ;> w; are the largest eigenvalue and the corresponding eigenvector

of the covariance matrix of )., respectively, and cr;] are the summation of

all the remaining eigenvalues. That is, the learning is the so called principal
component analysis (PCA) learning [11].
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— (b) When }; is chosen as the smallest eigenvalue in solving the above eigen-
equation, cri j, w; are the smallest eigenvalue and the corresponding eigenvec-
tor of the covariance matrix of D, respectively, and o2 ; are the summation
of all the remaining eigenvalues. That is, the learning is the so called minor
component analysis (MCA ) learning [35].

Then we consider the general case with & > 1. For each density localized at m;,

we have PCA or MCA, depending on whether its A; is chosen as the largest or

the smallest eigenvalue. Thus, as a whole, we actually get the so called localized

PCA or localized MCA or localized hybrid PCA and MCA learning [30, 31, 32].

Moreover, we can select the best number of densities by eq.(7.5) with |27 re-

placed by the product (o? ])"ew*(cr;])"ew*.

Furthermore, we can modify Step 2 in eq.(7.9) into the following adaptive one:

new/ ;
id . ld P (Jl=)
Step2: o = (1 —y)al " +yp""(jle), mi® = (1 —~)m} +W_anew z,
J
dd(z,w;,mj, 01,0
;Lew: ]old_ (z,wj, mj,01, 2)|w:wold7 (7.10)
dw =%

. T
2 \new 2 wota P (jlx) wi(®—mj)
(07" = (L= e7 )" +v—F— I (1,
3

o (w3l

new T

1d P (Jl=) wiw;
(03,07 = (1= o3, )+ 2 = e

7
where v > 0 is a learning stepsize. Thus, we get an adaptive algorithm, which
has the same performance as the batch way EM algorithm eq.(7.9). Particularly,
for a component density we can get PCA learning as long as cri] > cr;] initially,
and MCA as long as cr;] > cri] initially.
In addition, in eq.(7.8), eq.(7.9) and eq.(7.11), the factor ||w;||* can be discarded
under the constraint ||w,]|* = 1.
Item 7.7 We can easily extend the above case into localized principle subspace
analysis (PSA) or localized minor subspace analysis (MSA) as well as a hybrid of
the two [30, 31, 32] by replacing the vector w; with a matrix W; which consists
of ¢; column vectors, as well as making the following changes:
— (a) |Jwy]]* = 1 is replaced by WJTWJ = I, and the second choice of d(z,4;)

in eq.(7.8) becomes d(z, @;) with @; = {W;, mj,01,5,02,;} and

_1
NWwiw)~ 2wl (z - mj)||2+||(1— W (WIW) "W (e —mj)||?
Ufj

— (b) InStep 2 of eq.(7.9), W** is a solution of eigen-equation X7*W " =
W A; with A; consisting of the g; largest eigenvalues of X" for PSA or
the a5 smallest eigenvalues of X7 for MSA.

— (b) In Step 2 of eq.(7.9), the updating formulae for (cri])"ew and (cr;]
should also be modified accordingly with eq.(7.11).

Again, we can select the best number of densities by eq.(7.5) in the same way as

in Item 7.6.

Item 7.8 All the previously discussed cases can be extended to their extensions

with semi-unsupervised learning, what we need is the following substitutions:

— (a) In eq.(7.2), we replace L(Ox) = L} », by L(Ok) = L3y, from eq.(5.4);

— (b) In eq.(7.3), we replace Q“(Mmm7 Ms) by Q**(My|s, M2) from eq.(5.4);

— (c) In eq.(7.3), we let o} is given by

new Y1 new Y2 7

= Saly — 7.12

ay %D, p " (ylz) + #D.. E aly —y'), (7.12)
r€Dy (z,y")€Dg,y

and replace Q"(My|;, M2) by Q" (My|5, M2) from eq.(5.4);

(e, @) = . (711)

o .
2,7

)new
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— (d) The criterion eq.(7.4) is replaced by

Bk = gE Y Y ) g wle) + S (k),

€Dy y=1

k

k
* * 1 * *
Ja(k)y = - E ocylnocy %D, E P (y|@')1np(x|9y)

y=1 €Dy y=1

- #z)iy Z Zéd(y_yl)lnp(ﬂey% (7.13)

(z,y")EDg,y y=1

— (e) For gaussian mixture, the EM algorithm eq.(7.3) becomes:

old old yrold
ay CG(z,my*, ¥t

Step 1 get p"¥(yle) = - - > =
Dy 05 G (@, mgtd, Dgtd)
Step 2 get ay Y by eq.(7.12),and get
myer = E P (ylo)e ¥ ————— E daly —y')e,
v anew#D anew#D z,y
z€Dg (z,9')€Dz,y
new 1 new T
Py = — (e —my)lze —m
v anew gD, E P (yl=)( v)( v)
2EDy
2 T
*t s g daly —y") (@ — my)(z —my)". (7.14)
age# Dy

(z,y')EDg,y

Again, we can select the best number of gaussians by eq.(7.5) with the con-
verged parameters by the above algorithm.

Particularly, for the special case that X, = ¢°I and oy, = 1/k, via hard-cutting
p(y|z) into I(y|z) by eq.(7.6) after the above Step 1 and then using I(y|z) to
replace all p(y|z) in the Step 2, we can get a semi-unsupervised extension of
the k-means algorithm. Moreover, in eq.(7.7), Enysg is replaced by

Ensp = 25 ZZ Wl =moll*+ s — Y ety =slle =yl

s

r€Dy y=1 (,y")€EDg,y

(7.15)

— (f) In the Step 2 of eq.(7.9), o}, m}*, L7 are given by those in Step 2 of

the above eq.(7.14). Moreover, we update

T
(02 yrew = anew (1) wj(x—mj)HQ
. lfosll
x€Dg
T
72 Wi (& —mg)
+ daly —y 7.16
il W =M= 11 (716)
(z,y')EDg,y
G = mgms > eI - ”2>< w = m)|f?
x€Dg
T

__ v kit INVIRNINTEY
t araDey D Saly =M = ) = ma)l

(z,y')EDg,y

In addition, in eq.(7.11), for (z,y') € Dy, we just use dq(y — y') replace

pnew(y|x).
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(2) A General BYY Pattern Recognition System and Theory

We further consider the case of Exclusive Encoding given in Ttem 2.2(b)
with a binary vectory = [y1,- -, yx,.], v; € {0, 1},2?;1 y; = 1, 1.e., ¥y can only take
those k different values in which only one element is 1 while all the others
are zero. In this case, we have

k k

Pymy(y; = 1) = 75, Zﬂj =1 pumy, (y5 = o) = m;5(@), Zﬂj(x) =1. (7.17)

i=1 i=1

When pyr, (y) is free, from Item 5.4 we have eq.(5.3). It further follows from

eq.(5.4) that )
"= 5o Z mi(z), (7.18)

©€Dy

Furthermore, we consider a general design on the density par,,, (z|y) and
the probability function par,, (y|*) given by

e95(zon)
iy, (@ Hpj wly, 65)%, () = S (719)

where g;(x,pt),j = 1,---, k are parametric functions with its architecture

pre-designed. Two typical examples are [g1(z, ), - - -, gx(x, )] being the out-
put of (a) a multilayer perceptron and (b) a radial basis function networks.
For par,,, (zly), it is easy to observe that we have pyr, (2|y) = p;(zly, 0;)
when y; = 1 or equivalently the j-th element of y is 1 while all the others are
zero. In general, p;(x]y, ;) has the following typical choices:

Fily, W ) ), for real z,
(=ly. 85 {H <1J w(Y) (1 = gj,n(y))* %", for binary ;
2), for real =,
ps(ely, 0;) = (zly, 9) {Hn an()*" (1= qu(y))'=%", for binary o; (7.20)
il m], i) for real x,
{H 1 —g;)'7®", for binary =;
where @ = [&1, -, w4], 0<¢; <1,and qj,»(y) = (L+exp(—Fj,»(y, W;)) "t with f;(y, W,) =

[F5,1(y, W5), -, f5.a(y, W;)] being the output of the j-th backward network from
y — x with parameter set W;, which is implemented by either a multilayer
perceptron or a radial basis function networks. Particularly, when f;(y,w;) =
F(y, W) and ¢;,.(y) = qn(y), We actually have only one network.

With the above design, we get a general BY'Y pattern recognition system
with its learning made by min{Myh:,MQ} KIl(My, My) with KI(My, M) given
by eq.(5.1) or eq.(5.5), implemented by eq.(6.1) in general with either unsu-
pervised learning or semi-unsupervised learning. After learning, this system
recognizes z to the class y; = 1 as long as 7;(z) = max, 7, (z).

In the following, we consider several of its special cases:
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— Item 7.9 Given pur, () = pr,(z) by eq.(2.2). When (a) p;(z|y,8;) = p(z|6;)
with p(z|f;) from exponential family; (b) the function family G; represented
by g;(z,u) is large enough such that a;p(z|8;) € G;, we have that p(y;|z) is

My} [(l(Ml, M2)

2%y, we can return back to exactly the finite

effectively free to be ogp(xh%)/Zf:l a;p(z|8;) by mingy,
E—1

yl=>

Thus, via the mapping 7 = Zqzo
mixture case given in eq.(7.1). For example, we have this case when p(z|6;) =
G(x,my, X;) and G; is a family of all the quadratic functions of =.

— Item 7.10 Given pu, (z) = pn,(z) by eq.(2.2) still. When (a) p;(z|y,8;) =
p(z]8;) but (b) p(y;|z) given by eq.(7.19) is in its general case, we cannot get
Step 1in eq.(7.3). Instead, it should be replaced by p™** = arg min,, K1(M, M>).

E—1

q=0
€q.(7.3). In this case, the Yang model does not totally follow but regularizes or
restricts the Ying model. We call this case as constrained finite mixture model and
the alternative minimization algorithm via the above modification on eq.(7.3) as
the constrained EM algorithm. In this case, we can still use eq.(7.4) for selecting
the best number of k* as long as p*(y|z) is given by eq.(7.19) with u*, 6;, and
ay, being the converged results by the constrained EM algorithm.

— Item 7.11 When (a) p(y;|z) given by eq.(7.19) is in its general case, (b)
pj(z|y,0;) is one of the other different choices given in eq.(7.20 ), we can get
a number of different forward and backward Ying-Yang pairs. All of them
can be trained by min{Myh:,Mz} KI1(M, M2) implemented by eq.(6.1) or a spe-

However, via the mapping j = Z 29y, we can still update M> by Step 2 in

cific algorithm obtained from eq.(6.1), via either unsupervised learning with
P, (%) = pr, (z) by eq.(2.2) or semi-unsupervised learning with pas, () = pa, (z)
by eq.(2.3). We can also select the best k* by eq.(3.7) with their specific form
similar to eq.(7.4) or its semi-unsupervised version eq.(7.13).

(3) Variants from Non-Kullback Separation Functionals

By replacing the Kullback divergence with other non-Kullback separation
functionals, we can get the corresponding variants for all the previously intro-
duced specific cases of the BYY PR system and learning theory. For example,
for the Convexr Divergence eq.(3.2), in general we can implement learning by
eq.(6.1) with Fy(My, M3) given by eq.(5.7), for either unsupervised learn-
ing with par_(x) = pn,(2) by eq.(2.2) or semi-unsupervised learning with
oy, () = pp,(x) by eq.(2.3).

Particularly, for the finite mixture given in eq.(7.1), in order to simplify
the computation, we simply force p(y|x) to be given by eq.(7.2), resulting in

Step 1 From eq.(7.2), get p

" yle) = p(ylx)|@k=921d§
Step 2 get ay” by eq.(7.12),and 6% = argmax
Oy
1 p(z, Ok) Y2 . P(@, @)
{5 E I )+ E daly —y")J( )t
#Do pr(z) ape# Dz y Pr(7)
z€Dg (z,9')€Dz,y
dlnp(z|y)

or get GZew by solving E w(y,x)T =0; (7.21)
7

©€Dgy
1 p(2,0)\ P(2,0)) new > reD
o) = {f( ) S (), , df (u)

Fl(u) = .
PSP 5 ey € Dy, T d

pp ()

new(

Here, the original weight p y|z) is reweighted into w(y, z), we call the
corresponding EM algorithm as the Re-weighted EM (REM) algorithm.
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In the special case of gaussian mixture, the above Step 2 will take the
following specific form:

new _ 1 new _ 1 new new\T
My —M E w(y, o)z, ¥ —M g w(y,z)(@—my, " )(e—m,")" .

z€Dyy z€Dyy
(7.22)

The algorithm given by eq.(7.22) or eq.(7.22) is for semi-unsupervised
learning. It will reduce into the cases for unsupervised learning when Dy =
D, with vy = 1,72 =0,D,, = 0.

8. BYY Factorial Encoding System and Theory

(1) A General BYY Factorial Encoding System and Theory
We consider the special case of Item 2.2 (a) with y = [y1,-- -, W, ], ¥; €
{0, 1} and denote k = k.. We still use pas_(x) = pp_ (%) given by eq.(2.2) with
h — 0. Moreover, other architectural designs are made as follows:
k
H?Tfj(l —m)' 7Y, o< <1,

i=1
k

pMy|T,(y|x) = 1_[71']'(1',;1)%'(1_71—j(x7u))1—yj7

i=1

PMy(y)

p(zly, 9), in general,
Pary, (ely) = G(f,f(y,W),E), gaussian =,
[, an(y, W)™ (1 = qu(y, W))' %%, for binary «;
@) = slgi@w), any, W) = s(F7 (W), (8.1)
where s(r) is a sigmoid function, e.g., s(r) = 1/(1 + e~ ") or others with

its range on [0, 1]. g(z, #) = [g1(x, p), - -, gx (2, p)] are the output of a for-
ward network which can be either a multilayer perceptron or a radial basis
function networks, and f(y, W) = [fi(y, W), - -, fa(y, W)] are the output of
a backward network which can be either a multilayer perceptron or a radial
basis function networks.

With the above design, we get a general BY'Y Factorial Encoding Sys-
tem with its learning made by mingas . .} KIl(My, M), implemented by
eq.(6.1) in general, via either unsupervised learning with par_(z) = pp, (#)
by eq.(2.2) or semi-unsupervised learning with pas_(2) = pp_ (%) by eq.(2.3).
After learning, this system transforms x into a factorial binary code y.

From computational point of view, the above general design for par,,, (z|y)
cannot avoid the summation over all the values of y in its computing on
Q(My|s, M2) because we cannot factorize pyr,, (z|y) in the same way as y =
(Y1, -, yk). To reduce this computational load, we change pyy,,, (]y) into the
following specific design with E(y|z) = [ri(z, 1), - -, 7 (z, p)]

p(z|E(yl|z),0)
oz, (@l Byle)) = {G(x,f(E(ylf) W)VEQ); (8.2)
y
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Such a design is still reasonable because par,  (z|y) is still a density or
probability function.

With the above design, by using # to denote anyone of the three choices (i)
¢, (ii) W, X, and (iii) W, we have that KI(M;, Ms) given by eq.(5.5) becomes

S o) = d e = QMoo M2) 4 €y ar oy,
OTT SHR L - QT (M, Ma) + CFY Ly

1
Hy =
My

e =BT D D e ns(e) (1= sl (1= se)] 95 = 9o m),

€Dy j=1

k
By =i i, = g D D Winse) + (1= u) (= (o))

(z,y)EDg,y =1

1

s E E(y|z)) unsupervised
#FDy c€D pley(xl Yy 1 P
QM y|., M2) = e

#Dpy

ZIGDH PM,, (¢|E(y|z)), semi-unsupervised,

Clyana == g5 2 Moo m) nm + (1 = s(gsle, ) In (1 = 7,);

€Dy j=1

k
su u 2
C{y,Ml)Q} :%C{y,Ml)Q}— %D, E E [yjInm; + (1 —y;)In (1 — 7;)].(8.3)

(z,y)EDg,y =1

When pyr, (y) is free, from Item 5.4 and eq.(5.4), we have

T = { #bz ZZGDZ ﬂ—j(x’“)’
=

Y1
#Dz

unsupervised,
Y2 . . (8.4)
ZIGDI wi(e, u) + Foay Z(z,y)eDz,y y;7; (¢, ), semi-unsupervised.

Therefore, under a prefixed k for the number of bits of y, we have that the
algorithm eq.(6.1) takes the following specific forms:

Step 1

new

get u that minimizes or reduces (e.g., by gradient descent) J(k, u, )
by eq.(8.4), and get m; by eq.(8.4);

Step 2 get 6™ that mazimizes or increases (e.g., by gradient descent)

Q" (My|z, M2) or Q" (My|,, M2) by eq.(8.3).

(8.5)
Furthermore, we can also select the best &* by eq.(3.7) or eq.(3.8), with

g
Ji(k) = J(k,pt,8%), {u*,G*}Zm“g{miél}J(k,u,G),
M

{ —Q My, M) + ny,MLz}’

Ja(k su su Cat {pt, 0"}
2() -Q (My|z7M2)+C{y)M1)2}y { }

(8.6)
This p*, 0* can be estimated via the above algorithm eq.(8.5).
(2) Several Interesting Specific Cases

In the following, we consider several specific examples:

— Item 8.1 We consider the case that pa, (y) and pMylz(y|x) are given by eq.(8.1)
with pas, (y) free, and pley(x|E(y|x)) is given by eq.(8.3) with pley(x|E(y|x))
= G(z, f(E(y|lz),W), I). In this case, we have

gz, w)=p"Te, w=[u], - un]T, fu,p) =W Byle) =wT s ),



24 Lei Xu

1

pag, (1B (ule)) = e MW EWTON, (T = [s(ga (o)), s gw (o, )

u u u 1
QU (Mye, M) = —d" (5, W) dreonst, d"(w, W) =~ D e - WS o,

2€Dg

su su su 1

Q  (My|o, M2) = =d°" (u, W) + const, d°%(u, W) = m Z ||z — WTS(uTx)||2;
2€Dy
k

“ 1

HMy|a: = - %D, Z Z[s(u?x) In s(u?x) +(1-— s(u?x))ln (1- s(u?x))],

€Dy j=1

k
su u Y2 T T
Hij =i, - o5 YD sl e) + (1 -y In (L= s(a] o))
€y
(2,y)EDg, y =1

2
1
ng)MLz} = —m Z Z[s(u?@')ln m;+ (1 - s(u?x))ln(l -7

€Dy j=1

k

su u Y2

C{y,M1)2} = W1C{y,M1)2} - %D, Z Z[y] Inm; + (1 —y;)in(l — 7;)],(8.7)
(2,y) €D,y j=1

and we further have J(k, p,8) = J(k, p, W) + const and

Do J (@, 1, W),
Tk, Wy =4 FU° Lieo. ) (@, p, W) =
#Dg ZIGDH I(&, 1, W)
s(uT ) 1—s(uT )
S fse] o) == 4+ (1= s(u] 2 In =21+ lle = WIS )% (3.8)

With prefixed k, the minimization of J(k, i, W) can be implemented by a special
case of the algorithm eq.(8.5), that is, we have

Step 1 Update pu in one step by gradient descent on J(k, u, W),
Step 2 . Fired S(uTx) and then update W by the least square or gradient
descent technique to reduce d"(u, W) or d°"(u, W) by eq.(8.7). (8.9)

After this learning, We select the best k* by eq.(3.7) or eq.(3.8), with Jy(k) =
J(k, p*, W) given by eq.(8.8) directly and J>(k) = J(k, u*, W*) given by eq.(8.8)
with J(x,u, W) replaced by

b

T, W) = = [s(u) ) Inm; + (1= s(uf ) In (1= m5)] + o = WS (" 2) 7.
=1
(8.10)
For getting a deep insight, we further consider the unsupervised case with y = w7.
In this case, J(k, x, W) in eq.(8.8) becomes J(k, W) with J(z, u, W) replaced by
k
J(e, W) = Z[s(wjx) In M

i=1

+ (1= s(w;z))In s(wyz)

— T N le—wTs(Wae)|]?. (8.11)
T 1—my

which can be still implemented by eq.(8.9) such that we update W in Step 1 with
only the one at the front of S(Wz) fixed at its old value, and then we update W
again in Step 2.

Interestingly, we observe that the minimization of J(k, W) consists of the min-
imization of ZIGD [le = WTs(We)|]? as a part. While this part is exactly the
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Least Mean Square Error Reconstruction (LMSER) for nonlinear one layer net
proposed in [34] together with gradient descent algorithm given there also. This
nonlinear LMSER learning is not only shown in [34] to be able to automatically
break the symmetry in self-organization on data, but also applied to implement
Independent Component Analysis (ICA ) later by [9]. However, up to now it lacks
a theoretical analysis to understand it better.

The above link between J(k, W) and this LMSER learning provides us a new
insight. As discussed previously, the minimization of J(k,u,6) or equivalently
J(k, W) as a whole is for building a system which can encode z into a factorial
code y with independent bits. In other word, the minimization of Z

(|
€Dy
W7 s(We)|)? is for minimizing the square error between # and its reconstruction
W7 s(We) from the factorial code y of independent components.

Therefore, the minimization of the above J(k, W) given by eq.(8.11) and its gen-
eral form in eq.(8.8) can be called Factorial Encoding LMSER for unsupervised
learning as well as its semi-unsupervised extension.

Item 8.2 The Factorial Encoding LMSER can be extended. With ¢? as a pa-
rameter to be learned too, we let par,, (21 Eyle)) = G(e, S(W7Te),021). In this case,

the minimization of J(k,p, 8) with respect to o® will result in

[ Y een, llo = nVa)l?,
b5 ZIGDH le — us(Wa)||%;
s(uTe) 1-s(u7 )

k
J(e, W, pu) = 0.51n02+zj=1[s(u?x)ln = + (1—s(u?x))ln ?]

(8.12)

After this learning, we can get Jy(k) = J(k,p*, W™) with the above J(=z, u, W)
in eq.(8.8) directly and Jz(k) = J(k, p*, W*) with J(z,u, W) replaced by

k

J(z,p, W) =0.5In o? - Z[s(u?@')ln 7+ (11— s(u?x)) In(1— m;)]. (8.13)

i=1

Item 8.3 We assume that pur,(y) and pary (ylz) are given by eq.(8.2), and
Ily(x|E(y|x)) = Hi:l gn(E(yle), W) (1 — qu (E(y|z), W))'~*" to be factorial in-
stead of Gaussian. We also have g(x, u) = u"x, and [g:1 (E(ylz), W), - -, qa(E(y|e), W)] =

S(f(y, W)) = S(WE(y|e)) = S(WS (T z)). With this design, we can get a special case
of the above J(k, pt,6) in the form

Pu

o J(@, 1, W, k),
Tk, ,8) = T, W, k) 4 const,  J(k,u, W) = #’f”z”@z
#D g ZIGDHJ(xVNVWVk)V
k
s(ul @) 1-s(ufe)
HeoWok) = S sl S (1 (e i
T 1—my
j=1

n=1

Moreover, the second term can be rewritten into an equivalent form

d ! 1—z! .
anl[x:l In TEe I Tt (1—2,)In m] Furthermore, if we let #!,
approximated by its mean Fx., then under such an approximation, for the case
of unsupervised learning on J(k, i, 8) we get that J(u, W, k) given by eq.(8.14)
becomes exactly the same as the —F(8,¢) given in equation (3.11) in [2] for the
Deterministic Helmholtz machine under the special case of one hidden layer !
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— Item 8.4 From the perspective of eq.(8.14) and the above general BY'Y Factorial
Encoding system and theory, we can also get some new insights and several new
variants for this deterministic one hidden layer Helmholtz machine:

(a) The learning directly based on eq.(8.14) without letting x;, approximated
by its mean Ea! provides a variant which is more reasonable because x| is
known from the training set directly and also even more importantly is that the
correlation between the input data = and the hidden layer E(y|z) are accounted
instead of only considered the correlation between Ez and E(y|z)— a weak point
of the deterministic one hidden layer Helmholtz machine as pointed out by [2].
In addition, such a learning can be implemented by a simplified form of eq.(8.5)
through just alternatively updating p and W by gradient method, which is known
to be guaranteed to converge. Furthermore, from eq.(8.14) this learning can be
easily extended to the case of semi-unsupervised learning.

(b) According to the previous Item 3.3, we can select the best k* by eq.(3.7)
or eq.(3.8), with Jy (k) = J(k,pu*, W™) given by eq.(8.14) directly and J2(k) =
J(k, p*, W) given by eq.(8.14) with J(x, u, W, k) replaced by

>

T Wok) = =Y fs(u @)l + (1= s(u]e))n (1 7,)]
d:l

- Z[x'n Ingn(E(yle), W) + (1 = «7) In (1 = gn(E(yle), W))].(8.15)

n=1

This is an issue untouched in Helmholtz machine [2, 7], although it is obviously
1mportant.
(c) Other choices for implementing g(z, ) and f(y, W) can be considered to
get different variants. For examples, (i) g(z, ¢) by a forward multilayer net, and
f(y,W) by a RBF net, (ii) g(z, ) by a RBF net, and f(y, W) by a backward
multilayer net, (iii) both g(z, x) and f(y, W) by RBF nets; (iv) both g(z, p) and
f(y, W) by multilayer nets.
(3) The Cascade Architecture
We consider the case given by the previous Item 4.1. In this case, generally
speaking, we can get the extension of the general BYY Factorial Encoding
system and theory given in Sec.8(a). Particularly, we can also get the spe-
cific variants of the Factorial Encoding LMSER in the cascade architecture.
Moreover, we further consider a case by adding in the following feature:

Item 8.5 The components within each layers y¥) = [ygj) S, ygj)]

dent. In this case, if we treat each layer with KL(Ml(]),Mé])) given by eq.(4.4) in
the same way as we did in Item 8.3 with ), approximated by its mean Ex/, still, we
can get that K L(M;, M) given by eq.(4.3) is equivalent to the —F (6, ¢) given in
equation (3.11) in [2] for the Deterministic Helmholtz machine in the general case
of m layers. As in the case of Item 8.4(a), we can also directly use each training
sample without letting x,, approximated by its mean Ew),.

are indepen-

Furthermore, according to Item 3.3, we can also investigate the number of hid-
den units in each layer via K L(M;, M2) given by eq.(4.3) and KL(Ml(]),Mé]))
given by eq.(4.4).
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9. BYY Data Dimension Reduction System and Theory

We consider the special case of Item 2.3 with y = [y1,-- -, ,],y; € R and
denote k = k,. We assume that y has a density of finite mixture:

Pary (v) = p(yl€) = Z wip(ulés), o> 0, Zo«J—l (9.1)

=1

and y generates the current input x € R%,d > k, via the Ying passage that
consists of ng|, linear or nonlinear channels « = f(y, w;) + e

x|y’
disturbed by noises () from p(el}) |¢,). That is, we have

) J :17"'7”z|ya

Toly Toly

My, (@ gwpx— Fy, Wiles), v >0, gv]—l (9.2)

The purpose of the so called data dimension deduction is to invert x back
to fit the original low dimension y, via the Yang passage that consists of ny,

channels g(x, p;),j = 1,- -, ny|s, described by a finite mixture:

Tyle Tyle

My, (Y Zﬁjp le, g(w, ui) i), Pi >0, Zﬁj =1 (93)

We consider the case of unsupervised learning only. With the above ar-
chitecture design and let ppr_ (x) = pn,(z) given by eq.(2.2) with h — 0,
we get a general BYY data dimension reduction system with its learmng
mingay, . M.} KIl(My, M2) by eq.(5.1) and eq.(5.5), which is implemented by

eq.(6.1) in general for determining all the parameters
O ={aj, 85,75 ki ¥, Wi, ¢51- (9.4)

We can also select the best k*—the dimension of the original y according to
Item 3.2 with

Nk) = 2@ kN, {0 N'}=arg min Ji(@k N,
{e,N}
J1(0,k,N) = KI(My, Ma), N = {ny.,n.y {ny}}, (9.5)
Jo(k) = J(@% kN, Jg(@,k,./\f):—/ pary (2, 9)ex Inpar, (2, y)| o+ dedy.
z,y

After learning, we map x back to y either stochastically according to
g g
P, (ylz) given by eq.(9.3) or deterministically by taking

Tyl
)= Y BERle 9l 1), v5)) (0.6)

i=1

while at the same time 1ts inverse mapping E(z|y) = Z]”Ly ;1 (y, W;) provides
a reconstruction of x with noises filtered out.
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This general BYY data dimension reduction system will have different
specific cases and simplifications. Basically speaking, for eq.(9.3) and eq.(9.2)
the simplest case can be that ny, = 1 and ng|, = 1. Here, the differences of
Ny|e and ng), will not affect the functions that the system can perform but
indeed affect the performance in implementing the functions. These functions
are mainly based on the value of n, and the density form of p(y|&;).

The system can implement at least the following functions:

— Item 9.1 In eq.(9.1), when p(y|¢;) = G(y,mg,]),zz(,]))7 the system maps z into
not only a low dimension data y via eq.(9.6), but also into one of n,|, clusters or

gaussians G(y, mgj) , Ez(,]) ),j=1,---,m. That is, the tasks of the data dimension
reduction and unsupervised classification are combined together. Particularly,
when the dimension of y is 2 or 3, i.e., Kk = 2 or 3, we get a kind of 2D or 3D
visualizations of the high dimensional data, which will be a very useful tool for
interactive data analysis by human eyes although it has not been studied in the
literature yet.

— Item 9.2 If py, (y) is independent on its components, then we will get a special
case of independent component analysis that will be studied in Sec.10.

— Item 9.3 In the case that ny, = n,, = n,, = 1, and we have the case of

the linear dimension reduction y = u’x + €yl» under the assumption that  is
generated from y by the linear transform & = W7y + ez)y with E(y) = 0 and
E(xefly) =0. From y = u%x + eyle = pT(WTy) + uTemw + €y|z, it is desired
that - .

pWh =1, —p ey = eyle (9.7)

With this as a starting point and also with the following designs by gaussian
densities

T
pMylz(ylx) = G(eylzvovzylz) :G(yVN x72y|33)7
T
pley(xly) = G(ezlyyoyzzly) :G(l‘,W yyzzly)y
puy(y) = G(y,0,%y), Ty=Ayis diagonal, (9.8)

we get a general BYY linear data dimension reduction system and theory by

min{Myh:,Mz} KI1(M,, M2) under the constraint eq.(9.7), with K1(M;, M) given
by eq.(5.1) or eq.(5.5). In this case, —uTemw = e,|, actually implies HTEmwll =
Xy|» which can be inserted into G(y,uTa:7 Xyz) to reduce the parameter X,
during the learning. Thus from eq.(5.1), we have

HMy|a: = Hyo +const, Qry|z,z|y} = Qu,y + const, C{y,M1,2} = Cy + const,
Qe,y = —0~5{1n|2z|y|+/pMz(x)TT[EQ]L/G(y,uTx,2y|z)€z|yef|ydy]dx},
T v
Cy = 0~5{1n|/1y|+/pMz(x)TT[A;1/G(y,uTx,Eymnydy]dx},
T v
Cy, = 05{In|A,l+ /pMZ (@)Tr[A (Zy e + 17 wa” p)]da}
= 05 [Ay + TrAT T (Bayy + Re)all,
R, = /pMI(x)xdex, Hyle = 0.5{k+1n|uTEI|yu|},
Ki(My, M3) = Jf:@,k), J(O,k) = —Hyjo — Qu,y + Cy, @ ={W,u, T, Ay}. (9.9)

The learning by mine J(©,k) can again be implemented by a simplified form
of eq.(6.1). After learning, we can also select the best k* according to eq.(9.5)
which is now simplified into
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g
Ji(k) = J(@* k), @ =argminJ(©,k), Jo(k)=J2(0" k), Jo(@ k)= —Quy+ Cy.
e,
(9.10)

In the rest of this section we will show that a special case of this general linear
dimension reduction system and theory includes principal component analysis,
minor component analysis as well as their combinations.

(2) A Linear Dimension Reduction System and Theory.
We continue the case of Item 9.3 by further constraining = w” ww? =
I, 24, = o°I. In this special case, from eq.(9.7) and eq.(9.9), we have

2 T 2 T 2
eyle = —Weyy, Ty|lz = Wo IaW™ = 0" Ii, E(eg|yey)y) = 0 la,
Coly = & — Why==z- WT(Wx +ey) = — Wiwe — WTeyh,:7

Trlecyer,] = lle = WTWa|)® + Trleyjeey ] — 2Tr[(1 - WTW)zel| W],

T T
/pMz(x)(/ Gleely, 0, ¥ylo)Tey),)dy = E(vey),) =0,
z y

/pMm)Tr[/ Gleaty: 0, Ty)Trlenyy ety Jdylde = Blle - W Wel|* + ko?,

x Yy

Elle - W Wall? = [ par (@)lle = W Wal|?de,

emy:x—WTWx+WTWeQE|y7 x—WTWx:ex|y—WTWex|y7
T 2 T T T T 2
Blle = W We||" = Tr[I - W W)E(eg|ye,, )T - W W) ] =(d-k)o",

2

Qo,y = —0.5{dIn o2 + o7 P (2)Tr[ G(ex|y, 0, 2y|I)Tr[ez|yeZ|y]dy]dx}

x Y

Qu,y = —05{dlnc>+d}, Hy,=05{k+klnoc’},
Cy = 0.5{in|Ay|+Tr[A]'W(R. + " DWT]}. (9.11)

Therefore J(k, @) given in eq.(9.9) is simplified into
J(k, W, Ay) = (d—k)In o”—k+n|Ay|[+Tr[A] W (Re+o” I)WT], o = ﬁEHx—WTWxH?
(9.12)

From eq.(9.12), we can get the following interesting results:
— Item 9.4 We prefix A, = diag[A1, -, Ax] with A1 > --- > Ay > 0 such that
k

—1
u; = 0" = (A1 - ZL:#) >0, 0*? = ﬁzg‘:kﬂ A%, where A7 > .- >

d—k
MY are the eigenvalues of R.. In this case, it follows from E|z — WTWg||? =
d g ) T
Tr[Re — WR,WT] that 2Z(h2) = _8TrlUWRW ] ity 7 = diaglus, - - -, ux]. Thus,

min{W)WWsz} J(k,W, Ay) is equivalent to MaX yy T =7} Tr[UW R, W7]. Following
the results of [34] we get that the row vectors of W will be the first &k principal
components of R, respectively. That is, we get the true k-PCA[34]. Moreover,
if A; = A, for all y such that u; = u > 0, we have that the row vectors of W
spans the same subspace spanned by the first k& principal component vectors of
R.. That is, we get the so called principal subspace analysis (PSA) [11, 34].

— Item 9.5 In the case of Item 9.4, the problem of how to decide the dimension
k still remains an important open question in the literature without theoretical
guide available yet. Here, we can select the best &* = arg min} J1(k) by eq.(3.7)
or k* = arg minj Jz2(k) eq.(3.8) with

Ji(k) = —klno*® —k+ Ja(k), J2(k)=dlno*? +in|A}| +k,

g
{W*,AZ}:arg min J(k, W, Ay),
{w, 4y}
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Ay =W (Re + 02 D)W*T | o2 = —d_ Ellz —w*Tw"z|?,
d d
§ c ! A
_ _ Laj=kt1 "7 AT Z]=k+1 i
or Ji(k) = (d—k)ln R + E In ( 76!—]@‘ );
Zj k41 A Z] k41 A

To(k) = din Sy E In (A + S ok (9.13)
— Item 9.6 In the case of [tem 9.4, we let Ay > -+ > )\k > 0 such that d; < 0 for all

7. We can get the complementary part of PCA that is, the row Vectors of W will
be the eigenvectors of R, that correspond to the k smallest eigenvalues, respec-
tively, which is called minor component analysis(MCA )[30, 31, 32]. Moreover, we
can also get the complementary part of PSA, called MSA[30, 31, 32].

— Item 9.7 Instead of prefixing A, in the cases of Item 9.4 and Item 9.6, we
implement min v, 4,1 J(k, W, Ay). We can similarly get that the row vectors of

W* will be the k eigenvectors of R, such that TT[UWREWT] is maximized,
which is equivalent to PCA in some special cases, and to MCA in some other
special cases, as well as a combination of PCA and MCA.

10. BYY ICA System and Theory

(1) A General ICA System and Theory.

The situation is quite similar to that discussed in Sec.9(1) for the general
data dimension deduction system and theory. The key different point here is
that y = [y1, -, yk,] with & = k. can be either real as Ttem 2.3 or binary as
Ttem 2.2(a) such that y is from an independent density:

Pary (y) = p(ylg) = Hp (y5185) (10.1)

where p(y;]€;) is a parametric model. More generally, it can be

"y, g "y, g

p(y;1¢5) = E or, P (Y5léri), ors >0, E op; =1 (10.2)

r=1 r=1

We regard that this factorial y generates a pattern to fit the current input
z, via the Ying passage that is the same as that previously given in eq.(9.2).
The purpose of the so called Independent Component Analysis (ICA) is to
attempt to invert z back to this y of independent components, through the
Yang passage given exactly the same as in eq.(9.3).

With the above architecture design, from eq.(5.1) we get a general BY'Y
ICA system with its learning made by the theory of ming J(@, k%, N') with

O = {a,;, 05,7, 1y, V5, &, 65} and

J(O,k,N) = —Hyjo = Qo,y} + Cu, N ={nyc, 00|y, {nv,51 ), (10.3)

(
Tyl Tyl
Hy. = /pMI / E Bip(yle, g(z, ui))In E Bir(yle, g(z, py))dylde
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Tely
Quey = /pMm)[/pMW(ymlnZw(z = [y, W)l 65)dlda,
© Y j=1

Tyl

Cy = —/le(y)lan(yjIEj)dy, le(y)zZﬁj/p(ylxyg(xyuj))pm(x)dﬂ

i=1

This ming J(©,k, ') can be implemented by eq.(6.1) in general. We can
also select the best k*—the number of independent component by eq.(3.7)
or eq.(3.8) with

Nk) = J(@ kN, {0 N'}=arg min J(@ kN,
(e,N)
Jo(k) = J2AO@" E,NY), J2(@,k,N) = —Qu,y + Co (10.4)

After learning, similar to Sec.9(1), we can also map # back to y and get a

reconstruction of x with noises filtered out. )
The above proposed form is the general one that covers all the possible

cases. First, the generating channel as shown in eq.(9.2) includes the cases:

— (a) z is generated from y by either linear f(y, W;) = W]Ty or nonlinear f(y, Wy)
channel and by either single or multiple channels.
— (b) =z is generated from y either with noise or without noise and either gaussian
noise or other noises.
- Sc) the dimension d of z is either equal to (d = k) or unequal to (d # k) the
imension k of y, and the dimension & of y is either known or unknown.
— (d) the source y is either binary or real.

Second, the channel from x back to y as shown in eq.(9.3) includes the cases:

— (e) the inverting channel consists of either single or multiple models.

— () plylz,g(z, ny)) is either gaussian or non-gaussian. When p(y|z, g(=, py)) is
gaussian and the regression is fy yp(ylz, g(z, pj))dy = g(z, pj), we have that
g(z, py) is either liner or nonlinear.

This general form can be further simplified into various specific forms with

different levels of complexity according to different specific assumptions. The
following are some examples:

— Item 10.1 We consider the case that (a) n,, = 1, ny, = 1, and d = k, (b)

p(y;€;) is given by eq.(10.1), (c) there is no noise, i.e., for infinite small volumes
V, — 0 and V,; — 0, we have

par, (yle) = {é(éVyv if y = g(@, p), pary, (ly) = {é{évz, if o= f(y, W),

ylz otherwise; otherwise.

(10.5)

From eq.(3.4) directly, we can simplify J(©,k, ) given in eq.(10.3) into

x

k
J(p, ) =1In %—Z/pm(x)lnp(gj(x,u)lﬁj)dxy where g(z, u) = [g1(z, 1), - gr(x, )],

(10.6)
Particularly, when g(z, p) = 7= (i.e. the linear ICA model). We have In g%: =
—1In |u| and eq.(10.6) becomes

k
J(p, &) = —In|u|— E /pMZ (x)lnp(u?ﬂﬁj)dx, where pj ts j—th column of pu. (10.7)
j=1 "%
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This is just the so called maximum likelihood ICA model [8], which is also shown
to be equivalent to the mutual information method (MMI) by Amari, Cichocki,
& Yang (1995) and Informax by Bell & Sejnowski (1995), both can be found in
[8]. Particularly, when p(y;|§;) is given by eq.(10.2), we get the finite mixture
based implementation for the information theoretic ICA approach [17, 18, 19].
— Item 10.2 All the others are kept the same as in Item 10.1, except we allow that
the pre-given k can be smaller than d, i.e. k < d, and also noise is considered

cie, = f(y,W) + ec with pu,, (zly) = G(z, f(y, W),a?I) and Fyel = 0.
In this case, since arg min, ¢ x{imv, 0 Hy),} = limv, so{argmin, ¢ x H,,}, we
have argmin, ¢ x J(u,&, k) = argming, ¢ x[J(p, €, k) + H,y);] and thus can ignore
H,\s. So, we get

Qryle,elyy = —05{ln2r+dlnoc’+d}, o =d "Ellz - f(g(e,p),W)|>, (10.8)

J(p,€,0% k)

0.5dIn E|lz — f(g(z, u), W)||* - Z /pMz(x) Inp(g;(z, p)|€;)dz.

x

as a new nonlinear ICA model. Particularly, when g(z,p) = p%=, f(y, W) =
WTy, u=WT7T, we have a new linear ICA model as follows:

k
J(u,€,0%, k) = 0.5dIn E||e — puTz|)? - E /pMZ (x)lnp(u?ﬂﬁj)dx. (10.9)
j=1

x

For both the linear and nonlinear cases above, we can also select the best number
of sources by k* = arg min;. J(k) with J(k) = minf;M £02) J(p, €,0° k).

— Item 10.3 In the case of Item 10.2, if we let pMylz(y|x) = Gy, g(z, 1), Xyjz)
instead, then we have

Hury,, = 05(k+2r+n|Ty.l), Ty, = Elly - gle, 1))y - glz, 1)"],
Qz,y}

2
Qgylz,c|lyy = —0.5{In27 + dlno” + =

Qe,y = /pMz(x)[/ Gly, gz, 1), Lypo)lle = [y, W)||* dylde,
. v
Cy = —Z/PMI(M[/ Gyj, g5(w, 1), 05 1) Inp(y;1¢;)dy;]de,
j=1" vj
J(@,k) = 05{dlne” —k—In|Z,|+ Q;’y}q-cy, O ={u,€0° 9,,1(10.10)

as a generalization of eq.(10.8) for nonlinear ICA, where crjylm is the j-th diagonal
element of X, |,. When g(z,u) = wra, fly, W)y =WTy, p=WT, we have

Zyle = Blly—p" o) (y—1"2)T], Quy = /pMz(x)[/ Gy, 9(z, 1), Ty1o)lle =Wyl dylde,

x Yy

10.11
and use them to replace X, and @, in eq.(10.10), we get a generalizat(ion O%
eq.(10.9) for linear ICA.
For both the linear and nonlinear cases above, we can also select the best number
k* of sources by eq.(3.7) or eq.(3.8) with

Ti(k) = minJ(@, k), Ja(k) = min J2(0, k), J2(@,k) = 0.5{dln o’ + 22¥1 40, (10.12)
[&] [S] o
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— Item 10.4 Being different from Item 10.3, in the case of Item 10.2 we let
pMylz(y|x) given by eq.(8.1) and pley(x|y) given by eq.(8.2), then we again
get the Factorial Encoding LMSER learning discussed in Item 8.1 and Item 8.2,
which can also be used for linear and nonlinear ICA with best number of sources
k selected under the situation that there is noise.

— Item 10.5 We can also extend the cases discussed in Items 10.2, 10.3 and Item
10.4 by using p(y;|&;) given by eq.(10.2), such that we can get even better per-

formances based on using finite mixtures as did in [17, 18, 19].

11. Conclusions

Bayesian Ying-Yang (BYY) system and theory has been systematically intro-
duced as a unified statistical learning approach on parameter learning, reg-
ularization, structural scale selection, architecture designing and data sam-
pling. For unsupervised learning and its semi-unsupervised extension, this
paper has shown how the general theory provides new theories for unsu-
pervised pattern recognition and clustering analysis, factorial encoding, data
dimension reduction, and independent component analysis, such that not only
several existing popular unsupervised learning approaches are unified as spe-
cial cases with new insights and new results, but also a number of new models
and new results are obtained. In the sister papers [12] and [13], this theory
has further been shown to function as a general theory for various problems
of supervised learning and time series learning as well.
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The basic ideas of the BYY learning system and theory in this paper and its

sister paper [12] as well as several my previous papers started three years ago— the
first year of my returning to HK. As HK in transition to China, this work was in
transition to its current shape. This paper and its sister paper are both completed

in
to

the first week that HK, a harmony of the eastern and western cultures, returned
China and thus I myself formally returned to my motherland as well. I would

like to use my this work, an effort on the harmony of an ancient Chinese philosophy
and the modern western science, as a memory of this historic event.



