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Distribution Approximation, Combinatorial Optimization, and Lagrange-Barrier

Lei Xu
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, Hong Kong
Email: lxu@cse.cuhk.edu.hk

Abstract—In this paper1, typical analog combinatorial opti-
mization approaches, such as Hopfield net, Hopfield-Lagrange
net, Maximum entropy approach, Lagrange-Barrier approach,
are systematically examined from the perspective of learning
distribution. The minimization of a combinatorial cost is turned
into a procedure of learning a simple distribution to approximate
the Gibbs distribution induced from this cost such that both
the distributions share a same global peak. From this new
perspective, a new general guideline is obtained for developing
analog combinatorial optimization approaches. Moreover, the
Lagrange-Barrier iterative procedure proposed in Xu (1994,
1995a) is further elaborated with guaranteed convergence on a
feasible solution that satisfies constraints.

I. INTRODUCTION

Many combinatorial optimization problems can be usually
formulated as follows:

min
V

Eo�V �� V � fvijg
N�M
i���j���

subject to

Ccol
e �

NX
i��

vij � Dcol
j � j � �� � � � �M�

Crow
e �

MX
j��

vij � Drow
i � i � �� � � � � N �

Cb � vij takes either � or �� (1)

where Dcol
j � j � �� � � � �M and Drow

i � i � �� � � � � N are given
constants. Moreover, Cb can also be a general binary constraint
that vij takes either a constant �� or ��. Without losing
generality, it is always easy to use a one-to-one mapping to
normalize it back to the case of Cb given in eq.(1).

A typical example is the traveling salesman problem (TSP)
with N � M�Drow

i � �� Dcol
j � � and

Eo�V � �
NX
i��

X
j ��i

NX
k��

dijvi�k�vj�k�� � vj�k��� (2)

where di�j are known parameters. Other examples and a
number of algorithms for the problem eq.(1) can be found
in [9], [10], [13].

In the past decade, many efforts have been made in the
literature of artificial neural networks on the problem eq.(1)
of quadratic Eo�V � by analog optimization since the work by
[8]. Some detailed reviews of the efforts can be found in [2],
[17], [1].

1The work described in this paper was fully supported by a grant
from the Research Grant Council of the Hong Kong SAR (project No:
CUHK4336/02E).

According to their features on dealing with the constraints
Ccol
e � Crow

e and Cb, these efforts can be roughly classified into
three categories:

(1) The constraints Ccol
e and Crow

e are transformed into a
quadratic penalty term, e.g.,

G�V � �
MX
j��

�
NX
i��

vij �Dcol
j �� �

NX
i��

�
MX
j��

vij �Drow
i ��� (3)

that can be merged into Eo�V � via a weighted sum and results
in a new quadratic E�V � from which the connection weights
of a classic Hopfield network [8] are obtained. The network
minimizes E�V � by implementing a system of dynamic equa-
tions in a parallel way, with Cb realized via sigmoid functions
that constrain vij between the interval 	�� �
. This approach
is referred as the classical Hopfield network approach. A
disadvantage of this approach is that the penalty strength is
difficult to control, which often results in unfeasible solutions
that violate the constraints C col

e � Crow
e .

(2) The connection weights of the Hopfield network are
obtained based on the original Eo�V �, with the constraint
Cb still realized by sigmoid functions. Instead, the constraints
Ccol
e � Crow

e are considered as the Lagrange terms which add
on biasing constants to the Hopfield network that minimizes
Eo�V � and the Lagrange terms under the fixed Lagrange
coefficients. Moreover, another set of dynamic equations im-
plement the maximization of Eo�V � to settle the appropriate
values of the Lagrange coefficients [14], [1]. The approach is
referred as the Hopfield-Lagrange network approach.

(3) In a conference paper [17], a general cost Eo�V �, which
can be either quadratic or nonquadratic, is considered and
extended into a Lagrange-Barrier cost E�V � by adding in the
Lagrange terms for Ccol

e � Crow
e and a barrier term

B�V � �
X
i�j

vij ln vij (4)

that constraints vij as an interior point between the interval
	�� �
. Particularly, for a quadratic Eo�V �, this E�V � becomes
the cost used in [20] and the cost used under the name of
maximum entropy approach [5], [7], [6]. Moreover, in [18]
the barrier term

B�V � �
X
i�j

	vij ln vij � ��� vij� ln �� � vij�
 (5)

has been studied. Also, the link has been set up between the
leaking energy term in the Hopfield network and a family of
barriers that includes eq.(4) and eq.(5), and thus we know that

0-7803-7898-9/03/$17.00 ©2003 IEEE 2354



the above Hopfield-Lagrange network is one specific way for
minimizing a Lagrange-Barrier cost. Furthermore, Xu in [17],
[18] also proposed a new general approach for minimizing
the Lagrange-Barrier cost. It consists of iterative updating
equations obtained from �E�V �

�vij
� �, that updates vij with

a particular emphasize on the satisfaction of the constraints
Ccol
e � Crow

e . This satisfaction is refined immediately after each
updating on vij , through updating the Lagrange coefficients
by an inner iterative loop. The approach is referred as the
Lagrange-Transformation or the Lagrange-Barrier approach.

Though having the favorable parallel implementable feature,
almost all the neural network motivated approaches share
one unfavorable feature that these intuitive approaches have
not been satisfactorily explained from a theoretical point of
view. Basically, there is neither theory to support naturally
the intuitive concept and to guarantee the convergence of
a proposed algorithm, nor theory to relate this concept to
computational complexity as traditionally developed in the
discrete settings.

This paper aims at tackling partly these problems. The
above neural network motivated approaches are systematically
examined from a new perspective. The deterministic minimiza-
tion of Eo�V � is turned into a sequence of finding a simple
distribution to approximate the Gibbs probabilistic distribution
induced from Eo�V � under the related constraints, such that
the Gibbs distribution and the approximate distribution share a
same global peak. In Sec. II, the basic idea of this distribution
estimation theory is proposed. Particularly, it is shown that
two special cases not only relate to the classical Metroplois
sampling technique [12] but also interpret and justify the max-
imum entropy approach and the Lagrange-Barrier approach, as
well as the Hopfield-Lagrange network via a link previously
built [18]. In Sec.III, we further elaborate the Lagrange-Barrier
iterative procedure proposed in [17], [18], with a guaranteed
convergence on a feasible solution that satisfies constraints.
Two simulation examples are demonstrated to illustrate the
effectiveness of the iterative procedure. Finally, concluding
remarks are given in Sec.IV.

II. DISTRIBUTION APPROXIMATION AND OPTIMIZATION

A. The Basic Idea

The problem of finding a global minimization solution of
Eo�V � under a set of constraints is equivalent to the problem
of finding a global peak of the following Gibbs distribution:

p�V � �
e�

�

�
Eo�V �

Z�
� Z� �

X
V

e�
�

�
Eo�V �� (6)

subject to the constraints, since maxV p�V � is equivalent to
maxV ln p�V � or minV Eo�V �.

Usually this p�V � has many local maximums, it is difficult
to the peak Vp. To avoid this difficult, we propose to use a
simple distribution q�V � to approximate p�V � on a domain
Dv such that the global peak of q�V � is easy to find and that
p�V � and q�V � share the same peak Vp � Dv.

To do so, we adopt the following two types of measures for
implementing this approximation:

Type �a� � min
q

KL�p� q��

KL�p� q� �
X
V �Dv

p�V � ln
p�V �

q�V �
�

T ype �b� � min
p

KL�q� p��

KL�q� p� �
X
V �Dv

q�V � ln
q�V �

p�V �
� (7)

Given a Dv that contains Vp, the smaller the Dv is , the
easier for a simple q�V � to approximate p�V �, and thus the
more likely q�V � and p�V � share a same global peak. This
Dv is considered via the following support of p�V �:

D���� � fV � p�V� �� � �� a small constant � � ��g (8)

under the control of the parameter �. For a sequence �� �
��� � � � � �t, we have D���t� �� � � � � D����� � D�����
that keep to contain the global minimization solution of
Eo�V �, since the equivalence of maxV p�V � to minV Eo�V �
is irrelevant to �.

Therefore, it follows from eq.(7) that we can find a se-
quence q��V �� q��V �� � � � � qt�V � that approximates p�V � on
the shrinking domain D����. For a large �t, p�V � has a large
support and thus q�V � adapts the overall configuration of p�V �
in a big domain D����. As �t reduces, qt�V � becomes more
and more concentrating on adapting the detailed configuration
of p�V � around the global peak solution Vp � D�. As long as
�� is large enough and � reduces slowly enough towards to
zero, we can finally find the global minimization solution of
Eo�V �. Strictly speaking, whether the global solution can be
found relates to the selection of the distribution form of q�V �,
and the selection of ��, the reducing rate of � as well as the
value of � at which the searching procedure stops.

B. Type (a) in Two Typical Cases

For the problem eq.(1), we consider q�V � in the following
special cases

q��V � � Z���

Y
i�j

evij ln qij � � � qij � ��

Z� �
X
i�j

Y
i�j

evij ln qij �

q��V � �
Y
i�j

q
vij
ij ��� qij�

vij � � � qij � �� (9)

and from the constraints in eq.(1) we have

Ccol
e �

NX
i��

� vij �� Dcol
j � j � �� � � � �M�

Crow
e �

MX
j��

� vij �� Drow
i � i � �� � � � � N �

� vij ��

�
qij

Zij

Z�

� for q��V �,
qij� for q��V �,

Zij �
X

k ��i�l��j

Y
k�l

evkl ln qkl � (10)
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where � x � denotes the expectation of the random variable
x. When N�M are large, we have Zij � Z�, and we also
have � vij �� qij also for the case of q��V �.

If not considering the constraints C col
e � Crow

e , the global
peak solution of q�V � by eq.(9) is simply estimated by

vij �

�
�� if qij � ���,
�� otherwise.

(11)

Moreover, we can either consider the constraints Ccol
e and get

the global peak solution by

vij �

�
�� if j � argmaxk qik,
�� otherwise.

(12)

or we can similarly consider the constraints Crow
e .

Next, we consider the problem of estimating qij, according
to the two types of approximations given in eq.(7).

From eq.(7), Type (a) approximation is equivalent to the
minimization of

H��fqijg� � �
X
V �Dv

p�V � ln q�V �

�

�
�
P

ij pij ln qij� q��V �,
�
P

ij 	pij ln qij � ��� pij� ln ��� qij�
� q��V �;

pij �
X
V

vijp�V ��

under the constraints Ccol
e � Crow

e given in eq.(10). Considering
Lagrange approach, we have

H�fqijg� � H��fqijg� �
MX
j��

�colj 	
NX
i��

qij �Dcol
j 


�
NX
i��

�rowi 	
MX
j��

qij �Drow
i 
� (13)

	H�V �

	qij
�

�
�

pij
qij

� �colj � �rowi � for q��V �,

�
pij
qij

� ��pij
��qij

� �colj � �rowi � for q��V �.

We have two methods for solving this problem:
(1) The Method I. If we have already get the mean field pij

in eq.(13) under the Gibbs distribution p�V �, it follows from
�H�fqijg�

�qij
� � that

qij �

� pij

�col
j

��row
i

� for q��V �,

a root of the equation below� for q��V �.
��colj � �rowi �q�ij � �� � �colj � �rowi �qij � pij � ��
� � qrij � � (14)

By putting it into the constraints C col
e and Crow

e given by
eq.(10), we update the Lagrange coefficients �colj � �rowi � j �
�� � � � �M� i � �� � � � � N to satisfy :

Ccol
e �

NX
i��

qij � Dcol
j � Crow

e �
MX
j��

qij � Drow
i � (15)

Thus, we encounter a problem of solving N � M nonlinear
equations. Particularly, for the case of q��V � with Dcol

j �

Drow
i � �, we use the following iterative algorithm to solve

it:

��rowi �new � ��rowi �old
MX
j��

qeij�f��
row
i �old � ��colj �oldg��

��colj �new � ��colj �old
NX
i��

qeij�f��
row
i �old� ��colj �oldg��

i � �� � � � � N� j � �� � � � �M� (16)

where qeij�f��
row
i �old� ��colj �oldg� denotes qij by eq.(14) for

the case of q��V �.
The remaining problem is to get the mean field pij of the

Gibbs distribution p�V �, which can be made by a well known
classical stochastic approximation approach called Metroplois
sampling technique [12]. That is, we let � to start from a value
large enough and then reduces to a value low enough. Under
each given �, the Metroplois sampling is used to get eq.(13) at
each �. Finally, at the lowest � value we can obtain a solution
by eq.(14) and eq.(16). In fact, this procedure can be regarded
as a combination of the Lagrange approach and a variant of
the widely studied simulated annealing technique [11].

(2) The Method II. Even using the Metroplois sampling
technique, it still needs quite a long sampling period to get a
stationary process that can be used for estimating pij, because
the Gibbs distribution p�V � in eq.(6) is usually complicated
with many local minimums. Alternatively, we get a set of
samples Vt � fv

�t�
ij g� t � �� � � � � Nt from its approximation

q�V �, and then estimate

pij �

NtX
t��

v
�t�
ij p�Vt�
q�Vt�� (17)

which is much easier to compute. Next, we use the same
approach given in the above eq.(14) and eq.(16) to get a new
set of estimates on qij for a new estimate q�V �, based on
which we can again get new estimates on pij by eq.(17). The
process can be iterated until it converges.

C. Type (b) in Two Typical Cases

We further consider Type (b) approximation in eq.(7). From
eq.(9), we have

�a� for q��V �
X
V

q�V � ln q�V � � � lnZ��

X
ij

qij
Zij
Z�

ln qij � � lnZ� �
X
ij

qij ln qij�

�b� for q��V ��
X
V

q�V � ln q�V � �X
ij

	qij ln qij � �� � qij� ln �� � qij�
� (18)

Moreover, we consider the cases that satisfy the condition:

Eo�V � is quadratic with respect to V and
	�Eo�V �

	�vij
� ��

(19)
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which is satisfied by the TSP problem eq.(2) and also by a
number of concave costs [9].

In these cases, it follows from eq.(9) that
�
P

k ��i�l��j vijvklwijkl ��
P

k ��i�l��j � vij �� vkl � wijkl

which is true due to the independence in q��V � and can
be regarded as being true approximately for q��V �. Thus,
�
P

V q�V � ln p�V � becomes

lnZ �
�

�

X
V

q�V �Eo�V � � lnZ��
�
�
Eo�fqijg�

Zij

Z�

� �
�
Eo�fqijg�� for q��V �,

�
�
Eo�fqijg�� for q��V �.

(20)

After ignoring the irrelevant terms lnZ�� lnZ and putting
eq.(18) and eq.(20) together, we get that Type (b) approxima-
tion is equivalent to

min
qij

E�fqijg�� subject to eq������

E�fqijg� �
�

�
Eo�fqijg� � (21)�P

ij qij ln qij� for q��V �,P
ij	qij ln qij � ��� qij� ln ��� qij�
� for q��V �.

The case for q��V � interprets the Lagrange-Barrier approach
with the barrier eq.(4) discussed under the category (3) in
Sec.I. In fact, it justifies the intuitive treatment of simply
regarding the discrete vij as an analog variable between the
interval 	�� �
, previously used in [17] under the name of
Lagrange-Transform (LT) approach, in [20] under the name
of statistical physics, and in [7], [5], [6] under the name of
maximum entropy approach.

From this new perspective, we do not regard the analog
variables as the direct targets that we want to optimize. These
analog variables are the parameters of the simple distribution
that we use to approximate the Gibbs distribution induced from
the cost Eo�V � of the discrete variables. Instead, the discrete
solution will be recovered from these analog parameters ac-
cording to one of eq.(11) and eq.(12).

Similarly, the case for q��V � interprets and justifies the
Lagrange-Barrier approach with the barrier eq.(5), also dis-
cussed under the category (3) in Sec.I. In [18], this barrier is
intuitively argued to be better than the barrier eq.(4) because
it gives a U -shape curve. Here, this intuitive preference can
also be justified from eq.(10), by noticing that there is an
approximation Zij � Z� used for the case q��V � during the
transformation from the discrete random variable vij into the
analog parameter qij, but no approximation for the case q��V �.

Moreover, the barriers eq.(4) and eq.(5) are respectively the
special cases (a) S�vij � � vij and (b) S�vij � � vij
��� vij�
of a family of barrier functions as follows [18]:

B�vij � �

Z vij

�

lnS�vij �dvij� S��� � �� S��� � ���

S�v� monotonously increases within ��� ��� (22)

where g���v� � lnS�v� has a shape similar to tg�v�, and thus
its inverse g�v� has a shape similar to tg���v�. That is, g�v�

is a type of sigmoid function. In other words, such a barrier
term has a form of

NX
i��

MX
j��

B�vij� � �

NX
i��

MX
j��

Z vij

�

g���vij�dvij� (23)

which is exactly the leaking energy term in the Hopfield
network [8]. In other words, imposing a barrier term of
the family eq.(22) is equivalent to minimizing the leaking
energy in the classical Hopfield network. This link was first
discovered in [18]. With this link, we can see that the Hopfield-
Lagrange network studied by [14], [1] can also be interpreted
as one specific implementation for minimizing E�fqijg� in
eq.(21), though whether this implementation gives a converged
solution remains an open question.

Being different from the specific implementation by the
Hopfield-Lagrange network and also from the algorithms in
[20], [7], [5], [6], a general iterative procedure is proposed
firstly in [17] and then refined in [18] for minimizing E�fq ijg�
in eq.(21), with a guaranteed convergence on a feasible solu-
tion that satisfies constraints, as will be further recommended
in Sec.III.

III. LAGRANGE-BARRIER ITERATIVE PROCEDURE

A. Lagrange-Barrier Iterative Procedure

We consider the Lagrange-Barrier costs:

E�fqijg� �
�

�
Eo�fqijg� �

MX
j��

�colj 	
NX
i��

qij �Dcol
j 


�B�qij� �
NX
i��

�rowi 	
MX
j��

qij �Drow
i 
� B�qij� ��P

ij qij ln qij� q��V �,P
ij 	qij ln qij � ��� qij� ln ��� qij�
� q��V �.(24)

For the case of q��V �, by following the methods used in
[17], [18], from

	E�fqijg�

	qij
�

�

�

	Eo�fqijg�

	qij
� �colj � �rowi � � � ln qij � ��

we get

qeij �
�

aibjexp�
�
�

�Eo�fqijg�
�qij

�
� (25)

ai � exp��rowi � ����� bj � exp��colj � �����

Similarly, for the case of q��V �, from

	E�fqijg�

	qij
�

�

�

	Eo�fqijg�

	qij

��colj � �rowi � ln
qij

�� qij
� ��

	E�fqijg�

	qij
�

�

�

	Eo�fqijg�

	qij
��colj � �rowi � ln �q��ij � �� � ��

we get

qeij �
�

� � aibjexp�
�
�

�Eo�fqijg�
�qij

�
�
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ai � exp��rowi �� bj � exp��colj �� (26)

Under the condition eq.(19), �Eo�fqijg�
�qij

is irrelevant to qij

and ��E�fqijg�
��qij

� �. Conditioning on that other variables are
fixed at their old values, E�fqijg� is minimized at qij � qeij
given by eq.(25) or eq.(26). Therefore, we can update qij in
either of the following two manners:

(a) The sequential manner That is, with other variables
fixed, we update qij one by one with

qnewij � qeij� (27)

which will reduce E�fqijg� monotonically, as discussed as
above.

(b) The parallel manner To the current values fqoldij g,
each qeij � qoldij is obviously a descent direction of E�fqijg�.
Thus, with a stepsize � � � small enough, we can move all
fqijg in parallel along the direction fqeij � qoldij g that is

qnewij � qoldij � ��qeij � qoldij �� (28)

which will also reduce E�fqijg� monotonically.
From eq.(27) and eq.(28), we can see that the constraints

Ccol
e � Crow

e given by eq.(10) are satisfied by qnewij as long as
they are satisfied by both qoldij and qeij. Therefore, what we need
to do is to enforce that Ccol

e � Crow
e are satisfied by qeij through

updating the Lagrange coefficients ai� bj� j � �� � � � �M� i �
�� � � � � N , as follows:

Ccol
e �

NX
i��

qeij � Dcol
j � Crow

e �
MX
j��

qeij � Drow
i � (29)

That is, we encounter a problem of solving N �M nonlinear
equations of ai� bj� j � �� � � � �M� i � �� � � � � N , or equiva-
lently a problem of finding the global minimum zero of the
penalty

P �fqijg� �
MX
j��

�
NX
i��

qeij �Dcol
j �� �

NX
i��

�
MX
j��

qeij �Drow
i ���

(30)
To solve it, we need another inner iteration loop, which is
denoted as ENFORCING-LAGRANGE.

In a summary, a problem of eq.(1) that satisfies the condition
eq.(19) can be solved by the following Lagrange-Barrier
Iterative Procedure:

Step 0: Initialize fqijg such that they satisfy all
the constraints.

Step 1: Update qoldij into qnewij

(a) Either sequentially qnewij � qeij by using
eq.(25) for the case of q��V � or eq.(26)
for the case q��V �;
(b) Or in parallel by eq.(28).

Step 2: Update ai� bj� j � �� � � � �M� i � �� � � � � N by
an ENFORCING-LAGRANGE loop to ensure
the satisfaction of eq.(29).

Step 3: Check whether the procedure is converged, if yes,
stop; otherwise, go to Step 1.

Since Step 1 reduces E�fqijg� monotonically, as long as the
ENFORCING-LAGRANGE loop in Step 2 can ensure the sat-
isfaction of eq.(29), the whole procedure will reduce E�fqijg�
monotonically with the constraints C col

e � Crow
e satisfied, until

it converges to a local minimum of E�fqijg�.
However, there remain two important problems. First, the

satisfaction of the condition eq.(19) is required. Second, an
effective algorithm for the ENFORCING-LAGRANGE loop
needs to be designed. Though a direct use of the existing
techniques in literature for solving nonlinear equations eq.(29)
or for minimizing eq.(30) can be considered, we highly expect
a simple iterative procedure that can be implemented in a
parallel way.

Both the two problems have been solved in [3], [4]. First, the
direction by fqeij�q

old
ij g is also proved to be a descent direction

of E�fqijg� for a general E��fqijg� that the condition eq.(19)
may not be satisfied, and thus the above Step 1(b) applies to
any general cases. Second, a surprisingly simple and parallel
implementable algorithm for the ENFORCING-LAGRANGE
loop has been proposed as follows:

anewi � aoldi � �aoldi �
MX
j��

qeij�fa
old
i � boldj g��Drow

i ��

bnewj � boldj � �boldj �
NX
i��

qeij�fa
old
i � boldj g��Dcol

j ��

i � �� � � � � N� j � �� � � � �M� (31)

where qeij�fa
old
i � boldj g� denotes qeij by eq.(25) for the case of

q��V � or eq.(26) for the case q��V � at faoldi � boldj g. Moreover,
it has been also mathematically proved in [3], [4] that the
iterative algorithm eq.(31) guarantees to converge a solution
of nonlinear equations eq.(29).

B. Simulation Examples

A large number of simulation examples on TSP instances
have been provided in [3] on the cost E�fqijg� in eq.(21) for
the case q��V � and in [4] on the cost E�fqijg� in eq.(21)
for the case q��V �, through the Lagrange-Barrier Iterative
Procedure that consists of Step 1(b) and Step 2 given by
eq.(31). Here, we only demonstrate the results on two TSP
instances obtained from the well-known TSPLIB on WWW,
in order to illustrate the effectiveness of the iterative procedure
and to further confirm our preference on the cost E�fqijg� for
the case p� over that for the case p� with the reason discussed
in Sec.II.B.

In the simulations, the parameter � starts at ��� and is
reduced by a factor of �

�� gradually, � in eq.(31) is taken
to be one, and � in eq.(28) is obtained with a line search. The
iteration terminates as soon as a feasible solution is generated.

The first example is made by an instance (bays29.tsp) of
29 cities. The iterative procedures are made both on the cost
E�fqijg� in eq.(21) for the case q��V � and the case q��V �,
resulting a same near optimal tour. The ratio of the distance
of the near optimal tour to that of an optimal tour is equal
to ����, as shown in Fig. 1. However, the convergence on
the cost E�fqijg� for the case q��V � is much slower than on
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that for the case q��V �, by 1778 iterations in comparison with
344 iterations. Thus, it confirmed our preference discussed in
Sec.II.B. Here, one iteration consists of one circle from Step
1 to Step 3.
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Fig. 1 Near Optimal Tour versus Optimal Tour (bays29.tsp)
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Fig. 2 Near Optimal Tour versus Optimal Tour (pr76.tsp)

The second example is made by an instance (pr76.tsp) of 76
cities. The iterative procedure is made on the cost E�fqijg�
in eq.(21) for the case q��V � only, resulting in a near optimal
tour within 509 iterations. The ratio of the distance of the
near optimal tour to that of an optimal tour is equal to ����,
as shown in Fig.2.

IV. CONCLUDING REMARKS

The minimization of a combinatorial cost is turned into
a process of learning a simple distribution to approximate

the Gibbs distribution induced from this cost such that the
Gibbs distribution and the resulted approximation distribution
give a same global solution. From this new perspective, the
treatment of simply regarding a binary vij as an analog
variable, intuitively used in all the existing analog optimization
approaches, can be interpreted and justified. Particularly, the
Lagrange-Barrier iterative procedure is recommended because
it always gives a guaranteed convergence on a feasible solution
that satisfies constraints. Moreover, it has been shown via
experiments in [3], [4] that this Lagrange-Barrier iterative
procedure is significantly superior to the modified soft-assign
algorithm [15], [16] in computational time, with the quality of
solutions being similarly or even slightly better.
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