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Abstract: 
A general framework of independent subspaces is 

presented, based on which a number of unsupervised learning 
topics have been summarized from a unified perspective, 
featured by different combinations of three basic ingredients. 
Moreover, advances on these topics are overviewed in three 
streams, with roadmaps sketched. One consists of studies on 
the second order independence featured principal component 
analysis (PCA) and factor analysis (FA), in adaptive and 
robust implementations as well as with duality and temporal 
extensions. The other consists of studies on the higher order 
independence featured independent component analysis (ICA), 
binary FA, and nonGaussian FA. The third is called mixture 
based learning that combines the above individual tasks, 
proportionally or competitively to fulfill a complicated task.  
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1. Independent subspaces in a general framework  

As shown in Fig.1(a), a sample x is projected to  on 
a subspace with an error  . It is nature to minimize 
the error of using  to represent x, with the error e 

measured by its square length 

x̂
xxe ˆ−=

x̂

2ed =  or the Euclidean 
distance between  and x. The minimum is reached when 

e is orthogonal to the subspace. Moreover, the subspace can 
be represented by a linear coordinate system, i.e., spanned 
by three linear independent unit basis vectors , ,  , 

 can be further represented by its projection on each of 
the  basis vectors, resulting in the coordinates 

, i.e.,  or generally               

x̂

1a 2a 3a
x̂

Tyyyy ],,[ )3()2()1(= jj
ayx ∑= 3 )1(ˆ

                           (1) eAyexx +=+= ˆ

where 2min eE  is featured by the following natures: 

a) , (i.e., not correlated) 0=TEey
b) e from 222 min  ),,0|( eEIeG ee =σσ , 
c) the coordinates in y is reached by an orthogonal 

transform Wxy = . 

However, 2min eE  does not lead to a unique A. Instead, it 
can consist of any linear independent unit basis vectors. To 
reduce this indeterminacy, we impose that 

d) , ,  are orthonormal basis vectors (i.e.,  1a 2a 3a
IAAT = ), which implies that  is a 

diagonal matrix, i.e., ) , ,  are mutually 
not correlated or independent in a 2

Λ=TEyy
1(y )2(y )3(y

nd order 
statistics sense.  

 
We further move to a general case shown in 
Fig.1(b). For a meaningful projection  on a 
manifold. there are at least three basic ingredients 
to be specified. First, the error  needs a 
measure, based on which a minimum error 
projection can be implemented. Actually, different 
measures define different projections. One choice is 

x̂

xxe ˆ−=

2ed = r a homogeneous medium between  
and x.  For inhomogeneous mediums, other 
choices can be used. One choice is  

 fo x̂

       eeed e
T

B
12 −Σ==  with , as if e is BBT

e =Σ−1
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mapped to a homogeneous medium by a 
linear mapping B and measured by 
Euclidean distance. In Fig.2 this measure is 
considered, with its special case 2  
(i.e., B=I) and the degenerated case e=0.  

ed =

x̂To further represent  within the 
manifold, we need the second ingredient, i.e., 
a coordinate system on the manifold, via 
either linear vectors in Fig.1(a) or a set of 
curves in Fig.1(b). In Fig.2, we still start at a 
linear coordinate system in Fig.1(a).  
However, minimizing 2

B

Σ

e  no longer 
implies the nature a). Instead,  it should be 
explicitly  imposed as a condition. Also, 
the natures b) & c) are modified into 
b) e fromG   ),,0|( ee
c) the coordinates y 

is reached by a 
linear Wxy = , but 
W is no longer 
orthogonal. 

Moreover, impeding 
to reach the minimum 

2

B
e ,  the condition 

of IAAT =  has to be 
replaced by a weaker 
condition: 
d)  is a 

diagonal matrix, 
i.e., components 
of  y becomes 
uncorrelated. 

Λ=TEyy

A re-scaling on 
components of y will 
not affect the natures a) & d). That is, there is an  
indeterminacy of a unknown diagonal matrix D. Also, there 
is an indeterminacy of  a unknown rotation matrix , and 
an indeterminacy on a specific allocation to its two additive 
terms in .  

Φ

e
TT AAExx Σ+Λ=

In fact,  the above nature d) represents an example of 
the second ingredient, i.e., how y is distributed within an 
coordinate system. In Fig.2 we further extend it to an 
independence of any order statistics. The third ingredient 
varies from one linear coordinate system to multiple linear 
coordinate systems at different locations. Alternatively,   
each subspace can also be represented by another linear 
coordinate system for its complementary orthogonal 
subspace. Therefore, different specific types of independent 

 
subspaces can be summarized from a unified perspective, 
featured by different combinations of the three ingredients, 
as shown in Fig.2. Also, from this perspective,  an 
overview can be made on the past studies.   

2.  Independent subspaces of 2nd order independence 

    We start at a subspace for samples of independently 
and identically distributed  (i.i.d.), as shown in Tab.1 and 
the two bottom dimensions in Fig.2. Thus, there is no 

temporal structure, we have   empty and  (j)
tY  .)( jµµ(j)

t =

    For a Gaussian , we encounter factor  )µ|p(y (j)(j)
t
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analysis (FA) at the general case BeBeed TT
B

== 2   and 
PCA at B=I. Particularly, at the degenerated case e=0 we 
have that y=Wx de-correlates components of y. The 
pre-whitening in signal processing is such an example. 

Another is considering that the orthogonal complementary 
subspace spanned by the row vectors of U, which leads to 
MCA. With these insights, we summarize the related 
existing studies on the Roadmap A. Instead of providing a 
complete review. It aims at a sketch with attentions put on 
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links among studies and on topics missing in the existing 
surveys and textbooks, to the author’s best knowledge. 
    As shown on Roadmap A, this stream originated from 
over 100 years ago. The first adaptive learning one is Oja 
1st-PC rule [66] that finds the first principal component (PC) 
without explicitly estimating the sample covariance . 
Extended to find multi-PCs, one way is featured by an 
asymmetrical or a sequential implementation of one 1

Σ
st-PC 

rule, but suffering error-accumulation. Readers are referred 
to [5,6,67,76,96] for overview. The other way is updating 
the weights of W symmetrically, e.g., Oja subspace rule 
[65]. Further studies are made in the following branches: 
 

MCA, dual subspace, and TLS fitting  Advocating to 
use not only a multi-PCs  based subspace, but also its 
complementary part, i.e., minor components (MCs) that 
correspond the smallest eigenvalues of , Xu, Krzyzak & 
Oja in 1991 suggests a dual pattern recognition with the 
first adaptive 1

Σ
st-MC learning rule proposed via eqn.(11a) in 

[119]. Also, Minor component analysis (MCA) was firstly 
named by Xu, Oja & Suen in [116] and used for a total least 
square (TLS) curve fitting implemented by the above 
eqn.(11a) that finds the 1st-MC. Not only further progresses 
have been made on finding multi-MCs [62,63], but also this 
topic has been brought to the signal processing literature by 
Gao, Ahmad & Swamy [32] that was motivated by a visit of 
Gao to Xu’s office where Xu introduced him the result  of 
[116]. Thereafter, adaptive MCA learning for TLS filtering 
becomes a popular topic in the signal processing literature,  
e.g., see [24,30,58,60].  Also,  efforts are made on 
performing either of PCA and MCA by simply switching 
the updating sign with a normalization as originally 
suggested in [119]. Since a PCA learning that converges 
correctly may become unstable or diverging after sign 
switching, studies have been  made to examine the 
existing PCA rules on whether they remain stable after sign 
switching, while attempting to avoid its division computing 
for  normalization The jobs are quite tedious and need 
heavy mathematical analyses of ODE stability (e.g., Chen 
& Amari, [16]). The other line is turning an optimization of 
a PCA cost into a stable optimization of an induced cost for 
MCA. One example that turns the LMSER cost into one for 
a subspace spanned by MCs is given in [111]. Generally, for 
a cost  for PCA by its gradient descending )(min WJW

)(WJW ∇−=∆ η , after switching sign we have the updating 
)(WJW ∇=∆ η  in one of the following three situations: 

• Becoming divergence if  has no upper bound; )(WJ
• Get a wrong solution if  is upper bounded but a 

maximum is reached at an non-orthogonal ; 
)(WJ

W

• Get the MCA solution if  is  upper bounded and 
a maximum is reached at the MCA solution. 

)(WJ

 
LMSER learning and Subspace tracking  In Xu 

(1991)[118],  a new adaptive PCA rule is derived from the 
gradient  for a least mean square error 
reconstruction  (LMSER). In [118], the first proof on 
global convergence of Oja subspace rule was provided, 
which was previously regarded as difficult. Further 
comparative studies were made on Oja rule and the LMSER 
rule, e.g., in [14,15,47,48,54,71,72], and shown both 
mathematically and experimentally that LMSER improves 
Oja rule in both performance and converging speed. Two 
years after [118], Yang (1993) uses this  via a 
recursive least square method for signal subspace tracking 
[120], then followed by others in the signal processing 
literature [30,55].  Alternatively, Xu in 1994 also pointed 
out that PCA and subspace analysis can also be performed 
by several other theories or cost functions [111,112]. 
Recently in [25,28], Fiori analyzed the algebraic and 
geometric properties of one among them,  called relative 
uncertainty theory (RUT).  Moreover, the NIC criterion 
for subspace tracking [58] is actually a special case of RUT, 
which can be observed by comparing eqn.(20) in [58] with 
equation of 

)(2 WE∇

)(2 WE

eρ  at the end of Sec.III.B in [111].    
    

Principal subspace vs multi-PCs  Oja subspace rule 
reaches a principal subspace but not truly the multi-PCs due 
to a unknown rotation, while it is experimentally 
demonstrated by Xu in 1991 that the converged rows of 

 approximate the multi-PCs well by adding a sigmoid 
function  [118]. Worked at Harvard by the late 
summer 1991,  Xu got aware of Brockett (1991)[11] and 
extended the Brockett flow of  orthogonal matrices 
to that of   orthogonal matrices with , from 
which two learning rules for truly the multi-PCs are 
obtained from modifying the LMSER rule and Oja 
subspace rule accordingly. The two rules were included as 
eqns (13)&(14) in Xu [115] that was submitted in 1991,  
independently and differently from that of Oja [63]. In [83], 
Tanaka unifies these rules into an expression controlled by 
one parameter and makes a comparative study on them as 
well as the rules in [16], with eqn(14) in [115] shown to be 
the most promising one. In addition, the multi-PCs were 
also shown to be adaptively learned by several other 
theories or costs (Xu, 1994b) [112]. 

W
)(rs

nn×
1nn × 1nn >

 
Adaptive robust PCA In the robust statistics literature,  

robust PCA was proposed to resist outliers via a robust 
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estimator on [78,22]. First in 1992 [117] and then given 
in [117], Xu & Yuille generalized the rules of Oja, LMSER, 
and MCA into the robust adaptive learning by statistical 
physics, related to the M-estimators [40]. Also, PCA costs 
in [111] are extended to robust versions in Tab.2 of [112]. 
Thereafter,  efforts have been further made, including its 
use in computer vision, e.g., [9,21,45,52]. 

Σ

   On Roadmap A,  another branch consists of advances  

 
on FA that is equivalent to PCA in the special case 

 (shown firstly [3] in 1956, revisted in [85,102]).  
In the past decade, there is a renewed interest on FA, not 
only  the EM algorithm for FA [74] in is brought to PCA 
[75], but also adaptive EM algorithm and other advances 
are developed in help of the BYY harmony learning [96, 
99,100,102,104],  as listed on Roadmap A. 

Iee
2σ=Σ
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3. Independent subspaces of higher order independence  

In Fig.2 we further extend  to nonGaussian,   

with more constraint than a diagonal  imposed by 

. We start at the degenerated case e=0, 

shown at the left-upper corner on Roadmap B. The problem 
is solving x=Ay from samples of x and a constraint on 
higher order independence among components of y. One 
way to handle is solving induced nonlinear algebraic 
equations, with details referred to a survey paper [12]. From 
x=Ay* with at most one component of  y* being Gaussian, 
it has been showed in [87] that “y=Wx becomes 
component-wise independent” means “y=Wx recovers y*up 
to scales and a permutation of components”. Thus, the 
problem can be turned into independent component analysis 
(ICA), which was further tackled in four branches, as 
shown on Roadmap B.  

 )µ|p(y (j)(j)
t

Λ=TEyy

∏ =

m

1j
(j)
t

(j)
t )µ|p(y

     One is seeking extremes of the higher order 
cumulants of y [13]. The other branch is featured by 
nonlinear extension of Hebbian learning. One example 
combines Hebbian and anti-Hebbian rules in a network 
with nonlinear neurons [37,44]. Another example is Oja 
nonlinear PCA rules by adding nonlinearity into Hebbian 
learning [64]. 

The third branch optimizes a cost or principle that 
directly aims at the independence in a product of 
component densities. Interestingly, different aspects lead to 
a same updating equation shown on Roadmap B, with 
difference coming from pre-specifying the nonlinearity of 

. As a result, one works well when the source 
components of y* are all subgaussians [2] while the other 
works well when the source components of y* are  all 
supergaussians [7]. The problem is solved by learning 
jointly W and  via a parametric model [68, 106, 107, 
108]. Also,  it has been found that a rough estimate of each 
source pdf is enough for source separation, which leads to 
one-bit-matching conjecture that is mathematically  
proved to be true first in a weak sense that the global 
optimization is reached [51] and then in a strong sense that 
anyone of local optimal solutions is reached [94], also 
applicable to partial separation by a partial matching and a 
duality of maximization and minimization.  

)( )( jyφ

)( )( jyφ

 The last branch for ICA is featured by Nonlinear 
LMSER (Xu, 1991&93)[116,118], with details on Roadmap 
B. Additionally, clarifications are here made on two 
confusions. One relates to an omission of the origin of 
Nonlinear LMSER in [48], which has already been clarified 
in [41,47,71,72] that clearly spell out that both the 
nonlinear  and its adaptive gradient rule were firstly 

proposed in (Xu, 1991)[118]. The second comes from that 
ICA is usually regarded as a counterpart of PCA [44].  As 
already stated in [96,100], it is inappropriate and yields 
confusion. It follows from the first row of Tab.1 that ICA 
by y=Wx is an extension of decorrelation analysis, 
including any combinations of PCs and MCs, while it 
follows from the second row of Tab.1 that the counterpart 
of MCA is minor ICA (M-ICA) that is performed via 
nonlinear anti-Hebbian, minimizing cumulants,  
minimizing MVNO (See Roadmap B); while the 
counterpart of PCA is principal ICA (P-ICA) that is reached 
by nonlinear Hebbian, maximizing cumulants, and 
nonlinear LMSER.   

)(2 WE

Actually, the concept `principal’ involves 0≠−= Ayxe tt , 
i.e., eq.(1) or the model at the right-upper corner on 
Roadmap B. It extends FA to the cases beyond that y is 
from a Gaussian, e.g.,  binary FA (BFA) if y is binary, and 
nonGaussian FA (NFA) if  y is real but not from a 
Gaussian, as shown by the third row in Tab.1. Details are 
referred to the leftmost column on Roadmap B. Particularly, 
similar to that FA becomes equivalent to PCA in the special 
case ,  both BFA and NFA perform P-ICA at this 
special case too. As discussed in [96], by using a nonlinear 
map  and z=Wx to avoid expensive 
computing cost for y,  the nonlinear LMSER implements 
either an approximate BFA with a Bernoulli  in 

probability 

Iee
2σ=Σ

)( )()( j
t

j
t zsy =

)( )(jyp
)(

1
)(1 ∑=

= N

t
j

tNj zsp  or a real factor NFA with 

 being a pseudo uniform distribution on  or 
 in help of BYY harmony learning [96], from 

which further results have been obtained too. Moreover,  
when  is a Bernoulli or on ,  nonlinear 
LMSER relates to nonnegative ICA [71,72]. 

)( )( jyp ),0[ +∞
),( +∞−∞

)( )( jyp ),0[ +∞

In the cases with 0≠−= Ayxe tt , another critical point is 
that it is impossible for a linear y=Wx to lead to the 
minimum error 2

B
eE  or the maximum likelihood. Instead, 

a nonlinear map y=f(x) is needed, which incurs open 
theoretical issues that will be addressed in the last section. 
From the aspect of algorithms, seeking an appropriate y=f(x) 
incurs expensive computing costs too. Further structures 
should be imposed on either or both of  f(x) and 

. Nonlinear LMSER provides an approximate 
implementation with a post-sigmoid structure for  f(x), 
which saves computing costs considerably and is 
experimentally shown to work well [48,71,72]. However, 
no quantitative analysis has been made on how this 
approximation affects performance yet. The EM algorithm 
in [4,61] implements the maximum likelihood learning by 

 )µ|p(y (j)(j)
t
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considering via a Gaussian mixture, but suffering 
a computing cost that increases exponentially with the 
dimension m of y. Also, the BYY harmony learning [99,100] 
considers in a Gaussian mixture or other 
parametric models, and a preliminary experimental study 
showed that it gets a performance similar to the above EM 
algorithm based maximum likelihood learning but with a 
computing cost linearly increasing with m [95]. Further 
comparative studies on the three approaches are needed 
both theoretically and experimentally. 

 )µ|p(y (j)(j)
t

 )µ|p(y (j)(j)
t

4. Extensions to temporal and localized structures  

We further move to observe the first row of Tab.2 that 
extends the third row in Tab.1 after considering temporal 
structures. A typical one is embedded in  

with , e.g., a linear 

regression . Information can be carried 

over time in two ways. One is via computing by the 

regression, with learning on 

 t )µ|p(y (j)(j)
t

{ } (j)q
1τ

(j)
τt

(j)
tj

(j)
t

(j)(j)
t y Y),(Yµµ =−==   ,ϕ

∑ = −=
)(

1
)(

jq j
τ τβ (j)

τt
(j)
t yµ

 (j)
tµ

jϕ  made in help of the 

gradient with respect to jϕ  by the chain rule through the 
regression. The second way is via computing the integral 

∫ (j)
t

(j)
t

(j)
t

(j)
t )dY)p(Yµ|p(y  and getting the gradient with 

respect to jϕ  by the chain rule through the integral. 
Details are referred to [95,96,99]. 

Shown in the second row of Tab.2 are extensions of 
third row in Tab.1 to multiple subspaces at different 
locations and thus under the name of local sth.  Studies on 

            this  stream are summarized on 
Roadmap C, where a key point  is how 
to allocate a sample to different 
coordinate systems. There are two 
typical ways.  One is made during 
implementing the EM algorithm for a 
maximum likelihood (ML) learning or a 
Bayesian learning.  The other is made 
via competition, including the classic 
competitive learning, and the rival 
penalized competitive learning (RPCL) 
and the one in the Bayesian Ying Yang 
(BYY) harmony learning [92,93]. 

 xt

 
5. Subspace number and subspace  
dimension 
 
Another important problem is how to 
determine the number k of subspaces 
and the dimension  of each subspace. 
It is usually referred under the name 
model selection. A classic way is 
implementing a two-phase procedure. 
First, a number of candidates are learned 
by enumerating k and m . Second a 
criterion  is used to select the best 
among the candidates. An example is 
using AIC for one coordinate system 
based FA [10]. Other choices of criteria 
include BIC or equivalently  MDL, the 
cross validation, etc. However, such a 
two-phase implementation is 
computationally very extensive and thus 
impractical. Moreover, when the sample 

m

, 
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size is finite and k, m  are not too small, th alues of 
criterion are difficult to be estimated accurately, which 
makes the performance degenerate considerably. 

Alternative solution

e v

s have been sought. One type 
inclu

alread

Ano odel selection made 
auto

 o

4. Concluding 

Studies of thre y related unsupervised learning 
strea

ith 
inde

des incremental approaches, e.g., as m  increases to 

1+m , learning is made incrementally with the parts 
y learned kept or partially adjusted such that 

redundant computing can be saved. However, it usually 
leads to a suboptimal performance because not only newly 
added parameters have to be learned, but also the old 
parameter set have to be relearned. Oppositely, we can 
decrease from m  to 1−m . Still we can not simply 
discard those extr aram  i.e., all the parameters in the 
case 1−m  have to be re-learned. 

 ther direction is seeking m

a p eters,

matically during learning. That is,  in a model with k 
and m  initially set to be large enough such that the 
corre ne is included,  learning will not only determine 
parameters but also automatically shrink k and m  down 
to appropriate ones. One such an effort is  RP  [114], 
which can make k determined automatically during learning. 
The other and better choice is the BYY harmony learning 
that is a general approach applicable to various statistical 
learning tasks with automatic model selection.  Readers 
are referred to [92,93] for an adaptive algorithm to 
implement  local FA with automatic determination of  k 
and m ,  and for a systematic comparative experimental 
study n a large number of simulated data sets and several 
real data sets from UCI repository, in comparison with AIC, 
CAIC, BIC/MDL, CV as well as two incremental 
approaches [34,80]. Both performances and computing 
times are compared, and it can be observed that the BYY 
harmony learning algorithm outperforms the counterparts 
considerably. Readers are referred to [92,93,95,97,98, 
99,100] for the BYY harmony learning based criteria and 
algorithms for the rest cases in Tabs 1 &2. 

ct o

CL

remarks 

e closel
ms have been overviewed in an extensive scope and  

from a rather systematic perspective. A general framework 
of independent subspaces is presented, from which a 
number of learning topics are summarized via its features of 
choosing and combining the three basic ingredients.    

There are already extensive studies on the cases w
pendence in a sense of second order statistics. Also, 

there are extensive studies on ICA with noise free (i.e, e=0).  

Trends move towards the cases with components of  y 
being mutually independent in higher order statistics and 
with noise 0≠e . Though a few algorithms are available, 
further com rative studies on them are needed both 
theoretically and experimentally. Even more importantly, 
there are still a number of open issues, some of which are 
listed below: 
• Which pa

pa

rt of unknown parameters in   can 
ndetermin

• pendence of 

1j
? How 

can  it be furthe
• 

eAyx +=
be determined uniquely ? which part is i able 
and how it can be improved ?   
Under what conditions,  the inde

∏m (j)
t

(j)
t )µ|p(y  can be ensured conceptually 

r achieved by a learning algorithm ? 
When and under what condition,  

=

Ayx =ˆ  can be said 

• g 
to be the best reconstruction of x ? 
Under what condition, both ensurin ∏ =

m

1j
(j)
t

(j)
t )µ|p(y  

and the best reconstruction of x by Ayx =ˆ
achieved jointly ? If not, how to trad the two ?  
What is the best nonlinear map y=f(x) in term 

  can be 
e off 

• of 

analytically o
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