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Abstract:

A general framework of independent subspaces is
presented, based on which a number of unsupervised learning
topics have been summarized from a unified perspective,
featured by different combinations of three basic ingredients.
Moreover, advances on these topics are overviewed in three
streams, with roadmaps sketched. One consists of studies on
the second order independence featured principal component
analysis (PCA) and factor analysis (FA), in adaptive and
robust implementations as well as with duality and temporal
extensions. The other consists of studies on the higher order
independence featured independent component analysis (ICA),
binary FA, and nonGaussian FA. The third is called mixture
based learning that combines the above individual tasks,
proportionally or competitively to fulfill a complicated task.
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1. Independent subspaces in a general framework

As shown in Fig.1(a), a sample x is projected to X on
a subspace with an error e=x—x . It is nature to minimize
the error of using X to represent x, with the error e

coordinate
system

@ ®)

Fig.1 A general framework of independent subspaces

measured by its square length :Mz or the Euclidean

distance between X and x. The minimum is reached when
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e is orthogonal to the subspace. Moreover, the subspace can
be represented by a linear coordinate system, i.e., spanned
by three linear independent unit basis vectors a,, a,, a, ,

X can be further represented by its projection on each of

the basis vectors, resulting in the coordinates
0 1@ O A 0
y =D y7 7T e, x—Zj_y a; or generally
x=X+e=Ayt+e €))

where min £ HeHz is featured by the following natures:
a) Eeyr =0, (i.e., not correlated)
b) efrom G(e|0,0;1), 0, =minE]d
<)

2
>

the coordinates in y is reached by an orthogonal
transform y=Wx.

However, minﬂ‘d‘z does not lead to a unique 4. Instead, it

can consist of any linear independent unit basis vectors. To
reduce this indeterminacy, we impose that
d) a, a,, a, are orthonormal basis vectors (i.c.,

A"A=1), which implies that Ey/ =A is a
diagonal matrix, i.e., ", y?, y® are mutually

not correlated or independent in a 2™ order
statistics sense.

We further move to a general case shown in
Fig.1(b). For a meaningful projection x on a
manifold. there are at least three basic ingredients
to be specified. First, the error e=x—x needs a
> measure, based on which a minimum error
projection can be implemented. Actually, different
measures define different projections. One choice is

distribution

structures

2 . R
d :M for a homogeneous medium between x

and x. For inhomogeneous mediums, other
choices can be used. One choice is

d=|d} =¢'S'e with £)=B'B. as if e is
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mapped to a homogeneous medium by a

31 Gaussian g i |
. . )6 L 1 (a) Gram-Charlier 0 takes Oor1l
linear mapping B and measured by POY 1) | GG [ud,e0) expansion oo A—poy*®
Euclidean distance. In Fig.2 this measure is | projection CHoO ud 1) gy | £ 5 <Pq)" =
. . . . 2 : 2 Sl b
considered, with its special case d= . i . ,
: p d=ld" [ a-o,ie., e | 1CA,y=Wa, WA=DII | 1CA, y0= /®),
1 — — = = T _ T 1s diagona. = Ty
(i.e., B=I) and the degenerated case e=0. e=0,x=Ay Ex’=I'L | ;1 Selmntation g fO-(re )
To further represent x within the =L - :
; : : : NFA & P-ICA y=Wx
manlfolq, we need the second 1ngr§d1ent, Le, ) — _— IMSERICA . oo | Binary-LMSER
a coordinate system on the manifold, via d=e] Z"'_;{’El’) Non-negative PCA
either linear vectors in Fig.1(a) or a set of e from v ICA_
curves in Fig.1(b). In Fig.2, we still start ata  [C¢€1%%D| Ux = ¢ MCA Wi Binary MVNO
linear coordinate system in Fig.1(a). - —
. 5 both Dual subspaces with each combining parts from both
However, minimizing |¢, no longer T
B g :Z;? HBE Factor analysis NonGaussian Binary
implies the nature a). Instead, it should be e~G(x|0,B'B) (FA) Factor analysis (NFA) | Factor analysis (NFA)

explicitly imposed as a condition. Also,
the natures b) & c) are modified into
b) e fromGe|0,X,),

Tab.1 Typical Examples of One Subspace for i.i.d. Samples

¢) the coordinates y -~ Misture of TAs .y coordinate m
is reached by a system . ;
linear y=Wx, but 7 ‘ i
W is no longer D / o \
\ L ¥,
orthogonal. T a ; ‘.‘
Moreover, impeding | : N ol 0 @ tftzmp(t)ral ;
.- R e Lp e ! t structure
to reach the minimum ! T s B I i
2 .. v X ! \ e e ; /
HeHB, the condition 2 ;I‘ i | 1id ”;‘f” ('g“"“" /
i e R 5 dual = s 9 Y i
of A"A=I has to be a, ‘:yti) g x:a* T expression ¢ /. Gaussian  Mixture of Gaussians Discrete
o s s g el =
replaced by a weaker oy S . i
condition: ] D\ TEeten L
= FA ST d=0 2 e distribution

d Ey=A is a e e
diagonal matrix,
i.e.,, components
of y becomes
uncorrelated.

A re-scaling on
components of y will
not affect the natures a) & d). That is, there is an
indeterminacy of a unknown diagonal matrix D. Also, there
is an indeterminacy of a unknown rotation matrix @, and
an indeterminacy on a specific allocation to its two additive

terms in ExX =AAd" +Z,.

In fact, the above nature d) represents an example of
the second ingredient, i.e., how y is distributed within an
coordinate system. In Fig.2 we further extend it to an
independence of any order statistics. The third ingredient
varies from one linear coordinate system to multiple linear
coordinate systems at different locations. Alternatively,
each subspace can also be represented by another linear
coordinate system for its complementary orthogonal
subspace. Therefore, different specific types of independent

Each subspace expressed by Srchures

x, = Ay, +e,, ¢, from G(e|0,X)

Efe,y;1=0, p&y, |00 =[], pes? 1))
" . " . " G

P'EI) =B (th"'Pm)’ th = ?E: }'l

=1

projection
measure

Fig.2 Typical variants of three ingredients

subspaces can be summarized from a unified perspective,
featured by different combinations of the three ingredients,
as shown in Fig.2. Also, from this perspective, an
overview can be made on the past studies.

2. Independent subspaces of 2nd order independence

We start at a subspace for samples of independently

and identically distributed (i.i.d.), as shown in Tab.1 and
the two bottom dimensions in Fig.2. Thus, there is no

temporal structure, we have Ytﬂ) empty and p?) =n".

For a Gaussian p(y" |p?) , we encounter factor

768



Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007

Another is considering that the orthogonal complementary
subspace spanned by the row vectors of U, which leads to
MCA. With these insights, we summarize the related
existing studies on the Roadmap A. Instead of providing a
complete review. It aims at a sketch with attentions put on

analysis (FA) at the general case d:Mi —¢'B"Be and

PCA at B=I. Particularly, at the degenerated case e=0 we
have that y=Wx de-correlates components of y. The
pre-whitening in signal processing is such an example.

Hebbian learning rule Roadmap A Line fitting by the first
— (Hebb, 1945) p principal component (151 PC)
correlation enhanced PCA&FA and Advances (Pearson, 1901)

b i

: s PCA < ML-FA Multi-factors analysis
sl BNl i | when meor-cir || (Thurston, 1945)
y=ux (Amari, 1977) ™= PCA for k-PCs ®| Anderson&Rubin, 1956 x=Ay+e
(Hotelling, 1936) . .
J eigen-analysis on ;hE;rEUCEEXEPﬂ%%%
adaptive Oja 1 PC rule |, S ~ Robust PCA fanderson g Rubiu 19361
(Oja, 1982) i > (Ruymagaart, 1981; v
no explicit computing = - ! :
# Devlin, et al, 1981) CaymasarnTI
- likelihood (ML)
dient f1
linear adaptive PSA graud%l(n)nw adaptive robust factor analysis (FA)
system : (Brockett, 1991) PCA & PSA rule by EM algorithm
y=WWx (0j8, 1262 7 (Xu&Yuille, 1992 &95) Booi &Thfyer, 1976)
‘ s radient flow other robust versions i e
v R > Fono(nK in (Tab.2, Xu, 1994b) ()R e
Perform PCA (Xu, 1991; 1993)
e weighted or name of PPCA
plus additional 2
trical subspace - robust PCA for a special case
AsYIINELELC AT rule weighted LMSER in computer vision (Tipping & Bishop
recurrent wiring| |for rr_mlti- PcCA| |rule Tor multi- PCA (Dela Torre& Black, 1999: Roweis 19985
(Sanger, 1989) (Oja, 1992) (Xu, 1993) 2003) and others :
& others ‘u
(a) adaptive
v EM algorithm
= = (a) LMSER cost Other theories with automatic
b= gl o oo @ Lo -z | | for PSA & k-PCA: selection on factors.
g %@a S.8505 | | < EEE E,)=%20,0% - %I | | ¢a) mini-distorted (Xu, 1998a&b).
£ ﬂ?_}n% EE Ei::% ﬁﬁm_u';’ﬁ £ =Wy =W, reflection ) a(f_laptive B.YY
g2 ed D5 = Oin ; (b) max- relative learning algorithm
E = BEm suEgg =598 (b) first global : galg
BeoCE ESwme X E Eb-t= L uncertainty with automatic
o S—=dg TRl Ewget g P theory (RUT) selection on factors
2 = E_;ﬁ‘%‘ B gﬂz;&j ™ & aﬁlﬁu *— on O]a.PSA rule {c) max- variation see eqn(79) :
=9 Ebs sgEse || 28EEE (n) ganpeive LMD () others in (Xu, 20012), eqn21)
55 2 FE Egégg % E.E 13 for PSA (Xu, 1991) (Xu, 1994b) £(22) in (Xu 2001h)
= = - &
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links among studies and on topics missing in the existing
surveys and textbooks, to the author’s best knowledge.

As shown on Roadmap A, this stream originated from
over 100 years ago. The first adaptive learning one is Oja
1®-PC rule [66] that finds the first principal component (PC)
without explicitly estimating the sample covariance X .
Extended to find multi-PCs, one way is featured by an
asymmetrical or a sequential implementation of one 1¥-PC
rule, but suffering error-accumulation. Readers are referred
to [5,6,67,76,96] for overview. The other way is updating
the weights of W symmetrically, e.g., Oja subspace rule
[65]. Further studies are made in the following branches:

MCA, dual subspace, and TLS fitting Advocating to
use not only a multi-PCs based subspace, but also its
complementary part, i.e., minor components (MCs) that
correspond the smallest eigenvalues of X, Xu, Krzyzak &
Oja in 1991 suggests a dual pattern recognition with the
first adaptive 1°-MC learning rule proposed via eqn.(11a) in
[119]. Also, Minor component analysis (MCA) was firstly
named by Xu, Oja & Suen in [116] and used for a total least
square (TLS) curve fitting implemented by the above
eqn.(11a) that finds the 1¥-MC. Not only further progresses
have been made on finding multi-MCs [62,63], but also this
topic has been brought to the signal processing literature by
Gao, Ahmad & Swamy [32] that was motivated by a visit of
Gao to Xu’s office where Xu introduced him the result of
[116]. Thereafter, adaptive MCA learning for TLS filtering
becomes a popular topic in the signal processing literature,
e.g., see [24,30,58,60]. Also, efforts are made on
performing either of PCA and MCA by simply switching
the updating sign with a normalization as originally
suggested in [119]. Since a PCA learning that converges
correctly may become unstable or diverging after sign
switching, studies have been made to examine the
existing PCA rules on whether they remain stable after sign
switching, while attempting to avoid its division computing
for normalization The jobs are quite tedious and need
heavy mathematical analyses of ODE stability (e.g., Chen
& Amari, [16]). The other line is turning an optimization of
a PCA cost into a stable optimization of an induced cost for
MCA. One example that turns the LMSER cost into one for
a subspace spanned by MCs is given in [111]. Generally, for
a cost min, Jo) for PCA by its gradient descending

AW =V, after switching sign we have the updating

AW =nvJ(w) inone of the following three situations:

® Becoming divergence if J(J#) has no upper bound;

e Geta wrong solution if J(J) is upper bounded but a
maximum is reached at an non-orthogonal w ;

®  Get the MCA solution if J(W) is
a maximum is reached at the MCA solution.

upper bounded and

LMSER learning and Subspace tracking In Xu
(1991)[118], a new adaptive PCA rule is derived from the
gradient VE,(W) for a least mean square error

reconstruction (LMSER). In [118], the first proof on
global convergence of Oja subspace rule was provided,
which was previously regarded as difficult. Further
comparative studies were made on Oja rule and the LMSER
rule, e.g., in [14,15,47,48,54,71,72], and shown both
mathematically and experimentally that LMSER improves
Oja rule in both performance and converging speed. Two
years after [118], Yang (1993) uses this g gr) via a

recursive least square method for signal subspace tracking
[120], then followed by others in the signal processing
literature [30,55]. Alternatively, Xu in 1994 also pointed
out that PCA and subspace analysis can also be performed
by several other theories or cost functions [111,112].
Recently in [25,28], Fiori analyzed the algebraic and
geometric properties of one among them, called relative
uncertainty theory (RUT). Moreover, the NIC criterion
for subspace tracking [58] is actually a special case of RUT,
which can be observed by comparing eqn.(20) in [58] with

equation of 0O, atthe end of Sec.lIL.B in [111].

Principal subspace vs multi-PCs QOja subspace rule
reaches a principal subspace but not truly the multi-PCs due
to a unknown rotation, while it is experimentally
demonstrated by Xu in 1991 that the converged rows of

W  approximate the multi-PCs well by adding a sigmoid
function §(7) [118]. Worked at Harvard by the late

summer 1991, Xu got aware of Brockett (1991)[11] and
extended the Brockett flow of 7Xn orthogonal matrices

to that of 72X n, orthogonal matrices with #>n,, from

which two learning rules for truly the multi-PCs are
obtained from modifying the LMSER rule and Oja
subspace rule accordingly. The two rules were included as
eqns (13)&(14) in Xu [115] that was submitted in 1991,
independently and differently from that of Oja [63]. In [83],
Tanaka unifies these rules into an expression controlled by
one parameter and makes a comparative study on them as
well as the rules in [16], with eqn(14) in [115] shown to be
the most promising one. In addition, the multi-PCs were
also shown to be adaptively learned by several other
theories or costs (Xu, 1994b) [112].

Adaptive robust PCA In the robust statistics literature,
robust PCA was proposed to resist outliers via a robust
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estimator on X [78,22]. First in 1992 [117] and then given
in [117], Xu & Yuille generalized the rules of Oja, LMSER,
and MCA into the robust adaptive learning by statistical
physics, related to the M-estimators [40]. Also, PCA costs
in [111] are extended to robust versions in Tab.2 of [112].
Thereafter, efforts have been further made, including its
use in computer vision, e.g., [9,21,45,52].

on FA that is equivalent to PCA in the special case
¥, =0’1 (shown firstly [3] in 1956, revisted in [85,102]).
In the past decade, there is a renewed interest on FA, not
only the EM algorithm for FA [74] in is brought to PCA
[75], but also adaptive EM algorithm and other advances
are developed in help of the BYY harmony learning [96,

On Roadmap A, another branch consists of advances 99,100,102,104], as listed on Roadmap A
b b b b .
x=Ay w“1‘th ) Roadmap B x=Ay-+ : wzr}zm
P =] [,pO ICA & NFA and Advances ) =] [,PO™)
¥ ¥ L 2
solving induced HFdisa Ind denni ¢ analysis (ICA)
nonlinear tati ependent component analysis : o
algebraic |in"3 ;rgila aullfgll > _PW hth f _ 2 ) ll;naggilmln lll_iflllilrlluud
equations matrix (Tong, ¥ = WX suc at p{y) = | |j=1P(Y ) yBFA? gm'lb_ on
(Cardoso & Inuuffe & Liu, (a) or a binaryy
Comon, 1996) 993) l l {Belouchrani &
Cardoso, 1995)
Nonlinear LMSER {h) A fora veal p

of nonGaussian.
(Moulines, Cardoso &
Gassiat 1997; Attias 1999)
with computing costs

(Xu, 1991 893)

N ~ 2
5 =‘E’Zt.1”xt_xt"
x, = W's(y), ¥ = W,

removing higher order
depen enclt)as among

y=0% . y™ seEa M

extremes of higher order cumulants

Nonlinear Hebbian for
see a survey in (Car doso, 1998) F

[ )y T growing exponentially
N = s6)=[3G 7050 with the factor number.
P = | |._1p(y ) based costs % )y 7 * adaptive learning rule
I AW oo x7s(y )’ Hebbian by gradient descent u
& s(r)is nonlinear & scalar * found that unknown
rotation is removed (a) adaptive BYY
maximum likelihood (ML) l & due to nonlinearity s(y) learning algorithm for
(I()"‘_;laeta g Lactuué"ma‘,I 13:90;) Xu, 1991£93) both BF A&NF A with
am, Garrat, utten o : - + computing cost from
Information-maximization £ g Oja nonlinear u the abgve ex%unentially
(INFORMAX) E25839 PCA rules reduced to linearly.
(Bell & Sejnowski, 1995 ) e 5 g2 | [(Ojaet al1991) It is further studied « automatic selection on
Minimum mutual I=R=0 g in (Karhunen & factor number.
information (MMI) BEEEC Joutsensalo, 1994) : (b) both BFA&NF A are
(Amari, Cichocki & Yang, 1996) &= ':“-j jus} + remove higher order further extended to
and others, aff fead fo a same form: S 5 = & dependence. model temporal relation,
W W (L o) W B E E =1 M-ICA + perform hetter than i.e, temporal NFA
B i v ANpF) g = é viee keeping W Oja nonlinear PCA. apd temporal BFA
9&)=[4t5") .. 0, )= —3 D2 | | beboundea tor meeptdent BGEL
A J (c) also criteria for
selecting factor number,
& w 1r For tasks of_bot]l;l_x, ¥ for comparison with
Differences in pre-specified lp(}m) Tk rli R e ion exixtingviher cltotin
+ spurce of allgubggussians AW - x5y {Zhang, Xu&Fu, 1996) (8811-1:.(12]}),Xxu2u 02(?{)311)’
= = - i = X 1 1
(Amari, Cichocki&¥Yang, _1 996) anti Hebbian 1 Sec.5.2, Xu2003a
» source of all supergaussians Xu, 2004)
(Bell& Sejnowski, 1995) + prewhitening hased ’
¥ LMSER and links to l
= - " (y(‘)) one-bit-matching other TIC A (Kart
earn F and a parametric conjecture j j
via a mixture of pdfs or cdfsq, Xu, Cheung:,l & Amari, 1998) lja_]unen, & Ola, 1998) (a) LMSER for a hinary
(2) LPM.ICA algorithm sources re separable if A nonnegative ICA garprs it BIA
(Xu, Yang & Amari, 1996; Xu, [~ there is kurtosis-sign (Dja&Flumbley,2004) (h])nI?MaSs]Ellcioi{:F;T;%]
Cheung, Yang & Amari, 1997, mgiching beiween of 1 approximates I{FA iny
Xu, Cheung & Amari, 1998) soiurce pdfis vs modei pdfs. a fast computing.
(b) Contextual ICA T Other theories for {c) LMSER is modified
(Pearlmutter & Parra, 1996, 1997 nonlinear PCA: for approximating both
¥ mathematically proved {(a) alternative NFA & BFA with
+ for the optimal solution nonlinear LMSER. automatic selection

on the factor number.

(i, Chin, & u, 2004) (Sec.2.5, Xu 2001h)

(b) max-variation of

further studies and applications
normalized output

(Fiori , 2000&2002;
Jeong, Kim & Kim, 2004,

Everson & Roberts, 1999)

* for one of any local
solutions (Xu, 2007¢)
+ an duality of max vs min

(MYVNO)
(Xu, 1994b)

{Sec.IITB, Xu 2001a)
(Sec.5.4, Xu 2003a)
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3. Independent subspaces of higher order independence

In Fig.2 we further extend p(y’|u?) to nonGaussian,
with more constraint than a diagonal Ey)/ =A imposed by
szlp(y?') |nd). We start at the degenerated case e=0,

shown at the left-upper corner on Roadmap B. The problem
is solving x=Ay from samples of x and a constraint on
higher order independence among components of y. One
way to handle is solving induced nonlinear algebraic
equations, with details referred to a survey paper [12]. From
x=Ay* with at most one component of y* being Gaussian,
it has been showed in [87] that “y=Wx becomes
component-wise independent” means “y=Wx recovers y*up
to scales and a permutation of components”. Thus, the
problem can be turned into independent component analysis
(ICA), which was further tackled in four branches, as
shown on Roadmap B.

One is seeking extremes of the higher order
cumulants of y [13]. The other branch is featured by
nonlinear extension of Hebbian learning. One example
combines Hebbian and anti-Hebbian rules in a network
with nonlinear neurons [37,44]. Another example is Oja
nonlinear PCA rules by adding nonlinearity into Hebbian
learning [64].

The third branch optimizes a cost or principle that
directly aims at the independence in a product of
component densities. Interestingly, different aspects lead to
a same updating equation shown on Roadmap B, with
difference coming from pre-specifying the nonlinearity of
#»"). As a result, one works well when the source

components of y* are all subgaussians [2] while the other
works well when the source components of y* are all
supergaussians [7]. The problem is solved by learning
jointly Wand @) via a parametric model [68, 106, 107,

108]. Also, it has been found that a rough estimate of each
source pdf is enough for source separation, which leads to
one-bit-matching conjecture that is mathematically
proved to be true first in a weak sense that the global
optimization is reached [51] and then in a strong sense that
anyone of local optimal solutions is reached [94], also
applicable to partial separation by a partial matching and a
duality of maximization and minimization.

The last branch for ICA is featured by Nonlinear
LMSER (Xu, 1991&93)[116,118], with details on Roadmap
B. Additionally, clarifications are here made on two
confusions. One relates to an omission of the origin of
Nonlinear LMSER in [48], which has already been clarified
in [41,47,71,72] that clearly spell out that both the
nonlinear £,(w) and its adaptive gradient rule were firstly

proposed in (Xu, 1991)[118]. The second comes from that
ICA is usually regarded as a counterpart of PCA [44]. As
already stated in [96,100], it is inappropriate and yields
confusion. It follows from the first row of Tab.1 that ICA
by y=Wx is an extension of decorrelation analysis,
including any combinations of PCs and MCs, while it
follows from the second row of Tab.1 that the counterpart
of MCA is minor ICA (M-ICA) that is performed via
nonlinear anti-Hebbian, minimizing cumulants,
minimizing MVNO (See Roadmap B); while the
counterpart of PCA is principal ICA (P-ICA) that is reached
by nonlinear Hebbian, maximizing cumulants, and
nonlinear LMSER.

Actually, the concept “principal’ involves e=x—Ay0,

ie., eq.(1) or the model at the right-upper corner on
Roadmap B. It extends FA to the cases beyond that y is
from a Gaussian, e.g., binary FA (BFA) if y is binary, and
nonGaussian FA (NFA) if y is real but not from a
Gaussian, as shown by the third row in Tab.1. Details are
referred to the leftmost column on Roadmap B. Particularly,
similar to that FA becomes equivalent to PCA in the special
case ¥ =¢’1, both BFA and NFA perform P-ICA at this
special case too. As discussed in [96], by using a nonlinear
map YV =s5(zY)) and z=Wx to avoid expensive
computing cost for y, the nonlinear LMSER implements

either an approximate BFA with a Bernoulli p()”) in
probability P, :LNZ:S(Z;/’) or a real factor NFA with

p(»") being a pseudo uniform distribution on [0,+e0) or
(—oo0,4+%0) in help of BYY harmony learning [96], from
which further results have been obtained too. Moreover,
when p(y”)) is a Bernoulli or on [0,4+e0), nonlinear

LMSER relates to nonnegative ICA [71,72].
In the cases with e =x—A4)#(, another critical point is

that it is impossible for a linear y=Wx to lead to the
minimum error EMZ or the maximum likelihood. Instead,

a nonlinear map y=f{x) is needed, which incurs open
theoretical issues that will be addressed in the last section.
From the aspect of algorithms, seeking an appropriate y=f{x)
incurs expensive computing costs too. Further structures
should be imposed on either or both of f{x) and
p(y?|u?®) . Nonlinear LMSER provides an approximate

implementation with a post-sigmoid structure for f{x),
which saves computing costs considerably and is
experimentally shown to work well [48,71,72]. However,
no quantitative analysis has been made on how this
approximation affects performance yet. The EM algorithm
in [4,61] implements the maximum likelihood learning by
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considering p(y|u?) via a Gaussian mixture, but suffering

a computing cost that increases exponentially with the
dimension m of y. Also, the BY'Y harmony learning [99,100]
considers p(y?|p?) in a Gaussian mixture or other

parametric models, and a preliminary experimental study
showed that it gets a performance similar to the above EM
algorithm based maximum likelihood learning but with a
computing cost linearly increasing with m [95]. Further
comparative studies on the three approaches are needed
both theoretically and experimentally.

4.  Extensions to temporal and localized structures

We further move to observe the first row of Tab.2 that
extends the third row in Tab.1 after considering temporal

structures. A typical one is embedded in p(y? |p?)

with p® = o (Yt(j),%)’ YO = {y ) }qm a linear

t-t Jr=1 ?

e.g.,
. (W] . . . .
regression pd = Z; SyY . Information can be carried
over time in two ways. One is via computing p?) by the
regression, with learning on ?; made in help of the

gradient with respect to ?; by the chain rule through the

regression. The second way is via computing the integral
J'p(y?) In)p(YP?)dY? and getting the gradient with

respect to @; by the chain rule through the integral.

Details are referred to [95,96,99].

Shown in the second row of Tab.2 are extensions of
third row in Tab.l to multiple subspaces at different
locations and thus under the name of local sth. Studies on

this stream are summarized on

Gaussian

Roadmap C, where a key point is how

i) i} i .
P(yf ) Gy ? | p? ,0]-2) expansion
d=¢'B'Be or even (b) Mixture of scalar
x=Ay+e Gy ? | p®,1) Gaussians

(a) Gram-Charlier

y? takes Oor1

o g
pO 0y
0=p? <1

From i.i.d. samples
to temporal samples

)

Temporal factor
analysis (TFA)

Temporal nonGaussian
Factor analysis (T-NFA)
Temporal LMSER

Temporal binary
factor analysis (T-BFA)
or independent HMM

from one to multiple

) =t W0 (T-LMSER) ;
¥ :'llym }'1 i P binary T-LMSER
t tezfe=l ¥ = @), 1=Wx
From one subspace Local FA (LFA) Local NFA Local BFA
to multiple subspaces | Local PCA/PSA LOCAL LMSER Local LMSER
Buath Local T-NFA L I’chf'ldT’BF: t
) = ocal Independen
from i.i.d. to temporal Local TFA Local T_LMSER

Local T-LMSER

Tab.2 Typical examples with temporal and localized structures

Roadmap C Several Types of Mixtures of Subspaces

w Py is Gaussian p(v) is nonGaussian
learning PCA/FAITFA MCA/Surface fitting ICA Nf:‘:‘n/ I‘?:;ﬁf;gfiﬁﬁ:d
Local PCA Competitive ICA
o | e (Sec.3.2, Xu1995) Local MCAby MML | (eqn.37, Xu2001h)
£ 2 (Kambhatla & Leen, 1997) (Sec.d.1, Xu1995) Competitive the def;“"”"":) Cl”“’s from
£ g PCA competitive learning Temporal ICA ones ey
g (Lopez-Rubio, et al 2004) (eqn. 88, Xu 2001a)
2 5 el PC‘}ﬁg%\FA’ ol Local BFA, NFA, LMSER
=
-‘3 E (eqns.14&16, Xu 1998h) Local MCA by MML Imp.r(?ved (Sec.d, Xu2002)
g 2 (Sec.4.3, Xu2001h) (eqn.15, Xu, 1998b) competitive ICA | (eqns.d43&44, Xu2001h)
g = | Local FA(Sec.3.3.2, Xu, 2007a) (Sec.4.2, Xu, 2001hb) (Sec.d, Xu2002) temporal extensions
o (Xu, 2004)
ol g Local TFA (Xu, 2004) >
with automatic selection on the number of subspaces or both of the and di i of
Local PCA by a simplified EM Local MCA by
0CA y a simplifie —
£ (Sec.V(B)(D), Xu 1994c) a simplified EM ) _
< o Mixtures of FA (Sec.V(C)(D.), Xu 19-94c) ICA mlx.tur.e One possible way
= = (Ghahramani & Hinton, 1996) MCA Co-integration (Lee, Lewicki, & is getting extension from
S Mixtures of probabilistic PCA | (Xu & Leung, 1998) Sejnowski, 2000) (Moulines, Cardoso &
< (Tipping & Bishop, 1999) Probabilistic MCA Gassiat 1997; Attias 1999)
(Williams & Agakov, 2002) "
E = but with much
8 Variational Mixture Variational Mixture < -
2 (Ghahramani & Beal, 2000; (Choudrey & Roberts | 00 e computing costs
§ Utsugi & Kumagai, 2001) 2003)
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to allocate a sample x, to different

coordinate systems. There are two
typical ways. One is made during
implementing the EM algorithm for a
maximum likelihood (ML) learning or a
Bayesian learning. The other is made
via competition, including the classic
competitive learning, and the rival
penalized competitive learning (RPCL)
and the one in the Bayesian Ying Yang
(BYY) harmony learning [92,93].

number and

5. Subspace subspace

dimension

Another important problem is how to
determine the number k of subspaces

and the dimension m, of each subspace.

It is usually referred under the name
model selection. A classic way is
implementing a two-phase procedure.
First, a number of candidates are learned
by enumerating k¥ and m,. Second, a

criterion is used to select the best
among the candidates. An example is
using AIC for one coordinate system
based FA [10]. Other choices of criteria
include BIC or equivalently MDL, the
cross validation, etc. However, such a
two-phase implementation is
computationally very extensive and thus
impractical. Moreover, when the sample
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size is finite and k, m, are not too small, the values of

criterion are difficult to be estimated accurately, which
makes the performance degenerate considerably.
Alternative solutions have been sought. One type

includes incremental approaches, e.g., as m, increases to
m€+1 , learning is made incrementally with the parts

already learned kept or partially adjusted such that
redundant computing can be saved. However, it usually
leads to a suboptimal performance because not only newly
added parameters have to be learned, but also the old
parameter set have to be relearned. Oppositely, we can

decrease from m, to m,—1. Still we can not simply
discard those extra parameters, i.c., all the parameters in the
case m,—1 have to be re-learned.

Another direction is seeking model selection made
automatically during learning. That is, in a model with k&
and m, initially set to be large enough such that the
correct one is included, learning will not only determine
parameters but also automatically shrink k& and m, down

to appropriate ones. One such an effort is RPCL [114],

which can make & determined automatically during learning.

The other and better choice is the BYY harmony learning
that is a general approach applicable to various statistical
learning tasks with automatic model selection. Readers
are referred to [92,93] for an adaptive algorithm to
implement local FA with automatic determination of &

and m,, and for a systematic comparative experimental

study on a large number of simulated data sets and several
real data sets from UCI repository, in comparison with AIC,
CAIC, BIC/MDL, CV as well as two incremental
approaches [34,80]. Both performances and computing
times are compared, and it can be observed that the BYY
harmony learning algorithm outperforms the counterparts
considerably. Readers are referred to [92,93,95,97,98,
99,100] for the BYY harmony learning based criteria and
algorithms for the rest cases in Tabs 1 &2.

4. Concluding remarks

Studies of three closely related unsupervised learning
streams have been overviewed in an extensive scope and
from a rather systematic perspective. A general framework
of independent subspaces is presented, from which a
number of learning topics are summarized via its features of
choosing and combining the three basic ingredients.

There are already extensive studies on the cases with
independence in a sense of second order statistics. Also,
there are extensive studies on ICA with noise free (i.e, e=0).

Trends move towards the cases with components of y
being mutually independent in higher order statistics and
with noisee#0. Though a few algorithms are available,
further comparative studies on them are needed both
theoretically and experimentally. Even more importantly,
there are still a number of open issues, some of which are
listed below:

e Which part of unknown parameters in  x=A4y+e can

be determined uniquely ? which part is indeterminable
and how it can be improved ?
e  Under what conditions, the independence of

H'."lp(y 91 p®y) can be ensured conceptually ? How
i=

can it be further achieved by a learning algorithm ?

e  When and under what condition, X=Ay can be said
to be the best reconstruction of x ?

e  Under what condition, both ensuring H;“:lp(y?’ |n®)

and the best reconstruction of x by x=Ay canbe

achieved jointly ? If not, how to trade off the two ?
e What is the best nonlinear map y=f(x) in term of

p(y?’|p0’) and e ? Can the best be obtained

analytically or via an effective computing ?
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