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Abstract. Recently, a mathematical proof is obtained in (Liu, Chiu,
Xu, 2004) on the so called one-bit-matching conjecture that all the
sources can be separated as long as there is an one-to-one same-sign-
correspondence between the kurtosis signs of all source probability den-
sity functions (pdf’s) and the kurtosis signs of all model pdf’s (Xu, Che-
ung, Amari, 1998a), which is widely believed and implicitly supported
by many empirical studies. However, this proof is made only in a weak
sense that the conjecture is true when the global optimal solution of an
ICA criterion is reached. Thus, it can not support the successes of many
existing iterative algorithms that usually converge at one of local optimal
solutions. In this paper, a new mathematical proof is obtained in a strong
sense that the conjecture is also true when anyone of local optimal solu-
tions is reached, in help of investigating convex-concave programming on
a polyhedral-set. Theorems have also been proved not only on partial sep-
aration of sources when there is a partial matching between the kurtosis
signs, but also on an interesting duality of maximization and minimiza-
tion on source separation. Moreover, corollaries are obtained from the
theorems to state that seeking a one-to-one same-sign-correspondence
can be replaced by a use of the duality, i.e., super-gaussian sources can be
separated via maximization and sub-gaussian sources can be separated
via minimization. Also, a corollary is obtained to confirm the symmetric
orthogonalization implementation of the kurtosis extreme approach for
separating multiple sources in parallel, which works empirically but in
a lack of mathematical proof. Furthermore, a linkage has been set up
to combinatorial optimization from a Stiefel manifold perspective, with
algorithms that guarantee convergence and satisfaction of constraints.

1 Introduction

Independent component analysis (ICA) aims at blindly separating the indepen-
dent sources s from a unknown linear mixture x = As via y = Wx. It has been
shown in [18] that y recovers s up to constant scales and a permutation of com-
ponents when the components of y become component-wise independent and at
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most one of them is gaussian. The problem is further formalized by Comon [7]
under the name ICA. Although ICA has been studied from different perspectives,
such as the minimum mutual information (MMI) [1, 4] and maximum likelihood
(ML) [5], in the case that W is invertible, all such approaches are equivalent to
minimizing the following cost function

D(W ) =
∫

p(y; W ) ln
p(y, W )∏n
i=1 q(yi)

dy, (1)

where q(yi) is the pre-determined model probability density function (pdf), and
p(y, W ) is the distribution on y = Wx. With each model pdf q(yi) prefixed,
however, this approach works only for the cases that the components of y are
either all sub-Gaussians [1] or all super-Gaussians [4].

To solve this problem, it is suggested that each model pdf q(yi) is a flexibly
adjustable density that is learned together with W , with the help of either a
mixture of sigmoid functions that learns the cumulative distribution function
(cdf) of each source [24, 26] or a mixture of parametric pdfs [23, 25], and a so-
called learned parametric mixture based ICA (LPMICA) algorithm is derived,
with successful results on sources that can be either sub-Gaussian or super-
Gaussian, as well as any combination of both types. The mixture model was
also adopted in a so called context-sensitive ICA algorithm [17], although it did
not explicitly target at separating the mixed sub- and super-Gaussian sources.

On the other hand, it has also been found that a rough estimate of each source
pdf or cdf may be enough for source separation. For instance, a simple sigmoid
function such as tanh(x) seems to work well on the super-Gaussian sources [4],
and a mixture of only two or three Gaussians may be enough already [23] for
the mixed sub- and super-Gaussian sources. This leads to the so-called one-bit-
matching conjecture [22], which states that “all the sources can be separated as
long as there is an one-to-one same sign- correspondence between the kurtosis
signs of all source pdf’s and the kurtosis signs of all model pdf’s.” In past years,
this conjecture has also been implicitly supported by several other ICA studies
[10, 11, 14, 19]. In [6], a mathematical analysis was given for the case involving
only two sub-Gaussian sources. In [2], stability of an ICA algorithm at the correct
separation points was also studied via its relation to the nonlinearity φ(yi) =
d ln qi(yi)/dyi, but without touching the circumstance under which the sources
can be separated.

Recently, the conjecture on multiple sources has been proved mathematically
in a weak sense [15]. When only sources’ skewness and kurtosis are considered
with Es = 0 and EssT = I, and the model pdf’s skewness is designed as zero, the
problem minW D(W ) by eq.(1) is simplified via pre-whitening into the following
problem

max
RRT =I

J(R), J(R) =
n∑

i=1

n∑
j=1

r4
ijν

s
j km

i , n ≥ 2, (2)

where R = (rij)n×n = WA is an orthonormal matrix, and νs
j is the kurtosis of

the source sj , and km
i is a constant with the same sign as the kurtosis νm

i of
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the model q(yi). Then, it is further proved that the global maximization of eq.
(2) can only be reachable by setting R a permutation matrix up to certain sign
indeterminacy. That is, the one-bit-matching conjecture is true when the global
minimum of D(W ) in eq.(1) with respect to W is reached. However, this proof
still can not support the successes of many existing iterative ICA algorithms
that typically implement gradient based local search and thus usually converge
to one of local optimal solutions.

In the next section of this paper, all the local maxima of eq.(2) are inves-
tigated via a special convex-concave programming on a polyhedral set, from
which we prove the one-bit-matching conjecture in a strong sense that it is true
when anyone of local maxima by eq.(2) or equivalently local minima by eq.(1) is
reached in help of investigating convex-concave programming on on a polyhedral-
set. Theorems have also been provided on separation of a part of sources when
there is a partial matching between the kurtosis signs, and on an interesting
duality of maximization and minimization. Moreover, corollaries are obtained
from theorems to state that the duality makes it possible to get super-gaussian
sources via maximization and sub-gaussian sources via minimization. Another
corollary is also to confirm the symmetric orthogonalization implementation of
the kurtosis extreme approach for separating multiple sources in parallel, which
works empirically but in a lack of mathematical proof [13].

In section 3, we further discuss that eq. (2) with R being a permutation
matrix up to certain sign indeterminacy becomes equivalent to a special example
of the following combinatorial optimization:

min
V

Eo(V ), V = {vij , i = 1, · · · , N, j = 1, · · · , M}, subject to

Cc :
N∑

i=1

vij = 1, j = 1, · · · , M, Cr :
M∑

j=1

vij = 1, i = 1, · · · , N ;

Cb : vij takes either 0 or 1. (3)

This connection suggests to investigate combinatorial optimization from a per-
spective of gradient flow searching within the Stiefel manifold , with algorithms
that guarantee convergence and constraint satisfaction.

2 One-Bit-Matching Theorem and Extension

2.1 An Introduction on Convex Programming

To facilitate mathematical analysis, we briefly introduce some knowledge about
convex programming. A set in Rn is said to be convex, if x1 ∈ S, x2 ∈ S, we
have λx1 + (1 − λ)x2 ∈ S for any 0 ≤ λ ≤ 1. Shown in Fig.1 are examples of
convex sets. As an important special case of convex sets, a set in Rn is called
a polyhedral set if it is the intersection of a finite number of closed half-spaces,
that is, S = {x : at

ix ≤ αi, for i = 1, · · · , m}, where ai is a nonzero vector
and αi is a scalar for i =, · · · , m. The second and third ones in Fig.1 are two
examples. Let S be a nonempty convex set, a vector x ∈ S is called an extreme
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Fig. 1. Convex set and polyhedral set.

point of S if x = λx1 + (1 − λ)x2 with x1 ∈ S, x2 ∈ S, and 0 < λ < 1 implies
that x = x1 = x2. We denote the set of extreme point by E and illustrate them
in Fig.1 by dark points or dark lines as indicated.

Let f : S → R, where S is a nonempty convex set in Rn. As shown in Fig.1,
the function f is said to be convex on S if

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) (4)

for x1 ∈ S, x2 ∈ S and for 0 < λ < 1. The function f is called strictly convex
on S if the above inequality is true as a strict inequality for each distinct x1 ∈
S, x2 ∈ S and for 0 < λ < 1. The function f is called concave (strictly concave)
on S if −f is convex (strict convex) on S.

Considering an optimization problem minx∈S f(x), if x̄ ∈ S and f(x) ≥ f(x̄)
for each x ∈ S, then x̄ is called a global optimal solution. If x̄ ∈ S and if
there exists an ε-neighborhood Nε(x̄) around x̄ such that f(x) ≥ f(x̄) for each
x ∈ S∩Nε(x̄), then x̄ is called a local optimal solution. Similarly, if x̄ ∈ S and if
f(x) > f(x̄) for all x ∈ S∩Nε(x̄), x �= x̄, for some ε, then x̄ is called a strict local
optimal solution. Particularly, an optimization problem minx∈S f(x) is called a
convex programming problem if f is a convex function and S is a convex set.

Lemma 1
(a) Let S be a nonempty open convex set in Rn, and let f : S → R be twice

differentiable on S. If its Hessian matrix is positive definite at each point in S,
the f is strictly convex.

(b) Let S be a nonempty convex set in Rn, and let f : S → R be convex
on S. Consider the problem of minx∈S f(x). Suppose that x̄ is a local optimal
solution to the problem. Then (i) x̄ is a global optimal solution. (ii) If either x̄
is a strict local minimum or if f is strictly convex, then x̄ is the unique global
optimal solution.

(c) Let S be a nonempty compact polyhedral set in Rn, and let f : S → R
be a strict convex function on S. Consider the problem of maxx∈S f(x). All the
local maxima are reached at extreme points of S.
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Fig. 2. Convex and concave function.

The above (a)(b) are basically known from a foundation course on mathemat-
ics during a undergraduate study. Though the statement (c) may not be included,
it is not difficult to understand. Assume x̄ is a local maximum but not an ex-
treme point, we may find x1 ∈ Nε(x̄), x2 ∈ Nε(x̄) such that x̄ = λx1 + (1− λ)x2

for 0 < λ < 1. It follows from eq.(4) that f(x̄) < λf(x1) + (1 − λ)f(x2) ≤
max[f(x1), f(x2)], which contradicts to that x̄ is a local maximum, while at an
extreme point x of S, x = λx1 + (1 − λ)x2 with x1 ∈ S, x2 ∈ S and 0 < λ < 1
implies that x = x1 = x2, which does not contradict the definition of a strict
convex function made after eq.(4). That is, a local maximum can only be reached
at one of the extreme points of S.

Details of the above knowledge about convex programming are referred to
one of textbooks on nonlinear programming, e.g., [3].

2.2 One-Bit-Matching Theorem

For the problem by eq. (2), neither the set RRT = I is convex nor J(R) is
always convex. To use the knowledge given in the previous section as a tool, we
let pij = r2

ij and considering RRT = I via keeping the part of normalization
conditions but ignoring the part of orthogonal conditions, then we can relax the
problem by eq. (2) as follows:

max
P∈S

J(P ), J(P ) =
n∑

i=1

n∑
j=1

p2
ijν

s
j km

i , P = (pij)n×n, n ≥ 2

S = {pij , i, j = 1, · · · , n :
n∑

j=1

pij = 1, for i = 1, · · · , n, and pij ≥ 0}, (5)

where νs
j and km

i are same as in eq. (2), and S become a convex set or precisely
a polyhedral set. Moreover, we stack P into a vector vec[P ] of n2 elements and
compute the Hessian HP with respect to vec[P ], resulting in that

HP is a n2 × n2 diagonal matrix with each diagonal element being νs
j km

i . (6)

Thus, whether J(P ) is convex can be checked simply via all the signs of νs
j km

i .
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We use En×k to denote a family of matrices, with each En×k ∈ En×k being
a n × k matrix with every row consisting of zero elements except that one and
only one element is 1.

Lemma 2
(a) When either νs

i > 0, km
i > 0, ∀i or νs

i < 0, km
i < 0, ∀i, every local maxi-

mum of J(P ) is reached at a P ∈ En×n.
(b) For a unknown 0 < k < n with νs

i > 0, km
i > 0, i = 1, · · · , k and νs

i <
0, km

i < 0, i = k + 1, · · · , n, every local maximum of J(P ) is reached at P =[
P+

1 0
0 P−

2

]
, P+

1 ∈ Ek×k, P−
2 ∈ E(n−k)×(n−k).

Proof. (a) In this case, we have every νs
j km

i > 0 and thus it follows from eq. (6)
and Lemma 1(a) that J(P ) is strictly convex on the polyhedral set S. It further
follows from Lemma 1 (c) that all the local maxima of J(P ) are reached at the
polyhedral set’s extreme points that satisfy

∑n
j=1 pij = 1, for i = 1, · · · , n, i.e.,

each local maximum P ∈ En×n.
(b) Notice that the constraint

∑n
j=1 pij = 1 effects only on the i-th row,

and J(P ) is additive, we see that the task by eq. (5) is solved by separately
considering the following two tasks:

T1 : max
P1

J(P1), J(P1) =
k∑

i=1

n∑
j=1

p2
ijν

s
j km

i ,

P1 = (pij)i=1,···,k,j=1,···,n with every pij ≥ 0,

Subject to

n∑
j=1

pij = 1, for i = 1, · · · , k. (7)

T2 : max
P2

J(P2), J(P2) =
N∑

i=k+1

n∑
j=1

p2
ijν

s
j km

i ,

P2 = (pij)i=k+1,···,n,j=1,···,n with every pij ≥ 0,

Subject to

n∑
j=1

pij = 1, for i = k + 1, · · · , N. (8)

First, we consider T1. Further let J(P1) = J+
+ (P+

1 ) + J−
+ (P−

1 ) with

J+
+ (P+

1 ) =
k∑

i=1

k∑
j=1

p2
ijν

s
j km

i , P+
1 = (pij)i=1,···,k,j=1,···,k,

J−
+ (P−

1 ) =
k∑

i=1

n∑
j=k+1

p2
ijν

s
j km

i , P−
1 = (pij)i=1,···,k,j=k+1,···,n, (9)

we see that J+
+ and J−

+ are decoupled if ignoring the constraints
∑n

j=1 pij =
1, for i = 1, · · · , k. So, the key point is considering the roles of the constraints.
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Without the constraints
∑n

j=1 pij = 1, for i = 1, · · · , k, J−
+ (P−

1 ) ≤ 0 is
strictly concave from Lemma 1(a) by observing νs

j km
i < 0 for every term, and

thus has only one maximum at P−
1 = 0. Then, the constraints can be re-taken in

consideration via written as
∑n

j=k+1 pij = ci, for i = 1, · · · , k with a unknown
ci = 1−∑k

j=1 pij . For ci > 0, the boundary
∑n

j=k+1 pij = ci is inactive and will
not affect that J−

+ ≤ 0 reaches its only maximum at P−
1 = 0. For ci = 0, J−

+ ≤ 0
reaches its only maximum at the boundary

∑n
j=k+1 pij = 0 which is still P−

1 = 0.
Thus, all the local maxima of J(P1) are reached at P1 = [P+

1 , P−
1 ] = [P+

1 ,0] and
thus determined by all the local maxima of J+

+ (P+
1 ) on the polyhedral set of

pij ≥ 0, i = 1, · · · , k, j = 1, · · · , k and
∑k

j=1 pij = 1, for i = 1, · · · , k (because
pij = 0, for i = 1, · · · , k, j = k + 1, · · · , n). It follows from Lemma 1(b) that
J+

+ (P+
1 ) is strictly convex on this polyhedral set since νs

j km
i > 0 for every term.

Similar to the above (a), each of the local maxima of J+
+ (P+

1 ) is P+
1 ∈ Ek×k.

Second, we can consider T2 in a same way and have J(P2) = J+
− (P+

2 ) +
J−
− (P−

2 ) with

J+
− (P+

2 ) =
n∑

i=k+1

k∑
j=1

p2
ijν

s
j km

i , P+
2 = (pij)i=k+1,···,n,j=1,···,k,

J−
− (P−

2 ) =
n∑

i=k+1

n∑
j=k+1

p2
ijν

s
j km

i , P−
2 = (pij)i=k+1,···,n,j=k+1,···,n. (10)

Now, J+
− is strictly concave and J−

− is strictly convex. As a result, all the
local maxima of J(P2) are reached at P2 = [P+

2 , P−
2 ] = [0, P−

2 ] with P−
2 ∈

E(n−k)×(n−k). Q.E.D.

Further considering pij = r2
ij and the part of orthogonal conditions in RRT =

I, we get

Theorem 1. Every local maximum of J(R) on RRT = I by eq. (2) is reached
at R that is an permutation matrix up to sign indeterminacy at its nonzero
elements, as long as there is a one-to-one same-sign-correspondence between the
kurtosis of all source pdf’s and the kurtosis of all model pdf’s.

Proof. From pij = r2
ij and Lemma 2, we have rij = 0 for pij = 0 and either

rij = 1 or rij = −1 for pij = 1. All the other choices of P in Lemma 2(a) or of
P+

1 and P−
2 in Lemma 2(b) can not satisfy the part of orthogonal conditions in

RRT = I and thus should be discarded, except that P is a n × n permutation
matrix for Lemma 2(a) or P+

1 is a k × k permutation matrix and P−
2 is a

(n − k)× (n − k) permutation matrix for Lemma 2(b). That is, R should be an
permutation matrix up to sign indeterminacy at its nonzero elements. On the
other hand, any other R on RRT = I with the corresponding P being not a
local maximum of J(P ) is also not a local maxima of J(R) on RRT = I. Thus,
we get the theorem proved by noticing that km

i has the same sign as the kurtosis
νm

i of the model density qi(yi). Q.E.D.

The above theorem is obtained from eq. (2) that is obtained from eq. (1) by
approximately only considering the skewness and kurtosis and with the model
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pdfs without skewness. Thus, in such an approximative sense, all the sources
can also be separated by a local searching ICA algorithm ( e.g., a gradient
based algorithm) obtained from eq.(1) as long as there is a one-to-one same-
sign-correspondence between the kurtosis of all source pdf’s and the kurtosis of
all model pdf’s.

Though how seriously such an approximation will affect the separation perfor-
mance by an ICA algorithm obtained from eq.(1) is unclear yet, this approxima-
tion can be removed by an ICA algorithm obtained directly from eq. (2). Under
the one-to-one kurtosis sign matching assumption, we can derive a local search
algorithm that is equivalent to maximize the problem by eq.(2) directly. A pre-
whitening is made on observed samples such that we can consider the samples of
x with Ex = 0, ExxT = I. As a results, it follows from I = ExxT = AEssT AT

and EssT = I that AAT = I, i.e., A is orthonormal. Thus, an orthonormal W
is considered to let y = Wx become independent among its components via

max
WW T =I

J(W ), J(W ) =
n∑

i=1

km
i νy

i , (11)

where νy
i = Ey4

i −3, i = 1, · · · , n, νx
j = Ex4

j −3, j = 1, · · · , n, and km
i , i = 1, · · · , n

are pre-specified constants with the same signs as the kurtosis νm
i . We can derive

its gradient ∇W J(W ) and then project it onto WWT = I, which results in
an iterative updating algorithm for updating W in a way similar to eq.(19)
and eq.(20) at the end of the next section. Such an ICA algorithm actually
maximizes the problem by eq.(2) directly by considering y = Wx = WAs =
Rs, R = WA, RRT = I, and thus

νy
i =

n∑
j=1

r4
ijν

s
j , i = 1, · · · , n. (12)

That is, the problem by eq.(11) is equivalent to the problem by eq.(2). In other
words, under the one-to-one kurtosis sign matching assumption, it follows from
Theorem 1 that all the sources can be separated by an ICA algorithm not in an
approximate sense, as long as eq.(12) holds.

However, Theorem 1 does not tell us how such a kurtosis sign matching
is built, which is attempted via eq.(1) through learning each model pdf qi(yi)
together with learning W [23, 24, 26] as well as further advances either given in
[14, 19] or given by eqn. (103) in [20]. Still, it remains an open problem whether
these efforts or the possibility of developing other new techniques can guarantee
such an one-to-one kurtosis sign matching surely or in certain probabilistic sense,
which deserves future investigations.

2.3 Cases of No Matching and Partial Matching

Next, we consider what happens when one-to-one kurtosis-sign-correspondence
does not hold. We start at the extreme situation via the following Lemma.



One-Bit-Matching ICA Theorem, Convex-Concave Programming 13

Lemma 3. (no matching case)
When either νs

i > 0, km
i < 0, ∀i or νs

i < 0, km
i > 0, ∀i, J(P ) has only one

maximum that is reached usually not in En×n.

Proof. From eq.(6) and Lemma 1(a) that J(P ) is strictly concave since νs
j km

i <
0 for every term. Thus, it follows from Lemma 1(b) that it has only one maximum
usually at an interior point in S (thus not in En×n) instead of at the extreme
points of S. Q.E.D.

Lemma 4. (partial matching case)
Given two unknown integers k, m with 0 < k < m < n, and provided that

νs
i > 0, km

i > 0, i = 1, · · · , k, νs
i km

i < 0, i = k + 1, · · · , m, and νs
i < 0, km

i <
0, i = m + 1, · · · , n, every local maximum of J(P ) is reached either at P =[

P+
1 0
0 P−

2

]
, where either P+

1 ∈ Ek×m, P−
2 ∈ E(n−k)×(n−m) when νs

i > 0, km
i <

0, i = k + 1, · · · , m or P+
1 ∈ Em×k, P−

2 ∈ E(n−m)×(n−k) when νs
i < 0, km

i > 0, i =
k + 1, · · · , m.

Proof. The proof is made similar to proving Lemma 2. The difference is that
both P+

1 and P−
2 are not square matrices. Q.E.D.

Theorem 2. Given two unknown integers k, m with 0 < k < m < n, and
provided that νs

i > 0, km
i > 0, i = 1, · · · , k, νs

i km
i < 0, i = k + 1, · · · , m, and

νs
i < 0, km

i < 0, i = m + 1, · · · , n, every local maximum of J(R) on RRT = I

by eq.(2) is reached at R =
[
Π 0
0 R̄

]
subject to a 2 × 2 permutation, where Π is

a (k + n − m) × (k + n − m) permutation matrix up to sign indeterminacy at
its nonzero elements; while R̄ is a (m − k) × (m − k) orthonormal matrix with
R̄R̄T = I, but usually not a permutation matrix up to sign indeterminacy.

Proof. By Lemma 2, putting pij = r2
ij in P we can directly select a (k+n−m)×

(k+n−m) sub-matrix Π that is of full rank in both row and column, also auto-
matically with ΠΠT = I satisfied. The remaining part in P must be linear de-
pendent of Π with RRT = I still satisfied. Thus, the entire R should be the above
form with R̄R̄T = I. As a result, maxRRT =I J(R) in eq. (2) is decoupled with
R̄ maximized via maxR̄R̄T =I J(R̄), J(R̄) =

∑n
i=k+n−m+1

∑n
j=k+n−m+1 r̄4

ijν
s
j km

i

with every νs
j km

i < 0, which is a situation similar to Lemma 3. That is, R̄ is
usually not a permutation matrix up to sign indeterminacy. On the other hand,
if the second row of R is not [0, R̄] but in a form [A, B] with both A, B being
nonzero and [A, B][A, B]T = I, the first row of R will non longer be [Π,0] and
the resulting P deviates from a local maximum of J(P ). Thus, the corresponding
R is not a local maxima of J(R) on RRT = I. Q.E.D.

In other words, there will be k + n − m sources that can be successfully
separated in help of a local searching ICA algorithm when there are k + n −
m pairs of matching between the kurtosis signs of source pdf’s and of model
pdf’s. However, the remaining m − k sources are not separable. Suppose that
the kurtosis sign of each model is described by a binary random variable ξi

with 1 for + and 0 for −, i.e., p(ξi) = 0.5ξi0.51−ξi . When there are k sources
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with their kurtosis signs in positive, there is still a probability p(
∑n

i=1 ξi = k)
to have an one-to-one kurtosis-sign-correspondence even when model pdf’s are
prefixed without knowing the kurtosis signs of sources. Moreover, even when an
one-to-one kurtosis-sign-correspondence does not hold for all the sources, there
will still be n − |� − k| sources recoverable with a probability p(

∑n
i=1 ξi = �).

This explains not only why those early ICA studies [1, 4], work in some case
while fail in other cases due to the pre-determined model pdf’s, but also why
some existing heuristic ICA algorithms can work in this or that way.

2.4 Maximum Kurtosis vs Minimum Kurtosis

Interestingly, it can be observed that changing the maximization in eq. (2), eq.
(5) and eq. (11) into the minimization will lead to similar results, which are
summarized into the following Lemma 5 and Theorem 3.

Lemma 5
(a) When either νs

i > 0, km
i > 0, ∀i or νs

i < 0, km
i < 0, ∀i, J(P ) has only one

minimum that is reached usually not in En×n.
(b) When either νs

i > 0, km
i < 0, ∀i or νs

i > 0, km
i < 0, ∀i, every local mini-

mum of J(P ) is reached at a P ∈ En×n.
(c) For a unknown 0 < k < n with νs

i > 0, km
i > 0, i = 1, · · · , k and νs

i <
0, km

i < 0, i = k + 1, · · · , n, every local minimum of J(P ) is reached at P =[
0 P−

1

P+
2 0

]
, P−

1 ∈ Ek×(n−k), P+
2 ∈ E(n−k)×k.

(d) For two unknown integers k, m with 0 < k < m < n with νs
i > 0, km

i >
0, i = 1, · · · , k, νs

i km
i < 0, i = k + 1, · · · , m, and νs

i < 0, km
i < 0, i = m + 1, · · · , n,

every local minimum of J(P ) is reached either at P =
[

0 P−
1

P+
2 0

]
, where either

P−
1 ∈ Ek×(n−m), P

+
2 ∈ E(n−k)×m when νs

i > 0, km
i < 0, i = k + 1, · · · , m or

P+
1 ∈ Em×(n−k), P

−
2 ∈ E(n−m)×k when νs

i < 0, km
i > 0, i = k + 1, · · · , m.

Proof. The proof can be made similar to those in proving Lemma 2, Lemma 3,
and Lemma 4. The key difference is shifting our focus from the maximization of
a convex function on a polyhedral set to the minimization of a concave function
on a polyhedral set, with switches between ‘minimum’ and ‘maximum’, ‘maxima’
and ‘minima’, ‘convex’ and ‘concave’, and ‘positive’ and ‘negative’, respectively.
The key point is that Lemma 1 still remains to be true after these switches.
Q.E.D.

Similar to Theorem 2, from the above lemma we can get

Theorem 3
(a) When either νs

i km
i < 0, i = 1, · · · , n or νs

i > 0, km
i > 0, i = 1, · · · , k and

νs
i < 0, km

i < 0, i = k + 1, · · · , n for a unknown 0 < k < n, every local minimum
of J(R) on RRT = I by eq. (2) is reached at R that is an permutation matrix
up to sign indeterminacy at its nonzero elements.

(b) For two unknown integers k, m with 0 < k < m < n with νs
i > 0, km

i >
0, i = 1, · · · , k, νs

i km
i < 0, i = k + 1, · · · , m, and νs

i < 0, km
i < 0, i = m + 1, · · · , n,
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every local minimum of J(R) on RRT = I by eq. (2) is reached at R =
[

Π 0
0 R̄

]

subject to a 2× 2 permutation. When m + k ≥ n, Π is a (n−m + n− k)× (n−
m+n−k) permutation matrix up to sign indeterminacy at its nonzero elements,
while R̄ is a (m + n− k)× (m + n− k) orthonormal matrix with R̄R̄T = I, but
usually not a permutation matrix up to sign indeterminacy. When m + k < n,
Π is a (k + m) × (k + m) permutation matrix up to sign indeterminacy at its
nonzero elements, while R̄ is a (n − k − m) × (n − k − m) orthonormal matrix
with R̄R̄T = I, but usually not a permutation matrix up to sign indeterminacy.

In a comparison of Theorem 2 and Theorem 3, when m + k ≥ n, comparing
n − m + n − k with k + n − m, we see that more source can be separated by
minimization than maximization if k < 0.5n while maximization is better than
minimization if k > 0.5n. When m + k < n, comparing k + m with k + n − m,
we see that more source can be separated by minimization than maximization
if m > 0.5n while maximization is better than minimization if m < 0.5n.

We further consider a special case that km
i = 1, ∀i. In this case, eq. (2) is

simplified into

J(R) =
n∑

i=1

n∑
j=1

r4
ijν

s
j , n ≥ 2, (13)

From Theorem 2 at n = m, we can easily obtain

Corollary 1. For a unknown integer 0 < k < n with νs
i > 0, i = 1, · · · , k and

νs
i < 0, i = k + 1, · · · , n, every local maximum of J(R) on RRT = I by eq. (13)

is reached at R =
[
Π 0
0 R̄

]
subject to a 2 × 2 permutation, where Π is a k × k

permutation matrix up to sign indeterminacy at its nonzero elements, while R̄
is a (n − k) × (n − k) orthonormal matrix with R̄R̄T = I, but usually not a
permutation matrix up to sign indeterminacy.

Similarly, from Theorem 3 we also get

Corollary 2. For a unknown integer k with 0 < k < n with νs
i > 0, i = 1, · · · , k

and νs
i < 0, i = k + 1, · · · , n, every local minimum of J(R) on RRT = I by

eq.(2) is reached at R =
[

R̄ 0
0 Π

]
subject to a 2 × 2 permutation, where Π is a

(n − k) × (n − k) permutation matrix up to sign indeterminacy at its nonzero
elements, while R̄ is a k× k orthonormal matrix with R̄R̄T = I, but usually not
a permutation matrix up to sign indeterminacy.

It follows from Corollary 1 that k super-gaussian sources can be separated
by maxRRT =I J(R), while it follows from Corollary 2 that n − k sub-gaussian
sources can be separated by minRRT =I J(R). In implementation, from eq. (11)
we get

J(W ) =
n∑

i=1

νy
i , (14)
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and then make maxWW T =I J(W ) to get k super-gaussian source and make
minWW T =I J(W ) to get n− k sub-gaussian source. Thus, instead of learning an
one-to-one kurtosis sign matching, the problem can also be equivalently turned
into a problem of selecting super-gaussian components from y = Wx with W
obtained via maxWW T =I J(W ) and of selecting sub-gaussian components from
y = Wx with W obtained via minWW T =I J(W ). Though we know neither k
nor which of components of y should be selected, we can pick those with pos-
itive signs as super-gaussian ones after maxWW T =I J(W ) and pick those with
negative signs as sub-gaussian ones after minWW T =I J(W ). The reason comes
from νy

i =
∑n

j=1 r4
ijν

s
j and the above corollaries. By Corollary 1, the kurtosis

of each super-gaussian component of y is simply one of νs
j > 0, j = 1, · · · , k.

Though the kurtosis of each of the rest components in y is a weighted combina-
tion of νs

j < 0, j = k + 1, · · · , n, the kurtosis signs of these rest components will
all remain negative. Similarly, we can find out those sub-gaussian components
according to Corollary 2.

Anther corollary can be obtained from eq.(11) by considering a special case
that km

i = sign[νy
i ], ∀i. That is, eq.(11) becomes

max
WW T =I

J(W ), J(W ) =
n∑

i=1

|νy
i |. (15)

Actually, this leads to what is called kurtosis extreme approach and extensions
[8, 13, 16], where studies were started at extracting one source by a vector w and
then extended to extracting multiple sources by either sequentially implement-
ing the one vector algorithm such that the newly extracted vector is orthogonal
to previous ones or in parallel implementing the one vector algorithm on all the
vectors of W separately together with a symmetric orthogonalization made at
each iterative step. In the literature, the success of using one vector vector w to
extract one source has been proved mathematically and the proof can be carried
easily to sequentially extracting a new source with its corresponding vector w
being orthogonal to the subspace spanned by previous. However, this mathemat-
ical proof is not applicable to implementing the one vector algorithm in parallel
on all the vectors of W separately together with a symmetric orthogonalization,
as suggested in Sec.8.4.2 of [13] but with no proof. Actually, what was suggested
there can only ensure a convergence of such a symmetric orthogonalization based
algorithm but is not able to guarantee that this local searching featured iterative
algorithm will surely converge to a solution that can separate all the sources,
though experiments usually turned out with successes.

When νy
i =

∑n
j=1 r4

ijν
s
j holds, from eq.(15) we have minRRT =I J(R), J(R) =∑n

i=1

∑n
j=1 r4

ij |νs
j |, which is covered by Lemma 2(a) and Theorem 2. Thus, we

can directly prove the following corollary:

Corollary 3. As long as νy
i =

∑n
j=1 r4

ijν
s
j holds, every local minimum of the

above J(R) on RRT = I is reached at a permutation matrix up to sign inde-
terminacy.
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Actually, it provides a mathematical proof on the success of the above sym-
metric orthogonalization based algorithm on separating all the sources.

The last but not least, it should be noticed that the above corollaries are true
only when the relation νy

i =
∑n

j=1 r4
ijν

s
j , i = 1, · · · , n holds, which is true only

when there is a large size of samples such that the pre-whitening can be made
perfectly.

3 Combinatorial Optimization in Stiefel Manifold

The combinatorial optimization problem by eq.(3) has been encountered in var-
ious real applications and still remains a hard task to solve. Many efforts have
also been made on in the literature of neural networks since Hopfield and Tank
[12]. As summarized in [21], these efforts can be roughly classified according to
the features on dealing with Ccol

e , Crow
e and Cb. Though having a favorable fea-

ture of being parallel implementable, almost all the neural network motivated
approaches share one unfavorable feature that these intuitive approaches have
no theoretical guarantees on convergence to even a feasible solution. Being dif-
ferent from several existing algorithms in the literature, a general LAGRANGE-
enforcing iterative procedure is proposed firstly in [27] and further developed in
the past decade, and its convergence to even a feasible solution is guaranteed.
Details are referred to [21].

Interestingly, focusing at local maxima only, both eq.(2) and eq.(5) can be
regarded as special examples of the combinatorial optimization problem by eq.(3)
simply via regarding pij or rij as vij . Though such a linkage is not useful for ICA
since we need not to seek a global optimization for making ICA, linking from
eq.(3) reversely to eq.(2) and even eq.(1) leads to one motivation. That is, simply
let vij = r2

ij and then use RRT = I to guarantee the constraints Ccol
e , Crow

e as
well as a relaxed version of Cb (i.e., 0 ≤ vij ≤ 1). That is, the problem eq.(3) is
relaxed into

min
RRT =I for N≤M

Eo({r2
ij}i=N,j=M

i=1,j=1 ), R = {rij}i=N,j=M
i=1,j=1 . (16)

We consider the problems with

∂2Eo(V )
∂vec[V ]∂vec[V ]T

= 0,
∂2Eo(V )

∂vec[V ]∂vec[V ]T
is negative definite, (17)

or Eo(V ) in a form similar to J(P ) in eq.(5), i.e.,

Eo(V ) = −
n∑

i=1

n∑
j=1

v2
ijajbi, (18)

with ai > 0, bi > 0, i = 1, · · · , k and ai < 0, bi < 0, i = 1, · · · , k after an
appropriate permutation on [a1, · · · , an] and on [b1, · · · , bn]. Similar to the study
of eq.(5), maximizing Eo(V ) under the constraints Ccol

e , Crow
e and vij ≥ will

imply the satisfaction of Cb. In other words, the solutions of eq.(16) and of eq.(3)
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are same. Thus, we can solve the hard problem of combinatorial optimization
by eq.(3) via a gradient flow on the Stiefel manifold RRT = I to maximize the
problem by eq.(16). At least a local optimal solution of eq.(3) can be reached,
with all the constraints Ccol

e , Crow
e , and Cb guaranteed automatically.

To get an appropriate updating flow on the Stiefel manifold RRT = I, we
first compute the gradient ∇V Eo(V ) and then get GR = ∇V Eo(V ) ◦ R, where
the notation ◦ means that[

a11 a12

a21 a22

]
◦

[
b11 b12

b21 b22

]
=

[
a11b11 a12b12

a21b21 a22b22

]
.

Given a small disturbance δ on RRT = I, it follows from RRT = I that the
solution of δRRT + RδRT = 0 must satisfy

δR = ZR + U(I − RT R), (19)

where U is any m × d matrix and Z = −Z is an asymmetric matrix.
From Tr[GT

RδR] = Tr[GT
R(ZR+UI−RT R)] = Tr[(GRRT )T Z]+Tr[(GR(I−

RT R))T U ], we get

Z = GRRT − RGT
R, U = GR(I − RT R), δR =

{
U(I − RT R) = U, (a),
ZR, (b),
ZR + U, (c).

Rnew = Rold + γtδR. (20)

That is, we can use anyone of the above three choices of δR as the updating
direction of R. A general technique for optimization on the Stiefel manifold was
elaborately discussed in [9], which can also be adopted for implementing our
problem by eq.(16).

3.1 Concluding Remarks

The one-to-one kurtosis sign matching conjecture has been proved in a strong
sense that every local maximum of maxRRT =I J(R) by eq.(2) is reached at a
permutation matrix up to certain sign indeterminacy if there is an one-to-one
same-sign-correspondence between the kurtosis signs of all source pdf’s and the
kurtosis signs of all model pdf’s. That is, all the sources can be separated by a
local search ICA algorithm. Theorems have also been proved not only on partial
separation of sources when there is a partial matching between the kurtosis signs,
but also on an interesting duality of maximization and minimization on source
separation. Moreover, corollaries are obtained from the theorems to state that
seeking a one-to-one same-sign-correspondence can be replaced by a use of the
duality, i.e., super-gaussian sources can be separated via maximization and sub-
gaussian sources can be separated via minimization. Furthermore, a corollary
is also obtained to provide a mathematical proof on the success of symmetric
orthogonalization implementation of the kurtosis extreme approach.

Due to the results, the open problem of the one-to-one kurtosis sign matching
conjecture [22] can be regarded as closed. However, there still remain problems
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to be further studied. First, the success of those eq.(1) based efforts along this
direction [14, 19, 20, 23, 24, 26] can be explained as their ability of building
up an one-to-one kurtosis sign matching. However, we still need a mathemati-
cal analysis to prove that such a matching can be achieved surely or in certain
probabilistic sense by these approaches. Second, as mentioned at the end of Sec.
2.4, a theoretical guarantee on either the kurtosis extreme approach or the ap-
proach of extracting super-gaussian sources via maximization and sub-gaussian
sources via minimization is true only when there is a large size of samples such
that the pre-whitening can be made perfectly. In practice, usually with only a
finite size of samples, it remains to be further studied on comparison of the two
approaches as well as of those eq.(1) based approaches. Also, comparison may
deserve to made on convergence rates of different ICA algorithms.

The last but not the least, the linkage of the problem by eq. (3) to eq.(2)
and eq.(5) leads us to a Stiefel manifold perspective of combinatorial optimiza-
tion with algorithms that guarantee convergence and satisfaction of constraints,
which also deserve further investigations.
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