Kai Chun Chiu and Lei Xu (2002), Proceedings of International Joint Conference on Neural Networks 2002 (IJCNN '02), Honolulu, Hawaii, USA, May 12-17, 2002, pp 2243-2248.

# A Comparative Study of Gaussian TFA Learning and Statistical Tests on the Factor Number in APT

Kai Chun Chiu and Lei Xu,

Department of Computer Science and Engineering, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. of China.

Abstract— The recently developed TFA model is found to be useful for determining factor number k in classical financial APT analysis. In this paper, comparisons of factor number determination using different techniques will be shown. Results reveal that TFA is superior to MLFA as well as eigenvalue analysis.

## I. INTRODUCTION

Well-known in the finance literature [1], the Arbitrage Pricing Theory (APT) assumes that cross-sectional expected returns of securities follow a multi-factor model which is characterized by their sensitivities, usually called factor loadings, to k unknown economic factors. Pursuit to the original model by Ross, returns are generated under an *exact factor structure* in which the residual component of returns not explained by the factors is uncorrelated among securities, i.e. white noise. Conventional factor analytic approaches such as Maximum Likelihood Factor Analysis (MLFA) have been applied to recover both the factors and factor loadings and subsequent goodness-of-fit hypothesis test such as the Likelihood Ratio (LR) test is carried out to ascertain the minimum number of factors required to fit the model.

Since the key requirement for the APT that nonfactor risk be approximately eliminated through diversification can still be achieved without the assumption of a strict factor structure, Chamberlain and Rothschild [2] extend the exact factor structure to include the so-called *approximate factor structure*. The main difference arises from the residual component being no longer uncorrelated. For the approximate factor structure, weak correlation within the residual component is possible.

Empirical evidence that the minimum number of factors k accepted by LR test tends to increase with the number of crosssectional securities p used creates doubts on the validity of exact factor structure assumption. Rather, this result seems to support the approximate factor structure hypothesis. The reason why k increases with p may be explained by the higher probability of including securities with correlated idiosyncratic returns as p increase. Moreover, the use of an approximate factor model is intuitively more appealing because it makes it probable that there exists some factor pertinent to specific industry rather than to the whole market.

Assuming an approximate factor structure, the LR statistic is no longer useful for the factor number identification purpose. On the other hand, analysis of eigenvalues of population covariance matrix has been proved in [2] to be a suitable criterion. If k eigenvalues of the population covariance matrix increase without bound as the number of securities in the population

The work described in this paper was fully supported by a grant from the Research Grant Council of the Hong Kong SAR (Project No: CUHK 4169/00E).

increases, then the elements of the corresponding k eigenvectors of the covariance matrix can be used as factor sensitivities. Moreover, it has been shown in [3] this conclusion holds for the sample covariance matrix as well. In spite of this, Brown [4] spots that empirically the criterion typically biased towards too few factors and the result consistent with one factor may be equally consistent with k equally weighted factors that are priced. The reason is due to rotation of the original factors that minimizes the apparent number of priced factors.

Recently, the development of Temporal Baysian Ying-Yang (TBYY) Theory proposed by Xu [5], [6] leads to the inception of a new factor analytic technique called Temporal Factor Analysis (TFA). TFA can be seen as an extension to MLFA with the strength to overcome rotation indeterminacy as well as to provide an appropriate answer to the number of hidden factors via its model selection ability. As a result, it may serve as an alternative tool for traditional APT analysis. In this paper, results of a comparative study on factor number determination using typical approaches will be presented.

The rest of the paper is divided into four sections. Section II gives an overview of APT. Section III reviews the TFA model and highlight its benefits in the APT analysis. Hypothetical experiments and statistical tests results will be presented in section IV, which is followed by hypothesis testing on APT using real financial data in section V. Section VI will be devoted to concluding remarks.

## II. THE ARBITRAGE PRICING THEORY

The APT begins with the assumption that the  $n \times 1$  vector of asset returns,  $\tilde{R}_t$ , is generated by a linear stochastic process with k factors [1], [7], [8]:

$$R_t = \bar{R} + Af_t + e_t \tag{1}$$

where  $f_t$  is the  $k \times 1$  vector of realizations of k common factors, A is the  $n \times k$  matrix of factor weights or loadings, and  $e_t$  is a  $n \times 1$  vector of asset-specific risks. It is assumed that  $f_t$  and  $e_t$  have zero expected values so that  $\overline{R}$  is the  $n \times 1$  vector of mean returns.

## **III. TEMPORAL FACTOR ANALYSIS**

## A. An Overview of TFA

 $y_t$ 

Suppose the relationship between a state  $y_t \in \mathbb{R}^k$  and an observation  $x_t \in \mathbb{R}^d$  are described by the first-order state-space equations as follows [5], [6]:

$$= By_{t-1} + \varepsilon_t, \tag{2}$$

$$x_t = Ay_t + e_t, \quad t = 1, 2, \dots, N.$$
 (3)

where  $\varepsilon_t$  and  $e_t$  are mutually independent zero-mean white noises with  $E(\varepsilon_i \varepsilon_j) = \Sigma_{\varepsilon} \delta_{ij}$ ,  $E(e_i e_j) = \Sigma_e \delta_{ij}$ ,  $E(\varepsilon_i e_j) = 0$ , and  $\delta_{ij}$  is the Kronecker delta function:

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$$
(4)

We call  $\varepsilon_t$  driving noise upon the fact that it drives the source process over time. Similarly,  $e_t$  is called measurement noise because it happens to be there during measurement. The above model is generally referred to as the TFA model.

In the context of APT analysis, (1) can be obtained from (3) by substituting  $(\tilde{R}_t - \bar{R})$  for  $x_t$  and  $f_t$  for  $y_t$ . The only difference between the APT model and the TFA model is the added (2) for modelling temporal relation of each factor. The added equation represents the factor series  $y = \{y_t\}_{t=1}^T$  in a multi-channel autoregressive process, driven by an i.i.d. noise series  $\{\varepsilon_t\}_{t=1}^T$  that are independent of both  $y_{t-1}$  and  $e_t$ . Specifically, it is assumed that  $\varepsilon_t$  is Gaussian distributed. Moreover, TFA is defined such that the k sources  $y_t^{(1)}, y_t^{(2)}, \ldots, y_t^{(k)}$  in this state-space model are statistically independent. The objective of TFA [5], [6] is to estimate the sequence of  $y_t$ 's with unknown model parameters  $\Theta = \{A, B, \Sigma_{\varepsilon}, \Sigma_e\}$  through available observations.

In implementation, an adaptive algorithm has been suggested. At each time unit, factor loadings are estimated by crosssectional regression and factor scores are estimated by maximum likelihood learning. Xu proposes a simplified version of the algorithm in [6] and is as shown below.

Assume  $G(\varepsilon_t|0, \mathbf{I})$  and  $G(e_t|0, \Sigma)$ .

• Step 1 Fix A, B and  $\Sigma$ , estimate the hidden factors  $y_t$  by

$$\hat{y}_t = [I + A^T \Sigma^{-1} A]^{-1} (A^T \Sigma^{-1} \bar{x}_t + B \hat{y}_{t-1}), \quad (5)$$

$$\varepsilon_t = \hat{y}_t - B\hat{y}_{t-1},\tag{6}$$

$$e_t = \bar{x}_t - A\hat{y}_t, \tag{7}$$

• Step 2 Fix,  $\hat{y}_t$ , update B, A and  $\Sigma_e$  by gradient descent method as follows:

$$B^{\text{new}} = B^{\text{old}} + \eta \text{diag}[\varepsilon_{t} \hat{y}_{t-1}^{\text{T}}], \qquad (8)$$

$$A^{\text{new}} = A^{\text{old}} + \eta e_t \hat{y}_t^T, \qquad (9)$$

$$\Sigma^{\text{new}} = (1 - \eta)\Sigma^{\text{old}} + \eta e_t e_t^T.$$
(10)

#### B. Model Selection vs Appropriate Number of Factors

Central to the discussion in the paper about the number of factors in APT, TFA is superior to MLFA in view of its model selection ability. In the context of APT analysis, the scale or complexity of the model is equivalent to the number of hidden factors in the original factor structure. As a result, model selection refers to deciding the appropriate number of factors in APT. We can achieve the aim of model selection by enumerating the cost function J(k) with k incrementally and then select an appropriate k by [6], [9], [10]

$$\min_{k} J(k) = \frac{1}{2} [k \ln(2\pi) + k + \ln|\Sigma|]$$
(11)

where  $\Sigma$  is the covariance matrix of measurement noise.

## C. Grounds and Benefits for Using TFA in APT Analysis

Firstly, we believe that factors has Gaussian distributions. There is a consensus that the noisy component in most econometric and statistical models being Gaussian distributed. The rationale comes from the central limit theorem which implies that the compounding of a large number of unknown distributions will be approximately normal. Secondly, we believe that factors recovered must be independent of each other. Although economic factors are seldom independent, it is helpful to discover statistically independent factors for the purpose of analysis because the restriction of independence will rule out many possible solutions which contain redundant elements. Furthermore, economic interpretation of factors recovered can be easily achieved by appropriate combination of those independent factors. Thirdly, we believe there exists temporal relation between factors. Equation (2) of the TFA model is nothing more than an AR(1) time series model. The reason why an AR model of order more than 1 is not required can be attributed to the weak form of Efficient Market Hypothesis (EMH). Given the assumption of the weak form EMH is valid, stock price today is conditionally independent of all previous prices given the price of yesterday.

Compared with MLFA, TFA has at least three benefits. First, with the independence assumption in the derivation, the recovered factors are assured to be statistically independent. Second, it has been shown in [5] that taking into account temporal relation effectively removes rotation indeterminacy. As a result, the solution given by TFA is unique. Theorem 3 in [5] illustrates this point. Third, it can determine the number of hidden factors via its model selection ability. Moreover, it should be noted that MLFA is a special case of the model with B = 0 in (2).

#### IV. COMPARISONS USING HYPOTHETICAL DATA

In this section, we aim to support our discussions above by hypothetical experiments. In the sequel, we will present the results of APT test using real stock return data.

## A. Test Methodology

For hypothetical and real experiments, we will compare the sensitivity of different tests on identifying the number of factors k with regard to the number of securities used. As discussed above, under the assumption of exact factor structure we will first use LR test on the results of MLFA. Then we will analyze the eigenvalues of the sample covariance matrix, assuming an underlying approximate factor structure. Finally, the results will be compared with that found by TFA's model selection criterion.

#### B. LR Test Statistic

The LR statistic proposed in [11] and modified in [12] is given by

LR = 
$$(N - \frac{2p + 4k + 11}{6})(\ln |AA' + \Sigma| - \ln |S|)$$
  
+  $(N - \frac{2p + 4k + 11}{6})(\operatorname{tr}[(AA' + \Sigma)^{-1}S] - p),$ 

where N is the sample size, S is the sample return covariance matrix and p is the total number of securities. The first and second terms in the sum of LR refer to the variance and bias components, respectively, of the statistic [13]. It has been shown in [11] that the maximum likelihood factor estimates are unbiased, and consequently, the bias component will converge asymptotically to zero. As a result, the LR statistic measures the overall error in the factor estimates of the sample covariances by comparing the generalized variances. When the normality assumptions apply, general properties of the LR statistic establish that it has an asymptotic central  $\chi^2$  distribution with  $[(p - k)^2 - (p + k)]/2$ degrees of freedom. The minimum number of factors k can be inferred from the computed p value at a specific level of significance, which is 5% in this paper.

## C. Eigenvalues Analysis

Eigenvalues of the sample correlation or covariance matrix can be obtained either by direct calculation or indirectly via performing PCA. According to [2], for an approximate k-factor structure, the first k eigenvalues of the covariance matrix of returns grow without limit as the number of securities, p, increases, while the remaining p - k stay constant. However, for limited number of securities, we can only determine the factor number heuristically via counting the number of relatively large eigenvalues.

## D. Experimental Illustrations

In this experiment, we assume returns of 30, 60 and 90 securities being generated randomly via a fixed number of factors 5 by the TFA model in (2) & (3). The parameters used to generate N = 1000 data points are predetermined as follows:

A: a  $p \times 5$  matrix where p = 30, 60 or 90,

$$\mathbf{B}: \quad B = \begin{pmatrix} 0.12 & 0 & 0 & 0 & 0 \\ 0 & 0.21 & 0 & 0 & 0 \\ 0 & 0 & -0.15 & 0 & 0 \\ 0 & 0 & 0 & 0.24 & 0 \\ 0 & 0 & 0 & 0 & -0.13 \end{pmatrix}$$

- $\varepsilon_t$ : randomly generated with pdf  $G(\varepsilon_t|0, I)$  where I is an identity matrix of order 5,
- et: randomly generated with pdf  $G(e_t|0, \Sigma)$  where  $\Sigma$ is a  $p \times p$  matrix with diagonal elements  $\sigma_{ii}$  and off-diagonal elements  $\sigma_{ij}$  and  $\sigma_{ii} \sim U(0.1, 0.25)$ ,  $\sigma_{ij} \sim U(0, 0.01)$ , where U(p, q) denotes uniform distribution in the interval [a, b],

**y**<sub>0</sub>: 
$$y_0 = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}^T$$
.

Experimental results showing the number of factors identified by LR statistics are shown in Table I and that by eigenvalues analysis and TFA are shown in Table II.

As shown in Table I, the minimum number of factors k identified by MLFA and LR statistics is very sensitive to the number of securities p and increases progressively with p. The acceptable k at 5% level of significance is 8, 15 and 22 for 30, 60 and 90 securities respectively. On the other hand, evidence in Table II based on eigenvalues of sample covariance matrices seems to support the one-factor structure. Clearly, decision based on LR statistics tends to overestimate k while that based on eigenvalues tends to understate the same. The cost function J(k) is not only insensitive to p, but also estimates k correctly in all three cases. This can be seen from Table II that all minima of J(k) occur at

TABLE I SENSITIVITIES OF LR STATISTIC TO THE NUMBER OF SECURITIES FOR FACTOR NUMBER DETERMINATION

|    | 30 Securities |          |         |  |  |  |
|----|---------------|----------|---------|--|--|--|
| k  | D.f.          | LR Stat. | p-Value |  |  |  |
| 1  | 405           | 22382.70 | 0.0000  |  |  |  |
| 2  | 376           | 16301.92 | 0.0000  |  |  |  |
| 3  | 348           | 9892.19  | 0.0000  |  |  |  |
| 4  | 321           | 3629.01  | 0.0000  |  |  |  |
| 5  | 295           | 413.43   | 0.0000  |  |  |  |
| 6  | 270           | 354.16   | 0.0004  |  |  |  |
| 7  | 246           | 301.05   | 0.0095  |  |  |  |
| 8  | 223           | 245.44   | 0.1445  |  |  |  |
| 9  | 201           | 205.01   | 0.4083  |  |  |  |
| 10 | 180           | 170.33   | 0.6857  |  |  |  |
| 11 | 160           | 136.31   | 0.9128  |  |  |  |
| 12 | 141           | 111.52   | 0.9682  |  |  |  |
| 13 | 123           | 85.43    | 0.9960  |  |  |  |
| 14 | 106           | 68.12    | 0.9984  |  |  |  |
| 15 | 90            | 52.90    | 0.9994  |  |  |  |
| 16 | 75            | 36.95    | 0.9999  |  |  |  |
|    |               |          |         |  |  |  |

k = 5. Fig. 1 plots the values of J(k) against the number of factors for different number of securities.



Fig. 1. J(k) for different number of securities using hypothetical data.

## V. COMPARISONS USING REAL FINANCIAL DATA

In this section, similar methodology discussed in the last section will be applied to historical stock data for the analysis of APT.

## A. Data Considerations

We have carried out our analysis using past stock price and return data of Hong Kong. Daily closing prices of 86 actively trading stocks covering the period from January 1, 1998 to December 31, 1999 are used. The number of trading days throughout this period is 522. These stocks can be subdivided into three main categories according to different indices they constitute. Of the 86 equities, 30 of them belongs to the Hang Seng Index (HSI) constituents, 32 are Hang Seng China-Affiliated Corpora-

TABLE I CONTINUED.

|    | 60 Securities |          |                 |  |
|----|---------------|----------|-----------------|--|
| k  | D.f.          | LR Stat. | <i>p</i> -Value |  |
| 1  | 1710          | 56457.41 | 0.0000          |  |
| 2  | 1651          | 40846.49 | 0.0000          |  |
| 3  | 1593          | 27085.83 | 0.0000          |  |
| 4  | 1536          | 11633.35 | 0.0000          |  |
| 5  | 1480          | 2039.07  | 0.0000          |  |
| 6  | 1425          | 1881.16  | 0.0000          |  |
| 7  | 1371          | 1761.94  | 0.0000          |  |
| 8  | 1318          | 1649.73  | 0.0000          |  |
| 9  | 1266          | 1541.83  | 0.0000          |  |
| 10 | 1215          | 1446.79  | 0.0000          |  |
| 11 | 1165          | 1362.35  | 0.0000          |  |
| 12 | 1116          | 1275.88  | 0.0006          |  |
| 13 | 1068          | 1200.28  | 0.0028          |  |
| 14 | 1021          | 1118.80  | 0.0173          |  |
| 15 | 975           | 1036.56  | 0.0837          |  |
| 16 | 930           | 964.72   | 0.2088          |  |
| 17 | 886           | 898.52   | 0.3776          |  |
| 18 | 843           | 833.85   | 0.5822          |  |
| 19 | 801           | 773.62   | 0.7503          |  |
| 20 | 760           | 714.91   | 0.8776          |  |
| 21 | 720           | 657.58   | 0.9533          |  |
| 22 | 681           | 603.74   | 0.9846          |  |
| 23 | 643           | 559.14   | 0.9924          |  |
| 24 | 606           | 515.95   | 0.9966          |  |
| 25 | 570           | 470.37   | 0.9991          |  |

tions Index (HSCCI) constituents and the remaining 24 are Hang Seng China Enterprises Index (HSCEI) constituents.

## B. Data Preprocessing

Before carrying out the analysis, the stock prices must be converted to stationary stock returns. The transformation applied can be described in four steps as shown below.

Step 1 Transform the raw prices to returns by  $R_t = \frac{p_t - p_{t-1}}{p_{t-1}}.$ Calculate the mean return  $\bar{R}$  by  $\frac{1}{N} \sum_{t=1}^{N} R_t.$ 

- Step 2
- Step 3 Subtract  $\overline{R}$  from  $R_t$  to get the zero-mean return.
- Step 4 Let the result of above transformation be the adjusted return  $R_t$ .

#### C. Empirical Test Results

The aim of our experiment is examine the relationship between the number of factors affecting stocks of various indices as well as the whole market. Table VII gives an overview of the final results based on the details shown in Table III, IV, V and VI. From Table VII, we can see that the number of factors kdetermined based on the methodology of MLFA increases progressively with the number of securities included in a particular group. According to MLFA, there are 11 factors for HSI constituents, 12 for HSCCI constituents, 9 for HSCEI constituents

TABLE I CONTINUED.

|                |      | 90 Securiti | es              |
|----------------|------|-------------|-----------------|
| $\overline{k}$ | D.f. | LR Stat.    | <i>p</i> -Value |
| 1              | 3915 | 87345.03    | 0.0000          |
| 2              | 3826 | 66935.65    | 0.0000          |
| 3              | 3738 | 47084.75    | 0.0000          |
| 4              | 3651 | 24081.84    | 0.0000          |
| 5              | 3565 | 4753.52     | 0.0000          |
| 6              | 3480 | 4527.27     | 0.0000          |
| 7              | 3396 | 4336.92     | 0.0000          |
| 8              | 3313 | 4172.11     | 0.0000          |
| 9              | 3231 | 4005.57     | 0.0000          |
| 10             | 3150 | 3851.76     | 0.0000          |
| 11             | 3070 | 3693.61     | 0.0000          |
| 12             | 2991 | 3541.37     | 0.0000          |
| 13             | 2913 | 3400.69     | 0.0000          |
| 14             | 2836 | 3265.36     | 0.0000          |
| 15             | 2760 | 3139.81     | 0.0000          |
| 16             | 2685 | 3008.03     | 0.0000          |
| 17             | 2611 | 2882.60     | 0.0001          |
| 18             | 2538 | 2766.56     | 0.0009          |
| 19             | 2466 | 2656.09     | 0.0040          |
| 20             | 2395 | 2551.48     | 0.0131          |
| 21             | 2325 | 2440.66     | 0.0466          |
| 22             | 2256 | 2341.54     | 0.1025          |
| 23             | 2188 | 2254.77     | 0.1564          |
| 24             | 2121 | 2157.80     | 0.2837          |
| 25             | 2055 | 2056.26     | 0.4880          |
| 26             | 1990 | 1961.68     | 0.6702          |
| 27             | 1926 | 1863.31     | 0.8439          |
| 28             | 1863 | 1783.27     | 0.9056          |
| 29             | 1801 | 1701.73     | 0.9530          |
| 30             | 1740 | 1611.15     | 0.9871          |
| 31             | 1680 | 1538.08     | 0.9940          |
| 32             | 1621 | 1463.44     | 0.9978          |

and 33 for all market securities as a whole. On the other hand, the number of factors as revealed through the analysis of eigenvalues of sample covariance matrix is 1 irrespective of indices. The findings by the previous two methods can be contrasted with that discovered by the model selection criterion of TFA. Since the unique k associated with the minimum value of the cost function J(k) corresponds to the appropriate factor number in APT, the factor numbers are 4 for both HSI and HSCEI, 3 for HSCCI and 5 for all securities. Fig. 2 shows a plot of J(k)against the factor number k for different index constituents.

## D. Result Interpretation

The correct determination of factor number is critical for the test of APT. However, the issue of the appropriate number of factors has been the subject of some controversy in the literature [7], [14], [15], [16], [13], [4]. Although Roll and Ross [7] are keen on the belief that the number of factors is not more than five based on some empirical research findings, it is still far from conclusive because the tool on which the financial APT analy-

TABLE II Sensitivities of eigenvalue and J(k) to the number of securities for factor number determination.

|    | Eigenvalue |        |        | Values of $J(k)$ |        |        |
|----|------------|--------|--------|------------------|--------|--------|
| k  | 30 Sec     | 60 Sec | 90 Sec | 30 Sec           | 60 Sec | 90 Sec |
| 1  | 35.97      | 79.00  | 120.03 | -1.00            | -12.69 | -25.76 |
| 2  | 4.51       | 8.86   | 11.31  | -7.09            | -29.19 | -54.75 |
| 3  | 3.39       | 6.06   | 8.81   | -9.10            | -36.48 | -62.57 |
| 4  | 2.81       | 5.91   | 8.16   | -10.69           | -37.67 | -64.72 |
| 5  | 1.46       | 3.08   | 5.58   | -11.96           | -38.73 | -65.97 |
| 6  | 0.28       | 0.31   | 0.34   | -11.15           | -38.41 | -65.27 |
| 7  | 0.26       | 0.30   | 0.33   | -10.57           | -37.91 | -64.38 |
| 8  | 0.24       | 0.28   | 0.32   | -10.09           | -37.36 | -63.67 |
| 9  | 0.23       | 0.27   | 0.31   | -9.56            | -36.77 | -62.92 |
| 10 | 0.22       | 0.27   | 0.29   | -9.03            | -36.24 | -62.21 |
| 11 | 0.21       | 0.25   | 0.29   | -8.42            | -35.19 | -61.45 |
| 12 | 0.20       | 0.24   | 0.28   | -7.69            | -34.21 | -60.52 |

TABLE III Empirical results of factor number determination using real stock data: 30 HSI constituents.

| k  | D.f. | LR Stat. | <i>p</i> -Value | Eigen. | J(k)     |
|----|------|----------|-----------------|--------|----------|
|    |      |          |                 |        |          |
| 1  | 405  | 1753.21  | 0.0000          | 0.0180 | -30.0975 |
| 2  | 376  | 1372.65  | 0.0000          | 0.0020 | -39.4636 |
| 3  | 348  | 1051.90  | 0.0000          | 0.0014 | -40.8083 |
| 4  | 321  | 746.88   | 0.0000          | 0.0013 | -42.4021 |
| 5  | 295  | 575.57   | 0.0000          | 0.0012 | -41.4884 |
| 6  | 270  | 463.34   | 0.0000          | 0.0011 | -40.5723 |
| 7  | 246  | 396.55   | 0.0000          | 0.0009 | -39.6502 |
| 8  | 223  | 320.69   | 0.0000          | 0.0008 | -38.4755 |
| 9  | 201  | 265.05   | 0.0016          | 0.0008 | -37.3477 |
| 10 | 180  | 212.93   | 0.0470          | 0.0008 | -36.2142 |
| 11 | 160  | 175.97   | 0.1836          | 0.0007 | -35.0094 |
| 12 | 141  | 146.20   | 0.3649          | 0.0006 | -33.7939 |
| 13 | 123  | 112.61   | 0.7387          | 0.0006 |          |
| 14 | 106  | 91.02    | 0.8497          | 0.0006 |          |
| 15 | 90   | 66.69    | 0.9689          | 0.0005 |          |
| 16 | 75   | 50.61    | 0.9863          | 0.0005 |          |
| 17 | 61   | 34.31    | 0.9977          | 0.0004 |          |
| 18 | 48   | 23.10    | 0.9991          | 0.0004 |          |

sis is based suffers from various indeterminacies discussed in the previous sections. Consequently, the determination of factor number can be described as being based on some heuristic approaches. Intuitively, we do not expect the factor number to grow with the number of securities used under a stable market structure, nor do we expect the number of factors to be one because both theoretically and empirically the multi-factor APT model is expected to be superior to the one-factor Capital Asset Pricing Model (CAPM). Interestingly, the factor number determined via the cost function J(k) and TFA is quite reasonable and agrees with our intuition.

TABLE IV Empirical results of factor number determination using real stock data: 32 HSCCI constituents.

| k  | D.f. | LR Stat. | p-Value | Eigen. | J(k)     |
|----|------|----------|---------|--------|----------|
|    |      |          |         |        |          |
| 1  | 464  | 2132.32  | 0.0000  | 0.0427 | -33.9164 |
| 2  | 433  | 1597.10  | 0.0000  | 0.0048 | -42.8971 |
| 3  | 403  | 1257.86  | 0.0000  | 0.0043 | -47.8219 |
| 4  | 374  | 991.13   | 0.0000  | 0.0026 | -46.9477 |
| 5  | 346  | 748.25   | 0.0000  | 0.0023 | -46.0319 |
| 6  | 319  | 624.20   | 0.0000  | 0.0019 | -45.0285 |
| 7  | 293  | 495.61   | 0.0000  | 0.0019 | -43.9239 |
| 8  | 268  | 406.72   | 0.0000  | 0.0018 | -42.7937 |
| 9  | 244  | 339.17   | 0.0001  | 0.0017 | -41.6815 |
| 10 | 221  | 286.07   | 0.0021  | 0.0016 | -40.5148 |
| 11 | 199  | 237.61   | 0.0318  | 0.0015 | -39.2081 |
| 12 | 178  | 201.73   | 0.1074  | 0.0014 | -37.9458 |
| 13 | 158  | 168.74   | 0.2649  | 0.0012 |          |
| 14 | 139  | 141.90   | 0.4158  | 0.0012 |          |
| 15 | 121  | 113.73   | 0.6678  | 0.0011 |          |
| 16 | 104  | 88.18    | 0.8668  | 0.001  |          |
| 17 | 88   | 75.11    | 0.8346  | 0.0009 |          |
| 18 | 73   | 48.25    | 0.9888  | 0.0009 |          |
| 19 | 59   | 33.05    | 0.9975  | 0.0008 |          |
| 20 | 46   | 22.80    | 0.9984  | 0.0008 |          |
| 21 | 34   | 14.20    | 0.9989  | 0.0007 |          |



Fig. 2. Plot of J(k) against k for different index constituents.

## VI. CONCLUSION

In this paper, we have conducted a comparative study on factor number determination in financial APT analysis. It is found that LR test on results of MLFA is biased towards more factors while the identification via eigenvalues of sample covariance matrix tends to bias towards a smaller factor number. Empirical test results reveal that TFA can estimate the correct number of factors via a simple cost function and thus TFA can provide a reasonable answer to the number of existing factors in the stock market in Hong Kong.

TABLE V Empirical results of factor number determination using real stock data: 24 HSCEI constituents.

| $\frac{k}{k}$ | D.f. | LR Stat. | <i>p</i> -Value | Eigen. | J(k)     |
|---------------|------|----------|-----------------|--------|----------|
|               |      |          | 1               | 0      |          |
| 1             | 252  | 1155.54  | 0.0000          | 0.0294 | -19.1867 |
| 2             | 229  | 707.41   | 0.0000          | 0.0034 | -26.7143 |
| 3             | 207  | 519.18   | 0.0000          | 0.0027 | -30.1253 |
| 4             | 186  | 402.98   | 0.0000          | 0.0022 | -31.7391 |
| 5             | 166  | 335.53   | 0.0000          | 0.0020 | -30.9156 |
| 6             | 147  | 273.94   | 0.0000          | 0.0018 | -30.0051 |
| 7             | 129  | 223.13   | 0.0000          | 0.0015 | -29.0193 |
| 8             | 112  | 171.50   | 0.0003          | 0.0015 | -28.0158 |
| 9             | 96   | 135.15   | 0.0052          | 0.0014 | -26.9287 |
| 10            | 81   | 105.64   | 0.0344          | 0.0012 | -25.7410 |
| 11            | 67   | 77.31    | 0.1826          | 0.0012 | -24.5273 |
| 12            | 54   | 47.45    | 0.7234          | 0.0011 | -23.3333 |
| 13            | 42   | 29.45    | 0.9280          | 0.0011 |          |
| 14            | 31   | 16.74    | 0.9826          | 0.0010 |          |

## References

- S. Ross, "The arbitrage theory of capital asset pricing," *Journal of Economic Theory*, vol. 13, pp. 341–360, 1976.
- [2] G. Chamberlain and M. Rothschild, "Arbitrage and mean variance analysis on large asset markets," *Econometrica*, vol. 51, pp. 1281–1304, 1983.
- [3] G. Connor and R. Korajczyk, "Risk and return in an equilibrium apt: application of a new methodology," *Journal of Financial Economics*, vol. 21, pp. 255–289, 1988.
- [4] S. Brown, "The number of factors in security returns," *Journal of Finance*, vol. 44, pp. 1247–1262, 1989.
- [5] L. Xu, "Temporal byy learning for state space approach, hidden markov model and blind source separation," *IEEE Trans. on Signal Processing*, vol. 48, pp. 2132–2144, 2000.
- [6] L. Xu, "Byy harmony learning, independent state space and generalized apt financial analyses," *IEEE Transactions on Neural Networks*, vol. 12, no. 4, pp. 822–849, 2001.
- [7] R. Roll and S. Ross, "An empirical investigation of the arbitrage pricing theory," *Journal of Finance*, vol. 35, pp. 1073–1103, 1980.
- [8] R. Roll and S. Ross, "The arbitrage pricing theory approach to strategic portfolio planning," *Financial Analysts Journal*, vol. 40, pp. 14–26, 1984.
- [9] L. Xu, "Bayesian ying-yang learning theory for data dimension reduction and determination," *Journal of Computational Intelligence in Finance*, vol. 6, no. 5, pp. 6–18, 1998.
- [10] L. Xu, "Best harmony, unified rpcl and automated model selection for unsupervised and supervised learning on gaussian mixtures, three-layer nets and me-rbf-svm models," *International Journal of Neural Systems*, vol. 11, pp. 43–69, 2001.
- [11] D. N. Lawley and A. E. Maxwell, Factor Analysis as a Statistical Method, London:Butterworth, 1963.
- [12] M. S. Bartlett, "Tests of significance in factor analysis," *British Journal of Mathematical and Statistical Psychology*, vol. 3, pp. 77–85, 1950.
- [13] D. Conway and M. Reinganum, "Stable factors in security returns: identification using cross validation," *Journal of Business and Economic Statistics*, vol. 6, pp. 1–15, 1988.
- [14] R. Roll and S. Ross, "A critical reexamination of the empirical evidence on the arbitrage pricing theory: a reply," *Journal of Finance*, vol. 39, pp. 347–350, 1984.
- [15] P. Dhrymes, I. Friend, and N. Gultekin, "A critical reexamination of the empirical evidence on the arbitrage pricing theory," *Journal of Finance*, vol. 39, pp. 323–346, 1984.
- [16] C. Trzcinka, "On the number of factors in the arbitrage pricing model," *Journal of Finance*, vol. 41, pp. 347–368, 1986.

TABLE VI Empirical results of factor number determination using real stock data: all 86 securities.

| k  | D.f.  | LR Stat. | p-Value | Eigen. | J(k)      |
|----|-------|----------|---------|--------|-----------|
| _  |       |          | 0.000-  |        |           |
| 1  | 70124 | 13836.27 | 0.0000  | 0.0794 | -57.5487  |
| 2  | 69749 | 8974.26  | 0.0000  | 0.0090 | -82.0707  |
| 3  | 69375 | 8013.02  | 0.0000  | 0.0055 | -96.5370  |
| 4  | 69002 | 7322.74  | 0.0000  | 0.0049 | -99.8654  |
| 5  | 68630 | 6748.97  | 0.0000  | 0.0042 | -101.7367 |
| 6  | 68259 | 6206.89  | 0.0000  | 0.0033 | -100.8063 |
| 7  | 67889 | 5734.00  | 0.0000  | 0.0030 | -99.7729  |
| 8  | 67520 | 5386.65  | 0.0000  | 0.0028 | -98.8376  |
| 9  | 67152 | 5013.30  | 0.0000  | 0.0024 | -97.7964  |
| 10 | 66785 | 4715.36  | 0.0000  | 0.0022 | -96.6583  |
| 11 | 66419 | 4477.92  | 0.0000  | 0.0021 | -95.5152  |
| 12 | 66054 | 4246.48  | 0.0000  | 0.0021 | -94.2694  |
| 13 | 65690 | 4027.50  | 0.0000  | 0.0020 |           |
| 14 | 65327 | 3817.85  | 0.0000  | 0.0019 |           |
| 15 | 64965 | 3637.25  | 0.0000  | 0.0018 |           |
| 16 | 64604 | 3461.50  | 0.0000  | 0.0018 |           |
| 17 | 64244 | 3294.01  | 0.0000  | 0.0017 |           |
| 18 | 63885 | 3149.45  | 0.0000  | 0.0016 |           |
| 19 | 63527 | 3001.69  | 0.0000  | 0.0016 |           |
| 20 | 63170 | 2848.76  | 0.0000  | 0.0015 |           |
| 21 | 62814 | 2708.99  | 0.0000  | 0.0014 |           |
| 22 | 62459 | 2557.03  | 0.0000  | 0.0014 |           |
| 23 | 62105 | 2425.27  | 0.0000  | 0.0013 |           |
| 24 | 61752 | 2299.82  | 0.0000  | 0.0013 |           |
| 25 | 61400 | 2184.25  | 0.0000  | 0.0013 |           |
| 26 | 61049 | 2072.12  | 0.0000  | 0.0012 |           |
| 27 | 60699 | 1973.43  | 0.0000  | 0.0012 |           |
| 28 | 60350 | 1869.59  | 0.0000  | 0.0012 |           |
| 29 | 60002 | 1774.60  | 0.0002  | 0.0011 |           |
| 30 | 59655 | 1681.16  | 0.0013  | 0.0011 |           |
| 31 | 59309 | 1586.46  | 0.0082  | 0.0011 |           |
| 32 | 58964 | 1502.31  | 0.0275  | 0.0010 |           |
| 33 | 58620 | 1418.03  | 0.0813  | 0.0010 |           |
| 34 | 58277 | 1342.88  | 0.1584  | 0.0010 |           |
| 35 | 57935 | 1270.46  | 0.2676  | 0.0009 |           |
| 36 | 57594 | 1199.01  | 0.4136  | 0.0009 |           |
| 37 | 57254 | 1138.35  | 0.4999  | 0.0009 |           |
| 38 | 56915 | 1068.94  | 0.6699  | 0.0009 |           |
| 39 | 56577 | 999.59   | 0.8231  | 0.0008 |           |
| 40 | 56240 | 919.63   | 0.9572  | 0.0008 |           |
|    |       |          |         |        |           |

#### TABLE VII

Results summary of factor number k determined based on real financial data.

|                | Total number  |      |        |      |
|----------------|---------------|------|--------|------|
| Stock index    | of securities | MLFA | Eigen. | J(k) |
| HSI            | 30            | 11   | 1      | 4    |
| HSCCI          | 32            | 12   | 1      | 3    |
| HSCEI          | 24            | 9    | 1      | 4    |
| All Securities | 86            | 33   | 1      | 5    |