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Abstract—The recently developed TFA model is found to be useful for increases, then the elements of the corresponiiegenvec-
determining factor number k in classical financial APT analysis. In this tors of the covariance matrix can be used as factor sensitivities.
e o sacen Moreover, it has been shown in [3] this conclusion holds for
as eigenvalue analysis. the sample covariance matrix as well. In spite of this, Brown
[4] spots that empirically the criterion typically biased towards
too few factors and the result consistent with one factor may
be equally consistent with equally weighted factors that are

Well-known in the finance literature [1], the Arbitrage Pricingriced. The reason is due to rotation of the original factors that
Theory (APT) assumes that cross-sectional expected returngniiimizes the apparent number of priced factors.
securities follow a multi-factor model which is characterized by Recently, the development of Temporal Baysian Ying-Yang
their sensitivities, usually called factor loadings Atainknown (TBYY) Theory proposed by Xu [5], [6] leads to the inception
economic factors. Pursuit to the original model by Ross, returosa new factor analytic technique called Temporal Factor Anal-
are generated under aract factor structurén which the resid- ysis (TFA). TFA can be seen as an extension to MLFA with the
ual component of returns not explained by the factors is uncetrength to overcome rotation indeterminacy as well as to pro-
related among securities, i.e. white noise. Conventional factgte an appropriate answer to the number of hidden factors via
analytic approaches such as Maximum Likelihood Factor Anals model selection ability. As a result, it may serve as an al-
ysis (MLFA) have been applied to recover both the factors anginative tool for traditional APT analysis. In this paper, results
factor loadings and subsequent goodness-of-fit hypothesis tsfsh comparative study on factor number determination using
such as the Likelihood Ratio (LR) test is carried out to ascertaifpical approaches will be presented.
the minimum number of factors required to fit the model. The rest of the paper is divided into four sections. Section II

Since the key requirement for the APT that nonfactor rigfives an overview of APT. Section Il reviews the TFA model
be approximately eliminated through diversification can stiéind highlight its benefits in the APT analysis. Hypothetical ex-
be achieved without the assumption of a strict factor structupgriments and statistical tests results will be presented in section
Chamberlain and Rothschild [2] extend the exact factor strud4, which is followed by hypothesis testing on APT using real
ture to include the so-calleabproximate factor structureThe financial data in section V. Section VI will be devoted to con-
main difference arises from the residual component being omding remarks.
longer uncorrelated. For the approximate factor structure, weak
correlation within the residual component is possible. Il. THE ARBITRAGE PRICING THEORY

Empirical evidence that the minimum number of factoesc- The APT begins with the assumption that the< 1 vector of
cepted by LR test tends to increase with the number of crossset returnsz,, is generated by a linear stochastic process with
sectional securities used creates doubts on the validity of exagt factors [1], [7], [8]:
factor structure assumption. Rather, this result seems to support - _
the approximate factor structure hypothesis. The reason why By=R+Afi+e (1)

k increases wittp may be explained by the higher probabilityynere £, is thek x 1 vector of realizations of common factors,
of including securities with correlated idiosyncratic returns as is then x k& matrix of factor weights or loadings, angis a
p increase. Moreover, the use of an approximate factor model, | yector of asset-specific risks. It is assumed thande,

is intuitively more appealing because it makes it probable thate zero expected values so tRais then x 1 vector of mean
there exists some factor pertinent to specific industry rather thai ,rns.

to the whole market.
Assuming an approximate factor structure, the LR statistic is I1l. TEMPORAL FACTOR ANALYSIS
no longer useful for the factor number identification purposg. an overview of TEA

On the other hand, analysis of eigenvalues of population covari- ) _ .
ance matrix has been proved in [2] to be a suitable criterion. SUPPOSe the relationship between a sgate R* and an ob-

If k eigenvalues of the population covariance matrix increaSgrvationz; ¢ R¢ are descr|bed by the first-order state-space
without bound as the number of securities in the populatiGfiuations as follows [5], [6]:

Y+ = By +e, (2)
Ayt+€t7 t:1,2,...,N. (3)

I. INTRODUCTION
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C. Grounds and Benefits for Using TFA in APT Analysis
where e, and e¢; are mutually independent zero-mean white Firstly
noises WlthE(z‘;'ZE]) = EE(Sijv E(eiej) = Eeéij, E(Eiej) =0, ’
andd;; is the Kronecker delta function:

we believe that factors has Gaussian distributions.
There is a consensus that the noisy component in most econo-
metric and statistical models being Gaussian distributed. The

L rationale comes from the central limit theorem which implies
8i; = 1, ifi= Jj () that the compounding of a large number of unknown distribu-
0, otherwise tions will be approximately normal. Secondly, we believe that

factors recovered must be independent of each other. Although

We calle; driving noise upon the fact that it drives the sourcgconomic factors are seldom independent, it is helpful to dis-
process over time. Similarly;; is called measurement noisecover statistically independent factors for the purpose of analy-
because it happens to be there during measurement. The ak@y®ecause the restriction of independence will rule out many
model is generally referred to as the TFA model. possible solutions which contain redundant elements. Further-

In the context of APT analysis, (1) can be obtained from ($)ore, economic interpretation of factors recovered can be easily
by substituting &; — R) for 2, and f; for y,. The only difference achieved by appropriate combination of those independent fac-
between the APT model and the TFA model is the added (2) f@fs. Thirdly, we believe there exists temporal relation between
modelling temporal relation of each factor. The added equatigfttors. Equation (2) of the TFA model is nothing more than an
represents the factor serigs= {y; };_, in a multi-channel auto- AR(1) time series model. The reason why an AR model of order
regressive process, driven by an i.i.d. noise sefie/_; that more than 1 is not required can be attributed to the weak form
are independent of botj) _, ande;. Specifically, it is assumed of Efficient Market Hypothesis (EMH). Given the assumption of
thate; is Gaussian distributed. Moreover, TFA is defined suGfe weak form EMH is valid, stock price today is conditionally
that thek sourcesy!”, 51>,...,y" in this state-space modelindependent of all previous prices given the price of yesterday.
are statistically independent. The objective of TFA [5], [6] is to Compared with MLFA, TFA has at least three benefits. First,
estimate the sequence @fs with unknown model parameterswith the independence assumption in the derivation, the recov-
O = {4, B, ¥, ¥} through available observations. ered factors are assured to be statistically independent. Second,

In implementation, an adaptive algorithm has been suggestgthas been shown in [5] that taking into account temporal rela-
At each time unit, factor loadings are estimated by crosgon effectively removes rotation indeterminacy. As a result, the
sectional regression and factor scores are estimated by mastution given by TFA is unique. Theorem 3 in [5] illustrates
mum likelihood learning. Xu proposes a simplified version ahis point. Third, it can determine the number of hidden factors
the algorithm in [6] and is as shown below. via its model selection ability. Moreover, it should be noted that

AssumeG (g:(0,1) andG (4]0, X). MLFA is a special case of the model wifh = 0 in (2).
« Stepl Fix A, B andX, estimate the hidden factogs by

IV. COMPARISONSUSING HYPOTHETICAL DATA

A Tx—1 g1—1/ ATy —1= IN
g = L+AIZTAH(A Y2+ Bj), (9) In this section, we aim to support our discussions above by
et = Ut — Bfi1, (6) hypothetical experiments. In the sequel, we will present the re-
e = Ty — Al (7) sults of APT test using real stock return data.

. Step 2 Fix, , updateB, A and ¥, by gradient descent A- Test Methodology

method as follows: For hypothetical and real experiments, we will compare the
ow old ) T sensitivity of different tests on identifying the number of factors
B = B%C +ndiagleid—1], ®) & with regard to the number of securities used. As discussed
AV =AM e T (9) above, under the assumption of exact factor structure we will
shew (1 —gp)zold 4 netetT- (10) first use LR test on the results of MLI_:A. Then we will ana!yze
the eigenvalues of the sample covariance matrix, assuming an
B. Model Selection vs Appropriate Number of Factors underlying approximate factor structure. Finally, the results will

Central to the discussion in the paper about the numberbopT compared with that found by TFA's model selection criterion.

factors in APT, TFA is superior to MLFA in view of its modelB. |R Test Statistic
selection ability. In the context of APT analysis, the scale or
complexity of the model is equivalent to the number of hidden
factors in the original factor structure. As a result, model segy

The LR statistic proposed in [11] and modified in [12] is given

lection refers to deciding the appropriate number of factors i 2p + 4k + 11 ,
APT. We can achieve the aim of model selection by enumerart}f (N - J(In |AA"+ 2 — In[S])
ing the cost functior/ (k) with k incrementally and then select 2p + 4k + 11
g ®) Y + v = AL (A 4 3)71S] - ),

an appropriaté: by [6], [9], [10]

1 where N is the sample sizeS is the sample return covariance
min J(k) = 5[l~c In(27) + k + In |X]] (11) matrix andp is the total number of securities. The first and sec-

ond terms in the sum of LR refer to the variance and bias compo-

whereX. is the covariance matrix of measurement noise. nents, respectively, of the statistic [13]. It has been shown in [11]



that the maximum likelihood factor estimates are unbiased, and
consequently, the bias component will converge asymptoticall
to zero. As a result, the LR statistic measures the overall error
in the factor estimates of the sample covariances by comparing
the generalized variances. When the normality assumptions ap-

TABLE |

ySENSITIVITIES OF LR STATISTIC TO THE NUMBER OF SECURITIES FOR

FACTOR NUMBER DETERMINATION.

30 Securities

ply, general properties of the LR statistic establish that it has an k D.f LR Stat. p-Value
asymptotic centrak? distribution with[(p — k)* — (p + k)] /2 1 405 22382.70 0.0000
degrees of freedom. The minimum number of factorsan be 2 376 16301.92 0.0000
inferred from the computed value at a specific level of signifi- 3 348 9892.19 0.0000
cance, which is 5% in this paper. 4 321 3629.01 0.0000
5 295 413.43  0.0000
C. Eigenvalues Analysis 6 270 354.16 0.0004
. . . : 7 246 301.05 0.0095
Eigenvalues of the sample correlation or covariance matrix
. . ) . o . 8 223 245.44  0.1445
can be obtained either by direct calculation or indirectly via per-
; . ; 9 201 205.01 0.4083
forming PCA. According to [2], for an approximatefactor
. . : X 10 180 170.33  0.6857
structure, the firs& eigenvalues of the covariance matrix of
. 2= L 11 160 136.31 0.9128
returns grow without limit as the number of securitigs,in-
. I 12 141 111.52  0.9682
creases, while the remaining— & stay constant. However, for
e " ) 13 123 85.43 0.9960
limited number of securities, we can only determine the factor
number heuristically via counting the number of relatively large 14108 68.12 09984
B s y 9 ylarg 15 90 5290 0.9994
9 ' 16 75  36.95 0.9999

D. Experimental lllustrations

In this experiment, we assume returns of 30, 60 and 90 seéu= 5. Fig. 1 plots the values of (k) against the number of

rities being generated randomly via a fixed number of factordactors for different number of securities.

by the TFA model in (2) & (3). The parameters used to generate

N = 1000 data points are predetermined as follows: ¥
A:  ap x 5 matrix wherep = 30, 60 or 90, ol e, PR
012 0 0 0 0 e
0 021 0 O 0 =or 6 90Sec.
BB B=|0 0 -015 0 o |, S 5
0 0 0 0.24 0 | . o
0 0 0 0 -0.13 wl A
et randomly generated with pdf(e;|0, 1) where | -l \
is an identity matrix of order 5, 5
e;: randomly generated with pdf(e;|0, ) whereX: = oo e om—omem ]
is ap x p matrix with diagonal elements;; and oY

off-diagonal elements;; ando;; ~ U(0.1,0.25),
oi; ~ U(0,0.01), whereU (p, ¢) denotes uniform

distribution in the interva[a, b}’ Fig. 1. J(k) for different number of securities using hypothetical data.

T
Yo- yoz(() 0 0 O O) c
. . . - V. MPARISON ING REAL FINANCIAL DATA
Experimental results showing the number of factors identified ° SONSUSING ¢

by LR statistics are shown in Table | and that by eigenvalues!n this section, similar methodology discussed in the last sec-

analysis and TFA are shown in Table II. tion will be applied to historical stock data for the analysis of
As shown in Table I, the minimum number of factdriden- APT.

tified by MLFA and LR statistics is very sensitive to the number . .

of securitiegp and increases progressively wijth The accept- A. Data Considerations

ablek at 5% level of significance is 8, 15 and 22 for 30, 60 and We have carried out our analysis using past stock price and

90 securities respectively. On the other hand, evidence in Tal#éurn data of Hong Kong. Daily closing prices of 86 actively

Il based on eigenvalues of sample covariance matrices seemsading stocks covering the period from January 1, 1998 to De-

support the one-factor structure. Clearly, decision based on t&mber 31, 1999 are used. The number of trading days through-

statistics tends to overestimatevhile that based on eigenvalueout this period is 522. These stocks can be subdivided into three

tends to understate the same. The cost funcfigr) is not only main categories according to different indices they constitute.

insensitive top, but also estimatek correctly in all three cases. Of the 86 equities, 30 of them belongs to the Hang Seng Index

This can be seen from Table Il that all minima.bfk) occur at  (HSI) constituents, 32 are Hang Seng China-Affiliated Corpora-



TABLE | TABLE |

CONTINUED. CONTINUED.
60 Securities 90 Securities

k. D.f. LR Stat. p-Value k. D.f. LR Stat. p-Value
1 1710 56457.41 0.0000 1 3915 87345.03 0.0000
2 1651 40846.49 0.0000 2 3826 66935.65 0.0000
3 1593 27085.83 0.0000 3 3738 47084.75 0.0000
4 1536 11633.35 0.0000 4 3651 24081.84 0.0000
5 1480 2039.07 0.0000 5 3565 4753.52 0.0000
6 1425 1881.16 0.0000 6 3480 4527.27 0.0000
7 1371 1761.94 0.0000 7 3396 4336.92 0.0000
8 1318 1649.73 0.0000 8 3313 4172.11 0.0000
9 1266 1541.83 0.0000 9 3231 4005.57 0.0000
10 1215 1446.79 0.0000 10 3150 3851.76 0.0000
11 1165 1362.35 0.0000 11 3070 3693.61 0.0000
12 1116 1275.88 0.0006 12 2991 3541.37 0.0000
13 1068 1200.28 0.0028 13 2913 3400.69 0.0000
14 1021 1118.80 0.0173 14 2836 3265.36 0.0000
15 975 1036.56 0.0837 15 2760 3139.81 0.0000
16 930 964.72  0.2088 16 2685 3008.03 0.0000
17 886 898.52 0.3776 17 2611 2882.60 0.0001
18 843 833.85 0.5822 18 2538 2766.56 0.0009
19 801 773.62 0.7503 19 2466  2656.09 0.0040
20 760 71491 0.8776 20 2395 2551.48 0.0131
21 720 657.58 0.9533 21 2325 2440.66 0.0466
22 681 603.74  0.9846 22 2256 234154 0.1025
23 643 559.14  0.9924 23 2188 2254.77 0.1564
24 606 515.95 0.9966 24 2121  2157.80 0.2837
25 570 470.37  0.9991 25 2055 2056.26 0.4880
26 1990 1961.68 0.6702
27 1926 1863.31 0.8439
tions Index (HSCCI) constituents and the remaining 24 are Hang 28 1863 1783.27 0.9056
Seng China Enterprises Index (HSCEI) constituents. 29 1801 1701.73 0.9530
30 1740 1611.15 0.9871
B. Data Preprocessing 31 1680 1538.08 0.9940

Before carrying out the analysis, the stock prices must be con- 32 1621 146344 0.9978

verted to stationary stock returns. The transformation applied
can be described in four steps as shown below.

Step1 Transform the raw prices to returns by and 33 for all market securities as a whole. On the other hand,
R, = Pr=Pe-1 the number of factors as revealed through the analysis of eigen-
pt-1 values of sample covariance matrix is 1 irrespective of indices.

Step2 Calculate the mean retuf by + SN | R;.

Step 3 SubtractR from R; to get the zero-mean
return.

Step 4 Let the result of above transformation be the

The findings by the previous two methods can be contrasted
with that discovered by the model selection criterion of TFA.
Since the uniqué& associated with the minimum value of the
cost functionJ (k) corresponds to the appropriate factor number

adjusted returri;. in APT, the factor numbers are 4 for both HSI and HSCEI, 3
for HSCCI and 5 for all securities. Fig. 2 shows a plotigk)
C. Empirical Test Results against the factor numbérfor different index constituents.

The aim of our experiment is examine the relationship bB-
tween the number of factors affecting stocks of various indices
as well as the whole market. Table VII gives an overview of The correct determination of factor number is critical for the
the final results based on the details shown in Table IIl,IV,V andst of APT. However, the issue of the appropriate number of
VI. From Table VII, we can see that the number of factbrs factors has been the subject of some controversy in the litera-
determined based on the methodology of MLFA increases ptare [7], [14], [15], [16], [13], [4]. Although Roll and Ross [7]
gressively with the number of securities included in a particulare keen on the belief that the number of factors is not more than
group. According to MLFA, there are 11 factors for HSI confive based on some empirical research findings, it is still far from
stituents, 12 for HSCCI constituents, 9 for HSCEI constituent®nclusive because the tool on which the financial APT analy-

Result Interpretation



TABLE Il
SENSITIVITIES OF EIGENVALUE AND J (k) TO THE NUMBER OF SECURITIES
FOR FACTOR NUMBER DETERMINATION

TABLE IV
EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL
STOCK DATA: 32 HSCCICONSTITUENTS

Eigenvalue Values of (k) k D.f. LR Stat. p-Value Eigen. J(k)
k 30Sec 60Sec 90Sec 30Sec 60Sec 90 Sec
1 3597 79.00 120.03 -1.00 -12.69 -25.76 1 464 213232 0.0000 0.0427 -33.9164
2 451 886 11.31 -7.09 -29.19 -54.75 2 433 1597.10 0.0000 0.0048 -42.8971
3 339 606 881 -9.10 -36.48 -62.57 3 403 1257.86 0.0000 0.0043 -47.8219
4 281 591 816 -10.69 -37.67 -64.72 4 374 991.13 0.0000 0.0026 -46.9477
5 146 3.08 558 -11.96 -38.73 -65.97 5 346 74825 0.0000 0.0023 -46.0319
6 028 031 034 -11.15 -3841 -65.27 6 319 62420 0.0000 0.0019 -45.0285
7 026 030 033 -1057 -37.91 -64.38 7 293 49561 0.0000 0.0019 -43.9239
8 024 028 032 -10.09 -37.36 -63.67 8 268 406.72 0.0000 0.0018 -42.7937
9 023 027 031 -956 -36.77 -62.92 9 244 33917 0.0001 0.0017 -41.6815
10 022 027 029 -9.03 -36.24 -6221 10 221 286.07 0.0021 0.0016 -40.5148
11 021 025 029 -842 -3519 -61.45 11 199 237.61 0.0318 0.0015 -39.2081
12 020 024 028 -7.69 -3421 -60.52 12 178 201.73 0.1074 0.0014 -37.9458
13 158 168.74 0.2649 0.0012
14 139 141.90 0.4158 0.0012
TABLE Il 15 121  113.73 0.6678 0.0011
EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL 16 104 88.18 0.8668 0.001
STOCK DATA: 30 HSICONSTITUENTS 17 88 75.11 0.8346 0.0009
18 73 48.25 0.9888 0.0009
k Df LRStat. pValue Eigen.  J(k) 1959 3305 0.9975 0.0008
20 46  22.80 0.9984 0.0008
1 405 175321 0.0000 0.0180 -30.0975 21 34 1420 0.9989 0.0007
2 376 1372.65 0.0000 0.0020 -39.4636
3 348 1051.90 0.0000 0.0014 -40.8083
4 321 746.88 0.0000 0.0013 -42.4021
5 295 57557 0.0000 0.0012 -41.4884 w0 B
6 270 463.34 0.0000 0.0011 -40.5723 N S
7 246 396.55 0.0000 0.0009 -39.6502 B [
8 223 32069 0.0000 0.0008 -38.4755 RSN
9 201 26505 0.0016 0.0008 -37.3477 S
10 180 212.93 0.0470 0.0008 -36.2142 wr
11 160 175.97 0.1836 0.0007 -35.0094 o
12 141 146.20 0.3649 0.0006 -33.7939 A
13 123 11261 0.7387 0.0006 "
14 106  91.02 0.8497 0.0006 . R
15 90  66.69 0.9689 0.0005 R
16 75 50.61 0.9863 0.0005 . . . P
17 61 3431 0.9977 0.0004
18 48  23.10 0.9991 0.0004

Fig. 2. Plot ofJ(k) againstk for different index constituents.

sis is based suffers from various indeterminacies discussed in VI. CONCLUSION

the previous sections. Consequently, the determination of fac-

tor number can be described as being based on some heuristla this paper, we have conducted a comparative study on fac-
approaches. Intuitively, we do not expect the factor numbertmr number determination in financial APT analysis. It is found
grow with the number of securities used under a stable markieat LR test on results of MLFA is biased towards more factors
structure, nor do we expect the number of factors to be one lile the identification via eigenvalues of sample covariance
cause both theoretically and empirically the multi-factor APMatrix tends to bias towards a smaller factor number. Empiri-
model is expected to be superior to the one-factor Capital Assat test results reveal that TFA can estimate the correct number
Pricing Model (CAPM). Interestingly, the factor number detemf factors via a simple cost function and thus TFA can provide a
mined via the cost functiod (k) and TFA is quite reasonablereasonable answer to the number of existing factors in the stock
and agrees with our intuition. market in Hong Kong.



EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL
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TABLE V

STOCK DATA: 24 HSCEICONSTITUENTS

TABLE VI

STOCK DATA: ALL 86 SECURITIES

EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL

o

Df LRStat. p-Value Eigen.  J(k) k  Df LRStat pVvalue Eigen. J(k)
1 252 115554  0.0000 0.0294 -19.1867 1 70124 13836.27 0.0000 0.0794  -57.5487
2 229 /0741 0.0000 00034 -26.7143 2 69749 897426 0.0000 0.0090 -82.0707
3 207 51918 0.0000 0.0027 -30.1253 3 69375 8013.02 0.0000 0.0055 -96.5370
4 186 40298 0.0000 0.0022 -31.7391 4 69002 7322.74 0.0000 0.0049 -99.8654
5 166 33553 0.0000 0.0020 -30.9156 5 68630 6748.97 0.0000 0.0042 -101.7367
6 147 27394 0.0000 0.0018 -30.0051 6 68259 6206.89 0.0000 0.0033 -100.8063
7129 22313 0.0000 0.0015 -29.0193 7 67889 573400 0.0000 0.0030 -99.7729
8 112 17150 0.0003 0.0015 -28.0158 8 67520 5386.65 0.0000 0.0028 -98.8376
9 96 13515 0.0052 0.0014 -26.9287 9 67152 5013.30 0.0000 0.0024 -97.7964
10 81 10564 0.0344 0.0012 -25.7410 10 66785 4715.36 0.0000 0.0022 -96.6583
1167 7731 01826 0.0012 -24.5273 11 66419 4477.92 0.0000 0.0021  -95.5152
12 54 4745 0.7234 0.0011 -23.3333 12 66054 4246.48 0.0000 0.0021 -94.2694
13 42 2945 09280 0.0011 13 65690 4027.50 0.0000 0.0020
14 31 1674 0.9826 0.0010 14 65327 3817.85 0.0000 0.0019
15 64965 3637.25 0.0000 0.0018
16 64604 3461.50 0.0000 0.0018
REFERENCES 17 64244  3294.01 0.0000 0.0017
S. R_os_ls_,h “The alrblit?[age tgﬁ)ryggé clag;tgl asset pricinipirnal of Eco- 18 63885 3149.45 0.0000 0.0016
nomic Theoryvol. 13, pp. 341-360, .
G. Chamberlain and M. Rothschild, “Arbitrage and mean variance analysis 19 63527 3001.69 0.0000 0.0016
on large asset marketsfconometricavol. 51, pp. 1281-1304, 1983. 63170 2848.76  0.0000 0.0015
G. Connor and R. Korajczyk, “Risk and return in an equilibrium apt: 21  §2814 2708.99 0.0000 0.0014
application of a new methodologyJournal of Financial Economicwol. 22 62459 2557.03 0.0000 0.0014
21, pp. 255-289, 1988. : . .
S. Brown, “The number of factors in security returndgurnal of Finance 23 62105 2425.27 0.0000 0.0013
\Iiog(ﬂ4prznwlngrgl_tiszle;?rﬁgg for state space approach, hidden markov 61752 2299.82  0.0000 0.0013
m.odeyl and blind source separatiolEEE Trans. on Signél Processing 25 61400 2184.25 0.0000 0.0013
vol. 48, pp. 2132—2144, 2000. 61049 2072.12 0.0000 0.0012
L. Xu, “Byy harmony learning, independent state space and generalized
apt financial analyses,JEEE Transactions on Neural Networksol. 12, g; 28228 iggggg 88888 88813
no. 4, pp. 822-849, 2001. . . .
R. Roll and S. Ross, “An empirical investigation of the arbitrage pricing 29 60002 1774.60 0.0002 0.0011
theory,” Journal of Financevol. 35, pp. 1073-1103, 1980. 30 59655 1681 16 0 0013 0 0011
R. Roll and S. Ross, “The arbitrage pricing theory approach to strategic ’ ’ ’
portfolio planning,”Financial Analysts Journalol. 40, pp. 14-26, 1984. 1 59309 1586.46 0.0082 0.0011
L. Xu, “Bayesian ying-yang learning theory for data dimension reduction 32 58964 1502.31 0.0275 0.0010
and determination,” Journal of Computational Intelligence in Finance 33 58620 1418.03 0.0813 0.0010
vol. 6, no. 5, pp. 6-18, 1998. ’ ) ’
L. Xu, “Best harmony, unified rpcl and automated model selection for 34 58277  1342.88  0.1584 0.0010
unsupervised and supervised learning on gaussian mixtures, three-laye@5 57935 1270.46 0.2676 0.0009
nets and me-rbf-svm modelsfhternational Journal of Neural Systems 36 57594 1199.01 0.4136 0.0009
vol. 11, pp. 43-69, 2001. ) ) :
D. N. Lawley and A. E. MaxwellFactor Analysis as a Statistical Method 37 57254 1138.35 0.4999 0.0009
kﬂorgjoggl;:‘t?g:?ryyr%g?s, g?g:;hificance in factor analysiBritish Journal of 38 56915 1068.94  0.6699  0.0009
Méthématicai and Statistical Psychologwl. 3, pp. 77-85, 1950. 39 56577 999.59 0.8231 0.0008
D. Conway and M. Reinganum, “Stable factors in security returns: identi- 40 56240 919.63 0.9572 0.0008
fication using cross validationJournal of Business and Economic Statis-
tics, vol. 6, pp. 1-15, 1988.
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