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Abstract— The recently developed TFA model is found to be useful for
determining factor number k in classical financial APT analysis. In this
paper, comparisons of factor number determination using different tech-
niques will be shown. Results reveal that TFA is superior to MLFA as well
as eigenvalue analysis.

I. I NTRODUCTION

Well-known in the finance literature [1], the Arbitrage Pricing
Theory (APT) assumes that cross-sectional expected returns of
securities follow a multi-factor model which is characterized by
their sensitivities, usually called factor loadings, tok unknown
economic factors. Pursuit to the original model by Ross, returns
are generated under anexact factor structurein which the resid-
ual component of returns not explained by the factors is uncor-
related among securities, i.e. white noise. Conventional factor
analytic approaches such as Maximum Likelihood Factor Anal-
ysis (MLFA) have been applied to recover both the factors and
factor loadings and subsequent goodness-of-fit hypothesis test
such as the Likelihood Ratio (LR) test is carried out to ascertain
the minimum number of factors required to fit the model.

Since the key requirement for the APT that nonfactor risk
be approximately eliminated through diversification can still
be achieved without the assumption of a strict factor structure,
Chamberlain and Rothschild [2] extend the exact factor struc-
ture to include the so-calledapproximate factor structure. The
main difference arises from the residual component being no
longer uncorrelated. For the approximate factor structure, weak
correlation within the residual component is possible.

Empirical evidence that the minimum number of factorsk ac-
cepted by LR test tends to increase with the number of cross-
sectional securitiesp used creates doubts on the validity of exact
factor structure assumption. Rather, this result seems to support
the approximate factor structure hypothesis. The reason why
k increases withp may be explained by the higher probability
of including securities with correlated idiosyncratic returns as
p increase. Moreover, the use of an approximate factor model
is intuitively more appealing because it makes it probable that
there exists some factor pertinent to specific industry rather than
to the whole market.

Assuming an approximate factor structure, the LR statistic is
no longer useful for the factor number identification purpose.
On the other hand, analysis of eigenvalues of population covari-
ance matrix has been proved in [2] to be a suitable criterion.
If k eigenvalues of the population covariance matrix increase
without bound as the number of securities in the population
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increases, then the elements of the correspondingk eigenvec-
tors of the covariance matrix can be used as factor sensitivities.
Moreover, it has been shown in [3] this conclusion holds for
the sample covariance matrix as well. In spite of this, Brown
[4] spots that empirically the criterion typically biased towards
too few factors and the result consistent with one factor may
be equally consistent withk equally weighted factors that are
priced. The reason is due to rotation of the original factors that
minimizes the apparent number of priced factors.

Recently, the development of Temporal Baysian Ying-Yang
(TBYY) Theory proposed by Xu [5], [6] leads to the inception
of a new factor analytic technique called Temporal Factor Anal-
ysis (TFA). TFA can be seen as an extension to MLFA with the
strength to overcome rotation indeterminacy as well as to pro-
vide an appropriate answer to the number of hidden factors via
its model selection ability. As a result, it may serve as an al-
ternative tool for traditional APT analysis. In this paper, results
of a comparative study on factor number determination using
typical approaches will be presented.

The rest of the paper is divided into four sections. Section II
gives an overview of APT. Section III reviews the TFA model
and highlight its benefits in the APT analysis. Hypothetical ex-
periments and statistical tests results will be presented in section
IV, which is followed by hypothesis testing on APT using real
financial data in section V. Section VI will be devoted to con-
cluding remarks.

II. T HE ARBITRAGE PRICING THEORY

The APT begins with the assumption that then × 1 vector of
asset returns,̃Rt, is generated by a linear stochastic process with
k factors [1], [7], [8]:

R̃t = R̄ + Aft + et (1)

whereft is thek×1 vector of realizations ofk common factors,
A is then × k matrix of factor weights or loadings, andet is a
n× 1 vector of asset-specific risks. It is assumed thatft andet

have zero expected values so thatR̄ is then× 1 vector of mean
returns.

III. T EMPORAL FACTOR ANALYSIS

A. An Overview of TFA

Suppose the relationship between a stateyt ∈ Rk and an ob-
servationxt ∈ Rd are described by the first-order state-space
equations as follows [5], [6]:

yt = Byt−1 + εt, (2)

xt = Ayt + et, t = 1, 2, . . . , N. (3)
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where εt and et are mutually independent zero-mean white
noises withE(εiεj) = Σεδij , E(eiej) = Σeδij , E(εiej) = 0,
andδij is the Kronecker delta function:

δij =

{
1, if i = j,

0, otherwise.
(4)

We call εt driving noise upon the fact that it drives the source
process over time. Similarly,et is called measurement noise
because it happens to be there during measurement. The above
model is generally referred to as the TFA model.

In the context of APT analysis, (1) can be obtained from (3)
by substituting (̃Rt−R̄) for xt andft for yt. The only difference
between the APT model and the TFA model is the added (2) for
modelling temporal relation of each factor. The added equation
represents the factor seriesy = {yt}T

t=1 in a multi-channel auto-
regressive process, driven by an i.i.d. noise series{εt}T

t=1 that
are independent of bothyt−1 andet. Specifically, it is assumed
thatεt is Gaussian distributed. Moreover, TFA is defined such
that thek sourcesy(1)

t , y
(2)
t , . . . , y

(k)
t in this state-space model

are statistically independent. The objective of TFA [5], [6] is to
estimate the sequence ofyt’s with unknown model parameters
Θ = {A, B, Σε,Σe} through available observations.

In implementation, an adaptive algorithm has been suggested.
At each time unit, factor loadings are estimated by cross-
sectional regression and factor scores are estimated by maxi-
mum likelihood learning. Xu proposes a simplified version of
the algorithm in [6] and is as shown below.

AssumeG(εt|0, I) andG(et|0, Σ).
• Step 1 Fix A, B andΣ, estimate the hidden factorsyt by

ŷt = [I + AT Σ−1A]−1(AT Σ−1x̄t + Bŷt−1), (5)

εt = ŷt −Bŷt−1, (6)

et = x̄t −Aŷt, (7)

• Step 2 Fix, ŷt, updateB,A and Σe by gradient descent
method as follows:

Bnew = Bold + ηdiag[εtŷT
t−1], (8)

Anew = Aold + ηetŷ
T
t , (9)

Σnew = (1− η)Σold + ηete
T
t . (10)

B. Model Selection vs Appropriate Number of Factors

Central to the discussion in the paper about the number of
factors in APT, TFA is superior to MLFA in view of its model
selection ability. In the context of APT analysis, the scale or
complexity of the model is equivalent to the number of hidden
factors in the original factor structure. As a result, model se-
lection refers to deciding the appropriate number of factors in
APT. We can achieve the aim of model selection by enumerat-
ing the cost functionJ(k) with k incrementally and then select
an appropriatek by [6], [9], [10]

min
k

J(k) =
1
2
[k ln(2π) + k + ln |Σ|] (11)

whereΣ is the covariance matrix of measurement noise.

C. Grounds and Benefits for Using TFA in APT Analysis

Firstly, we believe that factors has Gaussian distributions.
There is a consensus that the noisy component in most econo-
metric and statistical models being Gaussian distributed. The
rationale comes from the central limit theorem which implies
that the compounding of a large number of unknown distribu-
tions will be approximately normal. Secondly, we believe that
factors recovered must be independent of each other. Although
economic factors are seldom independent, it is helpful to dis-
cover statistically independent factors for the purpose of analy-
sis because the restriction of independence will rule out many
possible solutions which contain redundant elements. Further-
more, economic interpretation of factors recovered can be easily
achieved by appropriate combination of those independent fac-
tors. Thirdly, we believe there exists temporal relation between
factors. Equation (2) of the TFA model is nothing more than an
AR(1) time series model. The reason why an AR model of order
more than 1 is not required can be attributed to the weak form
of Efficient Market Hypothesis (EMH). Given the assumption of
the weak form EMH is valid, stock price today is conditionally
independent of all previous prices given the price of yesterday.

Compared with MLFA, TFA has at least three benefits. First,
with the independence assumption in the derivation, the recov-
ered factors are assured to be statistically independent. Second,
it has been shown in [5] that taking into account temporal rela-
tion effectively removes rotation indeterminacy. As a result, the
solution given by TFA is unique. Theorem 3 in [5] illustrates
this point. Third, it can determine the number of hidden factors
via its model selection ability. Moreover, it should be noted that
MLFA is a special case of the model withB = 0 in (2).

IV. COMPARISONSUSING HYPOTHETICAL DATA

In this section, we aim to support our discussions above by
hypothetical experiments. In the sequel, we will present the re-
sults of APT test using real stock return data.

A. Test Methodology

For hypothetical and real experiments, we will compare the
sensitivity of different tests on identifying the number of factors
k with regard to the number of securities used. As discussed
above, under the assumption of exact factor structure we will
first use LR test on the results of MLFA. Then we will analyze
the eigenvalues of the sample covariance matrix, assuming an
underlying approximate factor structure. Finally, the results will
be compared with that found by TFA’s model selection criterion.

B. LR Test Statistic

The LR statistic proposed in [11] and modified in [12] is given
by

LR = (N − 2p + 4k + 11
6

)(ln |AA′ + Σ| − ln |S|)

+ (N − 2p + 4k + 11
6

)(tr[(AA′ + Σ)−1S]− p),

whereN is the sample size,S is the sample return covariance
matrix andp is the total number of securities. The first and sec-
ond terms in the sum of LR refer to the variance and bias compo-
nents, respectively, of the statistic [13]. It has been shown in [11]



that the maximum likelihood factor estimates are unbiased, and
consequently, the bias component will converge asymptotically
to zero. As a result, the LR statistic measures the overall error
in the factor estimates of the sample covariances by comparing
the generalized variances. When the normality assumptions ap-
ply, general properties of the LR statistic establish that it has an
asymptotic centralχ2 distribution with[(p − k)2 − (p + k)]/2
degrees of freedom. The minimum number of factorsk can be
inferred from the computedp value at a specific level of signifi-
cance, which is 5% in this paper.

C. Eigenvalues Analysis

Eigenvalues of the sample correlation or covariance matrix
can be obtained either by direct calculation or indirectly via per-
forming PCA. According to [2], for an approximatek-factor
structure, the firstk eigenvalues of the covariance matrix of
returns grow without limit as the number of securities,p, in-
creases, while the remainingp − k stay constant. However, for
limited number of securities, we can only determine the factor
number heuristically via counting the number of relatively large
eigenvalues.

D. Experimental Illustrations

In this experiment, we assume returns of 30, 60 and 90 secu-
rities being generated randomly via a fixed number of factors 5
by the TFA model in (2) & (3). The parameters used to generate
N = 1000 data points are predetermined as follows:

A: ap× 5 matrix wherep = 30, 60 or 90,

B: B =




0.12 0 0 0 0
0 0.21 0 0 0
0 0 −0.15 0 0
0 0 0 0.24 0
0 0 0 0 −0.13




,

εt: randomly generated with pdfG(εt|0, I) where I
is an identity matrix of order 5,

et: randomly generated with pdfG(et|0, Σ) whereΣ
is ap× p matrix with diagonal elementsσii and
off-diagonal elementsσij andσii ∼ U(0.1, 0.25),
σij ∼ U(0, 0.01), whereU(p, q) denotes uniform
distribution in the interval[a, b],

y0: y0 =
(
0 0 0 0 0

)T
.

Experimental results showing the number of factors identified
by LR statistics are shown in Table I and that by eigenvalues
analysis and TFA are shown in Table II.

As shown in Table I, the minimum number of factorsk iden-
tified by MLFA and LR statistics is very sensitive to the number
of securitiesp and increases progressively withp. The accept-
ablek at 5% level of significance is 8, 15 and 22 for 30, 60 and
90 securities respectively. On the other hand, evidence in Table
II based on eigenvalues of sample covariance matrices seems to
support the one-factor structure. Clearly, decision based on LR
statistics tends to overestimatek while that based on eigenvalues
tends to understate the same. The cost functionJ(k) is not only
insensitive top, but also estimatesk correctly in all three cases.
This can be seen from Table II that all minima ofJ(k) occur at

TABLE I

SENSITIVITIES OF LR STATISTIC TO THE NUMBER OF SECURITIES FOR

FACTOR NUMBER DETERMINATION.

30 Securities
k D.f. LR Stat. p-Value
1 405 22382.70 0.0000
2 376 16301.92 0.0000
3 348 9892.19 0.0000
4 321 3629.01 0.0000
5 295 413.43 0.0000
6 270 354.16 0.0004
7 246 301.05 0.0095
8 223 245.44 0.1445
9 201 205.01 0.4083

10 180 170.33 0.6857
11 160 136.31 0.9128
12 141 111.52 0.9682
13 123 85.43 0.9960
14 106 68.12 0.9984
15 90 52.90 0.9994
16 75 36.95 0.9999

k = 5. Fig. 1 plots the values ofJ(k) against the number of
factors for different number of securities.
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Fig. 1. J(k) for different number of securities using hypothetical data.

V. COMPARISONSUSING REAL FINANCIAL DATA

In this section, similar methodology discussed in the last sec-
tion will be applied to historical stock data for the analysis of
APT.

A. Data Considerations

We have carried out our analysis using past stock price and
return data of Hong Kong. Daily closing prices of 86 actively
trading stocks covering the period from January 1, 1998 to De-
cember 31, 1999 are used. The number of trading days through-
out this period is 522. These stocks can be subdivided into three
main categories according to different indices they constitute.
Of the 86 equities, 30 of them belongs to the Hang Seng Index
(HSI) constituents, 32 are Hang Seng China-Affiliated Corpora-



TABLE I

CONTINUED.

60 Securities
k D.f. LR Stat. p-Value
1 1710 56457.41 0.0000
2 1651 40846.49 0.0000
3 1593 27085.83 0.0000
4 1536 11633.35 0.0000
5 1480 2039.07 0.0000
6 1425 1881.16 0.0000
7 1371 1761.94 0.0000
8 1318 1649.73 0.0000
9 1266 1541.83 0.0000

10 1215 1446.79 0.0000
11 1165 1362.35 0.0000
12 1116 1275.88 0.0006
13 1068 1200.28 0.0028
14 1021 1118.80 0.0173
15 975 1036.56 0.0837
16 930 964.72 0.2088
17 886 898.52 0.3776
18 843 833.85 0.5822
19 801 773.62 0.7503
20 760 714.91 0.8776
21 720 657.58 0.9533
22 681 603.74 0.9846
23 643 559.14 0.9924
24 606 515.95 0.9966
25 570 470.37 0.9991

tions Index (HSCCI) constituents and the remaining 24 are Hang
Seng China Enterprises Index (HSCEI) constituents.

B. Data Preprocessing

Before carrying out the analysis, the stock prices must be con-
verted to stationary stock returns. The transformation applied
can be described in four steps as shown below.

Step 1 Transform the raw prices to returns by
Rt = pt−pt−1

pt−1
.

Step 2 Calculate the mean return̄R by 1
N

∑N
t=1 Rt.

Step 3 SubtractR̄ from Rt to get the zero-mean
return.

Step 4 Let the result of above transformation be the
adjusted returñRt.

C. Empirical Test Results

The aim of our experiment is examine the relationship be-
tween the number of factors affecting stocks of various indices
as well as the whole market. Table VII gives an overview of
the final results based on the details shown in Table III,IV,V and
VI. From Table VII, we can see that the number of factorsk
determined based on the methodology of MLFA increases pro-
gressively with the number of securities included in a particular
group. According to MLFA, there are 11 factors for HSI con-
stituents, 12 for HSCCI constituents, 9 for HSCEI constituents

TABLE I

CONTINUED.

90 Securities
k D.f. LR Stat. p-Value
1 3915 87345.03 0.0000
2 3826 66935.65 0.0000
3 3738 47084.75 0.0000
4 3651 24081.84 0.0000
5 3565 4753.52 0.0000
6 3480 4527.27 0.0000
7 3396 4336.92 0.0000
8 3313 4172.11 0.0000
9 3231 4005.57 0.0000

10 3150 3851.76 0.0000
11 3070 3693.61 0.0000
12 2991 3541.37 0.0000
13 2913 3400.69 0.0000
14 2836 3265.36 0.0000
15 2760 3139.81 0.0000
16 2685 3008.03 0.0000
17 2611 2882.60 0.0001
18 2538 2766.56 0.0009
19 2466 2656.09 0.0040
20 2395 2551.48 0.0131
21 2325 2440.66 0.0466
22 2256 2341.54 0.1025
23 2188 2254.77 0.1564
24 2121 2157.80 0.2837
25 2055 2056.26 0.4880
26 1990 1961.68 0.6702
27 1926 1863.31 0.8439
28 1863 1783.27 0.9056
29 1801 1701.73 0.9530
30 1740 1611.15 0.9871
31 1680 1538.08 0.9940
32 1621 1463.44 0.9978

and 33 for all market securities as a whole. On the other hand,
the number of factors as revealed through the analysis of eigen-
values of sample covariance matrix is 1 irrespective of indices.
The findings by the previous two methods can be contrasted
with that discovered by the model selection criterion of TFA.
Since the uniquek associated with the minimum value of the
cost functionJ(k) corresponds to the appropriate factor number
in APT, the factor numbers are 4 for both HSI and HSCEI, 3
for HSCCI and 5 for all securities. Fig. 2 shows a plot ofJ(k)
against the factor numberk for different index constituents.

D. Result Interpretation

The correct determination of factor number is critical for the
test of APT. However, the issue of the appropriate number of
factors has been the subject of some controversy in the litera-
ture [7], [14], [15], [16], [13], [4]. Although Roll and Ross [7]
are keen on the belief that the number of factors is not more than
five based on some empirical research findings, it is still far from
conclusive because the tool on which the financial APT analy-



TABLE II

SENSITIVITIES OF EIGENVALUE AND J(k) TO THE NUMBER OF SECURITIES

FOR FACTOR NUMBER DETERMINATION.

Eigenvalue Values ofJ(k)
k 30 Sec 60 Sec 90 Sec 30 Sec 60 Sec 90 Sec
1 35.97 79.00 120.03 -1.00 -12.69 -25.76
2 4.51 8.86 11.31 -7.09 -29.19 -54.75
3 3.39 6.06 8.81 -9.10 -36.48 -62.57
4 2.81 5.91 8.16 -10.69 -37.67 -64.72
5 1.46 3.08 5.58 -11.96 -38.73 -65.97
6 0.28 0.31 0.34 -11.15 -38.41 -65.27
7 0.26 0.30 0.33 -10.57 -37.91 -64.38
8 0.24 0.28 0.32 -10.09 -37.36 -63.67
9 0.23 0.27 0.31 -9.56 -36.77 -62.92

10 0.22 0.27 0.29 -9.03 -36.24 -62.21
11 0.21 0.25 0.29 -8.42 -35.19 -61.45
12 0.20 0.24 0.28 -7.69 -34.21 -60.52

TABLE III

EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL

STOCK DATA: 30 HSI CONSTITUENTS.

k D.f. LR Stat. p-Value Eigen. J(k)

1 405 1753.21 0.0000 0.0180 -30.0975
2 376 1372.65 0.0000 0.0020 -39.4636
3 348 1051.90 0.0000 0.0014 -40.8083
4 321 746.88 0.0000 0.0013 -42.4021
5 295 575.57 0.0000 0.0012 -41.4884
6 270 463.34 0.0000 0.0011 -40.5723
7 246 396.55 0.0000 0.0009 -39.6502
8 223 320.69 0.0000 0.0008 -38.4755
9 201 265.05 0.0016 0.0008 -37.3477

10 180 212.93 0.0470 0.0008 -36.2142
11 160 175.97 0.1836 0.0007 -35.0094
12 141 146.20 0.3649 0.0006 -33.7939
13 123 112.61 0.7387 0.0006
14 106 91.02 0.8497 0.0006
15 90 66.69 0.9689 0.0005
16 75 50.61 0.9863 0.0005
17 61 34.31 0.9977 0.0004
18 48 23.10 0.9991 0.0004

sis is based suffers from various indeterminacies discussed in
the previous sections. Consequently, the determination of fac-
tor number can be described as being based on some heuristic
approaches. Intuitively, we do not expect the factor number to
grow with the number of securities used under a stable market
structure, nor do we expect the number of factors to be one be-
cause both theoretically and empirically the multi-factor APT
model is expected to be superior to the one-factor Capital Asset
Pricing Model (CAPM). Interestingly, the factor number deter-
mined via the cost functionJ(k) and TFA is quite reasonable
and agrees with our intuition.

TABLE IV

EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL

STOCK DATA: 32 HSCCICONSTITUENTS.

k D.f. LR Stat. p-Value Eigen. J(k)

1 464 2132.32 0.0000 0.0427 -33.9164
2 433 1597.10 0.0000 0.0048 -42.8971
3 403 1257.86 0.0000 0.0043 -47.8219
4 374 991.13 0.0000 0.0026 -46.9477
5 346 748.25 0.0000 0.0023 -46.0319
6 319 624.20 0.0000 0.0019 -45.0285
7 293 495.61 0.0000 0.0019 -43.9239
8 268 406.72 0.0000 0.0018 -42.7937
9 244 339.17 0.0001 0.0017 -41.6815

10 221 286.07 0.0021 0.0016 -40.5148
11 199 237.61 0.0318 0.0015 -39.2081
12 178 201.73 0.1074 0.0014 -37.9458
13 158 168.74 0.2649 0.0012
14 139 141.90 0.4158 0.0012
15 121 113.73 0.6678 0.0011
16 104 88.18 0.8668 0.001
17 88 75.11 0.8346 0.0009
18 73 48.25 0.9888 0.0009
19 59 33.05 0.9975 0.0008
20 46 22.80 0.9984 0.0008
21 34 14.20 0.9989 0.0007
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Fig. 2. Plot ofJ(k) againstk for different index constituents.

VI. CONCLUSION

In this paper, we have conducted a comparative study on fac-
tor number determination in financial APT analysis. It is found
that LR test on results of MLFA is biased towards more factors
while the identification via eigenvalues of sample covariance
matrix tends to bias towards a smaller factor number. Empiri-
cal test results reveal that TFA can estimate the correct number
of factors via a simple cost function and thus TFA can provide a
reasonable answer to the number of existing factors in the stock
market in Hong Kong.



TABLE V

EMPIRICAL RESULTS OF FACTOR NUMBER DETERMINATION USING REAL

STOCK DATA: 24 HSCEICONSTITUENTS.

k D.f. LR Stat. p-Value Eigen. J(k)

1 252 1155.54 0.0000 0.0294 -19.1867
2 229 707.41 0.0000 0.0034 -26.7143
3 207 519.18 0.0000 0.0027 -30.1253
4 186 402.98 0.0000 0.0022 -31.7391
5 166 335.53 0.0000 0.0020 -30.9156
6 147 273.94 0.0000 0.0018 -30.0051
7 129 223.13 0.0000 0.0015 -29.0193
8 112 171.50 0.0003 0.0015 -28.0158
9 96 135.15 0.0052 0.0014 -26.9287

10 81 105.64 0.0344 0.0012 -25.7410
11 67 77.31 0.1826 0.0012 -24.5273
12 54 47.45 0.7234 0.0011 -23.3333
13 42 29.45 0.9280 0.0011
14 31 16.74 0.9826 0.0010
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2 69749 8974.26 0.0000 0.0090 -82.0707
3 69375 8013.02 0.0000 0.0055 -96.5370
4 69002 7322.74 0.0000 0.0049 -99.8654
5 68630 6748.97 0.0000 0.0042 -101.7367
6 68259 6206.89 0.0000 0.0033 -100.8063
7 67889 5734.00 0.0000 0.0030 -99.7729
8 67520 5386.65 0.0000 0.0028 -98.8376
9 67152 5013.30 0.0000 0.0024 -97.7964

10 66785 4715.36 0.0000 0.0022 -96.6583
11 66419 4477.92 0.0000 0.0021 -95.5152
12 66054 4246.48 0.0000 0.0021 -94.2694
13 65690 4027.50 0.0000 0.0020
14 65327 3817.85 0.0000 0.0019
15 64965 3637.25 0.0000 0.0018
16 64604 3461.50 0.0000 0.0018
17 64244 3294.01 0.0000 0.0017
18 63885 3149.45 0.0000 0.0016
19 63527 3001.69 0.0000 0.0016
20 63170 2848.76 0.0000 0.0015
21 62814 2708.99 0.0000 0.0014
22 62459 2557.03 0.0000 0.0014
23 62105 2425.27 0.0000 0.0013
24 61752 2299.82 0.0000 0.0013
25 61400 2184.25 0.0000 0.0013
26 61049 2072.12 0.0000 0.0012
27 60699 1973.43 0.0000 0.0012
28 60350 1869.59 0.0000 0.0012
29 60002 1774.60 0.0002 0.0011
30 59655 1681.16 0.0013 0.0011
31 59309 1586.46 0.0082 0.0011
32 58964 1502.31 0.0275 0.0010
33 58620 1418.03 0.0813 0.0010
34 58277 1342.88 0.1584 0.0010
35 57935 1270.46 0.2676 0.0009
36 57594 1199.01 0.4136 0.0009
37 57254 1138.35 0.4999 0.0009
38 56915 1068.94 0.6699 0.0009
39 56577 999.59 0.8231 0.0008
40 56240 919.63 0.9572 0.0008

TABLE VII

RESULTS SUMMARY OF FACTOR NUMBERk DETERMINED BASED ON REAL

FINANCIAL DATA .

Total number
Stock index of securities MLFA Eigen. J(k)

HSI 30 11 1 4
HSCCI 32 12 1 3
HSCEI 24 9 1 4

All Securities 86 33 1 5




