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Abstract. A general perspective is provided on both on hypothesis testing and 
discriminative analyses, by which matrix-variate discriminative analyses are pro-
posed based on the matrix normal distribution, featured by a bi-linear extension of 
Fisher linear discriminant analysis and a further extension to binary variables. 
Moreover, a general formulation is proposed for integrative hypothesis testing and 
five typical categories are summarized. Furthermore, major techniques for varia-
ble selection are briefly elaborated. Finally, taking analyses of gene expression 
and exome sequencing as examples, we further propose a general procedure 
called Geno-Pheno A5 Analyzer for integrative discriminant analysis.  

Keywords: Matrix-variate discriminative analysis, Bi-linear Fisher mapping, 
Matrix-variate logistic regression, Confusion table testing, Geno-Pheno A5 ana-
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1 Introduction 

Fisher discriminative analysis works in a multidimensional space with samples pre-
sented as vectors. However, samples are usually in matrix format for tasks such as 
image classification, object recognition, and various gene analyses. Considering sam-
ples in vectors actually suffers some approximation to get an easy implementation. 
Improvements are expected if we make discriminative analysis directly on samples in 
matrix format.  

Working on samples from two populations or classes, discriminative analysis is 
featured by finding a discriminating rule that classifies each sample into one appro-
priate class. In a complementary aspect, two sample hypothesis test examines whether 
two populations are significantly different via a statistics based on samples from the 
populations. 

This paper provides a general perspective on both the aspects, with a road not only 
to generalize discriminative analyses and hypothesis testing to matrix-variate samples 
but also to a general formulation for testing hypotheses on a set of variables organized 
in structures. Also, five categories are summarized according to the characteristics of 
testing hypotheses.  

Also, major techniques are briefly elaborated for identifying which subsets of va-
riables are responsible to testing significance and discriminative ability. Taking gene 
expression analysis and exome sequencing analysis as examples, we propose a Geno-
Pheno A5 analyzer for integrative genotype-phonotype discriminant analysis.  
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2 KL Perspective on Hotelling Statistics and Fisher Discriminant  

We start from considering two multivariate Gaussian populations:  
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with the proportional priori α(l). The parameters are obtained by the maximum likelih-
ood (ML) estimation with 

 

Under the null hypothesis 
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we have μ=μ(l) , Σ=Σ(l). Putting X(0), X(1) together, the ML estimation becomes 

 

We further use the following Kullback–Leibler (KL) divergence  
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to measure the deviation contributed by the difference of μ(l), resulting in 
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from which we observe the following Hotelling two-sample T-squared statistics [1]   
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Moreover, considering the following linear projection  
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we use Eq.(4) to measure two resulted scalar Gaussian populations and get   
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which could be further maximized to obtain an optimal w*. That is, we reach the pop-
ular Fisher linear discriminant analysis (LDA).   

3 Matrix-Variate Discriminative Analysis  

Following Sect. 3 in [2], we consider a d × m matrix variate X from the following 
matrix normal distribution [3] : 
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where an m × m matrix Ω describes the cross-column dependence of X and a d × d 
matrix Σ describes the cross-row dependence of X. This matrix distribution links to 
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a multivariate Gaussian distribution ),),(|)(( Ω⊗ΣMvecXvecG where ⊗ denotes the 

Kronecker product and vec[A] is the vectorization of a matrix A. 
Given samples of the following populations:  
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the parameters are estimated as follows  
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(10)where Ω(l) depends on Σ(l) and one estimate is given by  
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With the normal distribution, we get the following observations. First, we can get the 
following matrix variate Bayes discriminative rule: 
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Second, it follows from Eq.(4) that we similarly obtain 
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with the following estimates: 
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Third, we get a bi-linear projection by a ds×d matrix W and a m×ms matrix U 
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It follows from Eq.(10) and Eq.(11) that we have 
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Then, we use sKL in Eq.(13) to measure the two matrix normal populations 
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which is further maximized to obtain an optimal W*, U*. That is, we have  
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which is a bi-linear extension of Fisher linear discriminant analysis.  
Particularly, when ds=ms =1, we get the following Fisher criterion    
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Moreover, yt= wTXtu
 may also be turned into a regression to a label It=1 as Xt comes 

from Xt
(1) or label It=0 as Xt comes from Xt

(0) , i.e.,  

 
We may estimate w*, u* by maximizing the following likelihood 
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Then, we further develop an algorithm for maximizing the measure either by 
Eq.(16) or Eq.(19). Simply, we may implement an alternative gradient descent updat-
ing to maximize J(W,U), that is, we alternatively update 
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Moreover, a term of L1 norm or lasso penalty or Laplace priori  may be added to 
J(W,U) to regularize the coefficients of W, U such that extra parameters will be elim-
inated, e.g., adding to w by Eq.(7) leads to sparse LDA [4].  

Last but not least, we may further consider two even general cases.  
One is the following general matrix normal populations 

 sKL = KL(N(XjM (1); Ð(1); §(1))jjN(XjM;Ð; §)); (21)
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where ¸j ; Áj ; j = 1; ¢ ¢ ¢ ; k are the first k largest eigenvalues of § and the corres-
ponding eigenvectors. Typically, we consider k < d for a small size of samples, 
which also provides modification to sKL by Eq. (6) and sKL by Eq.(13) at the spe-
cial case Ð = I . 

The other considers that all the elements in X  are binary valued, with help of the 
following Gibbs measure: 
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X
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which is used to replace N (Xj¢; ¢; ¢) in Eqs.(12) (21). 

4 Integrative Hypothesis Testing and Variable Selection 

4.1 One General Formulation and Typical Categories 

Originally, studies on hypothesis testing consider samples from populations of one 
random variable, e.g., a SNP takes one of genotypes in the popular PLINK study [5]. 
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For practical problems, a hypothesis is typically made on multi-variables and studies 
have also proceeded to multivariate hypothesis test [6,7], which recently gets ever-
interested in gene analyses [8,9]. However, these studies work on vector samples 
while we actually encounter hypotheses on a set of variables organized in structures 
beyond vector. Thus, we need to perform testing by integrating information associated 
with these structured variables. Informally, we refer efforts towards this direction to a 
term called integrative hypothesis testing (IHT). 

Similar to Eqs.(4), (13) & (21), we propose a general IHT formulation with the 
help of the KL divergence by Eq.(3). Given samples of the following populations  

 

with variables of Xt
(l) in certain specific structure, we estimate Θ(l) from X(l) by a learn-

ing principle, e.g., by the following maximum likelihood estimation 

 

Then, we test the following null hypothesis  
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Also, there could be many other statistics for testing H0 by Eq.(23). Even further, 
there could be various formulations for this testing, which are roughly classified into 
the following five categories.  

(1) Decomposing H0 by Eq.(23) with X={ξ1,...,ξd} into the sub-hypotheses 
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such that H0 by Eq.(23) is equivalent to a composition of the sub-hypotheses. Testing 
H0 by Eq.(23) is made by combining the tests of sub-hypotheses, e.g., combining the  
resulted p-values by the Fisher's combined probability test [10], the Kost's method 
[11], and others [12,13]. 

(2) Targeting at computing sKL by effectively exploring the structure of X. 
    When X consists of independent variables ξ1, ..., ξd, we have 
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that is, we make a test by a statistics that is simply a sum of individual ones, E.g., if 
each sj~χ(k), we simply consider sKL~χ(kd).  

When ξ1, ..., ξd are joint variables in vector or matrix formats, not only the Hotel-
ling T2 statistics [1] can be computed from sKL by Eq.(5) but also H0 by Eq.(23) can be 
tested by an extension of the Hotelling statistics by Eq.(13).     

For other dependence structures, e.g., p(ξ1, ξ2, ξ3)= p(ξ1)p(ξ2|ξ1)p(ξ3|ξ2), we have 
sKL=s1+s2|1+s3|2 with s1=KL(p(ξ1)||q(ξ1)) and si|j=KL(p(ξi|ξj)||q(ξi|ξj)). 
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Moreover, we may consider a statistics other than sKL, e.g., Dempster’s statistics 
[6], and others [7].  

(3) Mapping H0 by Eq.(23) into one or a set of hypotheses on certain inner repre-
sentations of X={ξ1,...,ξd}. A rejection of these mapped hypotheses means that H0 by 
Eq.(23) should be rejected since the truth of H0 by Eq.(23) implies the truth of these 
mapped hypotheses. Being different from those tests directly made on the visible data 
domain of X (called Yang domain and thus named as Yang-test or shortly A-test), 
these mapped hypotheses are tested in an inner representation domain (called Ying 
domain), which forms another type of hypothesis testing that is named as Ying test or 
shortly I-test. In Sect. 6 of [2], two I-test approaches have been proposed which are 
elaborated below: 

(a) FDA based one variable test  Considering the projection yt from either Eq.(6) 
or Eq.(18), we test the following null hypothesis 

 yGyG:H yytyyt ),,|(  as samenot    is  ),|(   2 )0()0(2 )1()1(
0 σμσμ  (27)

which can be performed by the Welch's t test. For Eq.(6), a best direction w* is ob-
tained by Fisher discriminant analysis (FDA) by Eq.(7). 

(b) Confusion table test (CTT)  Instead of making a linear projection, we use a 
classifier to map the samples of X(0),X(1) into binary labels C0 and C1, resulting in a 
confusion table shown in Fig.1(a) on which we further test  

        .difference no have  rows   two 0 :H  (28)

Again, its rejection means that H0 by Eq.(23) should be rejected. This classifier is 
trained for a minimum classification error towards N10 =0 and N01=0, i.e., two rows 
become as different as possible. Then, the hypothesis H0 by Eq.(28) can be tested by 
the following Pearson chi-square statistics 
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(4) Integrating tests on a number of the null hypotheses by Eq.(28) on the confu-
sion tables obtained from a number of classifiers that either come from Eq.(6) or 
Eq.(18) for different values of w,u or come from different implementations (e.g., dif-
ferent learning methods, different initializations, or by A-3 given in the next section). 
The integration is made by one of the methods in the above Category (1). 

(5)  Making integrative hypothesis testing by combining a number of classifiers 
with help of either of majority voting, Bayes voting, product rule, Dempster-Shafer 
rule (see Tab.2 in [14]), resulting in a final confusion table for testing the null hypo-
theses by Eq.(28). Moreover, we may learn a tree classifier to handle a tree-structured 
variables ξ1, ..., ξd , resulting in a final confusion table for testing a general null hypo-
theses by Eq.(23). 

4.2 Feature Selection: Bottom-Up Search versus Top-Down Search   

Once H0 is rejected on the joint variables of X, we further identify which one or subset 
of variables are responsible to this rejection, which is called feature selection and 
implemented by one of the following typical techniques.   
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Bottom-up search is featured by searching subset of variables with the size of 
subsets increasing from 1 to a desired one. Typical efforts may be summarized into 
the following two classes: 
(1) Examining all the combinations by the J –value (i.e., the value of J). First, each 

variable of X is examined. Second, each pair of variables are examined. At each 
m, each of Cd

m subsets of X is examined, until m reaches to a desired one.  
(2) Incremental stepwise search  First, the best variable ξ1

* (i.e., a biggest J value) is 
selected from X, resulting in Xd-1. Second, each pairing of ξ1

* with each of d-1 va-
riables of Xd-1 is examined by the J-value, with the best ξ1

*ξ2
* selected and Xd-1 

reduces to Xd-2, …, so forth, until reaching a desired size. 

 
Fig. 1. (a) A confusion table obtained by classification. (b) Illustration of the depth-first search 
(dashed line) versus the best-first search for feature selection. (c) Selection criterion J. 

Top-down search is featured by searching subsets of variables with the size of 
subsets decreasing from d to a desired one. Typical efforts may be summarized into 
the following four classes: 

(a) Testing individual variable Testing the significance of the coefficient associated 
with each variable, e.g., by the likelihood ratio test or the Wald statistics test [15]. 

(b) Backward elimination  The simple one is the depth-first search. It gradually 
eliminates a variable that is the least important one, as d reduces to a desired one. 
At each m, we examine each of m subsets Xm-1 resulted from eliminating x from 
Xm and keep the best subset by the J-value, as shown by the dashed line in 
Fig.1(b). However, this search is easy to fall in a local optimum. Instead, as 
shown by the circled numbers in Fig.1(b), a better alternative is the best-first 
search proposed in [16], which will find the optimum without enumerating all the 
possibilities when the J-value is monotonic to the cardinality of variable sets. 

(c) Sparse learning that eliminates the coefficients associated with extra variables 
during learning, as previously discussed after Eq.(19). 

 

Mixed search is featured by alternatively using bottom-up and top-down search in a 
specific procedure, e.g., forward-backward stepwise regression [17]. Moreover, we 
may make sparse learning with different initializations that lead different subsets of 
variables, and then use the union of these subsets to start a top-down search.  
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5 Integrative Geno-Pheno A5 Analyzer 

The proposed methods in Sect.3 and Sect.4 are applicable to tasks such as image rec-
ognition, object detection, fault and disease diagnosis, with improvements that come 
from considering samples in matrix format. Particularly, the methods are more ap-
pealing to those real problems for which samples are actually in matrix format but 
used approximately in vectors merely for an easy implementation.   

 

Fig. 2. (a) general data type widely encountered in gene analyses. (b) two levels of variable 
search. (c) integrative Geno-Pheno A5 Analyzer.  

Many problems in gene analyses handle data as shown in Fig.2(a), e.g. eight types of 
data shown in Fig.5 of [18]. Here, we focus on two typical examples. One is gene/RNA 
expression analysis (GEA). One simplest case consists of an array with each column 
representing a sample and each row corresponding gene. Moreover, each xjt corres-
ponds to the expression of one gene gj. Generally, we may also consider the expressions 
of one gene under an additional control, represented by several variables for describing 
different times, conditions, …, etc, where the number mj may vary for different genes. 
In such cases, X is a data cubic with each sample being a mjൈ ݀ matrix.  

The other is exome sequencing analysis (ESA), e.g., see Sect.6.3 in [19]. For each 
gene, xjt is a vector that consists of several SNPs with each in a genotype. Specifical-
ly, for the lth SNP of the gene j we take one of the following two choices for coding 
genotypes: 

(a) xjt
(l)=1 for AA, xjt

(l)=2 for Aa, xjt
(l)=3 for aa, and xjt

(l)=0 if missing genotype; 
(b) xjt

(l)=[1,0,0] for AA, xjt
(l)=[0,1,0] for Aa, xjt

(l)=[0,0,1] for aa, and 
xjt

(l)=[1/3,1/3, 1/3] when its genotype is missing, i.e., each xjt is an mj ൈ 3 ma-
trix.  

Among the problems with the data type shown in Fig.2(a), one widely studied family 
consists of association analyses on the relations of diseases or external phenomenon to 
genes or inner causes, e.g., whether a disease relates to some genes or SNPs within some 
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genes. Such a study is featured by its scope of focusing. E.g., the scope of GEA considers 
all genes in X, which usually incurs for a huge computing cost; while the scope of 
GWAS covers the SNPs of all the genes and incurs an even huge computing cost such 
that enumerating the joint-effects of multiple SNPs is computationally not feasible.  

To tackle the issue, we propose to divide the scope of focusing into two levels, as 
illustrated in Fig.2(b). A study starts from considering samples per clique, e.g., a cli-
que for ESA is a gene that contains its SNPs while a clique for GEA is a group of 
genes in a same pathway. Each clique may also be formed according to some domain 
knowledge, e.g., molecular biology knowledge for ESA and GEA. Without this 
knowledge, we may technically divide data in Fig.2(a) along the vertical direction, 
e.g., clustering analysis on gene expression data to group genes into cliques or even 
randomly picking genes to form a clique. This level investigates cliques one by one, 
and then the other level further examines subsets of each clique.  

We propose a general procedure that integrates hypothesis test and discriminative 
analysis for genotype-phonotype association (also applicable to those tasks mentioned 
at the beginning of this section), shortly called Geno-Pheno A5 Analyzer. It is featured 
by five actions as shown in Fig.2(c), which is actually a special exemplar of the A5 
problem solving paradigm. For details, readers are referred to Sect.4 in [20], Sect.3.1 
and Appendix B in [21].  

The Geno-Pheno A5 Analyzer performs the following five actions on each clique:  

A-1 (acquisition): test a null hypothesis H0 on samples of this clique to check 
whether there is a significant difference between two populations C0, C1 (e.g, by one 
method of  Category (3) introduced in Sect.4.1).. Return to A-1 if the test is not signif-
icant, and put the clique into a set named REST.  

A-2 (assumption): evaluate subsets of the clique for ones responsible to the differ-
ence between C0, C1. Each subset that passes a significance level is identified as one 
assumed candidate subset (ACS), resulting in a family of M0 such ACSs.  

A-3 (amalgamation): build up a classifier per ACS by training samples, resulting in 
a set of classifiers for the set of ACSs.  

A-4  (apex-seeking) :  use each ACS classifier to assign testing samples into one 
of C0, C1 and combine the results by different ACS classifiers to get a final  assign-
ment, together with the confusion table Tab.(1) in Fig.2(b), e.g, by one method of  

Category (5) introduced in Sect.4.1 
A-5  (affirmation) :  validating two complementary hypotheses as follows: 

(1) Vertical direction  Each of M0 ACSs is tested by testing samples, resulting in 
the first row of Tab.(2) in Fig.2(b). Also, M1 subsets from the set REST are tested as 
H1 hypotheses, resulting in the second row of Tab.(2) in Fig.2(b). Then, a validation is 
made by the concept of false discovery rate (FDR), e.g., by the Benjamini–Hochberg 
procedure based on the resulted p-values [22, 23]. Also, we may return to A-4 for 
combining those ACS classifiers that passed this validation. 

(2) Horizontal direction. We validate the confusion table Tab.(1) by the rate of 
misclassification and the curve of Receiver Operating characteristics (ROC).  

We may perform the above Geno-Pheno A5 Analyzer at the level of cliques one by 
one and then combine classifiers obtained from different cliques for a global test on 
whether two populations are significantly different.  
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