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Abstract. This paper continues the previous preliminary study on integrative 
hypothesis test (IHT) (Xu, LNCS7751, 2013). First, the coverage of IHT studies 
are elaborated from four aspects. Then, the previous preliminary A5 
formulation for IHT is developed into one that integrates multiple individual 
tasks of discriminative analysis to improve hypothesis test with enhanced 
reliability. Next, a sample-pairing-delta based nonparametric statistics is 
proposed and its application to case control study is addressed. Moreover, a 
parametric separating boundary is further embedded into hypothesis test with 
statistics based on how far samples are away from the boundary, under which 
sample classification and hypothesis testing are coordinately implemented.  
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1 Introduction 

Informally, the term integrative hypothesis testing (IHT) is used in [1] for 
discriminative analysis to integrate the evidences associated with structured variables 
on which one hypothesis is supported and to integrate the outcomes of many different 
hypothesis tests in order to reach a final conclusion. Moreover, taking analyses of 
gene expression and exome sequencing as examples, one so-called Geno-Pheno A5 
analyzer is proposed in [1] to apply an A5 formulation of the problem solving 
paradigm [2],  resulting in a general procedure for IHT implementation. 

Many applications in bioinformatics and other tasks of big data analysis involve 
discriminative analyses on samples from different populations. Without losing much 
generality, this paper focuses on such tasks of two populations, which is featured by 
subtasks viewed from three complementary perspectives. One aims at classifying 
samples into their corresponding populations by a discriminant rule, which is usually 
named classification or decision and widely encountered in the literatures of pattern 
recognition and machine learning. Being popular in the literature of bioinformatics 
and medical informatics, the second is made under the name of hypothesis test, which 
evaluates whether two populations of samples are significantly different according to 
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some discriminative statistics. Both the two subtasks are made on a finite set of 
samples and thus highly depend on another subtask called feature or variable 
selection. The selected features or variables form the domain on which each of the 
two subtasks is performed. The two subtasks are related but implemented subject to 
different performance measures that are not monotonically related. Thus, one best set 
of selected features for one subtask may not be necessarily one best set for the other. 

This paper continues the IHT study made in [1], starting at elaborating the 
coverage of IHT studies from the following aspects: 
� How to integrate information associated with multiple features for testing an 

overall hypothesis. Typical topics include how to develop an overall statistics, e.g., 
a general choice is suggested by Eq.(24) in [1] with samples of structured features 
expressed in matrix format, and how to compute statistics efficiently, e.g., as partly 
discussed in Sect.4.1 of [1], as well as how to estimate the p-value and q-value. 

� How to integrate the outcomes of multiple individual hypothesis tests to reach a 
overall conclusion, typically how to get a combined statistics from the statistics 
of individual hypothesis tests. 

� How to coordinately perform classification, hypothesis test, and feature 
selection. E.g., can we have a same performance measure for both classification 
and hypothesis test? or otherwise how to trade off them satisfactorily. 

� How to integrate multiple individual performances on either or both of 
classification and hypothesis test to get an overall good coordination between 
classification and hypothesis test.  

Efforts on the first two aspects have also been partly discussed in [1] and studied 
also by many others [4-8]. The last two aspects are just preliminarily and 
incompletely involved in [1] and will be the focuses of this paper. In the next section, 
a preliminary A5 formulation in [1] is developed into a general formulation that 
integrates individual tasks of discriminative analysis by circularly implementing five 
basic actions. Then, it is shown in Sect.3 that this A5 formulation improves 
hypothesis testing with reliability enhanced (e.g., q-value reduced considerably).  

Being different from conventional parametric and nonparametric statistics that 
firstly comes up an overall structure for each population and then detects significant 
difference between the summarized overall descriptions, we propose to firstly detect 
difference between paired samples and check whether these differences can be 
summarized into a significant one. Sect.4 proposes a sample pairing delta based 
nonparametric statistics and discusses its application to case control study and 
especially joint SNPs analyses. Finally, Sect.5 further proposes a boundary based 
statistics for coordinately implementing classification and hypothesis testing.  

2 Integrative Hypothesis Testing and A5 Formulation 

The A5 formulation comes from a general problem solving paradigm, refined from 
the mechanisms embedded in Hough Transform (HT), Randomized Hough Transform 
(RHT) [2,3] and Multi-sets-learning [16]. As illustrated in Fig.1, taking line detection 
within one image as an example, the HT detection is featured by a circular flow 
featured by five basic mechanisms or actions. First, it starts from picking one pixel 
from image, which is an instance of the action named acquisition (shortly denoted as 
A-1) for sampling evidence or data from the world in observation. Second, the HT 



 Integrative Hypothesis Test and A5 Formulation 889 

maps the pixel picked into a line in its parameter space 	={a,b}, which is an instance 
of the action allocation & assumption (A-2) that allocates information contained in 
the picked pixel, featured by a distributed allocation of evidence along a line that 
represents a set of candidate assumptions in the parameter space. Third, the HT 
quantizes a window of the parameter space into a lattice on which every cell is placed 
with an accumulator. We add one score to those accumulators located on the 
candidate assumptions provided by A-2, which is an example of the action 
accumulation & amalgamation (A-3) for integrating evidences about these candidate 
assumptions. Next, we inspect the scores of all the accumulators and detect those, that 
pass some threshold or become local maxima, as the final candidate conclusions on 
detected lines, which is an instance of the fourth action apex-seeking & assessment 
(A-4) that decides one or a set of final candidates with their corresponding scores 
either locating at peaks or becoming bigger than a threshold. Finally, the HT tests 
whether each of final candidates can be regarded as a detected line. In general, the job 
is named affirmation (A-5) that assesses whether each of candidate conclusions 
should be either discarded or identified as a final conclusion. 

 
Fig. 1. A5 Formulation and One Exemplar 

The tasks of object detection can be regarded as a special family of discriminant 
analysis that discriminates different populations of samples from geometrical shapes, 
while discriminant analysis usually refers to discriminate populations of samples from 
different statistical structures in term of either or both of classification and hypothesis 
test. To be specific, we consider a set of feature variables that represent the domain in 
observation, and then examine two populations within the domain via samples. Each 
sample is usually a vector or generally a structural set with each element being one 
specific value taken by the corresponding feature. Given one sample set X(0) from P(0) 

and the other sample set X(1) from P(1), we want to judge whether two populations are 
significantly different in term of hypothesis test and to classify samples into P(0) and 
P(1) with minimum confusion in term of classification. Usually, some features may be 
irrelevant, and some features are disturbed by noises or outliers. Instead of 
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considering X(0) and X(1) with all the features as a whole, both tasks are usually based 
on the task of finding an optimal subset of features in the name of feature selection. 

Conventionally, the task pair of hypothesis test and feature selection is conducted 
separately from the task pair of classification and feature selection. In fact, two task-
pairs are related but implemented under different measures that are actually not 
related monotonically. In sequel, we propose to use the A5 formulation to integrate 
multiple individual tasks of discriminative analyses with classification of samples, test 
of hypotheses, and selection of features performed coordinately.  

Given two original sets X(0) and X(1) with each in an M×N matrix the consists of 
samples as rows. Let � to be a set of accumulation cells with each cell storing the 
evidence that supports the corresponding candidate assumption. Initially, � is empty, 
and gradually new cells are added in as new candidate assumptions come. Among �, 
a subset �F is selected to store the final candidates. Moreover, we get Z(0) and Z(1) as a 
pair of testing sets on the domain of �F. The samples of Z(0) and Z(1) maybe new ones 
from P(0) and P(1) or just randomly and partially picked from X(0) and X(1).  

Schematically, the A5 formulation is featured by circularly implementing the 
following five actions.  

Action A-1 (Acquisition of Evidence). Randomly picks m rows and n columns from 
X(0) and X(1) to form a pair of m×n matrices Y(0) and Y(1).  
Remarks: Typically, the number of rows in X(i) is greatly larger than the number of 
columns in X(i) in real applications, which makes it unreliable to get a selection 
among a great number of rows merely based on a small number of columns. 
Randomly selecting Y(i) out of X(i) is a way of increasing an effective number of 
columns in a self-boosting manner, though suffering an over-optimistic risk. 

Action A-2 (Allocation and Assumption). A subset of features {
} ={
j, j=1,…,m}, 
corresponding to the m rows of Y(i), are selected by a SELECTOR with a score s{�}, and 
then each �* is allocated a score s�*  according to its importance. Shown in Fig.2(a) is 
one example that is featured by a monotonic curve obtained by an ALLOCATOR.  
Remarks: As an example of SELECTOR, we implement a sparse LDA learning [14] 
based on Y(0) and Y(1), resulting in a feature set {
}. We may even simply pick a set 
{
} randomly. Usually, the allocated score s{�} is obtained in one of the following 
two ways: 

Way A design an optimal classifier on the feature set {
}, and use its correct 
classification rate as the score s{�}. 

Way B make a multivariate hypothesis test (e.g., a Hotelling T2 test [17]) based on 
{
}, and compute its corresponding q-value q{�} [4-6]. Then, we use 1- q{
} as the 
score s{�}.  

One rough treatment for ALLOCATOR is simply letting s�= s{�}/#{�} for each � 
in {
}, where #A denotes the number of elements in the set A. A better choice is 
measuring the importance of a feature by its role in one sequential reduction. That is, 
each time a least important �* is removed with its score s�* obtained as illustrated in 
Fig.2(a), with help of the following special treatments: 

� if there are more than one feature �* with a same score s�*, discard the one with 
the biggest p-value or misclassification rate obtained merely on this feature. 

� if s�* 0, we discard the least important pair of features by examining all the 
possible pairs in {�}, and so on so forth. 
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(a)                                      (b) 

Fig. 2. Importance of features and accumulation of evidences (a) features are sequentially 
ordered by importance with the one of the 1st importance at the bottom and the curve indicates 
the accumulated score from the bottom up; (b) each of the ordered features is associated with a 
list of accumulators and each accumulator is associated with a different feature. Each list is 
empty at beginning and gradually added with accumulators as above described. 

Action A-3 (Accumulation and Amalgamation). Evidences of importance are 
accumulated for the features {
} provided by A-2, as shown in Fig.2(b). 

Action A-4 (Apex-Seeking and Assessment). We pick a feature set  
�F={
(1),
(2), …, 
(k)} in either of the following three ways: 

(1) Among the union of the 1st, 2nd,…, kth rows with the scores for a same feature 
added together, we pick ones with the first k largest scores as �F. 

(2) Within the first row (at the bottom), pick the one associated with the largest 

score as 
(1). Similarly, 
(2) ( 
(1) ) is picked from the top scored one within the 
second row, and so on so forth. Finally, 
(k) is picked from the top scored one 
within the kth row (excluding ones that duplicate the already picked features). 

(3) After getting 
(1) as above, 
(2) ( 
(1) ) is picked from the second row such that 
an optimal classifier based on 
(1), 
(2) results in the best classification rate as 
one feature associated with the largest score as 
(2), and so on so forth. 

Action A-5 (affirmation). Make hypothesis test or classification on Z(0) , Z(1) based on 
�F.  
Remarks: Some applications verify the performance of classification, while other 
applications verify the performance of hypothesis test. There are also tasks that need 
to verify both types of performances too. Also, we may evaluate the importance of 

each � �F in a way similar to that shown in Fig.2(a).  
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The above A5 formulation will increase the reliability of the final outcomes in �F 
by integrating analyses made on the randomly picked sample sets at A-2, which 
shares a common point with the methods such as cross-validation, boosting, bagging, 
and stacking, which are widely studied in machine learning. In the next section, a 
probabilistic analysis will be provided to show that the evidence accumulation by A-3 
and A-4 will significantly bring down the false discovery rate of hypothesis test [4-6].  

The above A5 formulation seeks consensus on the importance and stability of 
features, while those machine learning studies seek consensus on the classification 
results instead of answering which features are important in their contributions to a 
good performance. Even worse, a combination of multiple classifiers with each 
classifier using different features actually enlarge the size of feature set considerably. 
This is unfavorable to those real tasks (especially in bioinformatics) that need to 
identify which features are mainly responsible to the final outcomes.  

3 False Discovery Rate and Accumulated Reliability 

Some probabilistic analyses are made on understanding how the A5 formulation can 
considerably improve the reliability. Starting from the basic concepts in Table 1, we 
summarize typical probability measures about hypothesis test from a Bayesian 
perspective in Table 2. On the last column, 	1 is the priori that H0 is false, and 	0 is the 
priori that H0 is true, while the last row lists the probabilities that the test rejects H0 
and fails to reject H0, respectively. The most widely used measure is the probability of 
Type I error, listed in the column of “reject H0” on the same row of 	0 , which is 
described by the false positive probability usually called p-value that is controlled to 
be below an � level of significance.  

Table 1. Basis concepts and notations in hypothesis test 

 reject H0  fail to reject H0

Null H0 
is false 

True positive 
Type II error 

False negative  
Null H0 
 is true 

Type I error 
False positive 

True negative  
 

reject 
H0

fail to 
reject  

 

H0 false S T d1 

H0 true V U d0 

 R W d 
 

(a)                                (b) 

Instead of controlling the p value at the level � for each test, the familywise error 
rate is suggested to control the probability of making one or more Type I errors at the 
level � for all the hypotheses. However, this error rate is much too strict, especially 
when the number of hypotheses is large, and thus replaced by the false discovery rate 
(FDR) that is the expected proportion of false positive among all discoveries (rejected 
null hypotheses)[4]. As listed in a pair with the p-value in Tab.2, the q-value is 
actually the posteriori counterpart of the p-value from a Bayesian perspective [5,6]. 
With wide applications in big data analyses (e.g., genomics), FDR becomes a hot 
topic in the past one or two decades [4-6]. 
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Table 2. Typical performance measures and Bayesian perspective 
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The Bayesian perspective can be extended to all the rest concepts listed in Tab.2, 

that is, we may have the posteriori counterparts of Type II error, sensitivity, and 

specificity. It follows from p(H1|� �)=1-p(H0|� �) and p(� �|H1)=1-p(�∉�|H1) that 
these measures are related, which provides not only insights but also alternative way 
to compute the q-value. When we get some structure about H1, it is more feasible to 

estimate p(� �|H1) and thus its posteriori counterparts. Also, the q-value may be 
estimated from the likelihood ratio positive (LR+), which has been studied in 
diagnostic testing of evidence-based medicine. It follows from Tab.2 that we have 
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from which we observe that a bigger LR+ value actually means a smaller q value.  
Next, we explain that the A5 formulation brings down the q-value significantly by 

A-3 and A-4, and enhances the performances of hypothesis test. For simplicity, we 
assume that each time every accumulator adds by a score 1 at A-3 and that the test per 
circling is independent from each other. Though this assumption is actually not true 
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because samples are randomly picked from the same X(0), X(1) at A-1, we may get 
some insights by this rough approximation.  

We observe a particular cell 
f � that just reached a threshold � after M times of 
circling during the A5 implementation. Precisely, the statistics in consideration is the 
set {
f} of all the cells in � with its region of rejection as follows: 
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It follows from the last row of Tab.2 that the probability for {
f} to fall in its 
rejection region is given as follows: 
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Moreover, it is promising to observe the Q-value by the Bayes posteriori:  
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That is, score accumulation indeed brings down the Q-value simply as long as �>1. 
Such accumulated reliability increases as the threshold � becomes larger. However, 

there is no free lunch. It follows from Eq.(3) that the probability of rejecting H0 also 
reduces considerably, which leads to either the risk of missing significant features 
(i.e., detecting power reduced) for a fixed number M or a large computing cost for 
keeping A5 circling until finding enough significant features. 

4 Sample Pairing Delta and Case Control Study  

Hypothesis test focuses at evaluating a deviation from the hull assumption: 
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Typically, the deviation from H0 is measured by the Hotelling T2 statistics [17]: 
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which measures the deviation of P(0), P(1) from G(x|
,�) as a reference about H0. 
Other than parametric statistics, the Kolmogorov-Smirnov test and the Mann–Whitney 

U test are two general nonparametric methods to test whether samples come from  
the same distribution [15]. The former uses the maximal distance between cumulative 
frequency distributions of these two samples as the statistics, while the latter takes the 
difference between mean ranks of these two samples as the statistics.  

Here, we propose another nonparametric statistics as follows: 
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where �(x,y) indicates the variation by pairing the sample x with y, and is called 
sample-pairing-delta. One special case considers element by element independently:   

 ,)],(,),,([),( 111
T

ddd babayx δδδ �=  

where �j(aj,bj) measures the variation from aj to bj. One example is that elements are 
homogenous up to unknown scales wj’s,  that is, we have  

    ).,(),( jjjjjj bawba δδ =                        (11) 

In general, each element of �(x,y) depends on vector x and vector y. Typically, we 
may consider that each element comes from �(aj,bj), j=1,…,d by a linear map  

   ,)],(,),,([),( 11
T

dd babaWyx δδδ �=                   (12) 

where W is a transformation matrix. Particularly, when �(x,y) =x-y and W=��-0.5, we 
get the following Mahalanobis distance: 

  ).()(),(),( 1 yxyxyxyx TT −Σ−= −δδ                 (13) 

This sample-pairing-delta �(x,y) based statistics �A provides a practical facility too. 
In real applications, there are frequently samples that have elements with missing 
values. Traditionally, we either discard such a sample or fill the missing values by 
certain estimation of the missing value based on other samples. On one hand, 
discarding the sample makes the small sample size problem become more serious, as 
encountered in bioinformatics. On the other hand, it is difficult to estimate a missing 
value well and usually a rough estimation leads to a bad performance.  

We believe that a best policy is letting the affect of missing value to other parts of 
computation to be as less as possible. E.g., in the SNP analysis [13], �j(aj,bj) measures 
the extent of a variation from aj into bj. Typically, a SNP variation occurs rarely and 
thus if it is missed in detection we can conservatively regard that there is no variation. 
That is, we may simply consider a rectified scale in Eq.(11) by 
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The simplest case is wj=1, or the degenerated case W=I in Eq.(12). In general, W in 
Eq.(12) may consider the dependence cross elements by 
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where the matrix Cv measures co-variations across elements. Assuming independence 
cross elements, W could be given as follows          
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In implementation, we usually do not know the distribution of �A and thus cannot 
estimate the p-value in a standard way. Still, we may approximately estimate the p-
value by a Monte Carlo simulation under the null H0 by Eq.(6), e.g., we make the 
following permutation test: 
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where I(a>b)=1 if a>b, otherwise I(a>b)=0, and � is the set of all the possible 
permutations, with each 	א� turning out X	

(0), X	
(1) [11].  

Next, we proceed to address other favorable features of the statistics �A by Eq.(10) 
in comparison with typical studies of hypothesis test.  

First, in a standard way, a statistics and its distribution are derived under the null 
H0 by Eq.(6), after which the value of this statistics is computed from samples and a 
p-value is estimated according to the distribution to test whether this H0 breaks 
significantly. However, it is challenging to estimate the distribution of this statistics 
and to compute the p-value according to this distribution, which makes the standard 
approaches of hypothesis test limited to only a few commonly assumed distributions. 
In contrast, the statistics �A by Eq.(10) makes hypothesis test performed in an 
alternative way that directly measures the difference between P(0) and P(1) regardless 
the null H0, and compute the p-value by a Monte Carlo simulation under the null H0 
without estimating the distribution of �A. 

A parametric statistics may also be obtained in a similar way. Firstly in [10] and 
subsequently in [1], the following Kullback–Leibler (KL) divergence is suggested 

,)](/)(ln[)(q)||KL(p  )),|(||)|(( )0()1( dxxqxpxpXpXpKLKL 	=ΘΘ=ς         (18) 

as a general formulation of statistics that aims at the difference between P(0) and P(1), 
where �(1) is an estimation of � based on X(1) while �(0) is an estimation of � on X(0). 
By the way, getting �(0) estimated on both X(0) and X(1),  �KL also leads to statistics in a 
standard sense. E.g., let q, p given by G(x|
 (1),�), G(x|
 (0),�) in Eq.(18), we are lead 
to the Hotelling statistics by Eq.(9), with details referred to [1] (especially p870). 
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Second, typical existing statistics, derived either parametrically (e.g., the Hotelling 
T2 statistics [17] and those frequency table based tests used for SNP analyses) or non-
parametrically (e.g., the Kolmogorov-Smirnov test and the U test),   shares a 
common feature. That is, the overall structure or description of P(i) is firstly 
summarized from its own samples, respectively for i=0,1, and then, the summarized 
overall structure of P(1) is compared with the summarized overall structure of P(0) to 
detect whether there is a significant difference. In contrast, the statistics �A by Eq.(10) 
starts to detect delta �(x,y) (i.e., difference) between paired samples x,y and then 
summarize these deltas for detecting a significant difference between X(0) and X(1).  

Such a sample-pairing-delta based statistics �A may have some asymptotic relation 
to a standard hypothesis test method. For the example by Eq.(13), it can be 
analytically shown that as the sample size N(0)+N(1) becomes large enough we have 

,    s  ) ,( )0()1(
10

2 ∞→+→− NNaTdA θθζ                (19) 

where T2(�0,�1) is the Hotelling statistics by Eq.(9), i.e., the difference between means 
prevails. In other words, �A by Eq.(10) differs from the standard hypothesis test 
especially for detecting population difference on a finite size of samples. 

Third, typical statistics such as the Hotelling T2 statistics and those frequency table 
based statistics actually test a deviation from the null H0 by Eq.(6) via testing the 
differences between mean values subject to certain constraints. That is, the statistics 
becomes zero when there is no difference between mean values. In contrast, �A  by 
Eq.(10) will be still a nonzero value �0�0 in such a case of no difference. For some 
distributions, e.g., G(x|
(1),�)=G(x|
(0),�), this �0�0 tends to asymptotically a constant 
as shown in Eq.(19) and thus does not contain any useful information about difference 
between P(0) and P(1). Even so, it has no bad effect on the permutation test by Eq.(17) 
because inequality will not be affected by adding a constant in both the sides. For two 
populations P(0) and P(1) with no difference between mean values but still some higher 
order difference, �A  by Eq.(10) may detect some information about this difference. In 
other word, this �A  is more powerful than those mean-value based statistics for 
detecting a deviation from the null H0 by Eq.(6).  

The last but not least, we consider the case-control studies that are widely 
encountered in real applications of hypothesis test. The samples X(0) of P(0) come from 
a normal population as benchmark or called control. There is usually a reference point 
about the normal by which we calibrate each feature to represent its deviation from 
the corresponding reference. For control samples, deviations from the reference are 
usually isotropic random noises with zero mean. On the other hand, samples X(1) of 
P(1) come from one abnormal population or called case, with a systematic deviation 
from the reference. The task of case-control studies aims at detecting this systematic 
deviation. Typical statistics, especially those based on the difference between mean 
values, consider P(0) and P(1) in a same distribution form p(X|�) but different in the 
values that � takes. With help of Eq.(18), we may further proceed to consider P(0) and 
P(1) in different distribution forms. 

Moreover, extensions may also be made to consider that the reference may not 
necessarily represent the normal and that deviations of control samples from the 
reference may not necessarily isotropic noises. Taking GWAS analysis [13] as an 
example, a case sample takes a symbol � and a control sample takes a symbol � at one 
SNP site. At this site, both � and � may take the value 0 for SS as a reference, the 
value 1 for the variation Ss, and the value 2 for the variation ss.  
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Generally speaking, deviations from the reference can be classified into two types, 
one by control samples and one by case samples. It is insightful to watch which type 
dominates, for which we further look into the following two scenarios: 

(1) P(�>�), i.e., the case samples deviate more badly than control samples do. 
E.g., for the SNP analysis, a disease is likely caused by certain variations. We may 
measure the difference between X(0) and X(1) in this scenario by 
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N j
(i ) =  # X j

(i)  (excluding missing elements),      X j
(i)  from the jth column of  X (i ).  

The vectors x,y in Eq.(10) correspond to one pair of samples from one computational 
unit (e.g., a gene), with the jth element pair � and � of x,y representing the jth site.  

(2) P(�<�), i.e., the control samples deviate more badly than case samples. E.g., 
the normal population experienced variations to adapt an environmental change, while 
a disease is likely caused due to a lack of such variations. We may similarly get �A

0>1 
simply with �>� in Eq.(20) replaced by �<� while 1>0 in Eq.(20) replaced by 0<1.  

Moreover, we may also get  
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Finally, we may put each of the above �A
0>0, �A

0>1 and D(X(0)||X(1)) into Eq.(17) to 
implement permutation test.  

5 Boundary Based Statistics  

The task of discriminant analysis is selecting a subset of features on which we 
observe either a best separation between P(0) and P(1) in term of classification or a 
significant overall difference between P(0) and P(1)  in term of hypothesis test.  

For a best separation, we consider a boundary that separates samples from P(0) and 
P(1) with a least number of misclassified samples, where a misclassified sample is one 
that comes from one population but be classified into the other. Whether two 
populations could be well separated relates to whether there is a significant overall 
difference between the populations. However, two concepts are not same. Also, 
classification and hypothesis test are implemented under different performance 
measures that are not monotonically related. The one for classification focuses on 
boundary separation, while the one for hypothesis test focuses on difference of the 
overall structures. A best performance for one may not be necessarily the best for the  
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other. Conventionally, classification and hypothesis test are studied separately. Here, 
we attempt to integrate the two subtasks by reexamining the role of discriminant 
boundary in getting statistics for hypothesis test.   

Observing Eq.(8), 
 actually acts as a boundary that separates two populations, and 
T2 measures the Mahalanobis distance to this boundary from both the sides of  
(0) 
and 
(1). A boundary is also implied between x and y in Eq.(13). However, such a 
rough boundary only results in a rough separation of P(0) and P(1). Thus, we are 
motivated to embed an optimal best boundary into one statistics in order to judge 
whether two populations are significantly different.   

One rather straightforward way is a two step implementation as follows. 
Step 1:  use a Bayes classifier or one alternative to separate samples into  
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where Xi
(j) consists of samples that come from X (j) and classified into the population 

P(i), with nji = #Xi
(j).  

Step 2:  measure the deviation from the null hypothesis H0 by 
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where D(A||B) is same as defined in Eq.(10). Alternatively, we may replace this 
nonparametric statistics by a parametric statistics. Considering the asymptotic 
approximation by Eq.(19), we may let that  
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where �i
(j) is a maximum likelihood estimation of a Gaussian distribution based on the 

subset Xi
(j) of samples. It follows from Eqn.(5) in [1] that we may also use 
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Still, the above two step implementation is made under two different measures, i.e., 
misclassification at Step 1 and �B at Step 2.  

Instead, we can also use a same measure to implement two steps coordinately, for 
which we estimate 	 to maximize a parametric �B(�) that varies with a discriminant 
boundary described by a parameter �.  

Given a boundary f(x,	)=0 such that a sample x is classified into P(1) if f(x,	)>0 
and into P(0) if f(x,	)<0, one example of such a parametric �B(�) is given as follows: 
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    Dsepara (θ ) =  s(d f (y,  θ )
y∈X (1),  f  (y, ,θ ) >0

� )+ s(d f (x,  θ ))
x∈X (0 ),  f  (x, θ ) <0

� ,    

where s(r) is a monotonically increasing function with respect to a scalar variable r, 
and df(x,	) denotes the shortest distance of a sample x to f(x,	)=0 by  

     . min),(
2

0, , uxxd )f(uuf −= =θθ                    

 

(27) 
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When s(r)=0 for r=0 otherwise s(r)=1 for r>0, it follows from Eq.(26) that 

   ,)(1)/()()(�� 1
011001100011B

−++−=++= nnnnnn                

  

(28) 

which is monotonically decreasing with respect to the misclassification error, and its 
maximization is equivalent to minimizing the misclassification. On the other hand, 
when s(r)= r2, �B(�) by Eq.(26) is conceptually a counterpart of �A by Eq.(10), Eq.(15), 
and Eq.(16). In other words, �B(�) by Eq.(26) covers classification and hypothesis test 
as two special cases, and generally trades off the natures of both.  

We may emphasize one over other by different choices of s(r), e.g., we consider  

,0   ,)( >= ααrrs                         

   

(29) 

for which we are leaded to hypothesis test as �=2 and to classification as � 0, as well 

as to one intermediate case when � takes a value between 0,2].   
In implementation, one bottleneck is solving Eq.(27) efficiently, though we simply 

have  
 (30)

Indirectly, df(x,�) is able to be solved by the Lagrangian for a quadratic function 
f(x,	)=0 [12], for which one example is a Bayes classifier with the boundary below  

,0)],|(ln[)],|(ln[),( )0()0(
0

)1()1(
1 =Σ−Σ= µαµαθ xGxGxf   

which is a quadratic equation of x and degenerates to a linear equation when �(0)= 
�

(1). 
Instead of considering f(x,	)=0 as a linear or quadratic equation globally in the 

sample space, we may model a discriminant boundary by a mixture of linear functions 
f(x,	j)=0, j=1,2,…,m as follows:  
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That is, for each f(x,	j)=0 we concentrate on considering the k nearest samples of X(0), 
X(1) to f(x,	j)=0 as follows:  

 .10  },0),( todistrances minimum  the with of samples {)( )()( ,ix fXkX j
i

j
i

k === θθ  

The overall separation of X(0), X(1) is described by combining m local liner 
discriminant boundaries. For a small k, the focus is on a border based 
misclassification with some ignorance of overall difference between populations. In 
other words, we get a better classification but a weak detecting power for hypothesis 
test. As k increases, the focus gradually switches to increasing the detecting power on 
the difference in overall structure, but suffering some classification accuracy. The 
value of k trades off between classification and hypothesis test. Also, we may control 

s(r) by Eq.(29) for a similar role. E.g., � 0 discounts samples away from the border.  
For a classification task, samples around the border take major role on estimating 

the boundary structure between populations, while samples away from the border take 
a role of regularizing the estimation especially when there are few boundary samples. 

   .0)boundary linear a for   ,) (u-c)== wf(u,	w/||w||(x-c)(x,	d TT
f =
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How to decide an appropriate k in Eq.(31) remains a challenge. We start from a small 
k to iteratively maximize �B(�) for learning �, with k gradually increasing. Then, with 
the resulted �, we test hypotheses on X(0), X(1) as k becomes large enough. 

For a hypothesis testing task, we start from a large k and gradually reduce to a 
small k for an improved classification performance.  

The statistics by Eq.(26) is different from ones by Eq.(9) and Eq.(10) that are made 
directly in the apparent domain (shortly A-domain), where samples are directly 
observed and overall structures are compared. Also, this statistics differs from ones 
that is featured by statistics computed indirectly in an inner domain (shortly I-domain) 
where samples are mapped into and where misclassification or separation is measured 
[1,10]. Instead, �B by Eq.(26) integrates both the statistics D( || ) in the A-domain and 
the statistics nji in an inner decision domain to measure the differences between two 
populations. 

Last but not least, we need further theoretical understanding on the third issue in 
Sect.1. Namely, we want to know whether best classification and best hypothesis test 
will become asymptotically equivalent as the sample size tends to infinite, subject to a 
moderate condition or can be achieved under a same performance measure, e.g., 
under �B by Eq.(31) with a same value of k ? 
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