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Abstract—A bilinear matrix system (BMS) is proposed as a 
general semi-blind learning framework for modeling matrix-
formatted data and for extracting matrix-formatted inner factors. 
Different special cases of this framework  lead to a family of 
typical learning tasks. The problem of learning such a semi-blind 
BMS learning is formulated as a problem of learning a particular 
BYY system for estimating unknown parameters and for making 
model selection. We develop a BYY harmony learning algorithm 
for learning matrix normal distribution based BMS, which 
relates to and also generalizes typical learning methods, such as 
factor analyses, 2D-PCA, and manifold learning, …,  etc,  
featured with automatic model selection on the bi-perspective 
dimensions. Also, we apply this algorithm for estimating the 
profiles of transcriptional factor activities from gene expression 
data. Moreover, we briefly outline typical applications of BMS, 
especially a new perspective of Yang domain based hypothesis 
test versus Ying domain based test, exampled by schematic 
algorithms and genetic diagnoses applications. 
 
Keywords—bilinear matrix system; semi-blind learning; BYY 
harmon learning; 2D-PCA, manifold learning; bi-perspective factor 
analyses; gene regulatory; hypothesis test ; genetic diagnoses. 

I. INTRODUCTION 

A family of learning models have been outlined recently in [1], 
under a unified framework named bilinear matrix system. A 

Nd   sample matrix X  with each sample vector  xt  as one 
column is regarded as generated from 
                                   E AY X                                         (1) 
where a stochastic source matrix Y is called factor matrix with 
each column put an inner factor vector yt per sample vector xt, 
and a stochastic system matrix A that is called loading matrix 
with its columns forming a coordinate system. Eq.(1) is a 
linear system with respect to either of A and Y, and thus is  
called a bilinear matrix system. Moreover, E is a residual 
matrix that is mutually independent not only among all its 
elements but also with AY, i.e.,      0][ TAYEE                   (2) 

As shown by a roadmap given in Fig.1 of [1], we are led 
to a family of learning tasks by imposing certain constraints on 
Y and A. Typical examples include  
 Factor analysis (FA), binary FA (including multiple cause 

mixture), nonGaussian FA, and temporal extensions. 
 Gaussian mixture, mean square error clustering, binary 

matrix factorization [2], and nonnegative matrix 
factorization [3], as well as a mixture of FA models and 
local FA (including local PCA or local subspaces).  

In this paper, we further address that the linear system by 

Eq.(1) is merely a special case of what we should call a 
bilinear matrix system (BMS), which covers not only Eq.(1)  
but also manifold learning [4-6], as well as others. This BMS 
provides a general formulation for semi-blind modeling of 
matrix-formatted data and for extracting matrix-formatted 
inner factors from image.  Details will be introduced in 
Section II, where the problem of learning BMS is further 
formulated as learning a particular BYY system.  

Section III considers matrix normal distribution and 
develops a BYY harmony learning algorithm, which is thus 
further addressed in Section IV as a unified framework that 
covers and improves several existing learning methods. 
Section V outlines typical applications, while Section VI 
provides a new perspective of hypothesis test. Finally, Section 
VI proposes four  genetic analysis applications. 

II. SEMI-BLIND BILINEAR MATRIX SYSTEM AND BAYESIAN 

YING-YANG HARMONY LEARNING 

The linear system by Eq.(1)  is actually a degenerated special 
case of the following bilinear matrix system (BMS): 
                                ,E  AYBX T                                       (3) 
where the Nd   sample matrix X  is a linear function of an 

Mm  inner factor  matrix Y with both a left-multiplicative 
md   matrix A and  a right-multiplicative MN  matrix B . It 

degenerates to Eq.(1)  at NM   and B=I. Still, A is a  loading 
matrix that transforms columns (vectors) of Y into columns 
(vectors) of X , while B maps rows (sequences) of Y into rows 
(sequences) of X . Still, E is a residual matrix that is mutually 
independent from AYBT . 
Alternatively, Eq.(3) can be equivalently expressed as follows: 
                         .    , T

BB YBYEY A X                               (4) 

As discussed in Sect. of [1], even the system by Eq.(1) already 
has indeterminacy for which certain constraints on Y, A, and X 
are usually needed. The situation becomes even worse with 
one additional matrix B . Thus, certain structures of Y, A, and 
B  need  to be known in advances, the task is to learn the rest 
unknowns of this system, that is, we are dealing with semi- 
blind learning problems, as addressed in Sect.1 of [1].   
     We start to consider a particular matrix that consists of 
independently and identically distributed (i.i.d.) elements, or 
shortly i.i.d. matrix.  That is, a matrix S={sij} is distributed by 

                    ), |()(
,

 ji ijsqSq                                     (5a) 

with every sij coming from a same scalar distribution q(s|φ). 
One example is the standard normal distribution  

                      q(s|φ)= N(s|0,1),                                         (5b) 
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where N(u|μ,Σ) denotes a Gaussian density with the mean μ 
and the covariance Σ.  Generally, q(s|φ) may come from the 
exponential family (see Sect.2 of [1]).  
      To adopt different scales, sij  is rescaled into uij = λi

r sij λj
c 

per column and per row, or in the following matrix form : 
   ],,,[   ],,,[   , 11

5.05.0 c
M

c
c

r
m

r
rcr diagdiagSU      (6) 

which consists of bi-directionally recalled and independently 
distributed  (r.i.d.) elements, or shortly we call r.i.d. matrix.  
      We consider the following structural r.i.d. matrices: 
                 ,  , 5.05.05.0

scsr EDEYY                                         (7) 

where E is rescaled merely per row, i.e., columns of  E are 
identically distributed. Both Ys and Es are i.i.d. matrices by 
Eq.(5a)&(5b). Thus, the structures of q(Y|θy) and q(E|θe) 
become available once q(s|φ) is chosen. Also, we can get 
q(YB|θy) from q(Y|θy) via YB=YBT. 
      It follows from Eq.(3) that we get the following structure:   
   ).,|(),|(),|()|(),|( |||| yxByxByx

T
eyx YXqAYXqAYBXqEqYXq    (8) 

To reduce the system indeterminacy,  certain structures will be 
also added on either or both of A and B. Especially, different 
structures of B also lead to different learning models. 
      All the rest unknown parameters are estimated under a 
learning principle with help of an efficient implementing 
algorithm. One typical principle is maximizing the likelihood  
       

Byyx YYdYYqYXqXq by   replaced is or   )|(),|()|( |            (9) 

for which a gradient algorithm or an EM-like algorithm is 
usually developed for implementation. Moreover, constraints 
may also be imposed via appropriate priories  
         )()()()()|( | yyx qqBqAqq  k                                  (10) 

on a part or all the parameters, based on which we may further 
implement Bayesian learning or variational Bayes (VB) [7,8].  
      Extensive experiments have shown in [9,10] that the 
Bayesian Ying-Yang (BYY) harmony learning outperforms 
not only maximum likelihood learning but also considerably 
outperforms Bayesian learning, VB, and minimum message 
length. The BYY harmony learning was proposed in 1995 [11] 
and developed systematically over a decade and half,  which  
provides not only a framework that accommodates typical 
learning approaches from a unified perspective but also a new 
road that leads to improved model selection criteria and Ying-
Yang learning algorithms with automatic model selection. 
Readers are further referred to recent overviews [1,12,13]. 
      The BYY system considers the joint distribution of a set 
XN={x}t=1

N of samples and its inner representation R={Y,θ,k} 
in two types of  Bayesian decomposition, where k consists of 
one or more integers that represents the complexity of the 
system, e.g., m, M in Eq.(3).  From a modern perspective of 
the famous ancient Yin-Yang philosophy, one type is called 
Yang machine, coinciding the Yang concept with a visible 
domain p(X|XN) obtained from a set XN of samples for a Yang 
space and a XR  pathway by p(R|X) as a Yang pathway. 
The other is called Ying machine with an invisible domain 
q(R) for a Ying space and RX by q(R|X) as a Ying pathway.  
       Specifically, we have 
        ,)()()|()(or     )()()|()( kRkR qqYqqqqYqq yBy               (11) 

),,|(),|()|( || yxByx YXqYXqXq  R  

with each of components as introduced from Eq.(5) to Eq.(8).  
Typically, the structure of p(R|X) is designed as some type of 
inverse of the Ying machine, for which details are referred to 
one recent overview [13], especially its Sect.3.2.   
      After the structures of each component in a Ying-Yang 
pair have been specified, all the rest unknowns  are determined 
by maximizing the following harmony functional  
        ,)]()|([ln)()|()||( RXRRXXXR ddqqppqpH             (12) 

       Specifically, it consists of a parameter learning task for 
estimating θ={A, B, θy, θe} and model selection task of  
selecting k={m,M}. Both the tasks are implemented via 
maximizing H(p||q), i.e.,  
        ).||(maxarg],[ ,

** qpHkk                                            (13) 

III.    NORMAL MATRIX DISTRIBUTION AND BYY HARMONY 

LEARNING ALGORITHM 

     One typical situation of semi-blind BMS is featured with 
each element in Ys and Es coming from a standard normal 
distribution. Expressed in a matrix format, we have 
   ),,,|(),|(  ),,,0|()|( |  DIAYBXNYXqYNYq T

yxrcy        (14) 

where the notation means the matrix normal distribution, that 
is,  for  a d × N random matrix Z  we have 
  ,  ,

||||)2(

)]}()([5.0exp{
),,|(

5.05.05.0

11

EZM
MZMZTr

MZN
dNdN

T










         (15) 

which links to a multivariate normal distribution by  
                 ),),(|)(( MvecZvecN                                    (16) 

where ⊗ denotes the Kronecker product and vec[A] denotes 
the vectorization of a matrix A. 
       For simplicity and without losing generality, the sequel 
considers EX=0, i.e., the mean has be removed from samples.  
      Following Eq.(35) and Eq.(36) in [13],  it follows from the 
above Eq.(15) that we consider p(Y|X, θ) by  

       
).()()(  ,

),),(|)((),|)((
11

1

BBADAWXEY

EYvecYvecNXYvecp
TT

cr 








                  (17) 

      Using a set of samples directly, i.e., p(X|XN) =δ(X-|XN), 
putting Eq.(14) and Eq.(17) into Eq.(12) and following a 
derivation of  getting Eq.(37) and Eq.(38) in [13], we have 

  

][][)()(

),,,(maxarg    ,

)],|(),,0|(),,|(ln[),,(

  )],()([5.0),,()||(

111

 
**

*

Y
TT

Y
T

Yr
T
YcYY

T

NYNY

rc
T

NN

YY
T

N

ADABBTrTrvecvec

YXLYWXY

qYNDIAYBXNYXL

vecvecmMYXLqpH















 







k    (18) 

Also, we consider the priori by Eq.(10) as follows:        

},/0{)}{,(

,)(  ,)(  ,)(

,}{,}{,)()()()|(

5.05.05.0








ij

A
ij

A
ijij

A
ij

ccrr

B
ij

A
ijcr

),|G(aAq

DDqqq

))q(Bq(ADqqqq







k
                        

        }./0{)}{,( 
ij

B
ij

B
ijij

B
ij ),|G(bBq                             (19) 

     The maximization of H(p||q) by Eq.(18) is implemented by 
the following Ying-Yang alternation: 

Yang step: get Y*=argmaxy L(XN,Y,θ) by solving the root Y* of 
the following Sylvester equation:   
         ,)(        with, 11 T    oldoldoldold

r
old
c ADAVUBYWVY 

             (20) 
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,)(   U, 1 T 11 T     XDAADAB BW oldoldoldoldoldold
c

oldTold  
 

which can be solved by one of the existing techniques. 

 Ying step: update each part of θ={A, B, θy, θe} by   
                  )||( qpHoldnew

  ,  

  which consists of  

,E 

,   ,

,  ,  E,

 1-   * 1- 

   * 

 *  * *

BY
oldnewToldT

Y
oldoldnew

A
newT

Y
oldTold

Y
oldTold

W
newT

NY

N
old

Y
Toldold

NN
old

Y

ADABYADB

DBBAYEBADXW

XWYBYAXXWY

















 

  ],)()1[(

},/{  },/{  },/{
T    1 oldoldT

Y
oldTold

Y
oldT

W
ijijW

B
ijijB

A
ijijA

DABBAEENdiagD

wba
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






     

.2  ,2  ,2

],)()1[(

  ],)()1[(

222

1-  *1-  *1

1-  *1-  *1

W
ijijij

B
ijijij
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ijijij

old
cY

old
r

T
Y

old
r

T
c

old
r

T
Y

old
cY

Told
cr

wwbbaa

YYmdiag

YYMdiag
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












         (21) 

during which we delete 

 the  ℓth row of Y  and the ℓth column aℓ of A if its 
corresponding  ,0

2)( 


 ar                                            (22) 

 the  ℓth column of Y  and the ℓth column bℓ of B if its  
corresponding ,0

2)( 


 bc                                            (23) 

where )()(  , 

cr   is the ℓth diagonal element of Λr, Λc respectively. 

      As addressed in Sect.4.2 of [13], the least complexity 
nature of the BYY harmony learning will enforce Eq.(22) 
when the  ℓth row of Y  is extra and enforce Eq.(23) when 
the  ℓth column of Y  is extra. That is, automatic model 
selection happens during the implementation of the above 
Ying-Yang alternation . 
     For the structure by Eq.(4),  we modify Eq.(14) into  
     

.),,|(),|( 

  ,   ),,  ,0|()|( 

|

BB





DIAYXNYXq

B BYNYq

Byx

old
crByB



                      (24) 

For a shared use of equations (18)-(23), we subsequently drop 
the subscript of YB, whenever it will not cause confusion. 
      Using Eq.(24), Eq.(17), Eq.(18), and Eq.(20), we 
accordingly have the following modifications: 
      )],|(),,0|(),,|(ln[),,( B k  qYNIDAYXNYXL rNN           (25) 

].[][)()(

.)(
111

111

Y
TT

YYr
T
YBYY

T

T
Br

ADATrTrvecvec

IADA

 









     

Though it follows from Eq.(9) that two formulations are 
equivalent in term of the maximum likelihood learning, the 
formulation by Eq.(14) is different from the formulation by 
Eq.(24) in term of the BYY harmony learning, with a further 
comparison to be addressed elsewhere. 

IV. A UNIFIED LEARNING FRAMEWORK FOR CROSS-ROW 

DEPENDENCE AND CROSS-COLUMN DEPENDENCE 

     Eq.(3) provides a unified framework for modeling a Nd   
sample matrix X  with cross-row dependence described by A 
and cross-column dependence described by B. Either or both 
of A≠I and B≠I features different types of learning models. 

One most widely studied family is featured by A≠I and 
B=I, e.g., Eq.(1) in Sect. I and summarized on a roadmap in 
Fig.1 of [1]. It covers not only factor analysis (FA) and 

various nonGaussian extensions but also mean square error 
clustering and Gaussian mixture when each column of Y is a 
class label vector (i.e., only one element is 1 while all the 
others are zeros), with details referred to Sect.3.2 of [1].     

 By Eq.(3) with A≠I and B≠I, all the models of the 
above family can be extended to cover certain type of cross-
column dependence by one structure B≠I. First, when Dσ= 
σ2I, ATA=I, and BTB=I, from Eq.(1) & Eq.(2) we observe   

,][][][ 2 I AAEEE AAYY E XXE T
r

TTTT    

.][  ,][

,][][][
2 I  XBXBEI AXXAE

I BBEEE YBBY E XXE

c
TT

r
TT

T
c

TTTT






            (26) 

Maximizing E[ATXXTA] leads us to the traditional PCA for 
getting A to make ATX, while maximizing E[BTXTXB] leads to 
the 2D-PCA for getting B to make XB [14], as well as to the 2-
directional 2D-PCA by using such obtained A,B to make ATXB 
[15]. The semi-blind BMS learning extends these studies with 
not only A,B estimated jointly by either the maximum 
likelihood learning or the BYY harmony learning, but also  the 
mapping XY* made by Eq.(20) subject to ATA=I and BTB=I. 
     Second, beyond either one or ones of Dσ= σ2I, ATA=I, 
and BTB=I, the semi-blind BMS learning can be regarded as  
an extension of factor analysis by Eq.(1) into a bi-directional 
linear model by Eq.(3) for getting the matrix-formatted inner 
factors Y that describes the motifs of X with a greatly reduced 
redundancy, which may be named as the bi-perspective FA. 
Also, we get a bi-perspective nonGaussian FA when the 
factors by Eq.(5a) are nonGaussians. Particularly, when σ2 is 
very small, it can be regarded as a bi-perspective extension of  
independent factor analysis (ICA). 

Third, the semi-blind BMS learning by Eq.(25) also relates 
to and further extends manifold learning  [4-6]. With p(Y|X, θ) 
by Eq.(17) simply degenerated into δ(Y-WX) and thus δY=0 in 

Eq.(25), we let Λr=I and denote L=(BΛc,B
T)-1, from which 

maximizing H(p||q) becomes equivalent to maximizing 

     ),,,0|(ln)]|(),,|(ln[),,( 1 LIYNqIDAYXNYXL NN k 
      (27) 

while it follows the notation in Eq.(15) that the maximization 
of the second term with respect to W is further equivalent to  
                     , LY]Tr[Y min T

WXYW 
                                       (28) 

which leads to the Laplacian eigenmaps for manifold learning 
[5] if  L is given by the graph Laplacian. Moreover, the first 
term in Eq.(27) tends to improve the Laplacian eigenmaps by 
letting its reconstruction AY to be close to data and the 
estimated parameters θ to be a regularized via a priori q(θ|k). 
      Beyond, Eq.(25) also provides the following new features :  
(1) As Λr≠0  is determined during the learning of Eq.(20) and 

Eq.(21) with help of Eq(22), the least complexity nature 
of the BYY harmony learning will determine the 
dimension of manifold during learning. 

(2) With p(Y|X, θ)≠δ(Y-WX),  learning is also regularized  by 
the second term of H(p||q) in Eq.(18)  to make learning 
progress more balanced among different unknown parts. 

Not all types of cross-column dependence are covered by 
YB=YBT, e.g., a temporal dependence yt=Byt-1+εt.  As shown 
by  Eq.(95) in [1], this dependence can be rewritten into 
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vec(YB)=Bvec(Y), but it becomes Y=BTYI-1+E, where I-1 is a 
matrix with its first lower diagonal elements being 1 while all 
the other elements being zeros. However, we may regard Y≈
YI-1 and thus Y=(I-BT)-1E, when the column number of  Y is 
large. In other words, the semi-blind BMS learning provides 
an alternative to make temporal factor analysis approximately. 

V.    TYPICAL TASKS OF  APPLICATIONS  

Modeling-analyses: 2D-factors, key-features, & time-structure 
By Eq.(3) and Eq.(4),  data matrix X is modeled in three parts 
Y, A, and B. First, we get the matrix-formatted inner factors Y 
to describe the motifs of X for subsequent analyses. Second, A 
describes a cross-row dependence  of  X, from which we 
identify not only  those major rows as key features but also 
how these features are generated from which parts of 2D-
factors. Moreover, B  describes a cross-column dependence or 
temporal structure  of  X.  Third, based on a semi-blind BMS 
by Eq.(3) and Eq.(4) as a whole, we may also perform 
estimation of missing parts and prediction of new samples. 

Pattern classification and object recognition  A pattern 
classification task refers to a classification of a sample X into 
one of classes Cj, j=1,…,k , where a sample X could be an 
image or a sub-image. With redundancy reduction by X→ Y , a 
classifier is obtained from samples of Y by one of the existing 
methods. Also, we may individually learn the semi-blind BMS 
from training samples of each class Cj, that is, rewriting  the 
distributions in Eq.(14) with the class label added to each 
parameter set as a superscript, we estimate the set  θ(j) of 
    .)|( ),|()|(or    ),,|(  ),|( )()(

|
)()(

|
)( dYYqYXqXqYXqYq j

y
j
yx

jj
yx

j
y         (29) 

and classify X into  the j*th class by 

 








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where α(j) is the proportional priori of the class Cj.  

Fault detection and disease diagnosis  The problems consider 
samples from two classes  or  called two populations. Samples 
of one class C0 come from a normal population, while samples 
of the other class C1 deviate from the normal, usually referred 
as fault in engineering fields or as disease in medical diagnosis. 
Based on both samples of C0 and samples of C1, the task is to 
test whether the population C1  is significantly different from 
the population C0, and which part of information from X(l) is 
responsible for this difference. 

To be more specific,  we consider  
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the tasks typically consist of  
(1) , , from ˆ,ˆ   Estimate )1()0()1()0( XX                                (32a) 

Usually by a maximum likelihood learning. Alternatively, 
we use the BYY learning algorithm in Sect.III. 

(2) Test the following null hypothesis  
    ),ˆ|( fromdifferent not  is )ˆ|(   )0()1(

0  tt xqxq:H        (32b) 

in a sense that the probability of rejecting this hypothesis is 

less than a value p (usually called p-value) when both X(0) 
and X(1) come from the same distribution q(xt|θ

(0)). 
(3) Find out which part of information is responsible for the 

rejection, e.g., which rows  of X(l).                                 (32c) 
Typically,  q(xt|θ

(0)) and q(xt|θ
(1)) share a same function 

form q(xt|θ) with the difference coming from parameters, and 
thus the hypothesis by Eq.(32b) could be replaced by  

         .     ,ˆˆ  )0()1(
0  :H                                         (33) 

A typical example of the subset φ is the mean m=ʃ xtq(xt|θ)dxt. 
Usually,  the columns of  X(l) are assumed to be independent, 

which is helpful for implementing  Eq.(32a). When the rows 
of  X(l) are also independent, we have 
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The test of the hypothesis by Eq.(32b)  is thus decomposed 
into testing everyone of the following hypotheses:  
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VI.    YAND DOMAIN TEST VERSUS  YIND DOMAIN TEST 

A mathematical formulation is needed to implement the 
hypothesis tests, for which we need a statistics s to measure 
the  discriminative power such that s=0 when two populations 
are same while s≥0 increases as it deviates from H0.  As shown 
in Fig.1(a),  the p-value indicates the shadow area and  
becomes significantly small as s goes beyond a threshold.  

For H0 by Eq.(32b), one such statistics is given as follows: 
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When the rows of  X(l) are independent, we further  have the 
following additive decomposition: 
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For two Gaussian populations, we have 
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However, we lost the additive decomposition when the rows 
of  X(l) are not independent. For which the counterpart  of 
Eq.(36c) becomes  
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where the covariance Σ(l) may have too many free parameters  
to estimate, which will cause an over-fitting problem when d 
is not small and N is not large.  

One effort towards such a problem is Fisher discriminant 
analysis (FDA). Being different from all the above hypotheses 
that consider  samples of two populations in the domain of the 
observations  X(l),  FDA maps the columns of  X(l)  by yt=wt

Txt  
into the one dimensional scalars along the axis of the vector wt 
such that the following Fisher discriminant is maximized:  

 .1,0),,|(for    )/()-( 2 )()(2 )1(2 )0(2)1()0(  



yytyyyy
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Then, we  use sy to replace s in Fig.1(a) to get the p-value 
for testing the following hypothesis : 

),,|(  as samenot    is  ),|(   2 )0()0(2 )1()1(
0 yytyyt yGyG:H    (37b) 

which can be tested much easier than the one by Eq.(32b).  

 
Fig.1 Statistical test and confusion table 

In Sect.6.2 of [13], the hypothesis H0 by Eq.(32b) is also 
mapped into one that is much simple to test, via pattern 
classification of a two class problem. A confusion table in 
Fig.1(b) is obtained by a classifier. Then, testing H0 by 
Eq.(32b) is mapped into testing the following one :      

jointly   .    and       000110110 NNNN:H                            (37c) 

This confusion table testing (CTT) approach shares with FDA 
by a common sprit. That is, mapping samples into much 
simplified inner representations with the mapped samples of 
two populations kept to be best discriminative, such that the 
hypothesis H0 by Eq.(32b) is also mapped into an equivalent 
one that is much simple to test. Instead of a linear mapping  
yt=wt

Txt by FDA to maximize sy,  a classifier makes a nonlinear 
mapping of the samples of X(0) and X(1) into binary labels C0 

and C1, with discriminative power best kept via training a 
classifier with the minimum classification error, i.e., towards 
N10 =0 and N01=0. Instead of testing H0 by Eq.(37b) via sy,  
the hypothesis H0 by Eq.(37c) is tested by a statistics that 
verifies whether a confusion table is significantly deviated. 

In this paper, we further propose a better alternative of  H0 
by Eq.(37c). Noticing that  X(1) or q(xt|θ

(1))  is mapped into the 
first row p1 =[ N11/ N1,N01/ N1] of  the table in Fig.1(b) and 
that  X(0) or q(xt|θ

(0)) is mapped into the second row p0 =[ N01/ 
N0,N00/ N0]. the hypothesis H0 by Eq.(37c) is improved into  

     . fromdifferent not  is    010 pp:H                               (38) 

for which we may simply make Pearson chi-squared test or the 
Kolmogorov–Smirnov test. 

FDA and CTT are complementary. For Gaussian samples, 
FDA is favorable. For other populations, FDA could be used 
approximately. We may also develop new methods from 
Eq.(36b). Anyway, CTT provides an easy implementation to 
tackle the problems since there are already many existing 
methods for training classifiers.  

Even generally, both FDA and CTT are two examples of 
another type of hypothesis tests, which are complementary 
with the conventional type such as the hypotheses by Eq.(32b), 
Eq.(33), and Eq.(35). From the perspective of the BYY system 
introduced in Sect.II, we can summarize them into two types: 

Yang domain test (A-test):  made on observations or Yang 
domain with help of Ying transform, e.g., X(0), X(1) are 
examples of  X, and q(xt|θ

(0)), q(xt|θ
(1)) are examples of q(X|R). 

Ying domain test (I-test):  made on inner representations or 
Ying domain  with help of Yang transform, e.g.,  R includes yt, 
C0 , C1, and p(R|X) covers yt=wt

Txt  and classifiers.. 
 

 

 Fig.2  Two schematic algorithms                                         
(a)  A-test is used when the independence by Eq.(34) holds,                 

(b)  I-test is used on data matrices with cross row dependences. 

In implementation, A-test is featured by getting the p-
value based on the estimated model parameter θ from a 
training set XTR of samples by Eq.(32a). With a testing set XTE 

of samples available, θ needs to be updated to adapt XTE for 
getting a updated p-value. Such a p-value could be too 
optimistic when θ is estimated from a small size of XTR.  

For an I-test, we estimate the parameter θ of a transform 
T=T(θ) from observations to Ying domain and then get the p-
value based on the obtained T. There are two choices for 
getting the p-value on XTR, XTE. With TTR  obtained from XTR,  
we use it to map XTR  into Ying domain to get pTR and map XTE 
to get pTE. Similar to A-test, we may also update T to adapt 
XTE and then map XTE to get  another p-value. Though pTE 

could be much less significant than pTR, it could be also an 
indicator for evaluating the test. E.g., CTT gets, from XTR, XTE 
respectively, different versions of the table in Fig.1(b). For 
FDA without adapting XTE, yt=wt

Txt obtained merely from XTR 
may also be used on XTE  to get pTE, though the choice is 
seldom considered. 

The schematic algorithm in Fig.2(a) relies on the 
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independence by Eq.(34) to consider sj
(l) in a descending order 

for an easy implementation of A-test. If eq.(34) does not hold, 
we have not this easy implementation. Conceptually, a best 
subset of the columns of   X(l) could be searched via evaluating 
s by Eq.(36d), which can be made by a forward-backward 
selection similar to statistical stepwise regression. Even so,  
such a procedure can not guarantee a full enumeration of all 
combinatorial choices for a best subset. 

Alternatively, we may make I-test for easy implementation 
by the schematic algorithm in Fig.2(b), via learning sparse 
classifier (e.g., sparse Fisher discriminative analysis).  

Also, we may examine A-test and I-test jointly. Instead of 
using an existing approach for either making Eq.(32a) or 
training a classifier, the above Ying-Yang  perspective further 
suggests us to make the BYY harmony learning to get a BYY 
system from which we obtain not only q(X|R)q(R) for q(xt|θ

(l)) 
via Eq.(29) but also p(R|X) for yt=wt

Txt  and classifiers.  

  VII.    GENE ANALYSIS APPLICATIONS  

Gene regulatory and network component analysis Regulatory 
signal reconstruction is formulated under the name network 
component analysis (NIC) [16-18] that considers the system 
by Eq.(1), with X being gene expression profiles and Y being 
the unknown transcriptional factor activities (TFA) while 
A={aij} describing the transcription regulatory network with a 
given network topology, in that aij=0  if there is no connection 
from the i-th transcriptional factor to the j-th gene. The rest of 
unknowns in A and also the TFA activities Y are estimated via 
minimizing the norm ║E║2.  
     This NIC has shortcomings. First, the problem is usually 
indeterminable except some special cases. Second, a given 
network topology is generally a rough approximation. Third, 
the transcriptional factors chosen as the rows of Y come from 
finding those proteins binding to specific DNA sequences that 
control transcriptions from DNA to gene expressions. But not 
necessarily all the binding proteins are really in action, while 
NIC treats them indifferently. Fourth, we already know some 
controlling topology about how the binding proteins act in a 
complex, while NIC fails to use this information.  
       The semi-blind BMS learning by Eqs.(3)&(4) provides a 
framework towards these problems. The system indeterminacy 
is reduced by adding a distribution structure on Y. Also,  
rigidly shutting off a connection by aij=0 is replaced by a 
sparse learning via q(A,{ηA

ij}) in Eq.(19) with its 
corresponding ηA

ij initialized by a small value. Moreover, we 
may detect whether a binding factor does not in action via 
Eq.(22). Furthermore, transcriptional topology is taken in 
consideration via either letting L=(BΛc,B

T)-1
 in Eq.(25) by 

graph Laplacian or treating B similarly to A by sparse learning. 

Genetic disease diagnosis Given X(0) coming from normal 
individuals and X(1) coming from individuals with a type of 
disease, and each row of X(l) labeling a gene and columns 
indicating different individuals,  we encounter a typical fault 
detection task as introduced in Sect. VI for finding which 
genes associate the disease. When the expression of each gene 
is regarded as independent from ones of other genes, we can 
handle the problem by the schematic algorithm in Fig.2(a). 

Genome-wide association studies (GWAs)  With each row 
labeling a SNP instead of a gene, we may also use the 
schematic algorithm given in Fig.2(a) to find multiple SNPs 
that cause a type of disease. 

Exome sequencing analysis  With each column vector of X(l) 
representing each exon sequence, we may test whether the 
exon associates with a type of disease, implemented by either 
the schematic algorithm in Fig.2(b) or even the one in Fig.2(a) 
under the assumption of the row independence by Eq.(34). 
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