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cancer datset further indicate the BYY-spLFA is able to uncover the number of phenotypes correctly and cluster the phenotypes more accurately. In 

addition, we modify BYY-spLFA to implement supervised learning and preliminarily demonstrate its effectiveness on a Leukemia data for 
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Abstract—We propose a clustering algorithm based on a
structural prior based Local Factor Analysis (spLFA) model
under the Bayesian Ying-Yang harmony learning, which au-
tomatically determines the hidden dimensionalities during
parameter learning, reduces the number of free parameters by
projecting the mean vectors onto a low dimensional manifold,
imposes the sparseness by a Normal-Jeffreys prior. Exper-
iments on the diagnostic research dataset show that BYY-
spLFA outperforms the k-means clustering and single-link
hierarchical clustering. The experiments on a lymphoma cancer
datset further indicate the BYY-spLFA is able to uncover the
number of phenotypes correctly and cluster the phenotypes
more accurately. In addition, we modify BYY-spLFA to im-
plement supervised learning and preliminarily demonstrate its
effectiveness on a Leukemia data for classification.

Keywords-gene clustering; sparse learning; Bayesian Ying-
Yang learning; structural prior; feature selection

I. INTRODUCTION

Microarray gene expression data allow us to monitor the
expression of thousands of genes under different conditions
qualitatively and simultaneously [1]. Identification of groups
of genes with similar expression patterns is usually treated as
a clustering task in unsupervised learning. Gene clustering
analysis plays an important role in discovering biologically
and medically meaningful modules (e.g., revealing unknown
subtypes of a disease), as well as in further investigating
specific pathways or genetic mechanisms.

Traditional clustering methods may not perform well on
gene data that are typically high-dimensional but have a
very small sample size. Local Factor Analysis (LFA) [2],
which projects the data of a cluster into a low-dimensional
factor manifold, has been studied under the Bayesian Ying-
Yang (BYY) harmony learning with the hidden dimension-
ality automatically determined during parameter learning. In
this paper, we further impose a structural prior on LFA
(or shortly spLFA) such that the means (centers) of all
factor manifolds are located on another low-dimensional
manifold. With this structural constraint, the number of free
parameters can be further reduced. Moreover, we adopt the
joint Normal-Jeffreys (NJ) prior studied in [3], [4] to those
orthogonal vectors that span the factor manifolds and the
low-dimensional mean vector manifold. Then, a learning
algorithm is developed to implement the Bayesian Ying-
Yang (BYY) harmony learning, and thus is named as BYY-
spLFA. During learning, Not only the dimensions of all the

manifolds are automatically determined during learning, but
also extra parameters are shrunken to zero (or ineffective)by
the NJ prior that assumes a Normal prior over a parameter
and then a Jeffreys prior over the variance of the Normal
prior, with advantages of no sparsity strength controlling
hyper-parameters and a better sparsity realization over a
Laplacian prior as shown in [4].

We test BYY-spLFA on the diagnostic research dataset of
small round blue-cell tumors of childhood [5] by evaluating
the values of the Rand index [6] of the obtained clusters.
The results show that BYY-spLFA obtains higher Rand
index values than two widely used clustering methods, k-
means and single-link hierarchical clustering. Moreover the
clustering results on gene expression profiles of a lymphoma
cancer dataset [7] indicates BYY-spLFA not only correctly
detects the number of phenotypes from samples directly
without human expertise, but also gives a better clustering
accuracy and Rand index than k-means and single-link
hierarchical clustering. Furthermore, BYY-spLFA is modi-
fied appropriately to implement supervised learning, and its
effectiveness in classification is preliminarily demonstrated
on a Leukemia dataset.

II. MODEL SPECIFICATION
A structural prior based Local Factor Analysis model

describes the observation distribution into a mixture of k
components (clusters) with the mixing weights {αl}kl=1,
∀αl > 0 and

∑k
l=1 αl = 1. In each component l = 1, . . . , k,

the observable variable x ∈ Rd is generated via a linear
mapping from an ml-dimensional independent Gaussian
factor y with ml < d, plus mean values and a Gaussian
noise which is independent of the factors1:

q(x|y, l,Θ) = N (x|n+Vµl +Uly,Ψl),

q(y|l) = N (y|0,Λl), q({µl}) =
k∏

l=1

N (µl|0,Γ),

s.t. VTV = Ir, UT
l Ul = Iml for ∀l. (1)

where each cluster l forms a factor manifold, with Ul

being a d × ml orthogonal loading matrix, Λl being an
ml × ml diagonal covariance, and Ψl is a d × d diagonal
noise covariance. The spLFA model is intuitively illustrated
in Fig. 1. If r = d and V is an identity matrix, the spLFA
becomes the traditional Local Factor Analysis (LFA) [8].

1Here and throughout this paper, q(·) stands for a generative probability
and p(·) stands for a posterior type probability.
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The number (d− 0.5r+ k)(r+1)− k of free parameters
of the centers of spLFA after projections by {n+Vµl}kl=1

is smaller than d × k of the LFA’s centers {µ′
l}kl=1 for a

very small r. Moreover, a Gaussian prior is usually assigned
on mean vectors in the literature [9], which however falls
into a dilemma on determining the covariance’s structure of
Gaussian. On one hand, a full covariance matrix for LFA’s
centers {µ′

l}kl=1 has d(d − 1)/2 hyper-parameters and is
difficult to be determined appropriately for a large d. On the
other hand, a diagonal or spherical covariance matrix may be
too constrained to describe the data accurately. This problem
is here overcome by assuming the centers {µl} a priori
distributed in an r-dimensional manifold (r < d), which
is spanned by V and dispersed with a diagonal covariance
Γ as given in Eq. (1), where V and Γ in total have
(2d− r+1)× r/2 free hyper-parameters to be determined.

Figure 1. Illustration of structural prior based Local Factor Analysis. In
each component l, the factor manifold is drawn in blue, and its origin µl
further distributes in the yellow colored manifold.

The matrices V and {Ul} still have many free parameters
when d is large, we further impose sparsity on them with
feature selection made automatically during learning, in help
of the following Normal-Jeffreys prior [3], [4]:

q(V,γ) =
∏
i,j

[q(v(ij)|γ(ij))q(γ(ij))],

q(v(ij)|γ(ij)) = N (v(ij)|0, γ(ij)), q(γ(ij)) ∝ 1/γ(ij),

q(Ul, τ l) =
∏
i,j

[q(u
(ij)
l |τ (ij)

l )q(τ
(ij)
l )],

q(u
(ij)
l |τ (ij)

l ) = N (u
(ij)
l |0, τ (ij)

l ), q(τ
(ij)
l ) ∝ 1/τ

(ij)
l , (2)

where a Normal prior is considered with its variance
further in a Jeffreys prior. Instead of having explicit hyper-
parameters to control (e.g., in a Laplacian prior), the sparse-
ness strength of V and {Ul} is adjusted by γ and {τ l} [4].
Particularly, an element v(ij) in V approaches zero as the
corresponding γ(ij) approaches zero. Also, it is similar for
each Ul.

III. BYY HARMONY LEARNING ON SPLFA
Given a finite size of samples, the learning tasks on the

spLFA model consisting of making sparse learning on the
parameters and determining r for the mean vector manifold
and {ml} for each factor manifold. For these purposes,
we develop a learning algorithm under the BYY harmony
learning framework, enhanced with the Eq. (2) for imposing
sparsity.

For a set of i.i.d. observations XN = {xt}Nt=1 generated
from the hidden representation {Y,Z}, we consider the

BYY system as shown in Box I and Box II, where the
parameters are divided into two parts Θ = Θa ∪ Θb,
with Θa = {n, {Λl,Ψl}} and Θb = {V, {µl,Ul}}, and
Ξ = {Γ,γ, {τ l}}. Also, we have a set Θ = Θa ∪ Θb of
hyper-parameters. Moreover, Z = {zit} is a set of binary
variables for i = 1, . . . , k and t = 1, . . . , N , with each
zlt ∈ {0, 1},

∑k
l=1 zlt = 1 and zlt = 1 iff sample xt belongs

to class l.
All the unknowns in the BYY system are determined

by the BYY harmony learning, which is implemented via
maximizing the harmony measure given in Eq. (3), where
Θ∗

b = argmaxΘb
H(p||q,Θ,Ξ) and is approximately re-

placed by the available estimation of Θb in the last round
of iteration. Moreover, ΠΘb

is the Hessian matrix of the har-
mony measure with respect to the parameters Θb. Since the
exact calculation of ΠΘb

is too difficult, we approximately
consider the block-diagonal structure shown in Box III.
Therein, the W

(j∗)
l refers to the j-th row vector of Wl. The

algorithm details of BYY-spLFA are summarized in Box IV.

Box I: components in Ying machine
q(X|Y,Z,Θ) =

∏N
t=1

∏k
l=1 q(xt|y, l,Θ)zlt ,

q(Y|Z,Θ) =
∏N

t=1

∏k
l=1 q(y|l)zlt ,

q(Z|Θ) =
∏N

t=1

∏k
l=1 α

zl,t
l ,

q(Θb|Ξ) = q(V|γ)∏k
l=1 q(Ul|τ l),

q(Ξ) = q(γ)
∏k

l=1 q(τ l),
with details referred to Eqs. (1) and (2).

Box II: components in Yang machine
p(Z|XN ) =

∏N
t=1

∏k
l=1 p(l|xt,Θ)zlt ,

p(Y|XN ,Z,Θ) =
∏N

t=1

∏k
l=1 p(y|xt, l,Θ)zlt ,

with p(l|xt,Θ) = αlq(xt|l,Θ)/[
∑k

l=1 αlq(xt|l,Θ)].,
p(y|xt, l,Θ) = N (y|Wl(xt − n−Vµl), Λ̃l),
Wl = ΛlU

T
l (UlΛlU

T
l +Ψl)

−1,
Λ̃l = (UT

l Ψ−1
l Ul +Λ−1

l )−1.

Box III: Hessian of parameters ΠΘb

ΠΘb
= Block-Diag[ΠV ,ΠU1 , . . . ,ΠUk

,Πµ1 , . . . ,Πµk ],
ΠV = Block-Diag[Π(1)

V , . . . ,Π
(r)
V ],

ΠUl
= Block-Diag[Π(1)

Ul
, . . . ,Π

(ml)
Ul

],

Π
(j)
V =

∑N
t=1

∑k
l=1 p(l|xt)(µ

(j)
l )2[(I−UlWl)

TΨ−1
l (I−UlWl)

+WT
l Λ−1

l Wl] + diag[1/γ(1j), . . . , 1/γ(rj)],
Π

(j)
Ul

=
∑N

t=1 p(l|xt)Ψ
−1
l [W

(j∗)
l (xt − n−Vµl)]

2

+diag[1/τ
(1j)
l , . . . , 1/τ

(mlj)
l ],

Πµl =
∑N

t=1 p(l|xt)VT [(I−UlWl)Ψ
−1
l (I−UlWl)

+WT
l Λ−1

l Wl]V + Γ−1,

Being different from the maximum likelihood, an impor-
tant nature of maximizing this harmony measure in Eq. (3)
leads to not only a best matching between the Ying-Yang
pair, but also a compact model with a least complexity. Such
an model selection ability can be understood from several
perspectives [2], [8]. Specifically, maximizing the harmony
measure in Eq. (3) will provide an intrinsic force to push
αl to approach zero if cluster l is extra and thus discarded.
Also, Λ(j)

l of a cluster l is pushed to approach zero if the
corresponding j-th hidden dimension in cluster l is extra
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H(p||q,Ξ) = H(p||q,Θ,Ξ)− 0.5tr[(vec(Θb)− vec(Θ∗
b))

TΠΘb(vec(Θb)− vec(Θ∗
b)]− 0.5k(Θb),

H(p||q,Θ,Ξ) =

∫ ∑
Z

p(Z|XN ,Θ)p(Y|XN ,Z,Θ) ln[q(XN |Y,Z,Θ)q(YN |Z)q(Z|Θ)q(Θb|Ξ)q(Ξ)]dY. (3)

Box IV: BYY-spLFA algorithm details
(1) for ∀l = 1, . . . , k and t = 1, . . . , N , calculate:
plt = p(l|xt)[1 + ln p(l|xt) −

∑k
j=1 p(j|xt) ln p(j|xt)],

elt = xt − n − Vµl, Wl = ΛlU
T
l (UlΛlU

T
l + Ψl)

−1,
(2) update (hyper-)parameters:
αnew

l = (1 − η)αl +
∑N

t=1 plt/N

Ψnew
l = (1 − η)Ψl + diag[

∑N
t=1 plt(Id − UlWl)elte

T
lt

·(Id − UlWl)
T ]/

∑N
t=1 plt,

Λnew
l = (1 − η)Λl + diag[

∑N
t=1 pltWlelte

T
ltW

T
l ]/

∑N
t=1 plt,

Unew
l = Ul + η(GUl

− UlG
T
Ul

Ul), with GUl
=

∑N
t=1 Ψ−1

l

·(Id − UlWl)elte
T
ltW

T
l − Ul./τ l + [∆

(1)
Ul

, . . . ,∆
(ml)

Ul
],

and ∆
(j)
Ul

= Π
(j)
Ul

(Û
(∗j)
l − U

(∗j)
l ),

µnew
l = µl + η

∑N
t=1 pltV

T [(Id − UlWl)
TΨ−1

l (Id − UlWl)

+WT
l Λ−1

l Wl]elt − Γ−1µl + Π(l)
µ (µ̂l − µl),

Vnew = V + η(GV − VGT
VV), with GV =

∑k
l=1

∑N
t=1 plt

·[(Id − UlWl)
TΨ−1

l (Id − UlWl) + WT
l Λ−1

l Wl]eltµ
T
l

−V./ρ + [∆
(r)
V , . . . ,∆

(r)
V ], and ∆

(j)
V = Π

(j)
V (V̂(∗j) − V(∗j)),

Γnew = (1 − η)Γ + ηdiag
∑k

l=1[µlµ
T
l + (µl − µ̂l)(µl − µ̂l)

T ]/k,
τ

(∗j)
l

new
= (1 − η)τ

(∗j)
l + η{(U(∗j)

l )2 + diag[(U
(∗j)
l − Û

(∗j)
l )

·(U(∗j)
l − Û

(∗j)
l )T ]},

ρ(∗j)new
= (1 − η)ρ(∗j) + η{(V(∗j))2 + diag[(V(∗j) − V̂(∗j))

·(V(∗j) − V̂(∗j))T ]},
where η is a learning rate that takes a small positive value.

and thus discarded. As long as the component number and
{ml} are initialized at large enough values, model selection
will be conducted automatically during parameter learning.
Similarly, r is also determined automatically. Readers are
referred to [8] for a recent systematic overview of the BYY
harmony learning.

IV. EXPERIMENTS ON GENE EXPRESSION DATA

A. Clustering on SRBCT Data
We apply BYY-spLFA to the diagnostic research dataset

of small round blue-cell tumors (SRBCTs) of childhood [5].
As described in Table I, the SRBCT dataset consists of 83
samples from four categories, and the gene expression levels
of 2308 genes were measured using cDNA microarray.

Table I
DESCRIPTION OF THE SRBCT DATASET.

# genes 2308
# samples 83

Ewing’s sarcoma (EWS): 29 samples
4 diagnostic Burkitt’s lymphoma (BL): 11 samples

classes neuroblastoma (NB): 18 samples
rhabdomyosarcoma (RMS): 25 samples

Since we have already known the true partition of the
dataset, the clustering performance can be evaluated by
comparing the learned partition and the true partition in
terms of external criteria, one representative of which is
the Rand index (RI) [6]. Particularly, supposing the true
partition is A and the learned partition is B, a score s1
is defined as the number of pairs of samples that are in the
same cluster in A and in the same cluster in B, and another
score s2 is defined as the number of pairs of samples that
are in different clusters in A and in different clusters in B.
Considering totally C2

N possible pairs of samples, the Rand
index is defined as:

RI = (s1 + s2)/C
2
N , (4)

which intuitively describes the degree of agreement between
two partitions A and B. The Rand index has a value between
0 and 1, and a higher score indicates better agreement of the
learned clusters with the ground truth. Particularly, RI = 0
if two partitions do not agree on any pair of samples, and
RI = 1 if the two partitions are exactly the same.

Table II
BEST RAND INDEX SCORES ON SRBCT DATASET AFTER 10
INDEPENDENT RUNS. THE PARENTHESES INCLUDE CLUSTER

NUMBERS USED FOR K-MEANS AND HC, AND THE ERROR-BAR FOR
BYY-SPLFA. BYY-SPLFA SELECTED 4.4 CLUSTERS IN AVERAGE.

method k-means HC BYY-spLFA (avg±std)
0.52 (3) 0.34 (3)

Rand index 0.61 (4) 0.52 (4) 0.92 (0.85±0.04)
0.57 (5) 0.53 (5)

Since the k-means and the (single-link) hierarchical clus-
tering (HC) algorithm can not determine the cluster number
k, we implement k-means for k = {3, 4, 5} respectively,
and cut the dendrogram of HC to generate k = {3, 4, 5}
clusters. After 10 independent runs, the best Rand index
values of k-means, HC and BYY-spLFA are compared in
Table II. As shown, BYY-spLFA outperforms k-means and
HC, relatively by about 60% and 80% in terms of the best
Rand index. Moreover, BYY-spLFA selects 4.4 clusters in
average of the 10 runs.

B. Clustering on Lymphoma Data
Here BYY-spLFA is applied on gene expression profiles

of lymphoma cancer data from [7], which includes 96
samples with expression levels of 4026 genes. There are
9 phenotypes (classes) in total, and we pick the 4 largest
phenotypes withs 76 samples in total: P1) 46 samples of

Table III
CONTINGENCY TABLES ON LYMPHOMA DATA.

BYY-spLFA
Rand index: 0.85
accuracy: 94.7%

P1 P2 P3 P4

C1 42 0 0 0
C2 0 11 0 0
C3 1 0 10 0
C4 3 0 0 9

k-means
Rand index: 0.62
accuracy: 82.9%

P1 P2 P3 P4

C1 38 1 0 0
C2 2 9 0 0
C3 4 0 8 1
C4 2 1 2 8

HC
Rand index: 0.52
accuracy: 79.0%

P1 P2 P3 P4

C1 36 1 1 0
C2 3 8 0 0
C3 2 2 8 1
C4 5 0 1 8
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diffuse large B-cell lymphoma, P2) 11 samples of follicular
lymphoma, P3) 10 samples of Activated Blood cell B-cell,
P4) 9 samples of chronic lymphocytic leukemia. Our pur-
pose is to uncover these phenotypes from samples directly
without human expertise.

BYY-spLFA is initialized as 10 clusters and is able to
detect 4 clusters. The k-means and HC algorithms are im-
plemented for a fixed cluster number k = 4. Their clustering
results are shown in the form of contingency tables in
Table III. Therein, C1 ∼ C4 refer to the four learned clusters,
and a value vij in column Pi and row Cj is the number of
samples in common between Pi and Cj . We can observe that
all phenotypes are correctly recovered except for P1 with 4
samples wrongly clustered into C3 and C4. Table III shows
that BYY-spLFA not only successfully detects the phenotype
number 4, but also clusters the samples more accurately than
k-mean and HC, with the highest RI score.

C. Classification by Supervised Learning on Leukemia Data

When cluster labels are given for training, we encounter
a supervised learning task. Under BYY harmony learning
[8], supervised learning can be considered by designing
p(Z|XN ) = δ(Z− Z̄) while keeping the other components
of Yang-machine unchanged in Box II, where Z̄ is a set
of binary variables representing the given labels of the data
XN . Correspondingly, we calculate p�t = 1 iff xt belongs
to �-th cluster (or class) instead in Step(1) of Box IV. We
test the supervised implementation of BYY-spLFA on a
Leukemia dataset [10] which includes 2 leukemia subtypes:
ALL (acute lymphocytic leukemia) and AML (acute myeloid
leukemia). The leave-one-out testing is repeatedly imple-
mented, i.e., in each trial one sample is randomly picked for
testing and the rest are used for training. The classification
accuracies by BYY-spLFA are presented in comparison with
the Sparse Linear Discriminant Analysis (SLDA) [11] in
Table IV, which preliminarily indicates that the supervised
version of BYY-spLFA is effective in classification and
feature selection.

Table IV
THE LEAVE-ONE-OUT AVERAGE CLASSIFICATION ACCURACIES ON THE
LEUKEMIA DATASET WHICH MEASURES 7129 GENES ON 72 SAMPLES.

method classification acc. (%) avg. No. selected genes
SLDA 91.67 26

BYY-spLFA 98.61 18

V. CONCLUSION

For the gene clustering task, we have proposed a sparse
clustering algorithm BYY-spLFA by imposing a structural
prior on LFA and implementing sparsity during the BYY
harmony learning. This BYY-spLFA is tested on the diag-
nostic research dataset of small round blue-cell tumors of
childhood according to the Rand index, showing that BYY-
spLFA is better than two widely used clustering methods, k-
means and single-link hierarchical clustering. Also, we apply
BYY-spLFA on a lymphoma cancer dataset. BYY-spLFA

not only correctly detects the number of phenotypes from
samples directly without human expertise, but also gives a
better clustering accuracy and random index than k-means
and hierarchical clustering. In addition, we modify BYY-
spLFA to implement supervised learning, and preliminarily
test its effectiveness on classifying a Leukemia dataset.
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