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Abstract— In this paper, firstly we show that the problem of
blind inversion of Wiener systems is a special case of blind sep-
aration of post-nonlinear instantaneous mixtures approximately,
and derive the learning rule for the former problem using this
relationship. Secondly, we review the Gaussianization method
for blind inversion of Wiener systems. Based on the fact that the
convolutive mixture is close to Gaussian, this method roughly
approximates the convolutive mixture by a Gaussian variable
and constructs the inverse nonlinearity easily. Thirdly, in order
to improve the performance, the Cornish-Fisher expansion is
exploited to model the latent convolutive mixture, and then the
extended Gaussianization method is developed. We show that the
performance of our method is insensitive to the nonlinearity in the
Wiener system. Experimental results are presented to illustrate
the validity and efficiency of our method.

I. I NTRODUCTION

A Wiener system is a linear filter subsystem followed by a
memoryless nonlinear distortion (see Figure 1). This system
can model many actual systems in nature. It has been used
in many areas, such as biology, physiology and phycology.
For instance, it is used for describing neural processing [12],
investigation of the activity of individual primary neurons in
response to prolonged velocity stimuli [13], modelling the
dynamic relation between muscle length and tension [9], and
estimation of the nonlinear nonstationary model of infant EEG
seizures [5].
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Fig. 1. Wiener system: a linear filter subsystem,h(t), is followed by a
memoryless nonlinearity,f(·). For simplicity, we have neglected the additive
noise in the figure.

Traditionally, identification of the Wiener system aims to
estimate both the characteristic of the nonlinear subsystem
and the impulse response of the linear part from the input and
output signals. As for the input signal, usually it is assumed
to be a Gaussian white random process. The main difficulty
in the identification is caused by the fact that the inner system
signal, i.e. the convolutive mixture, is not measured. A popular
method for identifying this system is the iterative method [10].
In this method, neither the linear subsystem nor the nonlin-

earity needs to be inverted. Therefore the nonlinearity is not
restricted to be monotonic.

However, in some situations the input signal of the Wiener
system is unknown and then the system can not be identified
using traditional methods. In this paper we consider the
problem—“blind inversion” of Wiener systems [4]. Under the
assumption that the inputs(t) is an independent and identically
distributed (i.i.d.) process with a non-Gaussian distribution,
our goal is to identify the Wiener system, as well as to recover
the latent inputs(t) from only the observationx(t). In order
to recovers(t) from x(t), this system should be invertible.
And hence the functionf is assumed to be one-to-one. Under
these assumptions, the Wiener system can be inverted by the
Hammerstein structure, which is a memoryless nonlinear stage
followed by a linear filter (see Figure 2).
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Fig. 2. Hammerstein system: memoryless nonlinearity,g(·|θ), is followed
by a linear filter subsystem,w(t), whereθ denotes the parameter vector. For
simplicity, we have neglected the additive noise in the figure.

Some researchers have developed algorithms for blind inver-
sion of the Wiener system with different models for the inverse
nonlinearity, i.e. the functiong in Figure 2 [4], [16], [2].
Without any prior information on the nonlinearityf , usually a
multi-layer perceptron (MLP), or polynomial is used to model
the inverse nonlinearity. The number of parameters needed
to represent the inversion system is quite large. This causes
high computation and makes the optimization slow and prone
to local optima. And if one chooses a parametric family that
is not appropriate, there is a danger of resulting in incorrect
conclusions.

In this paper, we exploit the fact that the sum of independent
variables tends to be Guassian, which helps to reduce the
freedom of the nonlinearity in the inversion system greatly.
This paper is organized as follows. In Section II, we consider
the Wiener system as a special case of the post-nonlinear
(PNL) mixture model, and develop the learning rule for blind
inversion of Wiener systems. In Section III, the Gaussianiza-
tion method is reviewed, and most importantly, the extended
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Gaussianization method is proposed. This method can be
considered as a specific application of the general learning
rule, with Gaussianization as the first step and the Cornish-
Fisher expansion modelling the remaining nonlinearity in the
inversion system. Section IV illustrates the performance of the
proposed method with experiments. Section V discusses the
main results and concludes the paper.

II. FROM BLIND SEPARATION OFPNL MIXTURES TO

BLIND INVERSION OFWIENER SYSTEMS

Some researchers have investigated the relationship between
blind deconvolution (BD) and blind source separation (BSS)
[3], [7], [8]. Similarly, the relationship between blind separa-
tion of PNL mixtures and blind inversion of Wiener systems
has been discussed in [16]. Now we use this relationship to
derive the learning rule for blind inversion of Wiener systems.

A. Blind Separation of PNL Mixtures

Blind separation of PNL mixtures (see Figure 3) is a special
case of nonlinear independent component analysis (ICA). By
constraining the nonlinearity to be post nonlinear, this model
can extract the independent sources up to permutation, scaling
and mean indeterminacies under some weak assumptions [15],
[17]. The observationsx = (x1, x2, ..., xm)T are generated
from statistically independent sourcess = (s1, s2, ..., sn)T in
the form:

xi = fi(ri) = fi(
n∑

j=1

aijsj) (1)

wheresi are statistically independent sources,fi are unknown
invertible nonlinear functions,aij denote entries of a regular
m× n mixing matrix A, andri are latent linear mixtures.

A W

s1 

s2 

sn 
fn gn 

rn 

r2 

r1 x1 

x2 

xn 

z1 

z2 

zn yn 

y1 

y2 
f2 

f1 g1 

g2 .
.
.

.

.

.
.
.
.

.

.

.
..
..

.

.
.
.
.

PNL mixing system PNL separation system

linear
mixing

nonlinear
distortion

            inverse 
nonlinear transform

linear
de-mixing

Fig. 3. PNL mixing system and PNL separation system (assuming the
number of sources equals that of observations): The mixing system consists
of a linear mixing stage with the mixing matrixA and a nonlinear transform
stage applyingf to linear mixtures. The separation system does an inversion
operation, which is a nonlinear transform stage followed by a linear de-mixing
stage.

Assuming the number of sources is equal to that of observa-
tions, Taleb and Jutten have given the general learning rule for
blind separation of PNL mixtures based on the minimization
of mutual information betweenyi [15]. Let θi denote the
parameter vector in the functiongi, and I(y) denote the
mutual information between the components ofy. In the

nonlinear stage,θi are tuned to minimizeI(y):

4θi ∝ −∂I(y)
∂W

= E{∂ log |g′i(xi|θi)|
∂θi

}+ E{(
n∑

k=1

ψyk
(yk)wki)

∂gi(xi|θi)
∂θi

}

(2)

whereψyi is the score function of the distribution ofyi:

ψyi(u) = (log pyi(u))′ =
p′yi

(u)
pyi(u)

(3)

Since the separation system of PNL mixtures is cascade
structured, in the linear stageW is tuned to minimizeI(y)
with z as input:

4W ∝ −∂I(y)
∂W

= [WT ]−1 + E{ψy(y)zT } (4)

whereψy = (ψy1 , ψy2 , ..., ψyn)T .

B. Learning Rule for Blind Inversion of Wiener Systems

In Figure 3, lets(t) = (s(t), s(t + 1), ..., s(t + n − 1))T ,
r(t) = (r(t), r(t + 1), ..., r(t + n− 1))T , x(t) = (x(t), x(t +
1), ..., x(t+n−1))T , A be a Toeplitz matrix containinghi, the
coefficients of the filterh(t), as its rows, at different positions
for each row:

A =




. . . · · · · · · · · · · · ·
· · · h0 h−1 h−2 · · ·
· · · h1 h0 h−1 · · ·
· · · h2 h1 h0 · · ·
· · · · · · · · · · · · · · ·




(5)

and all of fi be the same nonlinearity, denoted byf . As
n → ∞, we can neglect the inaccuracy near the top and
bottom channels in Figure 3, and the PNL mixing system
becomes the Wiener system (Figure 1). In the same way we
construct the Toeplitz matrixW with wi, the coefficients of the
filter w(t), as its rows, and constraingi to be the nonlinearity
g. As n → ∞, the separation system in Figure 3 becomes
the Hammerstein system (Figure 2). In order to eliminate the
indeterminacies in the inversion of Wiener systems, we assume
the nonlinearityg is strictly monotonically increasing, andy
is zero-mean.

Since the separation system of PNL mixtures is cascade
structured, the linear stage aims at extracting componentsyi

from input zi as independent as possible. Therefore the learn-
ing rule in the linear stage is the same as that for ordinary ICA.
Similarly, the linear stage in the inversion system of the Wiener
system performs the ordinary BD task. In [7], a circulant
matrix structure is constructed for the de-mixing matrixW
in the BSS problem, and the natural gradient method for BD
(see [1]) is derived by exploiting the relationship between BD
and BSS. Its batch-mode version is as follows (assumingw(t)



has equal length,L, for the causal and noncausal parts):

4wj ∝ wj + Et{ψy(t)u∗(t− j)} (6)

u(t) =
L∑

q=−L

wqy(t + q)

y(t) =
L∑

q=−L

wqx(t− q)

where∗ denotes complex-conjugate.
Due to the specific structure ofW , x and y as addressed

above, and taking into account that all ofθi areθ, we have

E{(
n∑

k=1

ψyk
(yk)wki)

∂gi(xi|θi)
∂θi

}

= Et{(
L∑

q=−L

ψy(t + q) · wq)
∂g(x(t)|θ)

∂θ
}

= Et{ψy(t)
L∑

q=−L

wq
∂g(x(t− q)|θ)

∂θ
}

Then Eq. 2 becomes

4θ ∝ Et{∂ log |g′(x(t)|θ)|
∂θ

}

+ Et{ψy(t)
L∑

q=−L

wq
∂g(x(t− q)|θ)

∂θ
} (7)

which is the learning rule in the nonlinear stage for blind
inversion of Wiener systems.

III. G AUSSIANIZATION AND EXTENDED

GAUSSIANIZATION

The classical central limit theorem states that the sum of i.i.d
variables is asymptotically normally distributed as the number
of independent variables increases. In Figure 1, sinces(t) is a
i.i.d. process andr(t) =

∑
k hks(t−k), the variable associated

with r(t) is a weighted sum of i.i.d variables. Therefore in
general the distribution ofr will be closer to the Gaussian
distribution thans.a Hence we assume the distribution ofr is
close to be Gaussian. Of course there is no straight definition
on the “closeness”, and it depends on the filterh(t) and the
distribution of s. One can construct counterexamples against
our assumption. For instance,s is extremely non-Gaussian and
one coefficient ofh(t) dominates the others. However, in this
paper we consider the general cases.

A. Gaussianization

Gaussianization transforms a random variable into a stan-
dard Gaussian random variable. In the Wiener system, we
simply approximate the distribution ofr with the Gaussian
distribution, and thenz(t), as an estimate ofr(t), can be
constructed directly by Gaussianization.y(t) can be obtained
by applying BD onz(t).This idea has been independently

aWe drop the time indext of a signal to represent the random variable
associated with this signal.

proposed in [14], [18]. In the latter paper, this technique is
used to perform blind separation of PNL mixtures.

Let Fx(x) denote the cumulative distribution function (cdf)
of the variablex, and px(x) denote the probability density
function (pdf) of x. Fx(x) =

∫ x

−∞ px(t)dt. AssumeFz(z),
the cdf of variablez, is continuous and strictly increasing in
the variation range ofz so that its inverse mapping exists and
is unique. Sincez = g(x) and g is assumed to be strictly
increasing, we have

Fz(g(x)) = Fx(x), therefore

g(x) = F−1
z (Fx(x))

Denote byG the cdf of the standard Gaussian distribution,

G(z) = 1√
2π

∫ z

−∞
e−t2/2dt. As the distribution ofz is approx-

imated by the Gaussian distribution, the nonlinear mappingg
is constructed by

g = G−1 ◦ Fx (8)

When z(t) = g(x(t)) is obtained, we can extracty(t) by
applying any BD method onz(t): y(t) = w(t) ∗ z(t). For
instance, the natural gradient method (Eq. 6) is adopted in our
experiments.

In [17], some practical issues for constructing the nonlin-
earity g were considered.

B. Extended Gaussianization

In general it is rough to approximate the distribution of
r by the Gaussian distribution. However, the nonlinearityg
constructed using the Gaussianization method compensates the
nonlinear distortion caused byf significantly.

Now let the nonlinearity constructed by Gaussianization be
denoted byg(1). In order to improve the performance, we
introduce a parametric form,g(2), to model the remaining
nonlinearity to give more freedom to the distribution ofz.
Since the convolutive mixturer(t) is assumed to be close
to Gaussian, the nonlinearityg(2) is much ”milder” thang.
Figure 4 shows this structure. In the figurev is a standard
Gaussian variable. Takingv(t) as input, the learning rule
for the Hammerstein system(g(2), w(t)) can be derived by
applying the general learning rule for blind inversion of Wiener
systems. This idea has been proposed for blind separation of
PNL mixtures in [17].

gx(t) z(t) w(t) y

g(1) g(2)

v(t)

Fig. 4. The system for blind inversion of Wiener systems used in the extended
Gaussianization method. We do not construct the nonlinearityg directly, but
constructg(1) andg(2) instead.g = g(2) ◦ g(1)

g(1) can be constructed according to Eq. 8. The Cornish-
Fisher expansion helps to provide a parametric model forg(2).



1) Cornish-Fisher Expansion:It is possible to obtain use-
ful approximate representation of a distribution with known
cumulants in terms of a known distribution. The Edgeworth
expansion and the Gram-Charlier expansion arise from choos-
ing the Gaussian distribution as the known distribution.

Quantiles of a distribution are totally determined by the pdf
of this distribution, hence one can approximate the quantiles of
a distribution with those of the standard Gaussian distribution
and known cumulants. Cornish and Fisher propounded a form
of expansion in which the terms are polynomial functions of
the appropriate standard Gaussian quantile, with functions of
known cumulants as coefficients [6]. The four-term Cornish-
Fisher (C-F) expansion forα-quantile is

x(uα) ∼= uα +
1
6
(u2

α − 1)κ3

+
1
24

(u3
α − 3uα)κ4 − 1

36
(2u3

α − 5uα)κ2
3 (9)

whereκ3 and κ4 are the third-order and fourth-order cumu-
lants (or skewness and kurtosis) ofx respectively,uα is the
α-quantile of the standard Gaussian distribution, andx(uα) is
zero-mean and of unit variance.

It was shown in [11] that the C-F approximation is a
competitive technique if the target distribution is relatively
close to normal. And the most prominent use and motivation
of this expansion is to model the distribution of the normalized
sum of independent variables.

2) Learning Rule for Extended Gaussianization:As the
distribution of z is assumed to be close to Gaussian, one
can use the C-F expansion to approximatez in terms of v.
According to Eq. 9, we have

z = g(2)(v|θ) = g(2)(v|κ3, κ4)

= v +
1
6
(v2 − 1)κ3 +

1
24

(v3 − 3v)κ4 − 1
36

(2v3 − 5v)κ2
3

(10)

Let D be the derivative ofg(2)(v|θ) with respect tov:

D = g′(2)(v|θ)

= 1 +
1
3
κ3v +

1
8
(v2 − 1)κ4 − 1

36
κ2

3(6v2 − 5)

According to Eq. 2, one can find the learning rule forκ3 and
κ4:

4κ3 ∝ Et

{−6κ3v
2(t) + 6v(t) + 5κ3

18D
+

ψy(t)
18

·
L∑

q=−L

wq[−2κ3v
3(t− q) + 3v2(t− q) + 5κ3v(t− q)− 3]

}
,

4κ4 ∝ Et

{v2(t)− 1
8D

+
ψy(t)
24

L∑

q=−L

wq[v3(t− q)− 3v(t− q)]
}

(11)

This is the learning rule in the nonlinear stage. The learning
rule in the linear stage is Eq. 6.

3) Estimation of the Score Function:As in blind separation
of PNL mixtures, the performance of blind inversion of Wiener
systems depends greatly on the estimation accuracy of the
score function (Eq. 3). In our experiments the density of output
y is modelled as a mixture ofm Gaussians with meansmq,
variancesvq, and mixing weightsπq (q = 1, ..., m):

py(y) =
m∑

q=1

πqG(y|mq, vq)

Then the score function can be obtained analytically:

ψy(y) =
p′y(y)
py(y)

=
m∑

q=1

p(q|y)
y −mq

vq

wherep(q|y) denotes the posterior probability thaty is gener-
ated by theq-th Gaussian. After each update of(g(2), w(t)), all
parameters in the Gaussian mixture model are tuned to trace
current outputy(t) based on maximum likelihood. The EM
algorithm is used to maximize the likelihood. When all of the
nonlinear stage, the linear stage and the EM stage converge,
the learning process terminates. For details see [17].

4) Discussion:In the Gaussianization method, the compos-
ite of g andf transformsr to the standard Gaussian variablez.
Whenr is given, whatever the nonlinearityf is, z = g(f(r))
does not change. Furthermore, for the extended Gaussianiza-
tion method,v is not affected by the nonlinearityf . And
consequently the performance of the extended Gaussianization
method is insensitive tof in the noiseless situation.

The extended Gaussianization method is an application of
the general learning rule, with Gaussianization as the first step
and the C-F expansion for representing the inverse of remain-
ing nonlinearity. The performance of this method depends on
how well the C-F expansion can fit the actual distribution
of the convolutive mixture. Hence in order to analyze the
performance of our method, we first investige the property
of the C-F expansion.

To ensure that the C-F expansion corresponds to the quantile
of a distribution, and that the mappingx(uα) (Eq. 9) is
one-to-one, Eq. 9 should be a strictly monotonic function
of uα. However, it is not always true for all possible values
of (κ3, κ4). We can identify the region in the(κ3, κ4)-plane
guaranteeing the strict monotonicity of the mappingx(uα).
For values of(κ3, κ4) in this region, the derivative

dx(uα)
duα

= 1+
1
3
κ3uα +

1
8
(u2

α−1)κ4− 1
36

κ2
3(6u2

α−5) (12)

should be positive definite. Since Eq. 12 is a simple function
of uα with the highest order no more than2, we can easily
find the domain for(κ3, κ4) in which dx(uα)

duα
is always positive

for any value ofuα, as shown in Figure 5 (a). Values in this
region always result in super-Gaussian distributions ofx(uα).

In practice the value ofuα is bounded, and hence the
monotonicity constraint is relaxed. For instance, we can
implement the monotonicity constraint foruα between the
0.001 quantile (−3.09) and the0.999 quantile (3.09) for the
standard Gaussian distribution. After some straightforward but



(a) (b)

Fig. 5. The domain of(κ3, κ4) guaranteeing monotone of the 4-term C-
F expansion (Eq. 9). (a) theoretical solution. (b) the domain guaranteeing
monotone foruα ∈ [−3.09, 3.09].

tedious derivations, the domain forκ3 andκ4 is obtained, as
sketched in Figure 5 (b). The region in this figure shows us the
feasibility of approximatingzi with the C-F expansion when
zi is close to Gaussian, especially when it is super-Gaussian.
When (κ3.κ4) lies in the lower part of Figure 5 (b), the C-F
expansion may become less and less reliable forα → 0 (or
α → 1).

Due to the limitation of approximation of a distribution by
the C-F expansion, the performance of the extended Gaus-
sianization method varies for different characteristics of the
distribution of the convolutive mixture. When the convolutive
mixture r(t) is close to Gaussian and the combination of its
cumulants,(κ3, κ4), lies in the domain shown in Figure 5
(a), the C-F expansion modelsr(t) well, and hence a good
performance is achieved. Whenr(t) is close to Gaussian,
(κ3, κ4) lies in the domain indicated by the lower part of
Figure 5 (b), and the monotonicity of the C-F expansion is
guaranteed for all samples ofv(t), r(t) can still be modelled
well by the C-F expansion, which also results in a good
performance. Whenr(t) is close to Gaussian,(κ3, κ4) lies
in the domain indicated by the lower part of Figure 5 (b),
and some samples ofv(t) are so large as to violate the
monotonicity of the C-F expansion, we can drop these samples
and the extended Gaussianization method still works. This is
because mutual information as an independence measure is
robust to outliers. But inevitably the performance decreases
compared to the first two cases. When the distribution ofr(t)
is far from the Gaussian distribution, (for instance, when its
distribution is multimodal,) this method may fail.

IV. EXPERIMENTS

In order to investigate the performance of our method when
r is not so close to Gaussian, the source signals(t) in our
experiments is i.i.d. and follows theΓ(3, 2) distribution. The
filter h(t) is a causal filter with coefficients[1 0.5 0.5 0.2].
The distribution of the convolutive mixturer(t) is considerably
far from the Gaussian distribution, as seen from Figure 6 (b).
The nonlinearity is very “hard”:f(r) = r3. The inverse filter
w(t) is a causal filter with the length60. In order to exhibit
the performance quantitatively, the classical residual crosstalk
C(y, s) = 10 log10 E[(y − s)2] is used as the performance

index, in which by multiplying by a constant,y and s are
made to be of unit variance and with positive correlation.
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Fig. 6. (a) The source. The figure on the right shows its normalized histogram.
For comparison, the Gaussian distribution with the same mean and variance
is given by the dashed curve. (b) The latent convolutive mixture. (c) The
observation after nonlinear distortion.

Figure 7 shows the experimental result with the Gaus-
sianization method. The residual nonlinear distortion is still
considerable due to the departure of the distribution ofr(t)
from the Gaussian distribution. And accordingly the linear
filter w(t) does not invert the filterh(t) well. The recovered
signal is fairly different from the input source, which can also
be seen from the performance index, which is only−4.8dB.

The experimental result using the extended Gaussianization
method is shown in Figure 8. We can see that the nonlinearity
f has been compensated byg. The filter w(t) provides a
good inversion ofh(t). And the input signal is successfully
recovered. The performance index is improved to−16.1dB.
The result shows the validity and efficiency of the extended
Gaussianization method. In the nonlinear stage only two
parameters are to be tuned so that this method learns fast.

Figure 9 shows the pdf associated with the C-F expansion
and the output pdf modelled by the Gaussian mixture model.
We can see the C-F expansion models the latent convolutive
mixture well. And the Gaussian mixture model has learned
the output density correctly.

V. CONCLUSION

In this paper we derived the general learning rule for blind
inversion of Wiener systems. Moreover, we developed the ex-
tended Gaussianization method for blind inversion of Wiener
systems under the assumption that the weighted sum of i.i.d
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Fig. 7. Blind inversion result obtained by Gaussianization. (a) The residual
distortiong◦f by the Gaussianization method. (b) The convolution of inverse
filter w and the original filterh. (c) The recovered signal. Performance index:
C(s, y) = −4.8dB.
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Fig. 8. Blind inversion result obtained by the extended Gaussianization
method. (a) The residual distortion. (b) The parametersκ3 and κ4 versus
iterations. (c) The convolution ofw andh at convergence. (d) The recovered
signal. Performance index:C(s, y) = −16.1dB.
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Fig. 9. (a) The pdf associated with the C-F expansion at convergence, together
with the distribution histogram of the latent convolutive mixture. (b) The
output pdf learned by the Gaussian mixture model, together with its histogram.
Here3 Gaussians are used.

variables are close to Gaussian. This assumption is reasonable
in general cases according to the central limit theorem. Our
method takes Gaussianization as the first step. After this step
the inverse nonlinearity can be modelled by only two unknown
parameters with the help of the Cornish-Fisher expansion. We
also discussed the applicability of our method in different
situations. The performance of this method is insensitive to
the nonlinearity in the Wiener system. Experimental results
illustrate the limitation of the Gaussianization method and the
efficiency of the extended Gaussianization method.
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