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Abstract—In this paper, firstly we show that the problem of earity needs to be inverted. Therefore the nonlinearity is not
blind inversion of Wiener systems is a special case of blind sep- restricted to be monotonic.
aration of post-nonlinear instantaneous mixtures approximately, However, in some situations the input signal of the Wiener

and derive the learning rule for the former problem using this . . o
relationship. Secondly, we review the Gaussianization method system is unknown and then the system can not be identified

for blind inversion of Wiener systems. Based on the fact that the Using traditional methods. In this paper we consider the
convolutive mixture is close to Gaussian, this method roughly problem—*“blind inversion” of Wiener systems [4]. Under the
approximates the convolutive mixture by a Gaussian variable assumption that the inputt) is an independent and identically
and constructs the inverse nonlinearity easily. Thirdly, in order distributed (i.i.d.) process with a non-Gaussian distribution,

to improve the performance, the Cornish-Fisher expansion is s to identify the Wi ¢ Il as t
exploited to model the latent convolutive mixture, and then the our goal is to identify the Wiener system, as well as to recover

extended Gaussianization method is developed. We show that thethe latent inputs(t) from only the observation(t). In order
performance of our method is insensitive to the nonlinearity in the to recovers(t) from xz(¢), this system should be invertible.

Wiener system. Experimental results are presented to illustrate And hence the functiorf is assumed to be one-to-one. Under
the validity and efficiency of our method. these assumptions, the Wiener system can be inverted by the
Hammerstein structure, which is a memoryless nonlinear stage
followed by a linear filter (see Figure 2).

A Wiener system is a linear filter subsystem followed by a

I. INTRODUCTION

memoryless nonlinear distortion (see Figure 1). This system menoryl ess i near
can model many actual systems in nature. It has been used nonl i near filter
in many areas, such as biology, physiology and phycology. X g0 1) AN w(t) AZN

For instance, it is used for describing neural processing [12],
investigation of the activity of individual primary neurons in_ _ o ,

t rolonged velocity stimuli [13] modelling th Fig. 2. Hammerstein system: memoryless nonlineagify}d), is followed
reSpon_Se 0 p 9 Yy ! . g %y a linear filter subsystemy(t), whereé denotes the parameter vector. For
dynamic relation between muscle length and tension [9], asiehplicity, we have neglected the additive noise in the figure.
estimation of the nonlinear nonstationary model of infant EEG

seizures [5]. Some researchers have developed algorithms for blind inver-
sion of the Wiener system with different models for the inverse
l'i near nenoryl ess nonlinearity, i.e. the functiory in Figure 2 [4], [16], [2].
filter nonl i near Without any prior information on the nonlinearig usually a
@] h) r® > fl) ﬂ. multi-layer perceptron (MLP), or polynomial is used to model

the inverse nonlinearity. The number of parameters needed
Fig. 1. Wiener system: a linear filter subsysteh{t), is followed by a tc.) represent the Inversion system IS. q.UIte. large. This causes
memoryless nonlinearityf(-). For simplicity, we have neglected the additiveNigh computation and makes the optimization slow and prone
noise in the figure. to local optima. And if one chooses a parametric family that
is not appropriate, there is a danger of resulting in incorrect
Traditionally, identification of the Wiener system aims ta@onclusions.
estimate both the characteristic of the nonlinear subsystemin this paper, we exploit the fact that the sum of independent
and the impulse response of the linear part from the input awariables tends to be Guassian, which helps to reduce the
output signals. As for the input signal, usually it is assumddeedom of the nonlinearity in the inversion system greatly.
to be a Gaussian white random process. The main difficulthis paper is organized as follows. In Section Il, we consider
in the identification is caused by the fact that the inner systetre Wiener system as a special case of the post-nonlinear
signal, i.e. the convolutive mixture, is not measured. A popul@NL) mixture model, and develop the learning rule for blind
method for identifying this system is the iterative method [10inversion of Wiener systems. In Section Ill, the Gaussianiza-
In this method, neither the linear subsystem nor the nonlitien method is reviewed, and most importantly, the extended



Gaussianization method is proposed. This method can Benlinear stagef; are tuned to minimizé (y):

considered as a specific application of the general learning

rule, with Gaussianization as the first step and the Cornishxg, _9I(y)

Fisher expansion modelling the remaining nonlinearity in the ow

inversion system. Section IV illustrates the performance of the dlog |gi(z:]0;)] = 0gi(|0;)
4 P = By b BLC (g wg) 22Ty

proposed method with experiments. Section V discusses the 00; P 00;
main results and concludes the paper. B 2)
II. FROM BLIND SEPARATION OFPNL MIXTURES TO Wherewyi is the score function of the distribution of:
BLIND INVERSION OFWIENER SYSTEMS ()
— r_ Pyi\W)
Some researchers have investigated the relationship between Yy, (u) = (log py, (u))" = Py, (1) 3

blind deconvolution (BD) and blind source separation (BSS)

[3], [7], [8]. Similarly, the relationship between blind separaSince the separation system of PNL mixtures is cascade
tion of PNL mixtures and blind inversion of Wiener systemstructured, in the linear stagé” is tuned to minimizel(y)

has been discussed in [16]. Now we use this relationship téth z as input:

derive the learning rule for blind inversion of Wiener systems. 8]( )

AW x FTiG

= W + E{yy (y)2"} 4)
A. Blind Separation of PNL Mixtures

— T
Blind separation of PNL mixtures (see Figure 3) is a specili1€re¥y = (¥y1, Yyzs s ¥y, )"
case of nonlinear independent component analysis (ICA). By
constraining the nonlinearity to be post nonlinear, this mod@l. Learning Rule for Blind Inversion of Wiener Systems
can extract the independent sources up to permutation, scalin _ T
and mean indeterminacies under some weak assumptions [1 jJn F|gure 3, lets(t) = (s(t), s(t + %)’ 8t n = 1))7,
t+1) Srt+n—=1)", x(t) = (x(t), z(t +

[17]. The observationsx = (x1,2,...,2,,)7 are generated ) ) N
g . t+n A be a Toeplitz matrix containing;, the
from statistically independent sources= ey S . : v
y P (51,82, 80)" coefﬁuents of the fllteh( ), as its rows, at different positions

the form:
for each row:
ft 7‘7 = fi Zat_js] (1) .
ho h_1 h_s
wheres; are statistically independent sourcégsare unknown A= |-+ h1 ho h_y - %)
invertible nonlinear functionsg,;; denote entries of a regular o ha ho

m X n mixing matrix A, andr; are latent linear mixtures.

| and all of f; be the same nonlinearity, denoted Ify As

PNL mixing system | PNL separation system n — oo, We can neglect the inaccuracy near the top and
RN h %] il 3 bottom channels in Figure 3, and the PNL mixing system
SN r, %! 2 | X becomes the Wiener system (Figure 1). In the same way we
: A W : construct the Toeplitz matrild” with w;, the coefficients of the

i B
5 i x'ﬂ: - s filter w(¢), as its rows, and constrajp to be the nonlinearity
s — g. As n — oo, the separation system in Figure 3 becomes
linear nonlinear ! _ inverse linear the Hammerstein system (Figure 2). In order to eliminate the
mixing distortion  nonlinear transform  de-mixing . . . . . . .

indeterminacies in the inversion of Wiener systems, we assume

Fig. 3. PNL mixing system and PNL separation system (assuming tH€ nonlinearityg is strictly monotonically increasing, angd
number of sources equals that of observations): The mixing system consjstzero-mean.

O e e e SINCE the separation system of PNL mixtures is cascade
operation, which is a nonlinear transform stage followed by a linear de-mixiggructured, the linear stage aims at extracting compongnts
stage. from input z; as independent as possible. Therefore the learn-
ing rule in the linear stage is the same as that for ordinary ICA.
Assuming the number of sources is equal to that of obsen&imilarly, the linear stage in the inversion system of the Wiener
tions, Taleb and Jutten have given the general learning rule fystem performs the ordinary BD task. In [7], a circulant
blind separation of PNL mixtures based on the minimizatiomatrix structure is constructed for the de-mixing matvix
of mutual information betweeny; [15]. Let 8; denote the in the BSS problem, and the natural gradient method for BD
parameter vector in the functiop;, and I(y) denote the (see [1]) is derived by exploiting the relationship between BD
mutual information between the components yaf In the and BSS. Its batch-mode version is as follows (assumiftg




has equal lengthl,, for the causal and noncausal parts):  proposed in [14], [18]. In the latter paper, this technique is
. ) used to perform blind separation of PNL mixtures.
Awj wg + E{vby (u"(t = 5)} ®) Let F,(x) denote the cumulative distribution function (cdf)
_ of the variablez, and p,.(x) denote the probability density
ult) = Z way(t+9) function (pdf) ofz. F,(z) = [*__ p.(t)dt. AssumeF.(z),
q_L_L the cdf of variablez, is continuous and strictly increasing in
() = Z wr(t — q) the variation range of so that its inverse mapping exists and
v\ = — 4 9 is unique. Sincez = g(z) and g is assumed to be strictly
= increasing, we have
wherex denotes complex-conjugate.

Due to the specific structure ¥, x andy as addressed F,(g(z)) = Fy(z), therefore
above, and taking into account that all &f are 8, we have g(z) = F, Y (Fy(2))
E{(Z Py, (yk)wki)%jtﬁm} Denote byG the cdf of the standard Gaussian distribution,
k_lL ' G(z) = \/% e~"/24dt. As the distribution of: is approx-
= BA()_ ¥y(t+0 'wq)w} imated by the Gaussian distribution, the nonlinear mapging
p— 00 is constructed by
L =G loF, (8)
dg(z(t —q)|@ g x
= E v, Z wq%}
q=—1L When z(t) = g(«(¢)) is obtained, we can extragt(t) by
Then Eq. 2 becomes applying any BD method onr(¢): y(t) = w(t) * z(¢t). For
, instance, the natural gradient method (Eg. 6) is adopted in our
AD Et{w} experiments.
00 In [17], some practical issues for constructing the nonlin-

L
+ E{vy(t) Z qu} (7)

q=—L

earity ¢ were considered.

B. Extended Gaussianization
which is the learning rule in the nonlinear stage for blind

inversion of Wiener systems. In general it is rough to approximate the distribution of

r by the Gaussian distribution. However, the nonlineatjty
[1l. GAUSSIANIZATION AND EXTENDED constructed using the Gaussianization method compensates the
GAUSSIANIZATION nonlinear distortion caused hf significantly.

The classical central limit theorem states that the sum of i.i.dNow let the nonlinearity constructed by Gaussianization be
variables is asymptotically normally distributed as the numb@gnoted byg("). In order to improve the performance, we
of independent variables increases. In Figure 1, siffiteis a introduce a parametric formy®, to model the remaining
i.i.d. process and(t) = 3", hys(t—k), the variable associatedhonlinearity to give more freedom to the distribution of
with 7(¢) is a weighted sum of i.i.d variables. Therefore irfince the convolutive mixture(t) is assumed to be close
general the distribution of will be closer to the Gaussianto Gaussian, the nonlinearity® is much "milder” thang.
distribution thans.2 Hence we assume the distributionofs ~ Figure 4 shows this structure. In the figureis a standard
close to be Gaussian. Of course there is no straight definiti@@ussian variable. Taking(t) as input, the learning rule
on the “closeness”, and it depends on the fikét) and the for the Hammerstein systerty®), w(¢)) can be derived by
distribution of s. One can construct counterexamples again@pplying the general learning rule for blind inversion of Wiener
our assumption. For instancejs extremely non-Gaussian andSystems. This idea has been proposed for blind separation of
one coefficient of.(t) dominates the others. However, in thig?NL mixtures in [17].

paper we consider the general cases.
L . v(t)

A. Gaussianization /

Gaussianization transforms a random variable into a stan- ,@ \
dard Gaussian random variable. In the Wiener system, we =) ””@»”%(t)y
simply approximate the distribution of with the Gaussian
distribution, and themz(t), as an estimate of(¢), can be Fig. 4. The system for blind inversion of Wiener systems used in the extended

: R . Gaussianization method. We do not construct the nonlineardirectly, but
construct_ed directly by GaL_Jss_lamzatlQﬁ(t) can _be obtained constructg) andg(® instead.g = g o g1
by applying BD onz(t).This idea has been independently
1 . .

awe drop the time index of a signal to represent the random variable _9( ) can be_ConStrUCted aCC_Ordlng to Eq. 8. The Cornish-

associated with this signal. Fisher expansion helps to provide a parametric modej fr



1) Cornish-Fisher Expansiontt is possible to obtain use- 3) Estimation of the Score Functiors in blind separation
ful approximate representation of a distribution with knownf PNL mixtures, the performance of blind inversion of Wiener
cumulants in terms of a known distribution. The Edgewortiystems depends greatly on the estimation accuracy of the
expansion and the Gram-Charlier expansion arise from chossere function (Eq. 3). In our experiments the density of output
ing the Gaussian distribution as the known distribution. y is modelled as a mixture af» Gaussians with means,,
Quantiles of a distribution are totally determined by the pdfariancesv,, and mixing weightsr, (¢ =1, ..., m):
of this distribution, hence one can approximate the quantiles of m
a distribution with those of the standa_rd Gaussian distribution py(y) = Z 746G (y|mq, vy)
and known cumulants. Cornish and Fisher propounded a form a=1
tohf expansion in which the terms. are polypomw_ll functhns Olfi?en the score function can be obtained analytically:
e appropriate standard Gaussian quantile, with functions o

known cumulants as coefficients [6]. The four-term Cornish- Py (y) - Y — my
Fisher (C-F) expansion fat-quantile is by(y) = () Zp(q\y) 0
Y q=1 q
2(Ug) = ug + l(ui — 1)ks wherep(q|y) denotes the posterior probability thais gener-
6 ated by thej-th Gaussian. After each update(gf?, w(t)), all
1 3 3 2 . . .
+ ﬂ(“a — 3ug Ky — 36(2u“ — Bug ) K3 (9) parameters in the Gaussian mixture model are tuned to trace

current outputy(t) based on maximum likelihood. The EM

where s and k4 are the third-order and fourth-order cumualgorithm is used to maximize the likelihood. When all of the

lants (or skewness and kurtosis) ofrespectivelyu, is the nonlinear stage, the linear stage and the EM stage converge,

a-quantile of the standard Gaussian distribution, af@.) is  the learning process terminates. For details see [17].

zero-mean and of unit variance. 4) Discussion:In the Gaussianization method, the compos-
It was shown in [11] that the C-F approximation is ate of g andf transforms- to the standard Gaussian variable

competitive technique if the target distribution is relativelyvhenr is given, whatever the nonlinearitf is, z = g(f(r))

close to normal. And the most prominent use and motivati@ibes not change. Furthermore, for the extended Gaussianiza-

of this expansion is to model the distribution of the normalizegon method,v is not affected by the nonlinearity. And

sum of independent variables. consequently the performance of the extended Gaussianization
2) Learning Rule for Extended GaussianizatioAs the method is insensitive tg in the noiseless situation.

distribution of z is assumed to be close to Gaussian, one The extended Gaussianization method is an application of

can use the C-F expansion to approximatén terms ofv. the general learning rule, with Gaussianization as the first step

According to Eqg. 9, we have and the C-F expansion for representing the inverse of remain-
@ @ ing nonlinearity. The performance of this method depends on
z=g'"(v|0) = g7 (v|K3, K1) how well the C-F expansion can fit the actual distribution

of the convolutive mixture. Hence in order to analyze the
performance of our method, we first investige the property
of the C-F expansion.

To ensure that the C-F expansion corresponds to the quantile
of a distribution, and that the mapping(u,) (Eg. 9) is

L oo L 3 1 3 2
v+ 6(1} VK3 + 5 (v° — 3v)kKy 3 (20° — Bv)K3
(10)

Let D be the derivative of®) (v|@) with respect tou:

D =g'(2)(v|0) one-to-one, Eq. 9 should be a strictly monotonic function
1 1 1 of u,. However, it is not always true for all possible values
=1+ 3hsY + g(v2 — kg — %ng(ﬁzﬂ —5) of (k3,k4). We can identify the region in théxs, k4)-plane

_ . _ guaranteeing the strict monotonicity of the mapping@.,).
According to Eq. 2, one can find the learning rule fgrand For values of(xs, x4) in this region, the derivative

o dalua) _ 1—1—1/@' Ug + 1(u2 — 1)k — i/12(6u2 -5) (12)
Ay o Et{ —6r302(t) + 6v(t) + Hr3 N by (t) du, 3 3TeTglle 4T3 B\ e
3 18D 18 should be positive definite. Since Eq. 12 is a simple function
B 3., 2., o of u, with the highest order no more th&y we can easily
ZL wal=2n50%( = q) + 3% = @) + Smav(t =) =3} i domain O3, 1) in which “2(=) s always positive
—

" ® . for any value ofu,, as shown in Figurae 5 (a). Values in this
vi(t) =1 Yyt 3 region always result in super-Gaussian distributions (af,, ).
Dk o Et{ sD o4 Z wq[v*(t = q) _Sv(t_q)]} In practice the value ofu, is bounded, and hel(ﬂce) the
(11) monotonicity constraint is relaxed. For instance, we can
implement the monotonicity constraint far, between the
This is the learning rule in the nonlinear stage. The learnifigd01 quantile (-3.09) and the0.999 quantile $.09) for the
rule in the linear stage is Eqg. 6. standard Gaussian distribution. After some straightforward but




h : index, in which by multiplying by a constany; and s are
i \ / \ made to be of unit variance and with positive correlation.

[
Ka K:i

() (b)

Fig. 5. The domain of k3, k4) guaranteeing monotone of the 4-term C-
F expansion (Eqg. 9). (a) theoretical solution. (b) the domain guaranteeing
monotone foru, € [—3.09, 3.09]. )

tedious derivations, the domain feg and x4 is obtained, as ]
sketched in Figure 5 (b). The region in this figure shows us the
feasibility of approximatingz; with the C-F expansion when
z; is close to Gaussian, especially when it is super-Gaussian. (b)
When (k3.54) lies in the lower part of Figure 5 (b), the C-F
expansion may become less and less reliablenfor 0 (or
a—10. e
Due to the limitation of approximation of a distribution by J J
the C-F expansion, the performance of the extended Gaus- “Tabablod Ll ,“u’i,l
sianization method varies for different characteristics of the " et
distribution of the convolutive mixture. When the convolutive (c)
mixture r(¢) is close to Gaussian and the combination of its _ , _ , ,
cumulans, (. 1), lies in the domain shown in Figure SE9 & () Thesouce, Thefureer e rahtshaws i rormalzed Htogrem,
(a), the C-F expansion mOdek'ét) well, and hence a good s given by the dashed curve. (b) The latent convolutive mixture. (c) The
performance is achieved. Whet{t) is close to Gaussian, observation after nonlinear distortion.
(k3, k4) lies in the domain indicated by the lower part of . ]
Figure 5 (b), and the monotonicity of the C-F expansion is Figuré 7 shows the experimental result with the Gaus-
guaranteed for all samples oft), () can still be modelled S|an|_zat|on method. The residual nonllnear_dlgtort_lon is still
well by the C-F expansion, which also results in a goo%on5|derable dug to the .departure of the d|§tr|butlow(®_j
performance. When'(t) is close to Gaussiar(s, x4) lies from the Gaussian distribution. And accordingly the linear

in the domain indicated by the lower part of Figure 5 (b)f’ilter w(t) does not invert the filtek(t) well. The recovered
and some samples af(t) are so large as to violate thesignal is fairly different from the input source, which can also

monotonicity of the C-F expansion, we can drop these sampl& S€en from the performance index, which is orl.8dB.
and the extended Gaussianization method still works. This isT "€ experimental result using the extended Gaussianization
because mutual information as an independence measur8§¢hod is shown in Figure 8. We can see that the nonlinearity
robust to outliers. But inevitably the performance decreasésh@s been compensated by The filter w(t) provides a
compared to the first two cases. When the distribution(of 900d inversion ofh(t). And the input signal is successfully

is far from the Gaussian distribution, (for instance, when it§covered. The performance index is improved-to6.1dB.
distribution is multimodal,) this method may fail. The result shows the validity and efficiency of the extended

Gaussianization method. In the nonlinear stage only two

parameters are to be tuned so that this method learns fast.
Figure 9 shows the pdf associated with the C-F expansion
In order to investigate the performance of our method whejid the output pdf modelled by the Gaussian mixture model.

7 is not so close to Gaussian, the source sigita) in our e can see the C-F expansion models the latent convolutive

experiments is i.i.d. and follows thi(3,2) distribution. The mixture well. And the Gaussian mixture model has learned

filter h(t) is a causal filter with coefficientfl 0.5 0.5 0.2]. the output density correctly.

The distribution of the convolutive mixtur€t) is considerably

far from the Gaussian distribution, as seen from Figure 6 (b). V. CONCLUSION

The nonlinearity is very “hard”f (r) = 3. The inverse filter  In this paper we derived the general learning rule for blind

w(t) is a causal filter with the length0. In order to exhibit inversion of Wiener systems. Moreover, we developed the ex-

the performance quantitatively, the classical residual crosstégkded Gaussianization method for blind inversion of Wiener

C(y,s) = 10log,, E[(y — 5)?] is used as the performancesystems under the assumption that the weighted sum of i.i.d

I IA[I&
e

il

IV. EXPERIMENTS
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(©) 0
Fig. 7. Blind inversion result obtained by Gaussianization. (a) The residual
distortiongo f by the Gaussianization method. (b) The convolution of inverse

filter w and the original filterh. (c) The recovered signal. Performance index: 2]
C(s,y) = —4.8dB.

. (3]
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Fig. 8. Blind inversion result obtained by the extended Gaussianizati?{b]
method. (a) The residual distortion. (b) The parametersand x4 versus
iterations. (c) The convolution abh andh at convergence. (d) The recovered

signal. Performance index(s,y) = —16.1dB. (23]

— paiby C-F
- - Gaussian

(14]

(18]

(16]

[17]
(@) (b)
(18]

Fig. 9. (a) The pdf associated with the C-F expansion at convergence, together
with the distribution histogram of the latent convolutive mixture. (b) The
output pdf learned by the Gaussian mixture model, together with its histogram.
Here 3 Gaussians are used.

: variables are close to Gaussian. This assumption is reasonable
! 1 in general cases according to the central limit theorem. Our
o 1 method takes Gaussianization as the first step. After this step
o | theinverse nonlinearity can be modelled by only two unknown
| parameters with the help of the Cornish-Fisher expansion. We
also discussed the applicability of our method in different
situations. The performance of this method is insensitive to

nonlinearity in the Wiener system. Experimental results

illustrate the limitation of the Gaussianization method and the
efficiency of the extended Gaussianization method.
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