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ABSTRACT

In finance, factor model is a fundamental model to describe
the return generation process. Traditionally, the factors are
assumed to be uncorrelated with each other. We argue that
independence is a better assumption to factor model from
the viewpoint of portfolio mangement. Based on this as-
sumption, we propose the independent factor model. As the
factors are independent, construction of the model would
be another application of Independent Component Analy-
sis (ICA) in finance. In this paper, we illustrate how we
select the factors in the independent factor models. Securi-
ties in the Hong Kong market were used in the experiment.
Minimum description length (MDL) was used to select the
number of factors. We examine four sorting criteria for fac-
tor selection. The resultant models were cross-examined by
the runs test.

1. INTRODUCTION

Factor Model, also called Index Model, is one of the basic
models in finance to analyze the risk/reward relationships of
security returns [1]. It has been used extensively in finance.
Applications of factor model include portfolio construction,
sensitivity analysis. Besides, theories, such as Capital As-
set Pricing Model (CAPM) and Arbitrage Pricing Theory
(APT), are built upon factor models.

There are two approaches to factor models [2, 3, 4].
One is the fundamental approach which links the factors to
some macro-economic measurements, such as unexpected
changes in the rate of inflation, interest rate, rate of return
on a treasury bill etc. The sensitivities, β′s, are evaluated
accordingly. However, it is very difficult to determine the
appropriate model, include the number of factors and what
the factors are. The other approach is the statistical fac-
tor model; for examples, factor analysis and PCA. Histor-
ical security returns are analyzed to generate uncorrelated
factors. Under this approach, principle component analy-
sis(PCA) is the most successful method [5, 6, 7]. It is used

to find the factors and their sensitivities[8, 9]. However it
has also been shown that the separated factors are not able
to truly reflect the real case but only one meaningful factor,
which corresponds to the market effect, is extracted. This
is due to two limitations of PCA. First, the separated princi-
pal components must be orthogonal to each other. Second,
PCA uses only up to second order statistics, i.e. the covari-
ance and correlation matrix.

The motivation for us to apply ICA in factor model is
more than a simple replacement of PCA by ICA. Tradition-
ally, the factors in the factor model are assumed to be uncor-
related. It has recently been pointed out that uncorrelation is
not an appropriate assumption for factor model [10]. There-
fore, in this paper, we are proposing to restrict the factors to
be independent. Under this assumption, Independent Com-
ponent Analysis (ICA) is an ideal method for the extraction
of the factors and hence the construction the factor models
[11, 12, 13, 14]. The constructed factor models are named
as independent factor models.

Previous studies have applied ICA to extract indepen-
dent sources from stock data [15, 16, 17]. Their major fo-
cus is on the source signals. Factors are related to seasonal
variations, and prediction on the source signals is also sug-
gested. On one hand, it is useful to know what the exact
underlying factors are. On the other hand, the financial mar-
ket nowaday is extremely complex and dynamic, especially
due to globalization and many newly introduced indices,
such as IT index. It is not an easy task to decide which
variables, among so many systematic factors and marco-
economic variables, should be included in the model as fac-
tors. Our method serves as a data mining technique to au-
tomatically identify the hidden factors from historical data.
Unlike the previous applications of ICA in finance, our fo-
cus is not on the source signals. The sensitivities are indeed
the focus of attention. Our work relates ICA to the factor
model, a basic theory in finance. This serves as a linkage to
the current financial theories developed based on the factor
model.
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2. THE FACTOR MODELS

2.1. The uncorrelated Factor Models

Multifactor model is a general form of factor model [8, 18,
19], and is the most popular model for the return generating
process. The return ri on the ith security is represented as,

ri = αi +

k
∑

m=1

βimFm + ui (1)

where k is the number of factors and it is a positive integer
larger than zero. F1, F2, ..., Fk are the factors affecting the
returns of ith security and βi1, βi2, ..., βik are the corre-
sponding sensitivities. αi is regarded as ”zero” factor that
is invariant with time; ui is a zero mean random variable
of ith security. It is generally assumed that the covariance
between ui and factors Fi are zero. The factors, Fi, are un-
correlated to each other. Also ui and uj for security i and
j are independent if i 6= j. For simplicity, the multi-factor
model with k factors is called k-factor models.

2.2. The portfolio construction

One application of the factor model is on portfolio analysis.
As we have pointed out in Section 1, uncorrelation is not a
good assumption on factor model. In this section, we further
illustrate our point using portfolio analysis.

Suppose we have two securities, A and B. Let rA and
rB be their returns respectively. Without lose of generosity,
we use a simple two-factor model to determine their returns
as below

rA = αA + βA1F1 + βA2F2 + µA

rB = αB + βB1F1 + βB2F2 + µB

The main objective of portfolio management is to construct
a diversified portfolio, p, composing of a number of securi-
ties. With these two securities, we construct a portfolio, p,
and its return, rp, is defined as

rp = wArA + wBrB

where wA and wB are the weightings of the securities A and
B respectively. If the portfolio is constructed a way that we
hedge out the effect due to F1, the weightings should be
assigned as

wA =
βB1

βB1 − βA1

and wB = 1 − wA. In this case the return of the portfolio
becomes

rp = αp +
βB1βA2 − βA1βB2

βB1 − βA1

F2 + µp

where αp = wAαA + wBαB and µp = wAµA + wBµB

In this way, the portfolio return does not directly relate to
F1 any more. However, in traditional factor models, we re-
quire the factors are uncorrelated to each other. It is possible
that F1 and F2 are uncorrelated but not independent. If F2

depends on F1, it is obvious that the portfolio return is still
under the influence of F1. Therefore, the typical assumption
on uncorrelated factors in the factor models cannot guaran-
tee the return of the portfolio be free from the influence of
F1. On the contrary, if the factors F1 and F2 are indepen-
dent to each other. It is possible to construct a portfolio
which is free from the influence of neither factors.

2.3. The Independent Factor Model

With the assumption of independent factors, we name the
factor model as “independent factor models”. Independent
factor models can still be applicable in the current financial
theories, which are derived based on the uncorrelation prop-
erties of the factor models. As all independent signals are
also uncorrelated (the converse is not true), the factors in the
independent factor models are still uncorrelated.

With independent factors, ICA is an ideal candidate for
the extraction of factors. Though there are certain concerns
in ICA, such as the independence of the signal extracted, our
main focus lies on the application of ICA in factor models
and the linkage between ICA and factor models. Any deficit
in the independence of the extract signals has to be relied
either on better learning algorithms proposed or better factor
selection methods.

Applying ICA to independent factor models is straight
forward. We have illustrated the details of the factor model
construction in [20]. The security prices are first transformed
into return series. Then we zero-mean the series and ap-
ply an ICA algorithm to extract the independent source sig-
nals. To construct the factor model, we select the appropri-
ate source signals as factors and the remaining signals are
regarded as residues. The expected return is also included
back into the model at this stage.

3. SELECTION CRITERIA FOR FACTOR MODELS

As illustrated in [20], we have demonstrated the construc-
tion of independent factor models using N stock series. The
number of factors used in the independent factor models is
left undecided. The fundamentalists tend to decide k man-
ually. Using the ICA approach, it is possible to construct
k-factor model, where k is any integer value between 0 and
N − 1. Now, we have two questions. One is the choice
of k. The second one is the selection of k factors from N
sources. To select the value of k, we apply the minimum
description length method [21, 22]. After the value of k has
been determined, we sort the source signals according to



certain criteria, and the first k signals are picked as factors.
In the following sections, we will discuss these two steps in
details.

3.1. Minimum Description Length

Under the framework of ICA, Ikeda used the minimum de-
scription length principle to select m factors in factor anal-
ysis [21, 22]. The MDL derived is shown as below

MDL = −L(A, Σ) +
logN

N
(n(m + 1) − m(m − 1)

2
) (2)

where A is the mixing matrix to the factors, Σ is the unique
variance matrix of data, i.e. it is a diagonal matrix, N and
n are the number and dimension of the observations respec-
tively. And L(A, Σ) is defined as,

L(A, Σ) = −1

2
{tr(C(Σ + AAT )−1)

+log(det(Σ + AAT )) + nlog2π} (3)

where C is the covariance matrix of the observations x,
i.e. C =

∑

xxT /N . There is a necessary condition for
A to be estimable and this provides a bound of the number
of factors, m.

m ≤ 1

2
{2n + 1 −

√
8n + 1} (4)

3.2. Factor Selection

Once we have determined the value of k, we have to select
the factors from the source. Up to date, a number of criteria
have been used to measure the properties of the source sig-
nals. Euclidean norm is used in JADE. It measures the en-
ergetic significance of the component so that the most ener-
getically significant component appear first[23, 24, 25]. L∞

norm is another criterion which has been used. It focuses
on the maximum value of the factors, Fi. L∞ norm mea-
sures those ICs causing the maximum price change in the
stock[17]. Kurtosis, the fourth-order cumulant, on the other
hand, has also been widely used in the ICA community to
measure the nongaussianity of a signal [26, 27]. A nongaus-
sian signal is unlikely the resultant of a mixture of signals
[14]. So kurtosis is also introduced to select those nongaus-
sian signals. A gaussian random variable has zero kurtosis.
Subgaussian and supergaussian variable would have posi-
tive and negative kurtosis respectively. In this paper, the
absolute value of kurtosis is used to sort the factors because
we want to measure nongaussianity, and we do not care if
the signal is supergaussian nor subgaussian.

4. RANDOM RESIDUES

Suppose we have successfully extracted independent factors
from the security prices. One remaining requirement for a

factor model which we have not yet addressed is that the
residue has to be random. For those models with nonran-
dom residues are invalid and should be rejected. Therefore,
we have to check if this requirement is satisfied and the ran-
domness of residue is estimated by the “runs test”.

4.1. Runs Test

The Runs Test, also known as Wald-Wolfowitz Test, is used
to test the randomness of a sequence at 100(1−α)% confi-
dence level. A run is a succession of an identical class[28].
For a time series with continuous values, each data point
is compared with the mean to see if it is above or below the
mean We denote a point as “ABOVE” if its value is above or
equals to the mean value of the whole series; otherwise it is
denoted as “BELOW”. If the hypothesis, H0, that a series is
random, is true, the number of runs should following a par-
ticular probability distribution. The following summarizes
the testing procedure.

1. Decide the level of significance, α. In this paper, we
put α = 0.05.

2. Calculate the number of runs, u, in the series.

3. Calculate n1 and n2, the numbers of ABOVEs and
BELOWs respectively. When n1 and n2 are both
sufficiently large, it is reasonable to assume that the
number of runs follows a normal curve with mean, µ,
and standard deviation, σ; where µ and σ are defined
as follows [29],

µ =
2n1n2

n1 + n2

+ 1 (5)

and

σ =

√

2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
(6)

4. Put z = u−µ
σ

. Using 5% level of significance, if z ≤
−1.96 or z ≥ 1.96, we reject H0. Otherwise, we
accept H0.

4.2. Interpretation of z-value

Under the hypothesis test, if there are too few runs relative
to the gaussian mean and standard deviation, the z-value
is small and it implies that the series is having a trend. If
there are too many runs, the z-value is large and the series
contains many ups and downs. Therefore, the absolute z-
value of the series gives us some information on random-
ness of the series. It is natural to suggest the use of the z
values as a sorting criterion. In this respect, we include the
“non-random” source signals as factors and the remaining



“random” source signals would be left as residues. It is nec-
essary to clarify that we sort the source signals according to
their individual z values; whereas the runs test is applied to
test the randomness of the residues, the combinations of the
unused signals.

5. EXPERIMENTS AND RESULTS

In the experiment, we used 22 stocks, selected from the
Hang Seng Index constitutes in Hong Kong. Daily clos-
ing prices started form 2/1/1992 to 16/5/2000 were used.
Figure 1 shows the stocks’ price series.
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Fig. 1. The price series of the Stocks used.

5.1. Determination of k

In our experiment, we transformed our daily security prices
into sequences of return series. We then applied ICA to con-
struct our independent factor models [20]. Both JADE and

FastICA had been used and they gave similar results. The
next step is to perform the factor model selection. As we
have illustrated in Section 3, there are two steps in this pro-
cess. The first is to select the appropriate value of k for the
k factor model. We computed the MDL of the factor models
with different number of factors. According to equation 4,
m (or k in our notation) must be less than or equal to 15.
Figure 2 shows the results of factor models with different
number of factors. It is observed that 8-factor model has the
smallest minimum description length, 0.5796.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60
MDL verse no. of factor

m
in

im
um

 d
es

cr
ip

tio
n 

le
ng

th

no. of factor(s)

Fig. 2. Minimum description lengths of factor models with
different number of factors.

5.2. Randomness of Residues using Various Sorting Cri-
teria

Apart from the determination of the value of k, another issue
we have to consider is the selection of factors into our factor
model. In the rest of the paper, we demonstrate our results
using only one stock, namely, New World Development Co.
Ltd. The other stocks produced similar results and hence we
do not display their graphs. New World Development Co.
Ltd. is chosen as an example as it gives the most negative z
values of -5.1134.

We constructed the independent factor models using the
procedures in the previous section, and the factors were
sorted by four different sorting criteria, kurtosis, euclidean
norm, L∞ norm and number of runs. We then examined
whether the independent factor models show the property
of having random residues. Although the MDL method
suggested 8-factor model is the most appropriate one, we
examined the residues produced by all factor models. We
applied the runs test on their residues so as to investigate
their randomness. Figure 3 shows the result of the runs test,



i.e. z values of the residues of the independent factor models
under different sorting criteria. Note that the x-axes of the
graphs are “the number of ICs in residue”. In other words, if
j is the number of independent components (IC) in residue,
the corresponding k factor model is the one with k = 22−j.
For the cases that 22 ICs are used as residue, they equivalent
to applying the runs test to the original stock return. Those
factor models with z values falling within the two red hor-
izontal lines are regarded as valid factor models. From the
figure, we can see the sorting criteria give similar results and
that all factor models with k = 5 to 15 satisfy the random
residue requirement, including the 8-factor model selected
by MDL. By examining the results for all stocks, it is found
that the results using kurtosis and L∞ closely follow each
other; whereas, the graphs corresponding to L2 and z values
show more monotonicity than the other two.

As a control experiment, we reversed the sorting orders
for the four methods. The result is show in Figure 4. Here
we clearly see that none of the models is valid. This gives
us a positive indication that the sorting criteria play an im-
portant part in the factor selection.
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Fig. 3. z values from the runs tests applied to the residues
of the factor models constructed under four sorting criteria.

6. CONCLUSIONS AND DISCUSSIONS

In financial analysis, it is more appropriate to assume the
factors in factor models are independent rather than uncor-
related. Construction of this type of models, the indepen-
dent factor models, is an applicational area of ICA in fi-
nance. We have applied MDL to extract 8-factor model
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Fig. 4. z values from the runs tests applyed to the residues
of the factor models constructed under four sorting criteria
in reverse order.

from 22 stocks in the Hong Kong market. Among the four
sorting criteria we have compared in this paper, L∞ and L2

have been used in previous applications. Kurtosis, is also
another candidate in some general applications. The sort-
ing using z values is particularly designed in our applica-
tion. Although the four sorting methods appear to perform
equally well to select the factors and it is not easy to spec-
ify which sorting method is superior, we have found that
factors need to be carefully selected in order to turn them
into valid factor models. This paper serves as a prelimi-
nary study of applications of ICA in factor models. In fu-
ture, specially designed ICA algorithms can be proposed to
replace the general ICA tools we use here. For example,
we can incorporate the temporal knowledge or the random
residue requirement while extracting the components.
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