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ABSTRACT

Recently, Support Vector Regression (SVR) has been ap-
plied to financial time series prediction. Typical character-
istics of financial time series are non-stationary and noisy
in nature. The volatility, usually time-varying, of the time
series is therefore some valuable information about the se-
ries. Previously, we had proposed to use the volatility to
adaptively change the width of the margin of SVR. We have
noticed that upside margin and downside margin do not nec-
essary be the same, and we have observed that their choice
would affect the upside risk, downside risk and as well as
the overall prediction result. In this paper, we introduce
a novel approach to adapt the asymmetrical margins using
momentum. We applied and compared this method to pre-
dict the Hang Seng Index and Dow Jones Industrial Aver-
age.

1. INTRODUCTION

SVR is a recently introduced approach to regression prob-
lems [5]. It is a variation of Support Vector Machine (SVM),
which was developed by Vapnik and his co-workers [8, 9].
Nowadays, SVR has been successfully applied to time se-
ries prediction [3, 2] and financial forecasting [7, 6].

In general, SVR uses the ε-insensitive loss function to
measure the empirical risk and minimizes the regression er-
ror based on the Structural Risk Minimization (SRM) prin-
ciple [8]. The ε-insensitive loss function contains a fixed
and symmetrical margin and it is insensitive and non-adaptive
to the input data which may result in less-than-optimal per-
formance in the testing data.

For financial data, due to the embedded noise, one must
set a suitable margin in order to improve the accuracy of
prediction. In [10], we have extended the standard SVR
with adaptive margin and classified it as four cases: Fixed
and Symmetrical Margin (FASM), Fixed and Asymmetri-
cal Margin (FAAM), Non-fixed and Symmetrical Margin

(NASM) and Non-fixed and Asymmetrical Margin (NAAM).
Comparing FASM with FAAM, we find that the downside
risk can be reduced by employing asymmetrical margins.
While comparing NASM with FASM, FAAM, a good pre-
dictive result is obtained by exploiting the standard devia-
tion to calculate the margin.

However, NAAM requires the adaptation of the margin
width and the degree of asymmetry, and no exact algorithm
for such margin setting has been introduced.

In this paper, we propose to use NAAM which combines
two characteristics of the margin; non-fixed and asymmetry,
to reduce the downside risk while improving the accuracy
of the financial prediction. More specially, we add the mo-
mentum term to achieve this. The width of the margin is
controlled by the standard deviation [10]. The asymmetry
of the margin is determined by the momentum. This mo-
mentum term can trace the up trend and down tendency of
the stock prices. Since the financial time series are often
following a long term trend but with small short term fluc-
tuations, we exploit a larger up margin and a smaller down
margin to under-predict the stock price when the momen-
tum is positive and we use a smaller up margin and a larger
down margin to over-predict the stock price while the mo-
mentum is negative. We show a simple illustration about
this margin setting in Figure 1.
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Figure 1: Margin Setting

We organize the paper as follows. Firstly, we give a brief
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introduce of SVR with a general type of ε-insensitive loss
function and the concept of momentum in Section 2. The
accuracy metrics and experimental results are elucidated in
Section 3. Lastly, we conclude the paper with a brief dis-
cussion and final remarks in Section 4.

2. SUPPORT VECTOR REGRESSION WITH
MOMENTUM

2.1. Support Vector Regression

Suppose we are given a training data set, (x1, y1), . . . , (xN , yN ),
where xi ∈ X, yi ∈ R, N is the size of training data, and
X denotes the space of the input samples–for instance, Rn.
Now the problem is to find a function which can estimate
all these data well. SVR is one of the methods to perform
the above regression task [8, 5].

In general, the estimation function in SVR takes the fol-
lowing form,

f(x) = (w · φ(x)) + b, (1)

where (·) denotes the inner product in Ω, a feature space of
possibly different dimensionality such that φ : X → Ω and
b ∈ R.

Now the question is to determinew and b from the train-
ing data by minimizing the regression risk, Rreg(f), based
on the empirical risk,

Rreg(f) = C
N∑

i=1

Γ(f(xi)− yi) +
1

2
(w · w), (2)

where C is a pre-specified value, Γ(·) is a cost function that
measures the empirical risk. In general, ε-insensitive loss
function is used as the cost function [8, 5]. For this function,
when the data points are in the range of±ε, they do not con-
tribute to the output error. Thus, it leads to the sparseness of
the solution. The function is defined as,

Γ(f(x)− y) =

{
0, if |y − f(x)| < ε

|y − f(x)| − ε, otherwise
.

(3)

In [10], we have introduced a general type of ε-insensitive
loss function, Γ′(f(xi)− yi), i = 1, . . . , N , which is given
as,




0, if − d(xi) < yi − f(xi) < u(xi)
yi − f(xi)− u(xi), if yi − f(xi) ≥ u(xi)
f(xi)− yi − d(xi), if f(x)i − yi ≥ d(xi)

,

(4)

where d(x), u(x) ≥ 0, are two functions to determine the
down margin and up margin respectively. When d(x) and
u(x) are both constant functions and d(x) = u(x), Eq. (4)

amounts to the ε-insensitive loss function in Eq. (3) and
we labeled it as FASM (Fixed and Symmetrical Margin).
When d(x) and u(x) are both constant functions but d(x) 6=
u(x), this case is labeled as FAAM (Fixed and Asymmetri-
cal Margin). In the case of NASM (Non-fixed and Symmet-
rical Margin), d(x) = u(x) but are varied with the data.
The last case is with a non-fixed and asymmetrical mar-
gin(NAAM) where d(x) and u(x) are varied with the data
and d(x) 6= u(x).

We use the standard method to find the solution of Eq. (2)
with the cost function of Eq. (4) as [8]. At first we construct
a corresponding Lagrange function, then find a saddle point
of the Lagrange function. After applying the dual theorem,
we obtain the following Quadratic Programming (QP) prob-
lem:

minQ(α(∗)) =
1

2

N∑

i=1

N∑

j=1

(αi − α∗i )(αj − α∗j )(φ(xi) · φ(xj ))

+
N∑

i=1

(u(xi)− yi)αi +
N∑

i=1

(d(xi) + yi)α
∗
i (5)

subject to

N∑

i=1

(αi − α∗i ) = 0, αi, α
∗
i ∈ [0, C], (6)

where αi and α∗i are corresponding Lagrange multipliers
used to push and pull f(xi) towards the outcome of yi re-
spectively.

Solving the above QP problem of Eq. (5) with constraints
of Eq. (6), we determine the Lagrange multipliers α and α∗

and obtain w =
∑N
i=1(αi − α∗i )φ(xi). Therefore the esti-

mation function in Eq. (1) becomes

f(x) =
N∑

i=1

(αi − α∗i )(φ(x) · φ(xi)) + b. (7)

So far, we have not considered the computation of b.
In fact, this can be solved by exploiting the Karush-Kuhn-
Tucker(KKT) conditions. These conditions state that at the
optimal solution, the product between the Lagrange multi-
pliers and the constraints has to vanish. In this case, it means
that

αi(u(xi) + ξi − yi + (w · φ(xi)) + b) = 0 (8)

α∗i (d(xi) + ξ∗i + yi − (w · φ(xi))− b) = 0

and

(C − αi)ξi = 0

(C − α∗i )ξ∗i = 0.



Since αi · α∗i = 0 and ξ(∗)
i = 0 for α(∗)

i ∈ (0, C), b can
be computed as follows:

b =

{
yi − (w · φ(xi))− u(xi), for αi ∈ (0, C)
yi − (w · φ(xi)) + d(xi), for α∗i ∈ (0, C)

.

Using the trick of kernel function, Eq. (7) can be written
as, f(x) =

∑N
i=1(αi − α∗i )K(x, xi) + b, where the kernel

function,K(x, xi) = (φ(x)·φ(xi)), is a symmetric function
and satisfies the Mercer’s condition. In this paper, we select
a common kernel function, e.g., RBF function, K(x, xi) =
exp(−β|x− xi|2), as the kernel function.

2.2. Momentum

In [10], we have considered the case of FASM, FAAM and
NASM. In this paper, we will focus on the case of NAAM.
More specially, we add a momentum term in the margin set-
ting. The margin is a linear combination of the standard de-
viation and the momentum. The up margin and down mar-
gin are set in the following forms:

u(xi) = λ1 · σ(xi) + µ ·∆(xi)i = 1, . . . , N,

d(xi) = λ2 · σ(xi)− µ ·∆(xi)i = 1, . . . , N. (9)

where σ(xi) is the standard deviation of input xi which de-
termines the width of margin and ∆(xi) is the momentum
at point xi. λ1, λ2 are two positive constants called the co-
efficients of the margin width. µ is a non-negative constant
called the coefficient of momentum. Thus, when µ = 0,
it becomes the NASM case. When µ 6= 0 and ∆(x) > 0,
the up margin is larger than the down margin and we use
them to under-predict the stock price. While µ 6= 0 and
∆(x) < 0, the up margin is smaller than the down margin
and we use them to over-predict the stock price.

As a matter of fact, there are many ways to calculate the
momentum. For example, it may be set as a constant. In
this paper, we will consider using the Exponential Moving
Average (EMA), which is time-varying and can reflect the
up trend and down tendency of the financial time series data.
An n-day’s EMA is calculated by

EMAi = EMAi−1 × (1− r) + yi × r,
where r = 2/(1 + n) and it begins from the first day,
EMA1 = y1. The current day’s momentum is set as the
difference between the current day’s EMA and the EMA in
the previous k day, i.e. ∆(xi) = EMAi −EMAi−k.

3. EXPERIMENTS

3.1. Accuracy Metrics

We use the following statistical metrics to evaluate the pre-
diction performance in Table 1, including Mean Absolute

Error (M-AE), Up side Mean Absolute Error (UMAE), Down
side Mean Absolute Error (DMAE). MAE is the measure
of the discrepancy between the actual and predicted values.
The smaller the value of MAE, the closer are the predicted
values to the actual values. UMAE is the measure of up side
risk. DMAE is the measure of down side risk. The smaller
the values of them, the smaller the corresponding risks are.

Table 1: Accuracy Metrics and their calculations
Metrics Calculation
MAE MAE = 1/m ∗∑m

i=1 |ai − pi|
UMAE UMAE = 1/m ∗∑m

i=1,ai≥pi(ai − pi)
DMAE DMAE = 1/m ∗∑m

i=1,ai<pi
(pi − ai)

ai and pi are the actual values and predicted values.
m is the number of testing data.

3.2. Experimental Procedure and Results

In this section, we first use the SVR algorithm which is
modified from LibSVM [1] and conduct experiments on two
data sets to illustrate the effect of NASM, NAAM, next we
compare them with AutoRegressive(AR) model and RBF
network.

We use the daily closing prices of Hang Seng Index
(HSI) and Dow Jones Industrial Average (DJIA) as the data
sets in our experiments. The corresponding time periods
are from January 2nd, 1998 to December 29, 2000. Further-
more, we model the system as pt = f(at−4, at−3, at−2, at−1)
and set the ratio of the number of training data and the num-
ber of testing data to 5:1. Therefore the corresponding ini-
tial training time periods are listed as in Table 2.

In the first experiment, we firstly do a cross-validation
on the initial training data to determine the parameters that
are needed in SVR, they are C, the cost of error; β, the pa-
rameter of kernel function. The corresponding parameters
are also listed in Table 2. With these parameters, we begin
to build the model by SVR from the initial training data. Af-
ter obtaining the predictive value, we shift the input window
one day’s step and train the model again to predict the next
day’s price. This one-step ahead prediction is done as the
window shifted for the remaining data.

Table 2: Indices, time periods and parameters
Indices Initial Training time periods C β
HSI 02/01/1998 - 04/07/00 16000 2−27

DJIA 02/01/1998 - 29/06/00 8000 2−22

The experiments are conducted on a Pentium 4, with 1.4
GHZ, 512M RAM and Windows2000. With these configu-
rations, the predictive results are obtained within few hours.

We set the margins as Eq. (9). Concretely, in the case of
NASM, we set λ1 = λ2 = 1

2 and µ = 0, thus the overall



margin widths are equal to the standard deviation of input x.
In the case of NAAM, we also fix λ1 = λ2 = 1

2 , therefore
we have a fair comparison of NASM case. In addition, we
set k = 1, µ = 1 and use 10, 30, 50, 100 as the length of
EMA. From the result of Table 3 and Table 4, we can see
that the DMAE values in all cases of NAAM are smaller
than that in NASM case, thus we have a smaller downside
risk in NAAM case. We also see that the MAE gradually
decreases with the length of EMA increases and when the
length equals 100, the MAE and the DMAE are the smallest
in all case of NAAM. In Table 4, the MAE decreases and
then increases again. When the length equals 30, the MAE
and the DMAE are also the smallest in all cases of NAAM.

We plot the price of HSI with 100-days’ EMA and the
price of DJIA with 30-days’ EMA in Figure 2, Figure 3
respectively and list the average of the standard deviation
of HSI and DJIA, the average of the absolute momentum in
Table 5. We can observe that the volatility of HSI is higher
than that of DJIA and the ratio of momentum and standard
deviation is smaller for HSI than that for DJIA.

Table 3: Effect of the length of EMA on HSI
type n MAE UMAE DMAE

NASM 216.78 104.58 112.20

10 222.43 115.64 106.79
NAAM 30 218.18 114.04 104.14

50 217.93 113.38 104.55
100 216.50 113.04 103.46

Table 4: Effect of the length of EMA on DJIA
type n MAE UMAE DMAE

NASM 85.33 40.29 45.04

10 85.68 43.13 42.55
NAAM 30 84.12 41.82 42.30

50 84.57 42.12 42.45
100 84.80 42.41 42.39

Table 5: Std and EMA
data set n σ ∆ ratio

HSI 100 182.28 20.80 0.114
DJIA 30 79.95 15.64 0.196

In the second experiment, we use the AR model with
order 4 to predict the price of HSI and DJIA, hence we can
compare the AR model with NASM, NAAM in SVR with
the same order. The results are listed in the Table 6, and we
can see that NASM and NAAM are superior to AR model
with same order.
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Figure 2: HSI and 100 days’ EMA
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Figure 3: DJIA and 30 days’ EMA

Table 6: Results on AR(4)
data set MAE UMAE DMAE

HSI 217.75 105.96 111.79
DJIA 88.74 46.36 42.38



In the third experiment, we use the RBF network which
was implemented in NETLAB [4] and perform the one-step
ahead prediction to predict the price of HSI and DJIA. Con-
cretely, we set the number of hidden units to 3, 5, 7, 9 to
train the RBF network and get the results in Table 7 for HSI,
in Table 8 for DJIA respectively. Comparing these two ta-
bles with Table 3 and Table 4, we can see that NASM and
NAAM are also better than RBF network. Moreover an un-
certain thing is that there are more parameters need to be
determined in RBF network than that in SVR and here we
just test one parameter, the number of hidden units, others
are default.

Table 7: Effect of number of hidden units on HSI
# hidden MAE UMAE DMAE

3 386.65 165.08 221.57
5 277.83 128.92 148.91
7 219.32 104.15 115.17
9 221.81 109.46 112.35

Table 8: Effect of number of hidden units on DJIA
# hidden MAE UMAE DMAE

3 88.31 44.60 43.71
5 98.44 48.46 49.98
7 90.53 46.22 44.31
9 87.23 44.09 43.14

4. DISCUSSION AND CONCLUSION

In this paper, we propose to use non-fixed and asymmetrical
margin (NAAM) in the prediction of HSI and DJIA. From
the experiments, we make the following observations and
discussions:

1. In comparison NAAM with the case of NASM which
just uses the standard deviation, we find that adding
the momentum to set the margin we can reduce the
the downside risk. We may also improve the accu-
racy of our prediction significantly by selecting a long
term EMA for higher volatility financial data.

2. The SVR algorithm using NASM and NAAM outper-
forms the AR model with same order.

3. The third observation is that applying NASM and NAAM
in SVR, we will obtain better results than using RBF
network and, in practice, SVR needs to determine
fewer parameters than RBF network.
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