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Abstract. In independent component analysis problems, when we use
a one-unit objective function to iteratively estimate several independent
components, the uncorrelatedness between the independent components
prevents them from converging to the same optimum. A simple and pop-
ular way of achieving decorrelation between recovered independent com-
ponents is a deflation scheme based on a Gram-Schmidt-like decorrela-
tion [7]. In this method, after each iteration in estimation of the cur-
rent independent component, we subtract its ‘projections’ on previous
obtained independent components from it and renormalize the result.
Alternatively, we can use the constraints of uncorrelatedness between
independent components to reduce the number of unknown parameters
of the de-mixing matrix directly. In this paper, we propose to reduce
the dimension of the de-mixing matrix to decorrelate different indepen-
dent components. The advantage of this method is that the dimension
reduction of the observations and de-mixing weight vectors makes the
computation lower and produces a faster and efficient convergence.

1 Introduction

The objective of this paper is to propose a dimension reduction appoach to
achieving decorrelation between independent components. In this section we
review the decorrelation method currently used. In Sect. 2 we introduce our
method in detail.

Let us denote by X = (x1, x2, ..., xm)T a zero-mean m-dimensional variable,
and S = (s1, s2, ..., sn)T , n ≤ m, is its linear transform with a constant matrix
W :

S = WX (1)

Given X as observations, based on different assumptions, principal component
analysis (PCA) and independent component analysis (ICA) both aim to estimat-
ing W and S. The goal of PCA is to find a new variable S under the orthogonal
constraint WT W = I (I is the identity matrix) such that S becomes uncor-
related in components and accounts for as much as possible of the variance of
the variable X [10]. While in ICA, the transformed components si are not only
uncorrelated with each other, but also statistically as independent of each other
as possible [3].
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Since generally there is no closed-form solution to ICA problems, an ICA
algorithm consists of two parts: an objective function (contrast function) and
an optimization method used to optimize the objective function [11]. The ob-
jective function measures the independence between independent sources with
the help of mutual information between them [3], entropy (negentropy) of each
independent source [3, 6], or their higher-order cumulants [4, 9], etc. A multi-unit
contrast function treats the problem of estimating all the independent compo-
nents (the whole data model) at the same time. Or motivated by projection
pursuit, we can use a one-unit contrast function whose optimization enables es-
timation of a single independent component [8, 11]. And this procedure can be
iterated to find several independent components.

Higher-order cumulants like kurtosis, and approximations of negentropy can
provide one-unit contrast functions. The contrast functions used in FastICA [9, 5,
7] are approximations of negentropy based on the maximum entropy principle [6].
These approximations are often more accurate than the cumulant-based approx-
imations [3], and contrast functions based on approximations of negentropy are
more robust than the kurtosis [8, 5]. In the simplest case, these approximations
are of the form:

JG(y) = [Ey{G(y)} − Ev{G(v)}]2 (2)

where G is a non-quadratic, sufficiently smooth function, v a standardized Gaus-
sian random variable, y is zero-mean and normalized to unit variance. As for the
optimization method, the convergence of adaptive algorithms based on stochastic
gradient descent is often slow and depends crucially on the choice of the learn-
ing rate sequence. Batch algorithms based on fixed-point iteration can avoid this
problem [9, 5, 7]. FastICA, a fixed-point algorithm for ICA, was firstly introduced
using kurtosis in [9], and it was generalized for general contrast functions (Eq.2)
in [5, 7]. The following is the FastICA algorithm for whitened data:

w(k) = E{Xg(w(k − 1)T X)} − E{g′(w(k − 1)T X)}w(k − 1) (3)

where wT is a row of W and w is normalized to unit norm after each iteration, the
function g is the derivative of the function G used in Eq.2. In this paper, FastICA
will be used to extract an independent component from the observations.

In general ‘independence’ between two variables is a much stronger property
than ‘uncorrelatedness’ between them. When we use a one-unit objective func-
tion to iteratively calculate several n independent components, in order to pre-
vent different neurons from converging to the same optimum we must decorrelate
the outputs. A simple and common way of achieving decorrelation is the defla-
tion scheme based on Gram-Schmidt-like decorrelation [12, 9, 5, 7]. For whitened
data, after we have estimated p independent components, or p weight vectors
w1, w2, ..., wp, we run the one-unit algorithm to estimate wp+1. In this procedure,
after each update iteration step, we subtract from updated wp+1 its projections
on the previous estimated p vectors, wT

p+1wjwj , j = 1, ..., p, i.e. let

wp+1 = wp+1 −
p∑

j=1

wT
p+1wjwj , and then renormalize wp+1:



wp+1 = wp+1/
√

wT
p+1wp+1

2 Dimension Reduction based on orthogonality

In the ICA problem, let n and m be the number of independent components and
observations respectively. Generally (but not necessarily), if n < m, we first use
PCA to extract the n-dimensional ’principal’ subspace from the m-dimensional
observation space, and then obtain the n independent components in this sub-
space. So without loss of generality, we extract n independent components given
n observations with a positive definite covariance matrix in the following analy-
sis.

In both ICA and PCA, si must be mutually uncorrelated, i.e. E(sisj) =
E(wT

i XXT wT
j ) = 0, where i, j = 1, 2, ..., n, i 6= j. In PCA, the scaling of each

basis vector wT
i , which is a row of W , is of unit length, i.e. wT

i wi = 1. In ICA, we
can fix the scaling of the independent components to avoid the inherent scaling
indeterminacy. Generally we set the variance of si to be 1, i.e. E[s2

i ] = 1. Now
we have n(n−1)

2 + n = n(n+1)
2 equations for both PCA and ICA problems.

There are n2 parameters to be determined, which are elements of W . There-
fore the PCA or ICA problem can not be solved uniquely with only these re-
strictions. In PCA, the current PC accounts the maximum variance in current
space; and in ICA, IC’s should be independent of each other (or they should
be as non-Gaussion as possible). These characteristics, together with the n(n+1)

2
equations discussed above help to solve the PCA and ICA problems respectively.

The uncorrelatedness between the independent components can help us to
obtain multiple independent components with a one-unit objective function. Af-
ter p independent components have been obtained, we search for the (p + 1)-th
independent component which is uncorrelated with the previous p ones. With
the Gram-Schmidt-like decorrelation scheme and whitened data, in each iteration
step of estimating wp+1 we search for updated wp+1 in the original n-dimensional
parameter space, and afterwards project the new vector onto the space which is
orthogonal to the obtained p weight vectors. Intuitively, since the contrast curve
of the objective function may be very complex, this scheme may do harm to the
convergence of wp+1 to a target in this subspace.

In fact, for whitened data, wp+1 lies in the (n − p)-dimensional parameter
subspace which is orthogonal to the previous p de-mixing weight vectors. Alter-
natively, we can search wp+1 in this space directly, which always guarantees the
orthogonality. And in addition, compared to the Gram-Schmidt-like deflation
scheme, in this way parameters needed to be estimate become fewer because the
parameter dimension used for search becomes lower. Therefore we can lower the
computation, and obtain a faster convergence.

2.1 Algorithm

Let’s decompose W into two parts:

W = W̃ (n)P (4)



where P is the whitening matrix, so that E(PXXT PT ) = I. Since W̃ (n)W̃ (n)T =
W̃ (n)E[PXXT PT ]W̃ (n)T = E(SST ) = I, W̃ (n) is an orthonormal matrix. Let
w̃

(n)T
i be a row of W̃ (n).1 We know:

n∑

k=1

w̃
(n)
i (k)w̃(n)

j (k) = 0, i 6= j

There exists at least one q such that w̃
(n)
1 (q) is not zero, so we have

w̃
(n)
2 (q) = − 1

w̃
(n)
1 (q)

n∑
k=1,
k 6=q

w̃
(n)
1 (k)w̃(n)

2 (k), thus,

w̃
(n)
2 =




Iq−1 0(q−1)×(n−q)

− w̃
(n)
1 (1)

w̃
(n)
1 (q)

. . . − w̃
(n)
1 (q−1)

w̃
(n)
1 (q)

− w̃
(n)
1 (q+1)

w̃
(n)
1 (q)

. . . − w̃
(n)
1 (n)

w̃
(n)
1 (q)

0(n−q)×(q−1) In−q




n×(n−1)

·




w̃
(n)
2 (1)

...
w̃

(n)
2 (q − 1)

w̃
(n)
2 (q + 1)

...
w̃

(n)
2 (n)




def
= Aw

(n−1)
2 (5)

And s2 = w̃
(n)T
2 PX = w

(n−1)T
2 AT PX = w

(n−1)T
2 X ′, where X ′ = AT PX.

We can see that s2 can be considered as an independent component of (n− 1)-
dimensional data X ′. Let P1 be the whitening matrix of X ′, we have w

(n−1)
2 =

PT
1 w̃

(n−1)
2 , where w̃

(n−1)
2 is a de-mixing weight vector of the new data X ′ after

whitening. Obviously the covariance matrix of X ′ is AT A, Let E = (e1...e(n−1))
be the orthonormal matrix composed of eigenvectors of AT A and D = diag(d1...d(n−1))
be the diagonal matrix of its eigenvalues. P1 = D−1/2ET is a whitening matrix
of X ′.

After the estimation of (n − 1)-dimensional de-mixing weight vector w̃
(n−1)
2

given X ′ as observations with the chosen one-unit contrast function, we can con-
struct w̃

(n)
2 and w2 by Eq.5 and Eq.4, i.e. w̃

(n)
2 = Aw

(n−1)
2 = APT

1 w̃
(n−1)
2 , w2 =

PT w̃
(n−1)
2 = PT ·APT

1 w̃
(n−1)
2 .

We also have w̃
(n)
3 = Aw

(n−1)
3 , and w

(n−1)
3 = PT

1 w̃
(n−1)
3 . Since w

(n−1)
2 and

w
(n−1)
3 are two different de-mixing weight vectors of X ′, the (n−1)-dimensional

vectors w̃
(n−1)
2 and w̃

(n−1)
3 are orthogonal. And there exists r such that w̃

(n−1)
2 (r) 6=

0. In a similar way we can get w̃
(n−1)
3 = A1w

(n−2)
3 , where w

(n−2)
3 is (n − 2)-

1 The superscript n indicates the dimension of de-mixing matrix.



dimensional and A1 is a (n− 1)× (n− 2) matrix:

A1 =




Ir−1 0(r−1)×(n−r−1)

− w̃
(n−1)
2 (1)

w̃
(n−1)
2 (r)

. . . − w̃
(n−1)
2 (r−1)

w̃
(n−1)
2 (r)

− w̃
(n−1)
2 (r+1)

w̃
(n−1)
2 (r)

. . . − w̃
(n−1)
2 (n−1)

w̃
(n−1)
2 (r)

0(n−r−1)×(r−1) In−r−1




(n−1)×(n−2)

(6)
We can see s3 = w

(n−1)T
3 X ′ = w

(n−2)T
3 AT

1 P1X
′ = w

(n−2)T
3 X ′′, where X ′′ =

AT
1 P1X

′ = AT
1 P1A

T PX. s3 is considered as an independent component as the
(n−2)-dimensional data X ′′. Thus the data dimension has been reduced from n
to (n−2). Let P2 be the whitening matrix of X ′′, which can be constructed easily
with the eigenvalues and eigenvectors of AT

1 A1. We have w
(n−2)
3 = PT

2 w̃
(n−2)
3 ,

and w3 = PT ·APT
1 ·A1P

T
2 w̃

(n−2)
3 . In this way after the estimation of w̃

(n−2)
3 (from

which w3 is constructed) and some preprocessing, estimation of the next inde-
pendent component can be performed in (n − 3)-dimensional parameter space.
And so on until the last independent component is recovered.

In practical computation, usually the elements of w̃(i) are hardly ‘strictly’
equal to zero. When none of them equals to zero, we can choose its last element
as the first non-zero element to construct A (or A1, etc.).

2.2 Implementation

Using our dimension reduction decorrelation method, the decorrelation step is
performed only once for each independent component. While if we use the Gram-
Schmidt-like deflation scheme, as we have shown before, we must ‘deflate’ the
weight vector after each update iteration for each independent component.

Based on the analysis above, given n observations, the ICA algorithm for
extracting n independent components using a one-unit objective function and
our decorrelatin method is formulated as (initially let k = 1, D = In):

for k = 1:n

1. If k = 1, A ← In; otherwise according to Eq.6, use the vector u to con-
struct the (n− k + 2)× (n− k + 1) matrix A. X ← AT X.

2. Preprocess the data X with whitening. Let P be the (n − k + 1) × (n −
k + 1) whitening matrix. If k=1, P is obtained by PCA; otherwise let the
eigenvalue decomposition (EVD) of AT A is EDET , and P ← D−1/2ET .
X ← PX, D ← PAT D.

3. Optimize the chosen one-unit objective function to estimate an indepen-
dent component sk from data X: sk ← uT X, where u is a (n − k + 1)-
dimensional de-mixing weight vector of X. wk ← DT u.

end

The computation load (or time) used for each independent component de-
pends on the number of samples, the iteration steps used for convergence of the



chosen contrast function, and the dimension of the observations (or de-mixing
weight vectors). If the Gram-Schmidt-like deflation scheme is adopted, without
taking computation of decorrelation into account, computation of each update
iteration is almost the same in estimating all the independent components. In
our method, since the independent components obtained later are extracted from
lower dimensional data, computation of each update iteration becomes less.

3 Experiments and Discussion

ICA has been applied in finance to construct factor models [1, 2]. We use ICA to
extract 22 independent sources with the returns of 22 stocks as observations and
compare the performances of our decorrelation method and the Gram-Schmidt-
like deflation scheme. There are 2072 samples for each stock. In all experiments,
the contrast function is as Eq.2 with G(u) = 1

4u4. FastICA (Eq.3) is used to do
the optimization. MATLAB is used to do the simulation.

First in order to compare the convergence of these two methods, their ter-
mination conditions are set to be the same to guarantee the same quality of the
independent components obtained by them. In the Gram-Schmidt-like deflation
scheme, the termination condition is ||w(k)−w(k−1)|| < ε or ||w(k)+w(k−1)|| <
ε. In our dimension reduction method, since w = DT u, the termination condi-
tion for u(k) is ||DT · (u(k) − u(k − 1))|| < ε or ||DT · (u(k) + u(k − 1))|| < ε.
We randomly choose the initial condition for the two methods and repeat them
100 times. The average number of iterations and time needed for convergence
of each IC are shown in Fig. 1. Using these two methods, each independent
component takes almost the same number of iteration steps for convergence.
But our method takes less time, especially for the independent components pro-
cessed later. However, when the same initialization condition is used, there do
exist some cases (about 1%) where our method needs fewer iteration steps, or
even our method converges normally (about 50 iteration steps needed) while the
Gram-Schmidt-like deflation method does not converge in 1000 steps.

In another experiment we compare the time taken by each iteration step using
these two methods. We neglect the termination condition and fix the number
of iteration steps used for extracting each independent component as 50, and
compare the time taken by these two methods, see Fig. 2. With our dimension
reduction method, time taken by each independent component decreases quickly
when its sequence number increases. This is encouraging when the number of
independent components is large.

4 Conclusion

When a one-unit contrast function is used to estimate the whole ICA trans-
formation, a decorrelation method is needed to prevent the contrast function
from converging to the same optimum for different independent components.
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Fig. 1. Average number of iteration steps and time needed for convergence of each in-
dependent component Using the deflation scheme and the dimension reduction method
respectively. Left and Right are the number of iterations and time used for convergence
of each independent component respectively. The dashed and dotted lines indicate stan-
dard deviations of the two methods.
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Fig. 2. Average time taken by our decorrelation method and the deflation scheme with
the number of iterations used for estimation of each independent component fixed as
50, and each method has been repeated 100 times. Error bar: standard deviation.



Based on the orthogonality of the de-mixing matrix of whitened data, we pro-
pose a decorrelation method which lowers the dimension of the observations and
de-mixing weight vectors when estimating subsequent independent components.
Obviously the Gram-Schmidt-like deflation scheme is easier for comprehension
and implementation. However, the dimension reduction method provides better
convergence and is more efficient comparing with the popular deflation scheme.
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