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Figure 1: Logarithmic density of the image gradients (shown in
red). Twopiece-wise continuous functions (shown in green and
blue) are employed to approximate it. The fitting parameters in this
example are set as:k = 1.0584, a = 2e−4, b = 13.9651, and
lt = 13.

1 The Deconvolution Process

Our deconvolution method is slightly modified from that in [Shan
et al. 2008]. We illustrate onelogarithmic image gradient density
in Figure 1 calculated on a coarse-resolution image. It is used for
imposing a regularization term in the deconvolution process. This
heavy-tailed distribution is fitted with a piece-wise convex function

Φ(x) =

{

−k|x| x ≤ lt
−(ax2 + b) x > lt

, (1)

wherex denotes the image gradient level andlt indexes the posi-
tion where the two functions are concatenated. In Figure 1,−k|x|,
shown in green, represents the sharp peak in the distribution at the
center, while−(ax2 + b) models the heavy tails of the distribution.
Φ(x) is central-symmetric, andk, a, andb are the curve fitting pa-
rameters computed by minimizing the least square fitting error.

By incorporating such prior into the regularization term for the de-
convolution process, we are subject to minimize the following en-
ergy function:

E(H) ∝ ‖f ⊗ H − H̃‖2

2 + λ1(‖Φ(∂xH)‖1 + ‖Φ(∂yH)‖1), (2)

where∂xH and∂yH respectively denote the values of thex- and
y-direction gradient, andλ1 is a weight. To make the optimiza-
tion efficient and robust, we adopt the variables substitution scheme
similar to that used in [Shan et al. 2008] to estimateH.

Specifically, we first use variablesµ = (µx, µy) to substitute
∂H = (∂xH, ∂yH), and add an additional term to measure the
difference between∂H andµ. So, Eq. (2) can be approximated by

E(H, µ) = ‖f ⊗ H − H̃‖2

2 + λ1(‖Φ(µx)‖1 + ‖Φ(µy)‖1) +

λ2(‖µx − ∂xH|‖2

2 + ‖µy − ∂yH|‖2

2), (3)

whereλ2 is a weight to control the relative importance thatµ and
∂H have similar values. As described in [Shan et al. 2008], the
purpose of using this variable substitution scheme is to separate
Φ(∂H) from ‖(f ⊗H)− H̃‖2

2 in optimization, thus making it pos-
sible to use FFT to accelerate the convolution process. The values
of µ and∂H will eventually be quite similar, since the weightλ2

will be progressively increased in iterations. The following opti-
mization is separated into two parts.

[µ step] In this step, we fixH to optimizeµ. Eq. (3) becomes:

E(µ) = λ1(‖Φ(µx)‖1 + ‖Φ(µy)‖1) +

λ2(‖µx − ∂xH|‖2

2 + ‖µy − ∂yH|‖2

2). (4)

Considering all pixels(x, y) in the image,E(µ) can be further writ-
ten asE(µ) =

∑

x,y
(E(µx(x, y)) + E(µy(x, y))). Since each

E(µ(x, y)) is not related to other energy elements, and it only con-
tains one variableµ(x, y), we decompose the multi-variable opti-
mization problem into a set of single-variable minimization prob-
lems. E(µ(x, y)) consists of convex, differentiable pieces, each
of which is minimized separately and the minimum among them is
chosen. This optimization step can be completed quickly, resulting
in a global minimum forE(µ(x, y)).

[H step] In this step, we fixµ to minimizeH. Eq. (3) becomes:

E(H) = ‖f ⊗ H − H̃‖2

2 + λ2(‖µx − ∂xH|‖2

2 + ‖µy − ∂yH|‖2

2),

All the terms in the above function are in quadratic forms. We then
apply Plancherel’s theorem to the above derivation and get

E(H) = ‖F(f) ◦ F(H) −F(H̃)‖2

2 +

λ2

(

‖F(µx) −F(∂x) ◦ F(H)‖2

2 + ‖F(µy) −F(∂y) ◦ F(H)‖2

2

)

.

By setting∂E(H)/∂F(H) = 0, we obtain an optimalF∗(H) that
minimizeE(H):

F∗(H) =
F(f) ◦ F(H̃) + λ2F(∂x) ◦ F(µx) + λ2F(∂y) ◦ F(µy)

F(f) ◦ F(f) + λ2F(∂x) ◦ F(∂x) + λ2F(∂y) ◦ F(∂y)
.

Finally, the optimal solution can be computed by applying inverse
Fourier Transform:H∗ = F−1(F∗(H)). The above two steps
iterate until convergence. We setλ2 = 20 initially. Then, we triple
its value in each iteration to makeµ and∂H similar at convergence.
λ1 is adjustable in range[0.01 − 0.3] in our experiments.

In the deconvolution step, most of the computation time is spent on
computing FFTs in theH step, specifically, in each iteration, three
FFTs are performed to computeF(µx), F(µy), andF−1(F∗(H))

respectively. Outside the iterations,F(H̃) only needs to be com-
puted once and the result can be used for all iterations. Therefore,
with n iterations, we need to perform a total of3 ∗ n + 1 FFTs,
wheren = 4 in our implementation.
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