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0 I — will be progressively increased in iterations. The following opti-
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‘ ! Considering all pixel$z, y) in the image F (1) can be further writ-

0 200 -100 0 100 200 300 tenasE(u) = > (E(ua(z,y)) + E(uy(z,y))). Since each
E(u(z,y)) is not related to other energy elements, and it only con-
tains one variable:(x, y), we decompose the multi-variable opti-
mization problem into a set of single-variable minimization prob-
lems. E(u(x,y)) consists of convex, differentiable pieces, each
of which is minimized separately and the minimum among them is
chosen. This optimization step can be completed quickly, resulting
in a global minimum fotE (u(z, y)).

Figure 1: Logarithmic density of the image gradients (shown in
red). Two piece-wise continuous functions (shown in green and
blue) are employed to approximate it. The fitting parameters in this
example are set agt = 1.0584, a = 2¢7*, b = 13.9651, and

l; =13.

1 The Deconvolution Process [H step] Inthis step, we fixx to minimize H. Eq. (3) becomes:
Our deconvolution method is slightly modified from that in [Shan E(H) = ||f ® H — H||3 + X2 (||tte — 02 H||3 + [0y — Oy H||3),
et al. 2008]. We illustrate ongarithmic image gradient density ) . . .
in Figure 1 calculated on a coarse-resolution image. It is used for All the terms in the above function are in quadratic forms. We then
imposing a regularization term in the deconvolution process. This @Pply Plancherel’s theorem to the above derivation and get
heavy-tailed distribution is fitted with a piece-wise convex function -

E(H) = [|F(f) o F(H) — F(H)]2 +

o) = { i’flﬁ'z oy S 0 X2 (|F () = F(02) 0 FH)II3 + | F (1) = F(9,) 0 F(H)|3).-
By settingd E(H)/0F (H) = 0, we obtain an optimaF* (H) that

wherex denotes the image gradient level andndexes the posi- minimize E(H):

tion where the two functions are concatenated. In Figureklx|,
shown in green, represents the sharp peak in the distribution at the — ~

center, while—(az* + b) models the heavy tails of the distribution. 7 (1) = F(f) o F(H) + 227 (0:) 0 Flpia) + X2 F(8y) 0 F(piy)
®(z) is central-symmetric, and, a, andb are the curve fitting pa- F(f) o F(f) + XaF(0z) o F(0xz) + A2 F(9y) o F(0y)
rameters computed by minimizing the least square fitting error.
By incorporating such prior into the regularization term for the de-

convolution process, we are subject to minimize the following en-
ergy function:

Finally, the optimal solution can be computed by applying inverse
Fourier Transform:H* = F~'(F*(H)). The above two steps
iterate until convergence. We skt = 20 initially. Then, we triple

its value in each iteration to makeanddH similar at convergence.
EH) x||f®H - ﬁ||§ F (D@ H)|L + |20, H) 1), (2) A1 is adjustable |r.1 rang@.01 — 0.3] in our experlrnen_ts. .

In the deconvolution step, most of the computation time is spent on
whered, H andd, H respectively denote the values of theand computing FFTs in thé] step, specifically, in each iteration, three
y-direction gradient, and; is a weight. To make the optimiza- ~ FFTs are performed to compuf&(y..), F (i), andF ' (F*(H))
tion efficient and robust, we adopt the variables substitution schemerespectively. Outside the iterationﬁ(ﬁl) only needs to be com-
similar to that used in [Shan et al. 2008] to estimAte puted once and the result can be used for all iterations. Therefore,
Specifically, we first use variables = (u.,u,) to substitute with n iterations, we need to perform a total ®f n + 1 FFTSs,
0H = (0,H,d,H), and add an additional term to measure the Wheren = 4 in our implementation.
difference betweef?H andyu. So, Eq. (2) can be approximated by
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OH have similar values. As described in [Shan et al. 2008], the
purpose of using this variable substitution scheme is to separate
®(dH) from||(f ® H) — H||3 in optimization, thus making it pos-
sible to use FFT to accelerate the convolution process. The values
of n anddH will eventually be quite similar, since the weighs



