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Abstract

We propose tensor-based multiview stereo (TMVS) for
quasi-dense 3D reconstruction from uncalibrated images.
Our work is inspired by the patch-based multiview stereo
(PMVS), a state-of-the-art technique in multiview stereo re-
construction. The effectiveness of PMVS is attributed to
the use of 3D patches in the match-propagate-�lter MVS
pipeline. Our key observation is: PMVS has not fully uti-
lized the valuable 3D geometric cue available in 3D patches
which are oriented points. This paper combines the com-
plementary advantages of photoconsistency, visibility and
geometric consistency enforcement in MVS via the use of
3D tensors, where our closed-form solution to tensor vot-
ing provides a uni�ed approach to implement the match-
propagate-�lter pipeline. Using PMVS as the implementa-
tion backbone where TMVS is built, we provide qualitative
and quantitative evaluation to demonstrate how TMVS sig-
ni�cantly improve the MVS pipeline.

1. Introduction

Match-propagate-�lter is a competitive approach to mul-
tiview stereo reconstruction for computing a (quasi) dense
representation. Starting from a sparse set of initial matches
with high con�dence, matches are propagated using pho-
toconsistency to produce a (quasi) dense reconstruction of
the target shape. Visibility consistency can be applied to
remove outliers.

Among the existing works using the match-propagate-
�lter approach, patch-based multiview stereo (or PMVS)
proposed in [5, 6] has produced some of the best re-
sults to date. The central idea of PMVS is the use of
3D patches in the match-propagate-�lter pipeline, which is
more effective than operating in the 2D domain, �tting lo-
cal planes, or adopting simpli�ed assumptions such as ho-
mography [16, 8]. In particular, PMVS's propagation step
(or expansion) contributes a lot to the excellent results pro-
duced. Starting with sparse geometry, PMVS effectively
used photoconsistency and visibility consistency to process
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unmatched regions in the matching step. The propagated
3D patch coordinates were shown to be very accurate [22]
due to their effective enforcement of photoconsistency and
visibility.

We observe however that PMVS did not fully utilize the
3D information inherent in the sparse and dense geometry
before, during and after propagation, as patches do not ad-
equately communicate among each other. As noted in [5],
this communication should not be done by smoothing, but
the lack of communication will cause perturbed surface nor-
mals and more patch outliers during propagation even for
simple geometry (Figure 5).

This paper proposes tensor-based multiview stereo
(TMVS) and uses 3D tensors which communicate among
each other via a closed-form solution to tensor voting [28].
We found that such tensor communication not only im-
proves propagation in MVS without undesirable smoothing
but also bene�ts the entire match-propagate-�lter pipeline
within a uni�ed framework (Figure 1):

� Match. In the uncalibrated scenario, robust parame-
ter estimation employing the closed-form tensor vot-
ing effectively discards epipolar geometries induced
by wrong matches, such as similar points on two differ-
ent sides on the same object. In the calibrated scenario,
TMVS produces better 3D normals than PMVS by 3D
tensors communication.

� Propagate.Tensor communication enables better sur-
face normals reconstruction by combining photocon-
sistency, visibility and geometry information. This sig-
ni�cantly improves tensor propagation in the 3D space
without using visual hulls.

� Filter. When needed, tensor voting can be deployed to
remove outliers after the propagation process. The en-
ergy function turns out to be a quadratic optimization
and thus can be solved ef�ciently using Gauss-Seidel
method.

We believe these improvements are quite signi�cant. Us-
ing PMVS as the implementation backbone where TMVS
is built, we focus on quantitative evaluation onnormal re-
construction accuracy, and refer readers for location recon-
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Figure 1. From left to right: input image, initial patches, propagated patches, �ltered patches (not necessary here), the quasi-dense recon-
struction, and one view of the reconstructed surface.

struction accuracy to [22]. The quasi-dense reconstruction
produced by TMVS can be deployed in existing surface re-
construction, such as [13, 5] to produce a surface represen-
tation. While related to quasi-dense 3D reconstruction, sur-
face reconstruction is not our focus. Rather than compar-
ing reconstructed surfaces, we directly compare patch nor-
mals and normals from tensors, the raw outputs of PMVS
and TMVS. Like PMVS, TMVS is available in C++ source
codes (in the supplemental material) which include the im-
plementation of the closed-form tensor voting.

2. Related Work

Volumetric stereo methods make use of the photo-
consistency constraint to build a 3D map from which the
target shape is extracted or segmented. The MVS problem
was thus translated into a 3D segmentation problem. Shape
from silhouettes [25] is a special case of voxel labeling in
which the target shape (visual hull) is given by intersecting
the projected volumes of the object's silhouettes on the im-
ages. The voxel coloring algorithm [23] computes a photo-
consistent shape by projecting voxels and correlating pixel
colors among visible set of images. The space carving algo-
rithm [14] adopted a multi-pass sweeping method to carve
out non-photo-consistent voxels.

A straightforward approach merges depth maps [7] by
using [4], which computes signed distance function from
each depth map. This merging approach relies on depth
maps which can be improved using multiple hypotheses [3].
To handle occlusion in MVS, shiftable windows combined
with temporal selection yields signi�cant improvements
near depth discontinuities [12]. Also, in [7], SSSD-style
multi-baseline window matching were used to compute
depth at high con�dence points. Depth maps are also used
in other top-performers such as graph-cuts: in [10], a ro-
bust, voting-based photo-consistency metric that does not
need visibility reasoning [9, 27] was used to create depth
maps for the subsequent graph-cuts minimization.

Graph-cuts [10, 27] is one successful technique in solv-
ing the MVS problem posed as one of 3D segmentation.
Because photo-consistency basically uses pixel correspon-
dence to triangulate points lying on the 3D object, the en-
ergy functional usually include two terms: the discontinuity
cost, derived from photo-consistency measurements; and an

additional labeling cost, which produces a “ballooning” ef-
fect to �ll in the volume roughly bounded by voxels with
high discontinuity cost. Graph-cuts MVS then focused on
the proper design of the two costs. Another graph-theoretic
approach [11] de�nes a “crust” using photo-consistency
scores from which a manifold surface can be extracted via
dual graph embedding.

Normal is a useful cue for robust surface reconstruc-
tion. In MVS, photo-�ux [2] was introduced, but it required
surface orientations information for foreground/background
modeling. In [8], surface normals were considered within a
photoconsistency measure. By assuming the scene geome-
try visible centered around a pixel to be locally planar, the
depth, color scale, and normal can be related using an over-
determined nonlinear system, which can be solved using it-
erative techniques.

3. Tensor Voting

A concise review of tensor voting [20] is given in [28]. In
essence,tensoris used for token representation, andvoting
is used for non-iterative token-token communication. Ten-
sor and voting are related by avoting �eld . A voting �eld is
a dense tensor �eld for postulating smooth connection and
discontinuity in a neighborhood. In this section we state
two new results [28]: CFTV (closed-form tensor voting)
and EMTV, which will be used in the following sections.
Closed-form solution to tensor voting. In tensor voting,
voting �elds are precomputed and stored as discrete vot-
ing �elds for execution ef�ciency. Although precomputed
once, discrete approximations involve uniform and dense
sampling of tensor votes~n~n T where~n is a normal vector.
We proved a closed-form solution to tensor voting, which
provides an ef�cient solution to computing an optimal ten-
sorwithoutresorting to discrete and dense sampling.

Given two sitesx i ; x j 2 RD , andK j which is a second
order symmetric tensor represented by aD � D matrix (D =
3 in this paper), a tensor at sitex j , the optimal tensorSij at
x i induced byx j is given by1:

Sij = cij R ij K j R 0
ij ; (1)

1Initial K i andK j can be derived when the input direction is available
(in the matching stage of TMVS), or simply assigned as an zero matrix (in
the propagation stage of TMVS). This will be explained in thefollowing
sections.



stereo step tv purpose
matching, uncalibrated cftv , emtv F-matrix estimation

matching, calibrated cftv normal estimation
propagation cftv patch propagation

�ltering cftv , mrftv outlier rejection
Table 1. The roles ofcftv , emtv , and mrftv in the match-
propagate-�lter stereo pipeline.

where

cij = exp( �
jjx i � x j jj2

� d
); (2)

� d is the scale of analysis which is the only free parameter,
and

R ij = I � 2r ij r T
ij ; R 0

ij = R ij (I �
1
2

r ij r T
ij ); (3)

whereI is an identity matrix andr ij is an unit vector atx j

pointing tox i . Full derivation is given in [28].
If a point lies on a 3D surface, the stick votes received

in its neighborhood reinforce each other with a high agree-
ment of tensor orientations. The accumulated tensor should
be stick-like, or� 1 � � 2; � 3, where � 1; � 2; � 3 are the
eigenvalues of the eigensystem. This tensor indicates cer-
tainty in a single direction. On the other hand, an outlier
receives a few inconsistent votes, so all the corresponding
eigenvalues are small. We can thus de�nesurface saliencies
by � 1 � � 2, with the eigenvector̂e1 corresponding to� 1 to
denote the normal direction to the surface. Furthermore, if
it is a discontinuity or a point junction where several sur-
faces intersect exactly at a single point, it indicates a high
disagreement of tensor votes where not a single direction is
preferred. Junction saliency is indicated by high values of
� 3 (and thus all eigenvalues). Outlier noise is characterized
by low vote saliency and low vote agreement. Therefore, by
using surface saliency, our �ltering can reject outliers while
not smoothing out sharp features.
EMTV . While tensor voting can reject outliers well, it falls
short of producing very accurate parameter estimation, ex-
plaining the use of RANSAC in the �nal parameter estima-
tion step after outlier rejection [26]. We summarize below
the EMTV algorithm for optimizing (1) the tensorK at each
input site, and (2) the parameters of a single planev of any
dimensionality containing the inliers (e.g. epipolar geome-
try is a high-dimensional planev estimation problem). The
expectation-maximization algorithm (full derivation avail-
able in [28]) is suitable for such alternating optimizationas
(1) and (2) are interdependent:

E-Step: Let wi to be the probability of an observationoi

being an inlier. Then

wi =
1

2��� 1
exp(�

jjxT
i v jj2

2� 2 ) exp(�
jjv T K � 1

i v jj
2� 2

1
) (4)

(a) (b) (c)

Figure 2.LongJing: (a) One of the two input images. (b) Sparse
reconstruction generated by usingKeyMatchFull . (c) Sparse
reconstruction generated by usingemtv match .
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whereM =
P

i x i xT
i wi + � 2

� 2
1

P
i K � 1

i wi andG(i ) is a set
of neighbors ofi .

To conclude this section, Table 1 summarizes the roles of
tensor voting in the match-propagate-�lter stereo pipeline.
We explained closed-form tensor voting (cftv ) and EMTV
(emtv ) above. Markov Random Field tensor voting
(mrftv ) will be described shortly.

4. Matching

In the uncalibrated scenario, EMTV estimates parame-
ter accurately by employing closed-form tensor voting, and
effectively discards epipolar geometries induced by wrong
matches (section 4.1). In the calibrated scenario, TMVS
produces better 3D normals than PMVS by utilizing ten-
sors and their communication via closed-form tensor voting
(section 4.2).

4.1. Uncalibrated Images

When the input images are uncalibrated, camera cal-
ibration is performed using nonlinear least-squares mini-
mization and bundle adjustment [17] which requires good
matches as input.

We provide our method,emtv match , to show the ef�-
cacy of EMTV on camera calibration while noting others
can be used. EMTV estimates the fundamental matrix (F-
matrix) by hyperplane �tting [28]. Here, SIFT [18] is used
to detect image keypoints. Candidate matches are generated
by comparing the resulting 128D feature vectors, so many



(a) (b) (c)

Figure 3.Teapot: (a) Sparse reconstruction (360 points) gener-
ated by usingKeyMatchFull . (b) Sparse reconstruction (37
points) generated by usingransac match . (c) Sparse recon-
struction (2152 points) generated by usingemtv match . The
candidate matches returned by SIFT are extremely noisy due to
the ambiguous patchy patterns. On average 17404 trials were run
in ransac match . It is very time consuming to run more tri-
als on this noisy and large input where an image pair can have
as many as 5000 similar matches.emtv match does not need
random sampling.

matched keypoints are not corresponding. The epipolar
constraint is enforced in the matching process using EMTV,
which returns the fundamental matrixand the probability
wi (Eqn (4)) of a keypoint pairi being an inlier. In the fol-
lowing experiments, we assume keypoint pairi is an inlier
if wi > 0:8. Note that no random sampling is used.

The following compares emtv match with
KeyMatchFull [24] andransac match . ransac match
solvesv (hyperplane �tting) by using RANSAC.
Tea Can. Figure 2 shows that, by using our �ltered matches,
even in the absence of any focal length input, our sparse
reconstruction of the tea can (the image pair was obtained
from [29]), produced by the nonlinear least-squares mini-
mization and bundle adjustment [17], is denser and contains
less errors as compared with [24], where we can faithfully
reconstruct the right-angled container.
Teapot. Figure 3 shows our running exampleteapotwhich
contains repetitive patterns across the whole object. Wrong
matches can be easily produced by similar patterns on dif-
ferent parts of the teapot. This data set contains 30 images
captured using a Nikon D70 camera. Automatic con�gura-
tion was set during the image capture.

Visually, the result produced usingemtv match is much
denser than the one produced withKeyMatchFull and
ransac match , the latter of which solves the hyperplane
�tting by using RANSAC. WhileKeyMatchFull can still
handle this data set, we observe that many outliersand in-
liers were rejected as well. This is becauseKeyMatchFull
employed a restrictive criterion to drastically reduce the
number of outliers. Speci�cally, they usedd1 < 0:6d2,
whered1 and d2 are respectively the shortest and second
shortest distance between a point and a candidate match
in the 128D feature space. In other words, many similar
structures or repeated patterns were �ltered out, and only
very distinctive feature pairs were retained for the following
bundle adjustment stage. On the other hand,emtv match
utilizes the epipolar geometry constraint by computing the

Figure 4. Comparing the initial patches generated by PMVS (left)
and TMVS (right). Normals shown on the right are attenuated
by surface saliency, so potential outliers are detected early in the
stereo pipeline.

fundamental matrix in a data driven manner. Note the result
obtained usingransac match is extremely sparse, which
can be attributed to two reasons: (1) the fundamental ma-
trix is rank 2 which implies thatv spans a subspace� 8-D
rather than a 9-D hyperplane; (2) the input matches contain
too many outliers.

4.2. Calibrated Images

If the input images are calibrated, we proceed to produce
initial matches as in PMVS. In TMVS, we encode each 3D
patch into a 3D tensorK . To initialize K the initial nor-
mals ~n given by PMVS can be used, that is,K = ~n~n T .
Or we can simply initializeK as an identity to indicate
that we have no orientation preference. We found the op-
timal tensors produced by closed-form tensor voting, that
is, Eqn. (1), in both cases are quite similar. The tensor votes
collected are summed up using tensor addition which sim-
ply adds up the collected matrices computed using Eqn. (1).

Figure 4(a) shows the initial 3D patches and the per-
turbed normals estimated by PMVS. Figure 4(b) shows the
improved set of normals produced by TMVS where the
(� 1 � � 2)ê1 components of all tensors are shown. A more
accurate set of 3D normals will improve the propagation
process by better predicting which 3D direction to explore
next when combined with photoconsistency and geometric
consistency enforcement.

5. Propagation

In PMVS, patch expansion proceeds from initial patches
in the 3D space to process unmatched image regions in the
previous step. Using patch normals and their neighborhood,
the algorithm generated a set of candidate 3D positions,
each passing through the respective lines of sight. Then,
at each candidate position the patch normal and location
along the line of sight are optimized using photoconsistency
(local pixel colors) and visibility (the subset of visible im-
ages). Overall, the patch expansion is a 3D �ood�ll algo-
rithm by considering normal directions, photoconsistency,
and visibility. This expansion algorithm does not however
take active consideration geometric cues available in the ori-
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Figure 5.Earth. (a) one input image (81 in total), (b) and (c) show zoom-in views of the normal reconstruction produced by PMVS and
TMVS after the propagation step, (d) and (e) show respectively one view of the quasi-dense reconstruction by PMVS and TMVS.

Figure 6. Comparing the optimized normals generated by PMVS (top) and TMVS (bottom) in the propagation step. The left three are
different zoom-in views ofteapot, the rest are zoom-in views of the normal results of the Middlebury dataset: dinoRingandtempleRing.
No silhouette or visual hull information is used in propagation.

min avg max
TMVS 0.0032 1.1236 5.7442
PMVS 0.01 11.7417 89.9998

Table 2. Quantitative comparison on normal estimation accuracy.
The angular errors shown are in degrees.

ented set of 3D points, thus resulting in perturbed normals
(as well as positions). Erroneous patch normals will in turn
adversely affect the propagation accuracy, producing more
outliers as demonstrated in the following quantitative study.

We �rst performed quantitative comparison between
PMVS and TMVS on normals accuracy. Figure 5 shows
an exampleEarth where the analytical geometry is known
(the ground-truth is a sphere). This data set contains 81
images captured by a Nikon D40 camera with �xed intrin-
sic camera parameters. One input image is shown in Fig-
ure 5(a). To show the signi�cance of our improvement, we
executed both PMVS and TMVS on this example and com-
pared quantitatively the estimated surface normals. Table2
tabulates the angular errors (in degree) produced by the re-
spective methods2. It shows that TMVS is a clear winner

2Outliers are ignored in the calculation. A point is regardedas an outlier

where the maximum error produced is much smaller than
the average error produced by PMVS. Qualitatively, we ob-
serve the difference from Figure 5(b) and (c), which are
the zoom-in views of the surface normals generated by the
tested methods. The surface normals produced by TMVS
radiates from the center while those by PMVS oriented
quite randomly. Moreover, because TMVS utilizes geomet-
ric cues via tensor communication, TMVS generated less
outliers compared to PMVS in the propagation stage, as
shown in Figure 5(d) and (e).

After showing the improvement, here we discuss the
reason why, at this stage, TMVS outperforms PMVS. In
TMVS, we incorporate closed-form tensor voting into the
patch propagation step, which imposes the uniqueness con-
straint along the line of sight. Speci�cally, given a candidate
positionp0, we sample along its line of sight a set of nor-
malized cross correlations and surface saliencies. Normal-
ized cross correlation can be computed using camera and
image information (i.e., visibility and photoconsistency)
which is similar to [5]. Surface saliencies are obtained by
sampling tensor votes along the line of sight using closed-

if dp > r gt + 0 :06, wheredp is the distance of the point measured from
the center of theEarthandr gt = 0 :6533 is the radius of theEarth.



form tensor voting. If the site being sampled is not an input
site, which is usually the case, then the initialK is set to be
a zero matrix. Else, initialK is simply the tensor obtained
in the previous matching step.

Let nccp and salp be the normalized cross correlation and
the surface saliency (normalized to[0; 1] using the maxi-
mum eigenvalue ofK atp) respectively at a positionp along
the line of sight. We detect the maximum of

(1 � � )nccp + wsalp (6)

along the line of sight passing through a given candidate
positionp0, and� 2 [0; 1] is a weight factor which is set to
(0.2–0.4) in our experiments. Note that [15, 21] also con-
siders surface saliency maxima along lines of sight. They
select matches from the point cloud of candidate matches
generated by the initial matching stage by examining the
amount of support received from their neighboring candi-
date matches after tensor voting. However, we have two dif-
ferences: (1) closed-form tensor voting contributes a faster
and accurate implementation without discrete approxima-
tions using pre-computed tensor voting �elds; (2) both pho-
toconsistency and geometric consistencies are consideredin
our optimization process. In TMVS, the precise patch loca-
tions are optimized using photoconsistency and geometric
consistency prescribed by tensor voting.

Figure 6 compares the propagation results of PMVS and
TMVS onteapot, dinoRingandtempleRing. For theteapot,
our normals are smoother while important features such as
the spout and the lid are preserved. FordinoRingwe have
less noise over the �ns compared with PMVS. Note our bet-
ter normals on the base which supports thedinoRing(point-
ing upward rather than oriented randomly as shown in the
PMVS result). OurtempleRingresult has less outliers. Note
we did not use any object masks when the above data were
processed.

6. Filtering

In PMVS, visibility consistency is applied to reject out-
liers. Tricky outliers are close to the target shape and
may accidentally form a structure by themselves, which
are much less salient compared with the quasi-dense recon-
struction.

In TMVS, because of tensor voting, less outliers are gen-
erated during the propagation. For outliers that escape from
the propagation process, they can be removed by running
MRF-TV, tensor voting on MRF, by tensor communications
over the entire geometry. Figure 7 shows the result before
and after applying MRF-TV.

Recall thatK j denotes the tensor residing atx j . To ob-
tain the estimated tensor atx i induced byx j , we employ
Eqn (1) to estimateSij . In MRF, a Markov network is a
graph consists of two types of node – a set of hidden vari-
ablesE and a set of observed variablesO, where the edges

Figure 7. Results before and after �ltering ofHall 3 (images shown
in Figure 10). Top view of the reconstructed building is shown
here. All salient 3D structures are retained in the �ltered result,
including the bushes near the left facade and planters near the right
facade in this top view of the building.

of the graph are described by the following posterior prob-
ability P(EjO) with standard Bayesian framework:

P(EjO) / P(OjE)P(E) (7)

By letting E = f K i ji = 1 ; 2; � � � ; N g andO = f ~K i ji =
1; 2; � � � ; N g, whereN is total number of points and~K i

is the known tensor atx i , and suppose that inliers follow
Gaussian distribution, we obtain the the likelihood P(OjE)
and the prior P(E) as the following:

P(OjE) =
Y

i

p( ~K i jK i ) =
Y

i

e�
jj K i � ~K i jj 2

F
� h (8)

P(E) =
Y

i

Y

j 2N ( i )

p(Sij jK i ) (9)

=
Y

i

Y

j 2N ( i )

e�
jj K i � S ij jj 2

F
� s (10)

wherejj � jj F is Frobenius norm,~K i is the known tensor at
x i , N (i ) is the set of neighbor corresponds tox i and� h and
� s are two constants respectively. By taking the logarithm
of Eqn (7), we obtain the following energy function:

E(E) =
X

i

jjK i � ~K i jj2
F + g

X

i

X

j 2N ( i )

jjK i � Sij jj2
F

(11)
whereg = � h

� s
. Theoretically, this quadratic energy function

can be directly solved once and for all by Singular Value
Decomposition (SVD). SinceN can be large thus making
direct SVD impractical, we adopt an iterative approach: by
taking the partial derivative of Eqn (11) (w.r.t. toK i ) the
following update rule is obtained:

K �
i = ( ~K i + 2g

X

j 2N ( i )

Sij )( I + g
X

j 2N ( i )

(I + c2
ij R 0

ij
2)) � 1

(12)
which is a Gauss-Seidel solution. When successive over-
relaxation (SOR) is employed, the update rule becomes:

K (m +1)
i = (1 � q)K (m )

i + qK �
i (13)



Figure 8.Tripp reconstruction from sparse data set: three input
images (left) and the quasi-dense 3D reconstruction produced by
PMVS (middle) and TMVS (right).

where1 < q < 2 is the SOR weight andm is the iteration
number.

When the energy function (Eqn (11)) is minimized,
we can obtain the surface saliency for eachx i by apply-
ing eigen-decomposition on the corresponding estimated
K i . We considerx i is an outlier if the respective surface
saliency (i.e.� 1 � � 2) is smaller thant (we sett = 0 :1 for
all experiments).

7. More Results

Tripp and George. We performed stress test on TMVS
using sparse and unevenly-spaced cameras. 25 images of
Tripp and 14 images ofGeorgewere obtained. All images
were casually captured using an off-the-shelf digital cam-
era. We compare the quasi-dense reconstruction results of
Tripp produced by PMVS and TMVS, as shown in Figure 8.
Because TMVS produced more accurate normals, it can �ll
more holes during the propagation step. Figure 9 shows a
few images and several views of the quasi-dense reconstruc-
tion produced by TMVS.
Hall3. Finally, we captured photos all around a building us-
ing an off-the-shelf digital camera. All images were taken
on the ground level not higher than the building, so we
have very few samples of the rooftop. The building facades
are curved and the windows on the building look identical
to each other. The patterns on the front and back facade
look nearly identical. These ambiguities cause signi�cant
challenges in the matching stage especially for wide-base
stereo. The input photos (179 images in total) were �rst
calibrated as described, followed by running TMVS to ob-
tain the quasi-dense reconstruction as shown in Figure 10.
The 3D reconstruction is faithful to the real building.

8. Discussion

The only free parameter in tensor voting is the scale of
visual analysis� d in Eqn (2) which can be estimated by ana-
lyzing local tensor densities. In our experiments, all tensors
are sorted using the ANN tree [1] which allows ef�cient
access of each tensor's neighbors. Letd be the average dis-

Figure 9.Georgereconstruction from sparse data set: �ve input
images (top) and four views of the quasi-dense 3D reconstruction
(bottom).

tance to each tensor's closest neighbor. Then,� d is given by
a
p

(� d2=log(� ) where� = 0 :075is the minimum strength
of the tail of the Gaussian, anda is a positive constant. We
found that a wide range of� d operates well, while an ex-
cessively large� d will produce wrong and over-smoothed
normals. It is not dif�cult for user to obtain a good� d by
tuning a: run our system (the ef�cient closed-form tensor
voting) a few times on the initialsparsetensors only, and
visualize the initial results such as Figure 4.

Our experiments were run on multicore Linux machines
in a multiuser environment. Similar to [5], the bottleneck
of TMVS is tensor propagation. Depending on the input
size, our processing time ranges from 10 minutes to a few
hours. For theEarth, it has about 6000 initial tensors and
each communicates with around 100 neighbors. The run-
ning time is about 1 hour on a quadcore machine with 4 x
AMD Opteron 844 (1.8GHz) CPU with 8GB RAM.

9. Concluding Remarks

We described TMVS which is founded on our new
closed-form solution to tensor voting [28], and provides a
uni�ed approach to implement the match-propagate-�lter
stereopsis pipeline with theoretical guarantees: CFTV is a
closed form solution, EMTV has been shown to be conver-
gent (where EM's convergence is well known [19]), and we
provided an ef�cient solution to MRFTV in this paper. The
implementation strategy is straightforward because it is not
dif�cult to implement Eqns (1), (4), (5), and (12)–(13).

Using PMVS's match-propagate-�lter pipeline as our
implementation backbone, TMVS has performance similar
to PMVS when TMVS is tested on the Middlebury MVS
dataset. For surface normals, our qualitative and quanti-
tative evaluation show that TMVS produced signi�cantly
improved normals. As 3D patch (oriented points) is the
main processing token in PMVS (analogously 3D tensors
in TMVS), this improvement leads to less accumulation er-
rors and outliers in the propagation results.

As a side bene�t, TMVS has led us to develop the fol-
lowing utilities: CFTV (for perceptual grouping), EMTV
(for parameter estimation), and MRFTV (for outlier rejec-



Figure 10. TheHall 3 reconstruction: ten input images (top) and �ve views of the quasi-dense3D reconstruction (bottom).

tion). They are included in the supplemental material and
available to the community, and we believe they are useful
in many MVS and other vision systems as well.
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