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Figure 1: Noise in the input image (a) is remarkably amplified with state-of-the-art dehazing methods [He et al. 2009], yielding result (b).
Our result shown in (c) contains more image structures.

Abstract

We propose a new model, together with advanced optimization, to
separate a thick scattering media layer from a single natural im-
age. It is able to handle challenging underwater scenes and images
taken in fog and sandstorm, both of which are with significantly re-
duced visibility. Our method addresses the critical issue – this is,
originally unnoticeable impurities will be greatly magnified after
removing the scattering media layer – with transmission-aware op-
timization. We introduce non-local structure-aware regularization
to properly constrain transmission estimation without introducing
the halo artifacts. A selective-neighbor criterion is presented to
convert the unconventional constrained optimization problem to an
unconstrained one where the latter can be efficiently solved.
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1 Background

Dense scattering medium is one of the main causes of inconsistency
in visual perception and human understanding [Day and Schoe-
maker 2004]. Scattering layers often make the originally clear land-
marks look distant, which explains why people think they move
slower than normally when driving in fog and swimming underwa-
ter. The reduced visibility inevitably handicaps visual recognition
and understanding. In contrast to its practical importance, previ-
ous approaches [Schechner et al. 2003; Tan 2008; Fattal 2008; He
et al. 2009; Tarel and Hautière 2009] assume thin scattering layers
caused, for example, by haze.

When tackling the challenging dense-scattering-medium problem
where visibility is significantly reduced, we notice inherent issues.
On the one hand, the underlying structure is contaminated, mak-
ing its restoration require spatially neighboring information. On
the other hand, ubiquitous camera noise, image artifacts, and physi-
cally existing impurities (such as dust) in the media could be greatly
amplified, influential in visual restoration. If they are not dealt with
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properly, erroneous estimation of structures shrouded by dense scat-
tering media could be resulted in. It is noteworthy that intuitively
applying denoising [Dabov et al. 2008] or performing regularized
inversion [Schechner and Averbuch 2007] is not competent to solve
this issue, due to the spatially varying properties.

We tackle the vital structure preserving and noise suppressing is-
sues by proposing several novel strategies to properly enhance pic-
tures shot in fog, haze, dust, and underwater scenes. Both degraded
structure recovery and significant noise suppression lead to the use
of neighboring information, which motivates the use of non-local
total variation strategy to regularize transmission and latent image
estimation. It enables us to deal with noisy input, in the meantime
preserving sharp structures. The direct involvement of non-local
terms, however, results in a complicated constrained optimization
problem. We propose a novel selective-neighbor criterion to con-
vert it to an unconstrained continuous optimization procedure. By
incorporating transmission-aware noise-control terms into the en-
ergy function, the proposed method becomes very effective in dense
scattering layer removal.

1.1 Related Work

Central to visual restoration from scattering media is transmission
estimation. On the hardware side, polarizers were used during pic-
ture taking, which help to estimate part of the medium transitivity
[Schechner et al. 2003] or augments visibility for underwater vi-
sion [Schechner and Karpel 2004]. 3D scene models were used in
[Kopf et al. 2008] to guide transmission estimation.

Single-image software solutions are also popular [Nayar and
Narasimhan 1999; Narasimhan and Nayar 2003; Tan 2008; Fattal
2008; He et al. 2009]. They are generally based on priors on trans-
mission and scene radiance. Tan [2008] developed a method mainly
based on the observation that images with enhanced visibility have
higher contrast and airlight depends on the distance to the viewer.
Fattal [2008] regarded transmission and surface shading (reflection)
as locally uncorrelated in a hazed image. Independent Compo-
nent Analysis (ICA) was employed to estimate scene albedo and
medium transitivity. A dark-channel prior was proposed in [He
et al. 2009] to initialize transmission estimation followed by refine-
ment through soft matting.

These methods simply invert transmission blending with the un-
derlying structures, which can generally magnify image noise and
visual artifacts. One example is shown in Fig. 1. The result (b)
by direct inversion, becomes noisy after haze-removal. This is the
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Figure 2: Noise magnification. 1D signals I and I + n in (a) are
with very small difference due to noise (x-axis: position; y-axis:
value). However for the part with small transmission t (left side of
(a)-(b)), the finally computed L in (b) is dissimilar to the ground

truth L̃ owing to noise amplification.

major problem when dealing with dense media, where ubiquitous
floating impurities can be notably intensified.

Regularized inversion employed in [Schechner and Averbuch 2007]
however cannot handle strong image noise and compression arti-
facts. Taral et al. [2009] used depth dependent median filtering.
In dense media, the sizes are hard to determine accurately. Joshi
et al. [2010] developed a method to remove artifacts by averag-
ing multiple images with weights. In comparison, our method is
a robust single-image approach taking into account noise suppres-
sion, transmission estimation, and computation efficiency. A uni-
fied framework is developed for enhancing pictures taken in chal-
lenging underwater environment or in meteorological phenomena.

1.2 The Problem

The model of surface radiance blended with the backscattered light
can be simply expressed as

I(x) = t(x)L(x) + (1 − t(x))B, (1)

where L(x) denotes the surface radiance that we would have sensed
without the scattering medium. x indexes the 2D coordinates. B is
the backscattered light color vector determined by ambient illumi-
nation, also referred to as airlight. t(x) is the transmission compo-

nent which relates to the scene depth d(x) through e−ηd(x), η is the
attenuation coefficient, determined by the scattering property of the
medium.

Scattering layer removal requires an estimation of the transmis-
sion map t(x), the light vector B, and then more importantly, the
restoration of the latent image L(x). Based on the estimation of t
and B, the latent image L can be recovered as

L(x) = B − (B − I(x))/t(x). (2)

The simple inversion works well for general thin scattering media
[Schechner et al. 2003; Fattal 2008; He et al. 2009]. It however in-
vokes problem for pixels with small transmission t, which happens
when the object is distant or the medium is dense. Fig. 2 illustrates
the noise magnification problem for small t. Considering the in-
evitable camera noise, even though it is unnoticeable within the fog
layer, its saliency could be notably raised after fog removal.

2 Approach

Our method consists of two major steps to respectively update the
transmission layer and the latent image. We automatically detect
the brightest pixels, or allow users to draw scribbles containing a
few sample pixels, to determine the backscattering light B.

2.1 Modeling Transmission t

By defining the logarithmic transmission, D(x) = ln t(x) =
−ηd(x), we alter our goal to compute D instead. t can be after-
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Figure 3: Illustration of neighbor selection. (a) Taking all neigh-
bors N1-N5 in regularization yields result D1, violating the trans-
mission lower-bound condition. (b) Our method explicitly removes
N1 and N2 in regularization as they are smaller than the lower
bound, and obtain the result D2, naturally satisfying the condition.

wards calculated using t(x) = eD(x). As depth d is exactly neg-
ative of D for each pixel, most natural scene priors, such as the
piece-wise spatial smoothness, can be imposed on depth, but not on
the transmission variables that form different distributions.

Re-arranging terms in Eq. (1) and taking the logarithm yield

D(x) = ln(|B − I(x)|) − ln(|B − L(x)|). (3)

By further denoting ī(x) = ln(|B − I(x)|) and l̄(x) = ln(|B −
L(x)|), we express the log likelihood (without normalization) as

ED(D) =
∑

x

∑

c

|D(x) − (̄ic(x) − l̄c(x))|2. (4)

To model the smoothness property of the scene depth and preserve
discontinuities, we resort to a non-local total variation regularizer,
which is expressed as

ES(D) =
∑

x

∑

y∈W (x)

wd(x,y)|D(x) − D(y)|, (5)

where W (x) is a patch centered at x. Weight wd(x, y) requires
D(x) and D(y) to be close when pixels x and y are similar
in appearance. To handle rich details in natural images, we re-
sort to a structure map S [Xu et al. 2012] to define wd(x,y) =
exp(−|S(x)−S(y)|2/(2σ2

s)). The structure map S is useful to re-
move excessive details while still preserving large-scale structures.

Constrained Model There is a natural lower-bound for pixel-
wise transmission, based on the non-negativity of scene luminance.
Given L(x) ≥ 0, B > 0, it always holds that

t(x) =
B − I(x)

B − L(x)
≥ 1 −

I(x)

B
= max

(

1 − min
c∈{r,g,b}

Ic(x)

Bc
, 0

)

. (6)

Now, given the terms defined in Eqs. (4) and (5) and the constraint
introduced in Eq. (6), the final objective function to estimate D
(and correspondingly t) is written as

min ED + λES s. t. D(x) ≥ v(x), (7)

where v(x) = ln
(

max
(

1 − minc
Ic(x)
Bc

, ǫ
))

. ǫ is a small positive

number to avoid ln 0. Eq. (7) is a constrained non-linear optimiza-
tion problem and is difficult to solve due to the non-local regularizer
and the pixel-wise constraint.

Optimization To solve this problem, our scheme is to iteratively
update transmission for each pixel by computationally trackable re-
laxation. In each pass, we adaptively select suitable neighboring
pixels y in Eq. (5) for regularization, based on their current trans-
mission values, so that the constraint D(x) > v(x) can be explicitly
satisfied. Intuitively, if one pixel y in Eq. (5) possibly pulls x out of



the required range, we discard it in regularization, as demonstrated
in Fig. 3. In detail, we modify the weight as

wn(x, y) =

{

g(|S(x) − S(y)|, σs), if D(y) ≥ v(x);
0, otherwise.

(8)

The new object function with the modified weight is therefore an
unconstrained one. According to [Li and Osher 2009], it can be
efficiently solved by iteratively applying median filter. 3 iterations
are generally enough. Initially, we set l(x) to make īc(x)− l̄c(x) =
v(x). Fig. 4 shows how the D map is improved in iterations.

2.2 Inferring Latent Image L

To compute L given the t estimate, we do not directly solve Eq.
(2) since this scheme suffers from noise magnification. Instead,
we apply optimization to infer a visually plausible L image. For
robustness, we define our data energy function as

Ed(L
c) =

∑

x

t(x)2|Lc(x) − Lc
0(x)|2, (9)

where c indexes color channels. Lc
0 is the result intuitively com-

puted using Eq. (2). The data energy term in Eq. (9) suggests
that the optimized latent image should be similar to Lc

0 weighted
by t(x)2. When t is large – that is, the object is not distant – we
should trust Lc

0 because noise is not magnified too much according
to our analysis.

We also provide a transmission-aware regularization term, which
employs smoothness priors to further suppress noise. It is expressed
as non-local total variation:

Es(L) =
∑

x

∑

y∈W (x)

m̄(x, y)|L(x) − L(y)|. (10)

The weight map m̄ is normalized from m that contains two respec-
tive constraints to suppress noise. m is defined as

m(x,y) = g(|t(x) − t(y)|, σt) · g(‖P (L0, x) − P (L0, y)‖2, σL),

where g(·, σ) is a Gaussian tradeoff with standard deviation σ.
The first term calculates the transmission similarity between pix-
els, based on the fact that noise levels are magnified with respect to
transmission. The second term actually measures the patch match-
ing fidelity. P (L0, x) denotes a 7 × 7 window in L0 centered at x.
‖P (L0, x)−P (L0, y)‖2 uses a windowed L2-norm error measure
to robustly estimate the color difference between pixels. Combin-
ing the two weight terms, if two pixels are in the same depth layer
and have akin neighbors, their similarity is high. This patch-based
error measure is much more robust than pixel-wise operations.

The final energy for estimating L is therefore given by

E(L) = Ed(L) + λLEs(L). (11)

Our solver is similar to that for D estimation. Two or three itera-
tions are enough to produce the results.

3 Experimental Results

We convert the input image I to a linear color space before applying
our method and perform the inverse Gamma correction to coarsely
curtail the effect of nonlinear color transform from the camera.
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Figure 6: A dehazing example. (a) Input. (b) and (c) Result of
[He et al. 2009] and [Schechner and Averbuch 2007]. (d) and (e)
Results by applying denoise algorithm before and after dehazing.
(f) Our Result. It not only removes intensive noise, also retains a
great amount of details as well.

(a) Input (b) Our result

Figure 7: Underwater and dust storm picture restoration.

3.1 Comparison on Transmission Map

Our non-local total variation smoothness term, working in concert
with our point-wise data fidelity, is able to preserve thin structures
comparing to the patch-based prior define in [He et al. 2009]. One
example is shown in Fig. 5. (b) is the transmission map of [He
et al. 2009], where inaccurate structure boundaries exist. They in-
duce halos to the result shown in (d). Our method, shown in (c),
preserves the structural edges. The corresponding restored image
is in (e). We note that fine structures are very common in natural
scenes. Their restoration is thus vital in scattering media removal.

3.2 Comparison on Noise Reduction

We exhibit our advantageous ability in handling significant noise.
We compare our result with a previous regularized restoration ap-
proach [Schechner and Averbuch 2007], as well as strategies ap-
plying denoising before and after layer removal. One example is
shown in Fig. 6. In the result of [He et al. 2009] (b) unnoticeable
noise in the original image is greatly enhanced. The result shown in
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Figure 4: Depth maps (i.e., negative D maps) estimated in two iterations. Depth map D0 is initialized with the lower bound measure v.

(a) (b) (c) (d) (e)

Figure 5: Fog image. (a) Input image. (b) and (d) Transmission map t and corresponding image L according to Eq. 2 by [He et al. 2009],
which does not consider dense scattering media. (c) and (e) Our results.

(d), which performs denoising before dehazing, still contains much
noise even with spatial regularization. Denoising after dehazing,
on the other hand, can hardly remove intensive noise out of the la-
tent image structure. As shown in (e), even state-of-the-art BM3D
denoising method destroys many latent image details, while consid-
erable noise in the sky is left over. (c) is the result of [Schechner and
Averbuch 2007] with a local TV regularizer. (f) is our final result.
Noise is suppressed while underlaying structures are preserved.

3.3 General Scattering Medium Removal

Our restoration method makes no assumption on the scattering me-
dia, making it applicable to fog, dust storm, and underwater pic-
tures. Fig. 7 shows examples in underwater and dust scene, in
which a large amount of structural information is recovered and
contrast is greatly enhanced.

4 Concluding Remarks

We have presented a new model for scattering media layer removal
from a single image. We introduced the transmission lower-bound
condition and provided a very effective optimization framework in-
corporating several novel terms to solve the challenging noise am-
plification and depth estimation problems. Our method applied to
images taken in fog, sandstorm, and underwater scenes.
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TAREL, J.-P., AND HAUTIÈRE, N. 2009. Fast visibility restora-
tion from a single color or gray level image. In International
Conference on Computer Vision, 2201–2208.

XU, L., YAN, Q., XIA, Y., AND JIA, J. 2012. Structure extraction
from texture via natural variation measure. ACM Trans. Graph.
31, 6.


