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Introduction 
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http://uci.edu/2009/02/images/post-doc_p090203_01a.jpg 
http://betf.blogspot.hk/2011/10/are-african-americans-surging-in.html 

Bio-/Medical Sciences Informatics (e.g. CS) 

-Huge & noisy data 

-Costly annotations 

-Specific cases 

 

-High Impacts 

-Well-organized schemes 

-Automatic analysis 

-Generalized knowledge 

 

-Desire for Applications 

Bridging: 
 

-Bioinformatics: 

 
More and more crucial 

in life sciences and 

biomedical 

applications for 

analysis and new 

discoveries 
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I. Introduction to Bioinformatics 

 Research Areas 

 Biological Basics 



5 

Bioinformatics Research Areas 

Many (crossing) areas:  
 (Genome-scale) Sequence Analysis 
 Sequence alignments, motif discovery, genome-wide 

association (to study diseases such as cancers) 

Computational Evolutionary Biology 
 Phylogenetics, evolution modeling 

Analysis of Gene Regulation 
 Gene expression analysis, alternative splicing, protein-DNA 

interactions, gene regulatory networks 

Structural Biology 
 Drug discovery, protein folding, protein-protein interactions 

Synthetic Biology 

Applications on High throughput Sequencing Data (NGS) 

… 



Our Bioinformatics Group 

 Dept. of Computer Science & Engineering, CUHK 

 Prof. Kwong-Sak LEUNG 

 Prof. Kin-Hong LEE 

 Prof. Man-Hon WONG 

 Prof. Kevin YIP 

 Dr. Cyrus Tak-Ming CHAN 

 

 Research Partners from CUHK 

 Prof. Stephen Kwok-Wing TSUI, Director of Hong Kong Bioinformatics Center, School of 
Biomedical Sciences 

 Prof. Hsiang-Fu KUNG, Stanley Ho Centre for Emerging Infectious Diseases 

 Prof. Marie Chia-Mi LIN, Department of Surgery, Prince of Wales Hospital 

 Prof. Pang-Chui SHAW, School of Biomedical Sciences 

 

 10 Research Students/Staff (KS Group) 

 1 Postdoc 

 5 PhD Students 

 4 MPhil Students 
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Our Research Roadmap 

HIV-1 
Project 

SNP Analysis 
(HBV) 

Drug 
Discovery 

Protein-DNA 
Interactions  with 

Next Gen 
Sequencing (NGS) 

Gene 
Networks 
(with NGS) 

Alternative 
Splicing (with 

NGS) 

Protein-Protein 
Interactions 

Phylogeny 
SNPs 

Association 
Study 

Genomic 
Analysis 

Motif 
Discovery 

Network 
Analysis 

Sequence 
Alignment 

Docking / 
Ligand 

Growing 
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Real-life Projects   Related Bioinformatics Problems   Computer Techniques 

Approximate 
Matching 

Kernel 
Methods 

GPU /  Parallel 
Computing 

Markov Chain 
Monte Carlo 

(MCMC) 

Non-linear 
Integral 

Finite  Markov 
Chains and 

HMMs 
Database 

Techniques 

Expectation 
Maximization 

Evolutionary 
Computation 

Feature Selection 
(Mutual 

Information) 

Searching / 
Optimization 

Data Mining 
Statistical 
Analysis 

Strings 
Algorithm 

Modeling 
Differential 
Equations 

Suffix Trees 
Suffix Array 
BWT Index 



Genome-wide Association 

… 

Human DNA sequences 

SNPs (single nucleotide 

polymorphism; >5% 

variations) 

Normal 

Disease! 

Targets: SNPs that are associated 

with genetic diseases; Diagnosis and 

healthcare for high-risk patent  

Methods: Feature selection; 

mutual information; non-linear 

integrals; Support Vector Machine 

(SVM); 

! 



HBV Project (Example) 

… 

HBV sequences 

Hepatitis B 

(Hep B) 

Normal 

Hep B  

Cancer! 

? ? ? 

Feature Selection 

Non-linear Integral 

(Problem Modeling) 

Optimization and  

Classification 

Explicit Diagnosis Rules 
(if sites XX & YY are A & T, then …) 

SNPs are not known and to be 

discovered by alignments 

Results in 10 patents 
KS Leung, KH Lee, (JF Wang), (Eddie YT Ng), Henry LY Chan, Stephen KW Tsui, Tony SK Mok, Chi-Hang Tse, 

Joseph JY Sung, ―Data Mining on DNA Sequences of Hepatitis B Virus‖. IEEE/ACM Transactions on Computational 

Biology and Bioinformatics. 2011 
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Biological Basics 

Cell 

Chromosome 

DNA  
Sequence 

Genome 

5’...AGACTGCGGA...3’ 

http://www.jeffdonofrio.net/DNA/DNA%20graphics/chromosome.gif 
http://upload.wikimedia.org/wikipedia/commons/7/7a/Protein_conformation.jpg 

3’...TCTGACGCCT...5’ 

Base Pairs 
A-T 

C-G 

Gene 

...AGACTGCGGA... 

A string with alphabet 
 T} G, C, {A,

RNA 

A string of amino acids 

 20||

E...} C, D, N, R, {A,





Transcription 

Protein 

Translation 

Regulatory functions 

Other functions: 

Protein-protein 

Protein-ligand 
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Transcriptional Regulation 

 Binding for Transcriptional Regulation  
  Transcription Factor (TF): 

  TF Binding Site (TFBS): 

  Transcription rate (gene expression): 

Transcription 

Translation 

Gene 

RNA 

DNA  
Sequence 

Transcription 
Factor 
(TF) 

Protein 

TATAAA 

TFBS 
ATGCTGCAACTG… 

The binding 

domain (core) 

of TF  

the protein as the key 

the DNA segment as the key switch 

the production rate 

Detailed in II. protein-DNA interactions 
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Protein-ligand Interactions 

 Drug Discovery 

 

Protein 

Other functions: 

Protein-protein 

Protein-ligand 

Interactions 

Protein 
structures 

Computational 
power 

Simulation over 
wet lab 

Detailed in III. drug discovery 
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II. Protein-DNA Interactions 

 Introduction 

 Approximate TF-TFBS rule discovery 

 Results and Analysis 

 Discussion 

 

Tak-Ming Chan, Ka-Chun Wong, Kin-Hong Lee, Man-Hon Wong, Chi-Kong Lau, Stephen Kwok-Wing Tsui, Kwong-Sak Leung, Discovering 

Approximate Associated Sequence Patterns for Protein-DNA Interactions. Bioinformatics, 2011, 27(4), pp. 471-478 
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Introduction 

 We focus on TF-TFBS bindings which are primary protein-DNA interactions 

  

 Discover TF-TFBS binding relationship to understand gene regulation 

 Experimental data: 3D structures of TF-TFBS bindings are limited and 
expensive (Protein Data Bank PDB); TF-TFBS binding sequences are 
widely available (Transfac DB) 

 Further bioengineering or biomedical applications to manipulate or 
predict TFBS and/or TF (esp. cancer targets) given either side 

 

  Existing Methods 

 Motif discovery: either on protein (TF) or DNA (TFBS) side. No linkage 
for direct TF-TFBS relationship 

 One-one binding codes: R-A, E-C, K-G, Y-T? No universal codes! 

 Machine learning: training limitation (limited 3D data) and not trivial to 
interpret or apply 

TF

TFBS

...TF

TFBS

Binding
Binding

Sequences: widely 

available 

3D: limited, 

expensive 
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TFBS Motif CTF Motif T
? ?Conservation 

  TFBSs, Genes  merely A,C,G,Ts;  

  The binding domains of TFs  merely amino acids (AAs) 

  What distinguish them from the others? 

  Functional sequences are less likely to change through evolution 

 

 

 Association rule mining 

 Exploit the overrepresented and conserved sequence patterns (motifs) 

from large-scale protein-DNA interactions (TF-TFBS bindings) sequence 

data 

 Promising initial results obtained with verifiable rules! 

 Biological mutations and experimental noises exist!—Approximate rules 

 

 

Conservation 

 similar Patterns across genes/species  Bioinformatics! 

TFBS

...TF

Binding

TFBS

...TF

Binding

TFBS

...TF

Binding

...

Leung, KS, (Wong, KC), (Chan, TM), Wong, MH, Lee, KH, Lau, CK, and Tsui, Stephen, "Discovering Protein-DNA Binding 

Sequence Patterns Using Association Rule Mining," Nucleic Acids Research. 2010, 38(19), pp. 6324-6337. 



Motivations: overall 

Finding motifs one-sided is challenging and 

difficult 
 e.g. TFBS Motif Discovery: Noises, variations through mutations, 

unknown locations—weak signals to be recovered 

?     —Prediction  —True TFBS 

16 



Motivations: overall 

 Finding associated patterns on both sides is 

shown to be promising—when you have many diverse 

binding sequences (e.g. TRANSFAC) 

 Associated TF-TFBS patterns found from sequences 

 Grouping TRANSFAC data  

 Developing a customized TF core motif discovery algorithm 

x 7664  
408 AAs on average 

x 26786 bound TFBSs, 

1225 consensuses (motifs) 
25bp on average 

Associated pattern 

discovery 

…NRIAA… …TGACA… 

…NRAAA… …TGACA… 

…NREAA… …TGTGA… 

… 

Tak-Ming Chan et al, Discovering approximate-associated sequence 

patterns for protein-DNA interactions. Bioinformatics, 2011, 27(4) 
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http://bioinformatics.oxfordjournals.org/content/27/4/471.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/471.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/471.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/471.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/471.abstract
http://bioinformatics.oxfordjournals.org/content/27/4/471.abstract


Motivations: overall 

Finding associated patterns on both sides is 

shown to be promising—when you have many diverse 

binding sequences (e.g. TRANSFAC) 

 Associated TF-TFBS patterns found from sequences are verified 

on 3D structures to be binding cores! 

…NRIAA… …TGACA… 

…NRAAA… …TGACA… 

…NREAA… …TGTGA… 

… 

Verified on 3D structures 

(binding cores <3.5Å) 

x 40222 binding pairs 

from 1290 PDB protein-

DNA complexes 

18 

Sequences 

Structures 

Figure from: Protein interactions in 3D: From interface evolution to drug discovery 

http://www.sciencedirect.com/science/article/pii/S1047847712001128 
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Problem Definition 

 

 

 Input: given a set of TF-TFBS binding sequences (TF: 

hundreds of AAs; TFBS: tens of bps depending on experiment resolution), 
discover the associated patterns of width w (potential interaction 

cores within binding distance)  

 

Output: Approximate associated TF-TFBS binding 
sequence patterns (TF-TFBS rules) 
 —given binding sequence data (Transfac) ONLY, predict short 

TF-TFBS pairs verifiable in real 3D structures of protein-DNA 
interactions (PDB)! 

 

GOAL: discovering 

approximate binding rules

TFBS Motif CTF Motif T
? ?
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Overall Methodology 

TF

TFBS

...TF

TFBS

Binding

TFBS

...TF

Binding

TFBS

...TF

Binding

...

GOAL: discovering 

approximate binding rules

...

TRANSFAC Binding 

Sequence Data

TFBS motif C ready in TRANSFAC
e.g. M00041: TGACGTYA

Grouped TF data by different C 

similarity thresholds (TY)

...

...

...

...

Approximate TF (Core) 

Motif Discovery

Binding

TFBS Motif CTF Motif T
? ?

TFBS Motif CTF Motif T
? ?

TFBS Motif CTF Motif T
? ?

Approximate TF-TFBS Rules

 W, E

...

C=TGACGTYAT=NRIAA

{ti,j}=

NKIAA

NRIAA
NRAAA

...

{ }
C=...T=...

{ti,j}= ...{ }

...

...

...

...

Rulek Rulek+1

...

Use the available TFBS motifs C 

from Transfac DB—already 

approximate with ambiguity 

code representation—TFBS 

side done! 

Group TF sequences 

corresponding to different TFBS 

consensus (motif) groups C  with 

similarity thresholds TY=0.0, 0.1, 0.3 

Approximate TF Core Motif 

Discovery for T (instance set 

{ti,j}) give W and E—TF side 

done 

A progressive approach: 

Associating T ({ti,j}) with C  

Customized Algorithm 
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TF Side: Core TF Motif Discovery 

 The customized algorithm 

 Input: width W and (substitution) error E, TF Sequences S 

Find W-patterns (at least 1 hydrophilic amino acid) and their E 

approximate matches 

 Iteratively find the optimal match set {ti,j} based on the 

Bayesian scoring function f for motif discovery: 

 

 

 

 

Top K=10 motifs are output, each with its instance set {ti,j}  

 

Overrepresented 

Conserved 
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 Verification 
 on Protein Data Bank 

 (PDB) 

 

 

  

 

 Check the approximate TF-TFBS rules T({ti,j})-C 

 Approximate appearance in binding pairs from PDB 3D structure 
data : width W bounded by error E 

 TF side (RTF): instance oriented—{ti,j} evaluated 

 TFBS side (RTF-TFBS): pattern oriented—C evaluated   

 

 

R: verification ratio 

[0,1] higher the better 

Results and Analysis 

Most representative database of 

experimentally determined protein-DNA 

3D structure data 

* expensive and time consuming 

* most accurate evidence for verification 
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Biological verification 

 Recall the challenge 
 Given sequence datasets of tens of TF sequences, each 

hundreds of AA in length, grouped by TFBS consensus C 

(5~20bp),  

 Predict W(=5,6) substrings ({ti,j}) associated with C 

 

PDB Verified examples in Rule NRIAA(NKIAA; NRAAA; NREAA; NRIAA)-TGACGTYA 

Which can be verified 

in actual 3D TF-TFBS 

binding structures as 

well as homology 

modeling (by bio 

experts)! 

NKIAA NRIAA 
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Results and Analysis 

 

M00217: ERKRR(ERKRR; ERQRR; ERRRR)-CACGTG 

1NKP: 

One more verified example 
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Results and Analysis 

 Quantitative Comparisons with Exact Rules 

 

 

 

 

 

 
 More informative (verified) rules (76 VS 110 W=5; 6 VS 88 W=6) 

 Improvement on exact ones (AVG R* 29%, 46% better with W=5) 
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Results and Analysis 

 Comparisons with MEME as TF side discovery tool 

73%-262% improvement on AVG R* 

33%-84% improvement on R*>0 Ratio 

Customized TF core motif discovery is 

necessary 
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Discussion 

 For the first time we generalize the exact TF-TFBS 

associated sequence patterns to approximate ones 

 

 The discovered approximate TF-TFBS rules 
 Competitive performance with respect to verification ratios (R∗) on 

both TF and TF-TFBS aspects 

 Strong edge over exact rules and MEME results 

 Demonstration of the flexibility of specific positions TF-TFBS 

binding (further biological verification with NCBI independent protein records!) 

 

  

 

 

 

 

 

 

 

 



Further Results  

We can go further with these promising 

associated TF-TFBS patterns 
 Discovering and analyzing the binding variances (subtypes): e.g. 

3rd E variation is associated with T, G variations on TFBS 

…NRIAA… …TGACA… 

…NRAAA… …TGACA… 

…NREAA… …TGTGA… 

… 

Subtypes may 
• Lead to changed binding preferences 

• Distinguish conserved from flexible binding residues  

• Reveal novel binding mechanisms 

28 

The result analysis positively supports all these! 

 

Results more “biological”; check out the following if interested: 

 

 

Tak-Ming Chan et al, Subtypes of Associated Protein-DNA (TF-TFBS) 

Patterns, Nucleic Acids Research, 2012, 40 (19): 9392-9403. 

http://nar.oxfordjournals.org/cgi/content/full/gks749
http://nar.oxfordjournals.org/cgi/content/full/gks749
http://nar.oxfordjournals.org/cgi/content/full/gks749
http://nar.oxfordjournals.org/cgi/content/full/gks749
http://nar.oxfordjournals.org/cgi/content/full/gks749
http://nar.oxfordjournals.org/cgi/content/full/gks749


Further Results  

 Frequent Sequence Class (FSC) Tree structures for efficiency  

      (ICDE 2012) 

29 

Several orders of magnitude faster than Apriori (association rule mining) algorithm 

Predicting Approximate Protein-DNA Binding Cores Using Association Rule Mining,  In Proceedings of IEEE ICDE 2012, pp. 965-976 

Bit vector to represent occurrences 

PWM to represent patterns 

abb 
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Discussion 

 Great and promising direction for further discovering protein-DNA 

interactions 

 

  Future Work 

 Formal models for whole associated TF-TFBS rules 

 Advanced Search algorithms for motifs 

 Associating multiple short TF-TFBS rules 

 Handling uncertainty such as widths 

 

  Applications 

 Generalization of TF-TFBS binding mechanisms 

 Subtype and phylogeny analysis 

 Genetic disease  and regulation modification analysis 
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III. Drug Discovery 

Background 

idock: Protein-ligand docking 

istar: Novel web platform 

igrow: De novo ligand design 

iview: HTML5 visualizer 

Case study of influenza 

Case study of cancers 

 



Drug Discovery 

Expensive and long-term business 

US$1.8B over 13 years to develop a new drug 



Our Contributions & Proposal 

 

iview 

 

idock 

 

igrep 

 

igrow 

 

istar 

Ligands Protein 

General 

GPU ready 

idock 3.0 

idock 2.0 

Influenza A 

CCRK-Related Cancers 

Cancer Stem Cells 



Our Progress 

 Projects / Case studies Progress 

idock 1.0: Protein-Ligand Docking 100% 

idock 1.6: Protein-Ligand Docking 100% 

istar: Software-as-a-Service Platform 100% 

idock 2.0: GPU Acceleration 5% 

idock 3.0: Ligand Synthesis 30% 

iview: HTML5 Visualizer 30% 

Case Study of Influenza A 90% 

Case Study of CCRK-Related Cancers 90% 

Case Study of Cancer Stem Cells 0% 



idock 

Protein-Ligand Docking 



Replication Cycle of HIV/AIDS 

 



Input and Output 

Translate and rotate the ligand (ie. compound) 

 Predict binding affinity 

 

idock ligand 

protein 

box 

Rank 
Confor

mation 

Free 

energy 

(kcal/mol) 

1 -7.0 

2 -6.1 

3 -6.0 

4 -5.9 

5 -5.9 

6 -5.8 

7 -5.8 

8 -5.7 

9 -5.6 

energy 

function 

energy 

minimization 



Energy Function 

𝑒 =

 

−0.035579 ∗             𝐺𝑎𝑢𝑠𝑠1 𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗 +

−0.005156 ∗             𝐺𝑎𝑢𝑠𝑠2(𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗) +

+0.840245 ∗       𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛(𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗) +

−0.035069 ∗ 𝐻𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐(𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗) +

−0.587439 ∗       𝐻𝐵𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗     

𝑖<𝑗  

Sum over all pairs of movable heavy atoms i and j 
 rij : interatomic distance, cutoff rij = 8 Å 

 ti : atom type of i 

 tj : atom type of j 

Conformation = (position, orientation, torsions) 



Energy Optimization Algorithm 

Global optimization: Multithreaded Monte Carlo 

Local optimization: BFGS Quasi-Newton method 

 

 

 

 

 

 

Multithreading via parallel tasks 



Our Tool idock 

Based on AutoDock Vina 

Same energy function 

Same optimization algorithm 

Our contributions 

Support for virtual screening 

Faster evaluation of scoring function 

Thread pool for high CPU utilization 

Auto deactivation of inactive torsions 

Support for 25 chemical elements 

Support for gzip/bzip2 ligands 

Verbose output to PDBQT and CSV 

𝑒 = 

−0.035579 ∗             𝐺𝑎𝑢𝑠𝑠1 𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗 +

−0.005156 ∗             𝐺𝑎𝑢𝑠𝑠2(𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗) +

+0.840245 ∗       𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛(𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗) +

−0.035069 ∗ 𝐻𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐(𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗) +

−0.587439 ∗       𝐻𝐵𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑖 , 𝑡𝑗 , 𝑟𝑖𝑗     

𝑖<𝑗

 



idock speedup over Vina 

12 proteins 

3000 ligands 

3 molecular weight groups 

     [200,300], [300,400], [400,500] 

1000 ligands each group 

8.69x ~ 

37.51x 



Availability 

https://github.com/HongjianLi/idock 

Free, C++, Apache License 2.0 

32bit & 64bit Linux, Windows, Mac,FreeBSD,Solaris 



istar 
Software as a Service 



http://istar.cse.cuhk.edu.hk 

MongoDB 

NoSQL 

node.js 

web server 

Twitter Bootstrap 

HTML5 Boilerplate 

job 

Client Server 

CPU & GPU 

workstations 

Communicate via HTTP/SPDY 

Communicate via DB driver 

Communicate via NFS  

Communicate via SMTP 

Network 

File System 

result 

result 

job 

job 



Ligand Filtering and Previewing 

Filter ligands with desired molecular properties 

Preview the number of ligands to dock 



Real-Time Progress 

Monitor job progress in real time 

Progress reporting mechanism in daemon 

Ajax timer and table 



Supplier Output 

Help purchase compounds from vendors 



Availability 

https://github.com/HongjianLi/istar 

Free, Apache License 2.0, Javascript and C++ 

Chrome 19+, Firefox 12+, IE9+,Safari 5+,Opera 12+ 



idock 2.0 

GPU Acceleration 



NVIDIA GK104 Block Diagram 

GTX 680 US$593 

3.09 TFLOPS SP 

128 GFLOPS DP 

2GB GDDR5 

PCIE 3.0 192GB/s 

TDP 195W 

4 GPCs 

4 raster engines 

8 SMX units 

1536 CUDA cores 



AMD Tahiti Block Diagram  

7970 US$516 

3.79 TFLOPS SP 

947 GFLOPS DP 

3GB GDDR5 

264GB/s 

TDP 250W 

32 GCN cores 

2048 stream 

    processors 



idock 3.0 

De Novo Ligand Design 



Motivation 

Virtual screening        de novo strategy 

1060 – 10100 drug-like molecules 

Grow an initial scaffold by adding fragments 

 

 

 

 

Which fragment to choose? 

Which linker atom to choose? 

How to join the fragment in 3D? 

Combinatorial optimization problem 

Bond length 

C–C:  1.530 Å 

N–N: 1.425 Å 

C–N:  1.469 Å 

O–O: 1.469 Å 

Design ligands 

that have 

higher binding 

affinities 

GA 



Genetic Operator: Selection 

 

 

idock 

 

igrow 
idock 3.0 



Genetic Operator: Addition 

Merge a ligand and a fragment 

Elitist 1 

-4.457 kcal/mol 

Fragment 

 

Elitist 2 

-7.818 kcal/mol 

Elitist 2 

-7.818 kcal/mol 

Fragment 

 

Elitist 3 

-9.043 kcal/mol 



Genetic Operator: Subtraction 

Drop part of a ligand 

Elitist 1 

-4.457 kcal/mol 

Elitist 2 

-7.818 kcal/mol 

Elitist 3 

-7.818 kcal/mol 

Elitist 4 

-9.043 kcal/mol 



Genetic Operator: Crossover 

Exchange parts of two ligands 

Elitist 1 

-3.072 kcal/mol 

 

Elitist 2 

-5.027 kcal/mol 

 

Elitist 3 

-7.337 kcal/mol 

Elitist 3 

-7.337 kcal/mol 

 

Elitist 4 

-6.126 kcal/mol 

 

Elitist 5 

-8.200 kcal/mol 
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 An Example of  

    Small-fragment library 

 Provided by AutoGrow 

 46 fragments 

 3 to 15 atoms 

 Average 9.6 atoms 

 Standard deviation 2.8 

Fragment Library 
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Initial ligand 
-6.9, 194 

AutoGrow 
-11.9, 572 

iGrow 
-11.2, 505 

Initial Results: GSK3β-ZINC01019824 
GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss 
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Initial ligand 
-9.1, 224 

AutoGrow 
-11.3, 433 

iGrow 
-11.8, 392 

Results: HIV RT-ZINC08442219 
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Initial ligand 
-4.9, 209 

AutoGrow 
-7.3, 683 

iGrow 
-7.5, 489 

Results: HIV PR-ZINC20030231 



iview 

HTML5 Visualizer 



Interactive HTML5 Visualizer 
Based on canvas and WebGL 

First HTML5 visualizer of protein-ligand complex 



Dual Ligand Docking 

Synergistic effect, suitable for large binding 

site 



Case Study of 

Influenza A 



Background 

WHO fact sheets 

250K–500K deaths, 3M–5M severe illness annually 

Drug resistance 



Our Progress 

Nucleoprotein 

2IQH 

 idock 1.4 

4 Mac@CSE 

7M ligands 

 

Polymerase PA 

2ZNL 

 idock 1.5 

1 Mac@CSE 

73K ligands 

 

PolymerasePB2 

2VQZ 

 idock 1.6 

2 Linux@ITSC 

2M ligands 



Polymerase PA w/ ZINC40879809 

Predicted free energy -11.465 kcal/mol 



Case Study of 

CCRK-Related Cancers 



CCRK (Cell Cycle-Related Kinase) 

CCRK aliases: p42, PNQLARE, CDK20 

4 transcript variants by alternative splicing 

 

 

 

 

Widely expressed in various cancers 

Glioblastoma, cervical adenocarcinoma, colorectal 
carcinoma, osteogenic sarcoma, breast 
adenocarcinoma, ovarian carcinoma, lung 
fibroblast, myoblast, and lymphocyte 



CCRK Homology Model from 1HCL 

Done with SWISS-MODEL 

T-loop 

ATP-binding 

region 

Ser/Thr protein 

kinase active site 



Our Progress 

Repurpose approved drugs 

1,715 via DrugBank  

3,176 via DSSTOX 



CCRK in complex w/ ZINC03830332 

 Predicted free energy -10.306 kcal/mol 



Other Drug Discovery Results 

Current collaboration with biomedical experts: 

--combined prediction helps identify a novel B-cell 
epitope with the best wet-lab immune responses, a 
potential vaccine for EV71 (hand foot and mouth disease) 
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Immune response in mouse, higher the better 

BSP1-Computational control (conformational only) 

BSP2-Shortlisted epitope (best combined result) 

32S, SP70: known and documented epitopes 
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IV. Discussion and Conclusion 

 Summary 

 Discussion 
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Summary 

In this talk 

A brief introduction to Bioinformatics research problems  

Discovering approximate protein-DNA interaction sequence 

patterns for better understanding gene regulation (the 

essential control mechanisms of life) 

Computer-aided drug discovery via protein-ligand docking 

and de novo ligand design. Case studies on influenza and 

cancers. 

Encouraging results have been achieved and promising 

direction has been pointed out 
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Discussion 

 Bioinformatics becomes more and more important 

in life sciences and biomedical applications 

 Most computational fields (ranging from string 

algorithms to graphics) have applications in 

Bioinformatics 

 Still long way to go (strong potentials to explore) 

  Massive data are available but annotations are still limited 

  Lack of full knowledge in many biological mechanisms 

  Biological systems are very complicated and stochastic 
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The End 

 Thank you! 

 Q&A 
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Introduction: Bridging 

II: Results and Analysis: Statistical 

Significance  

Appendix 
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II: Results and Analysis 

 Statistical Significance (W=5) 

Simulated on over 100,000 rules for each setting 

The majority (64%-79%) for RTF-TFBS are 

statistically significant 

For E=0, although the 0.05<p(RTF≥1)<0.07, the 

majority (74%-82%) achieve the best possible p-

values 


