THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

Large scale data mining for binding patterns and drug discovery

CMSC5719

Prof. Leung, Kwong Sak Professor of Computer Science and Engineering Nov, 2012

Outline

GI. Introduction

GII. Protein-DNA Interactions

GIII. Drug Discovery

GIV. Discussion and Conclusion

Introduction

Bio-/Medical Sciences

-Huge & noisy data -Costly annotations -Specific cases

-High Impacts

Bridging:

-Bioinformatics:

More and more crucial in life sciences and biomedical applications for analysis and new discoveries

Informatics (e.g. CS)

-Well-organized schemes -Automatic analysis -Generalized knowledge

-Desire for Applications

I. Introduction to Bioinformatics

Research AreasBiological Basics

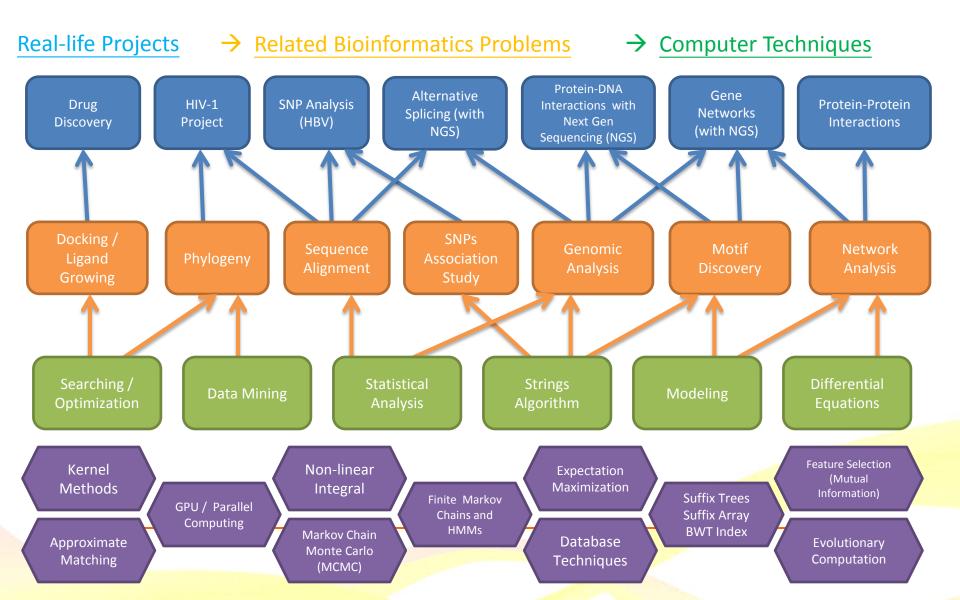
Bioinformatics Research Areas

Many (crossing) areas:

- (Genome-scale) Sequence Analysis
 - Sequence alignments, motif discovery, genome-wide association (to study diseases such as cancers)
- Analysis of Gene Regulation
 - Gene expression analysis, alternative splicing, protein-DNA interactions, gene regulatory networks
- Orug discovery, protein folding, protein-protein interactions
 OR Synthetic Biology

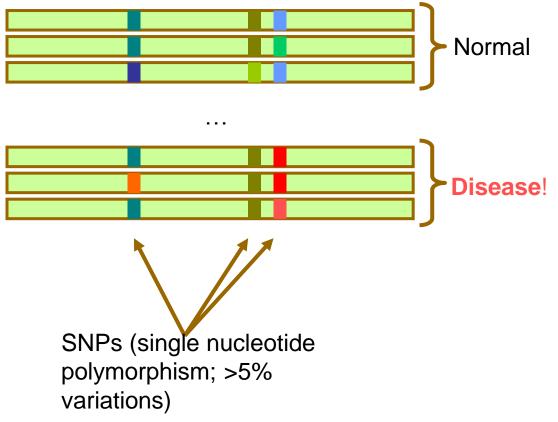
Applications on High throughput Sequencing Data (NGS)
A ...

Our Bioinformatics Group

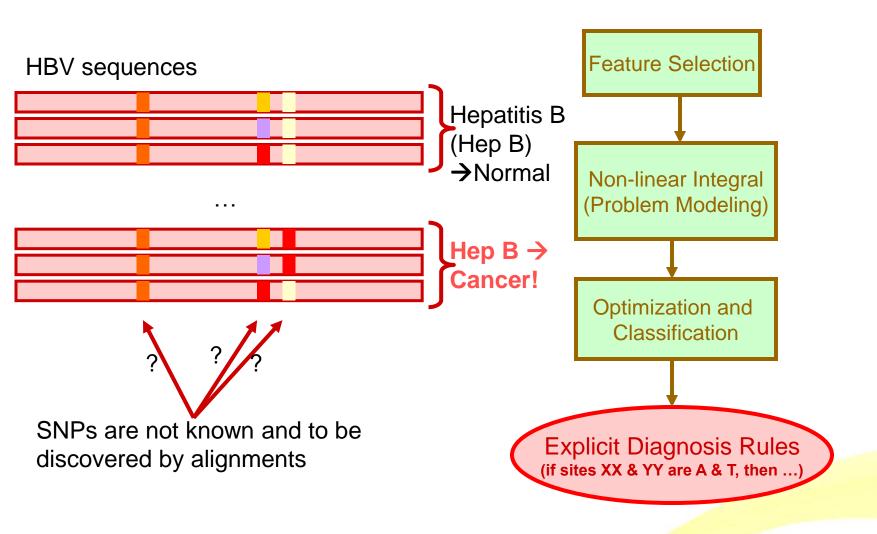


- Computer Science & Engineering, CUHK
 - Revealed Series And Antonio Prof. Kwong-Sak LEUNG

 - Revealed a Prof. Man-Hon WONG
 - Revin YIP
 - R Dr. Cyrus Tak-Ming CHAN
- CS Research Partners from CUHK
 - Prof. Stephen Kwok-Wing TSUI, Director of Hong Kong Bioinformatics Center, School of Biomedical Sciences
 - Reverse And Andrew Andr
 - Reverse Andrew Prof. Marie Chia-Mi LIN, Department of Surgery, Prince of Wales Hospital
 - R Prof. Pang-Chui SHAW, School of Biomedical Sciences
- 10 Research Students/Staff (KS Group)

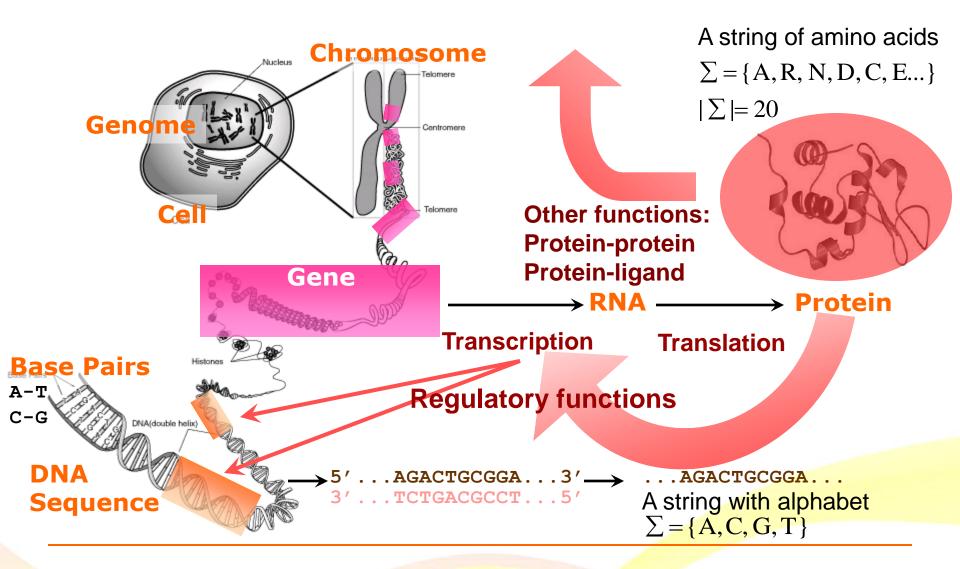

 - S PhD Students
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S

Our Research Roadmap


Genome-wide Association

Human DNA sequences

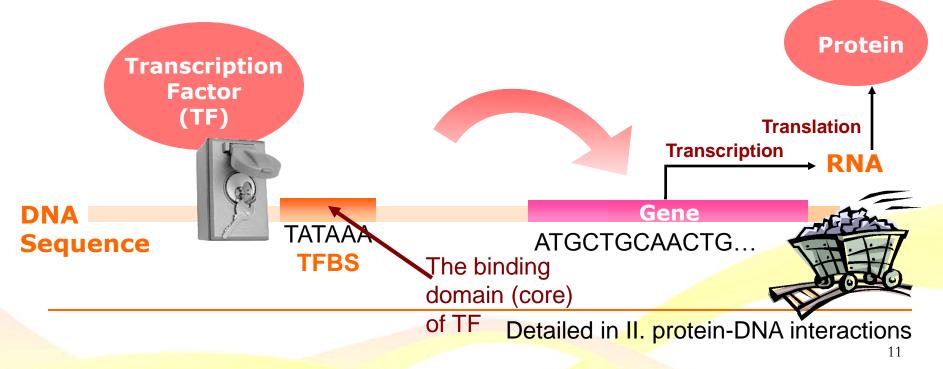
Targets: SNPs that are associated with genetic diseases; Diagnosis and healthcare for high-risk patent Methods: Feature selection; mutual information; non-linear integrals; Support Vector Machine (SVM);


HBV Project (Example)

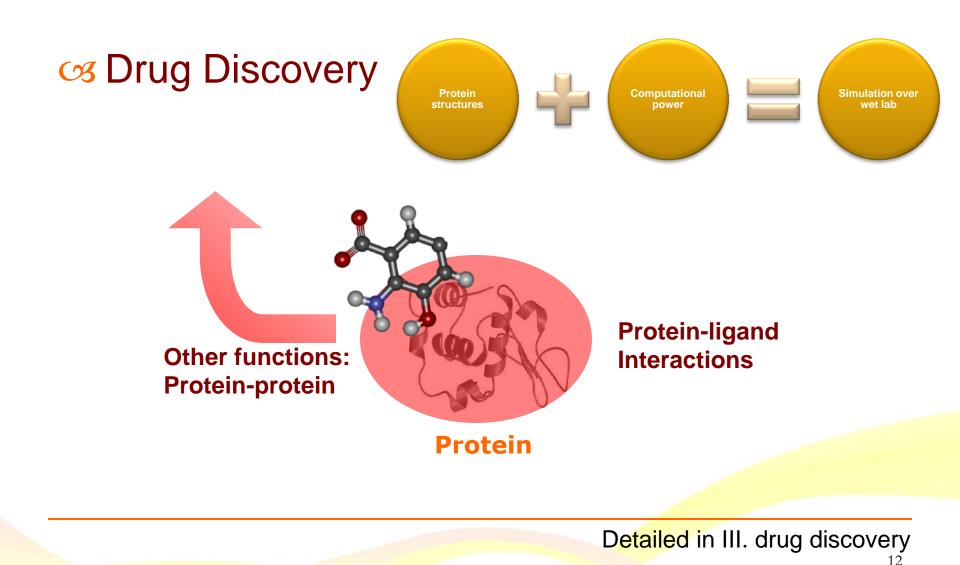
KS Leung, KH Lee, (JF Wang), (Eddie YT Ng), Henry LY Chan, Stephen KW Tsui, Tony SK Mok, Chi-Hang Tse, Joseph JY Sung, "Data Mining on DNA Sequences of Hepatitis B Virus". **IEEE/ACM Transactions on Computational Biology and Bioinformatics**. 2011

Results in 10 patents

Biological Basics



http://www.jeffdonofrio.net/DNA/DNA%20graphics/chromosome.gif 10 http://upload.wikimedia.org/wikipedia/commons/7/7a/Protein_conformation.jpg

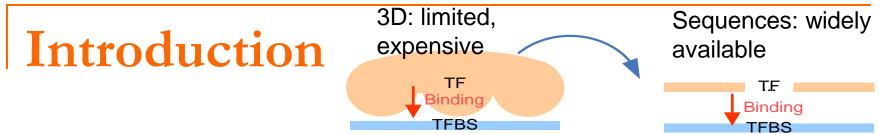

Transcriptional Regulation

Binding for Transcriptional Regulation

- TF Binding Site (TFBS): the DNA segment as the key switch

Protein-ligand Interactions

II. Protein-DNA Interactions


Introduction

- Approximate TF-TFBS rule discovery
- Results and Analysis

G Discussion

Tak-Ming Chan, Ka-Chun Wong, Kin-Hong Lee, Man-Hon Wong, Chi-Kong Lau, Stephen Kwok-Wing Tsui, Kwong-Sak Leung, Discovering Approximate Associated Sequence Patterns for Protein-DNA Interactions. *Bioinformatics*, 2011, 27(4), pp. 471-478

THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

We focus on TF-TFBS bindings which are primary protein-DNA interactions

- Solution Discover TF-TFBS binding relationship to understand gene regulation
 - Reprimental data: 3D structures of TF-TFBS bindings are limited and expensive (Protein Data Bank PDB); TF-TFBS binding sequences are widely available (Transfac DB)
 - Real or a second se

Section Sectio

- Motif discovery: either on protein (TF) or DNA (TFBS) side. No linkage for direct TF-TFBS relationship
- One-one binding codes: R-A, E-C, K-G, Y-T? No universal codes!
- Machine learning: training limitation (limited 3D data) and not trivial to interpret or apply

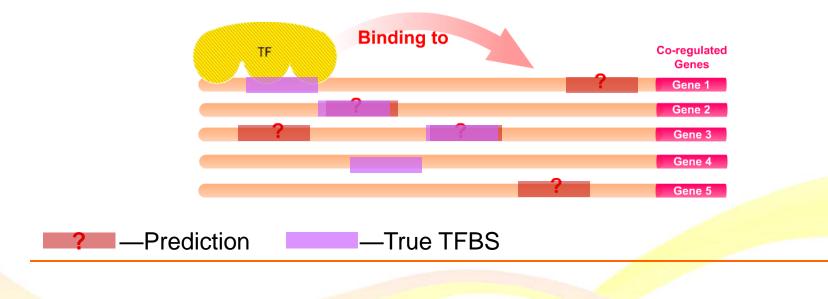
Conservation

FBS

- \checkmark The binding domains of TFs \rightarrow merely amino acids (AAs)

 - Real Functional sequences are less likely to change through evolution
 - → similar **Patterns** across genes/species → Bioinformatics!

Association rule mining


- Exploit the overrepresented and conserved sequence patterns (motifs) from large-scale protein-DNA interactions (TF-TFBS bindings) sequence data
- Reprove Promising initial results obtained with verifiable rules!
- Real Biological mutations and experimental noises exist!—Approximate rules

Leung, KS, (Wong, KC), (Chan, TM), Wong, MH, Lee, KH, Lau, CK, and Tsui, Stephen, "Discovering Protein-DNA Binding Sequence Patterns Using Association Rule Mining," *Nucleic Acids Research*. 2010, 38(19), pp. 6324-6337.

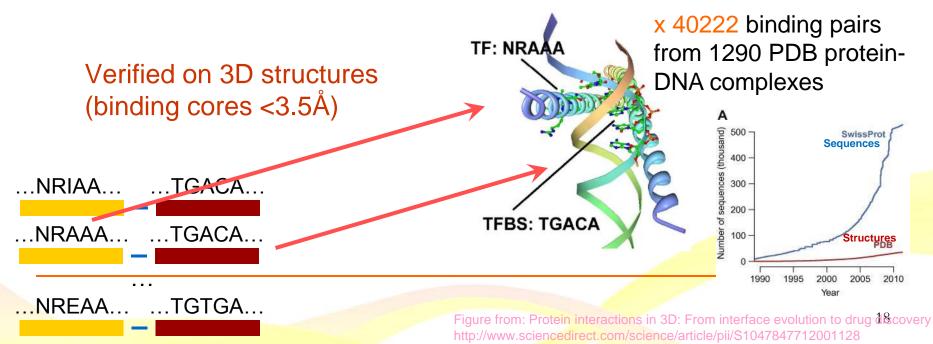
Motivations: overall

Finding motifs <u>one-sided</u> is challenging and difficult

e.g. TFBS Motif Discovery: Noises, variations through mutations, unknown locations—weak signals to be recovered

Motivations: overall

Finding associated patterns on both sides is shown to be promising—when you have many diverse binding sequences (e.g. TRANSFAC)


GROUP GR

OR Developing a customized TF core motif discovery algorithm

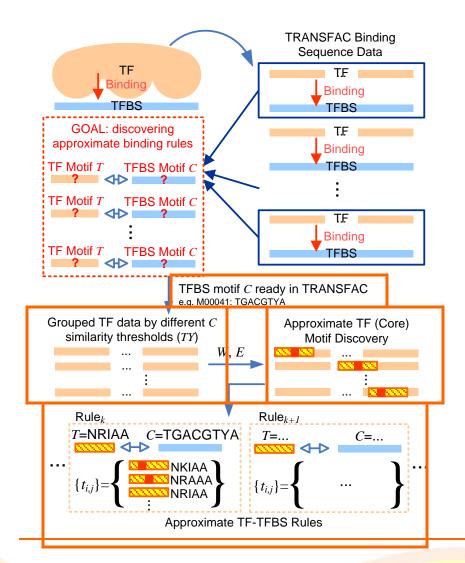
Motivations: overall

- Finding associated patterns on both sides is shown to be promising—when you have many diverse binding sequences (e.g. TRANSFAC)
 - Associated TF-TFBS patterns found from sequences are verified on 3D structures to be binding cores!

Problem Definition

GOAL: discovering approximate binding rules

TF Motif T TFBS Motif C


Input: given a set of TF-TFBS binding sequences (TF:

hundreds of AAs; TFBS: tens of bps depending on experiment resolution), discover the associated patterns of width w (potential interaction cores within binding distance)

Output: Approximate associated TF-TFBS binding sequence patterns (TF-TFBS rules)

—given binding sequence data (Transfac) ONLY, predict short TF-TFBS pairs verifiable in real 3D structures of protein-DNA interactions (PDB)!

Overall Methodology

A progressive approach:

Use the available TFBS motifs *C* from Transfac DB—already approximate with ambiguity code representation—TFBS side done!

Group TF sequences corresponding to different TFBS consensus (motif) groups *C* with similarity thresholds *TY*=0.0, 0.1, 0.3

Approximate TF Core Motif **Customized Algorithm**^t $\{t_{i,j}\}$) give W and E—TF side done

Associating $T(\{t_{i,j}\})$ with C

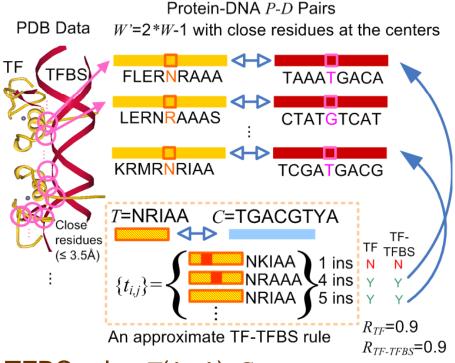
TF Side: Core TF Motif Discovery

The customized algorithm

- \bigcirc Input: width W and (substitution) error E, TF Sequences S
- Find W-patterns (at least 1 hydrophilic amino acid) and their E approximate matches
- Relatively find the optimal match set $\{t_{i,j}\}$ based on the Bayesian scoring function *f* for motif discovery:

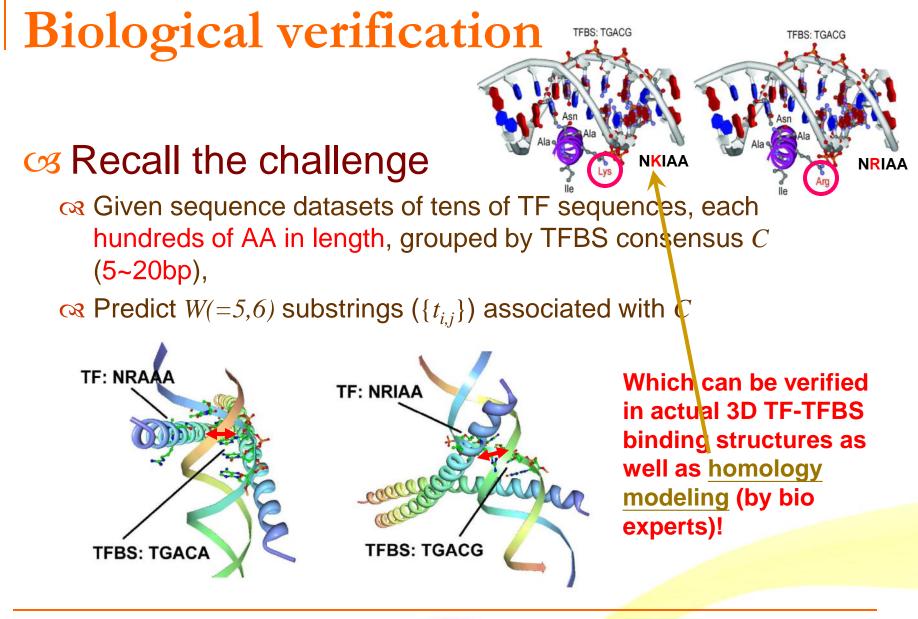
 $p = |\{t'_{i,j}\}|/|S| \text{ is the abundance ratio}$ $f = |\{t'_{i,j}\}|(\sum_{a=1}^{w} \sum_{b \in \Sigma} \Theta_{a,b} \log \frac{\Theta_{a,b}}{\Theta_{0,b}} + \log \frac{p}{1-p} - 1)$ position weight matrix (PWM) Θ Conserved

 \bigcirc Top K=10 motifs are output, each with its instance set $\{t_{i,j}\}$


Results and Analysis

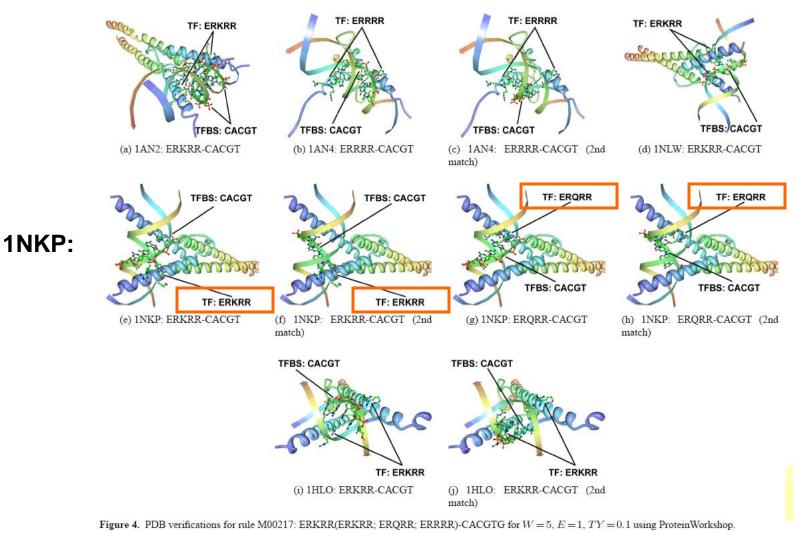
Werification

😪 on Protein Data Bank


(PDB)

- Most representative database of experimentally determined protein-DNA
- 3D structure data
- * expensive and time consuming
- * most accurate evidence for verification

- **C** Check the approximate TF-TFBS rules $T({t_{i,j}})-C$
 - Approximate appearance in binding pairs from PDB 3D structure data : width W bounded by error E
 - \curvearrowright TF side (R_{TF}): instance oriented—{ $t_{i,j}$ } evaluated
 - \propto TFBS side ($R_{TF-TFBS}$): pattern oriented—*C* evaluated [0,1] higher the better


R: verification ratio

PDB Verified examples in Rule NRIAA(NKIAA; NRAAA; NREAA; NRIAA)-TGACGTYA

Results and Analysis One mor

One more verified example

M00217: ERKRR(ERKRR; ERQRR; ERRRR)-CACGTG

Results and Analysis

Quantitative Comparisons with Exact Rules

	W = 5, E = 0				W = 5, E = 0				W = 5, E = 1						
7713.7					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						0.0	
TY	Exact rules [52]		0.0		0.1		0.3		0.0		0.1		0.3		
R_*	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	
AVG R_*	0.57	0.44	0.74	0.64	0.78	0.70	0.82	0.73	0.57	0.56	0.63	0.62	0.69	0.68	
$R_{*} > 0$	99	76	127	110	165	147	636	567	235	231	291	287	2101	2072	
Rule No.	173	173	172	172	211	211	774	774	346	346	396	396	2559	2559	
$R_* > 0$ Ratio	0.57	0.44	0.74	0.64	0.78	0.70	0.82	0.73	0.68	0.67	0.73	0.72	0.82	0.81	
	W =	= 6, E = 0			W =	= 6, E = 0					W :	= 6, E = 1			
TY		= 6, E = 0 t rules [52]		0.0	W =	= 6, E = 0 0.1		0.3		0.0	<i>W</i> :	= 6, E = 1 0.1		0.3	
TY		/	TF	0.0 TF-TFBS	W =		TF	0.3 TF-TFBS	TF	0.0 TF-TFBS	W : TF		TF	0.3 TF-TFBS	
TY AVG R _*	Exac	t rules [52]	TF 0.71			0.1	TF 0.81		TF 0.58			0.1	TF 0.70		
	Exac TF	t rules [52] TF-TFBS		TF-TFBS	TF	0.1 TF-TFBS		TF-TFBS		TF-TFBS	TF	0.1 TF-TFBS		TF-TFBS	
AVG R _*	Exac TF 0.18	t rules [52] TF-TFBS 0.18	0.71	TF-TFBS 0.58	TF 0.76	0.1 TF-TFBS 0.65	0.81	TF-TFBS 0.67	0.58	TF-TFBS 0.54	TF 0.63	0.1 TF-TFBS 0.60	0.70	TF-TFBS 0.68	
AVG R_* $R_* > 0$	Exac TF 0.18 6	t rules [52] TF-TFBS 0.18 6	0.71 108	TF-TFBS 0.58 88	TF 0.76 143	0.1 TF-TFBS 0.65 121	0.81 448	TF-TFBS 0.67 370	0.58 181	TF-TFBS 0.54 169	TF 0.63 234	0.1 TF-TFBS 0.60 222	0.70 1665	TF-TFBS 0.68 1618	

 \bigcirc More informative (verified) rules (76 VS 110 *W*=5; 6 VS 88 *W*=6) \bigcirc Improvement on exact ones (AVG *R*_∗ 29%, 46% better with *W*=5)

Results and Analysis

73%-262% improvement on AVG R_* **33%-84%** improvement on $R_*>0$ Ratio Customized TF core motif discovery is necessary

Comparisons with MEME as TF side discovery tool

MEME Results		W = 5, E = 0						W = 5, E = 1						
TY	0.0		0.1		0.3		0.0		0.1		0.3			
R_*	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS		
AVG R_*	0.33	0.26	0.36	0.28	0.37	0.28	0.33	0.32	0.36	0.34	0.37	0.36		
Ours better by	124%	144%	120%	146%	120%	160%	73%	74%	76%	$\mathbf{79\%}$	85%	91%		
$R_{*} > 0$	143	123	179	151	1306	1071	143	142	179	175	1306	1262		
Rule No.	298	298	342	342	2118	2118	298	298	342	342	2118	2118		
$R_* > 0$ Ratio	0.48	0.41	0.52	0.44	0.62	0.51	0.48	0.48	0.52	0.51	0.62	0.60		
Ours better by	$\mathbf{54\%}$	$\mathbf{55\%}$	49%	$\mathbf{58\%}$	33 %	45%	42%	$\mathbf{40\%}$	40%	42%	33 %	36 %		
MEME Results		W = 6, E = 0						W = 6, E = 1						
TY	0.0		0.1		0.3		0.0		0.1		0.3			
R_{\star}	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS		
AVG R_*	0.29	0.22	0.31	0.23	0.29	0.18	0.29	0.27	0.31	0.29	0.29	0.26		
Ours better by	142%	163 %	145%	181 %	178%	$\mathbf{262\%}$	97%	96 %	102%	104 %	142%	157%		
$R_{*} > 0$	127	96	163	121	1194	839	127	120	163	154	1194	1127		
$R_* \ge 0$ Rule No.	289	289	334	334	2170	2170	289	289	334	334	2170	2170		
Itule 110.	203	203	004	104	2110	2110	203	203	004	004	2110	2110		
$R_* > 0$ Ratio	0.44	0.33	0.49	0.36	0.55	0.39	0.44	0.42	0.49	0.46	0.55	0.52		
Ours better by	61 %	73%	57%	$\mathbf{79\%}$	47%	$\mathbf{72\%}$	52%	50 %	$\mathbf{50\%}$	$\mathbf{51\%}$	$\mathbf{58\%}$	$\mathbf{62\%}$		

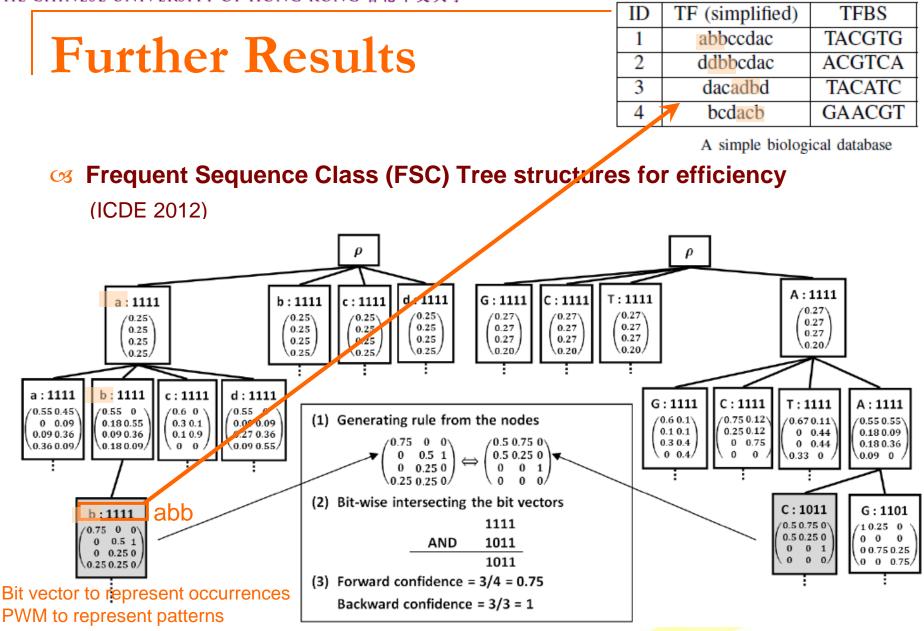
Discussion

Solution of the first time we generalize the exact TF-TFBS associated sequence patterns to approximate ones

The discovered approximate TF-TFBS rules

- Competitive performance with respect to verification ratios (R_∗) on both TF and TF-TFBS aspects

Further Results


We can go further with these promising associated TF-TFBS patterns

CR Discovering and analyzing the binding variances (subtypes): e.g. 3rd E variation is associated with T, G variations on TFBS

Subtypes may

- Lead to changed binding preferences
- Distinguish conserved from flexible binding residues
- Reveal novel binding mechanisms

Several orders of magnitude faster than Apriori (association rule mining) algorithm

Predicting Approximate Protein-DNA Binding Cores Using Association Rule Mining, In Proceedings of IEEE ICDE 2012, pp. 965-976

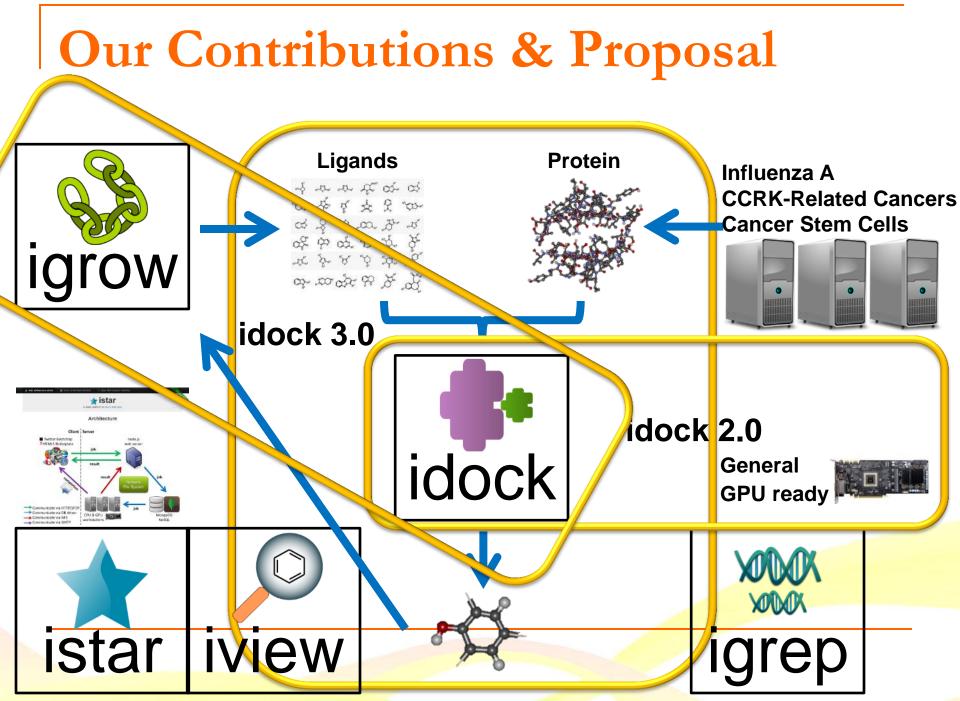
Discussion

- Great and promising direction for further discovering protein-DNA interactions
- S Future Work
 - Formal models for whole associated TF-TFBS rules
 Advanced Search algorithms for motifs
 Associating multiple short TF-TFBS rules
 Handling uncertainty such as widths

Applications

- Generalization of TF-TFBS binding mechanisms
- core Genetic disease and regulation modification analysis

III. Drug Discovery

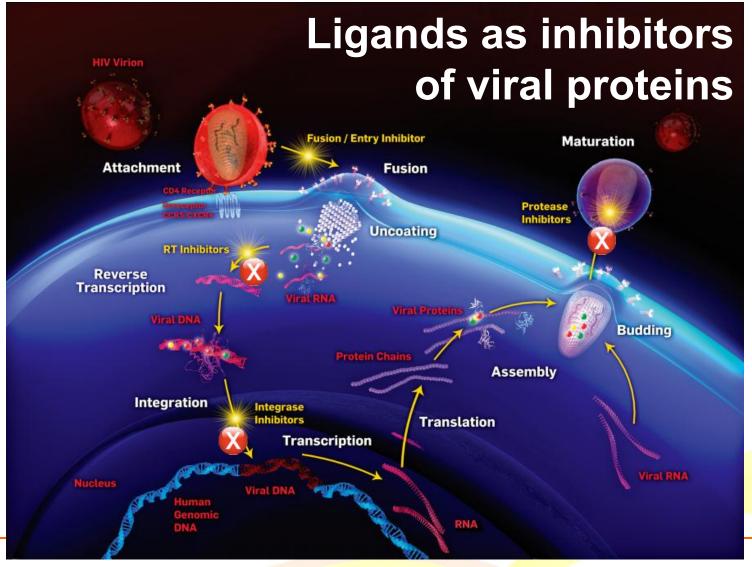

Background

- idock: Protein-ligand docking
- sistar: Novel web platform
- igrow: De novo ligand design
- wiview: HTML5 visualizer
- Case study of influenza
- Case study of cancers

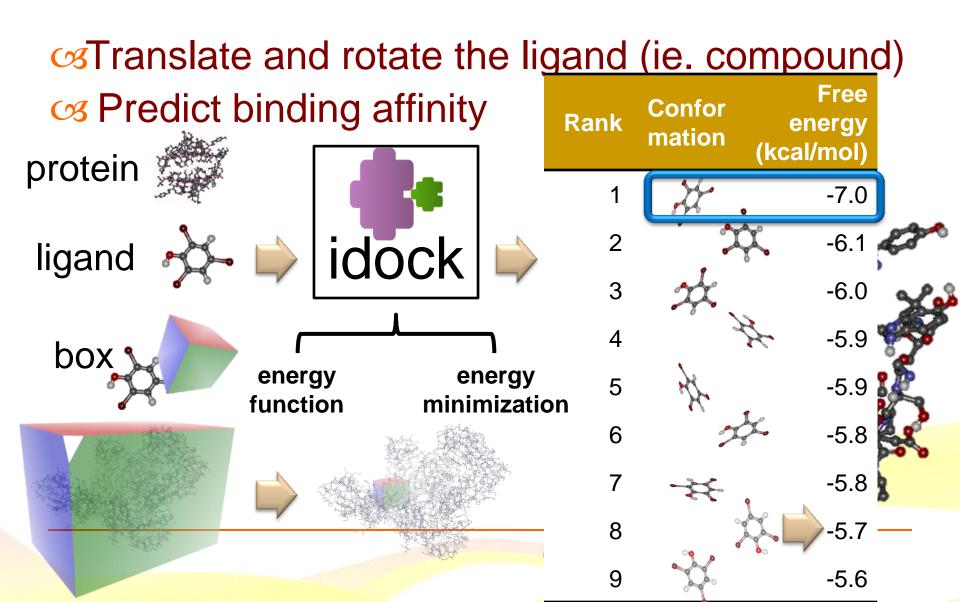
Drug Discovery

Expensive and long-term businessUS\$1.8B over 13 years to develop a new drug

Our Progress


Projects / Case studies	Progres	S
idock 1.0: Protein-Ligand Docking	100%	6
idock 1.6: Protein-Ligand Docking	100%	6
istar: Software-as-a-Service Platform	100%	6
idock 2.0: GPU Acceleration	5%	6
idock 3.0: Ligand Synthesis	30%	6
iview: HTML5 Visualizer	30%	6
Case Study of Influenza A	90%	6
Case Study of CCRK-Related Cancers	WORK IN PROGRESS 90%	6
Case Study of Cancer Stem Cells	0%	6

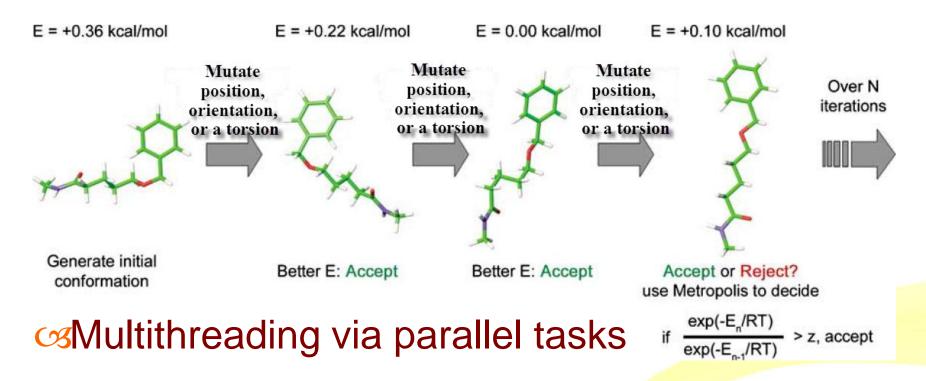
THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學


idock **Protein-Ligand Docking**

Replication Cycle of HIV/AIDS

Thomas Lengauer, André Altmann, Alexander Thielen, and Rolf Kaiser. Chasing the aids virus. Communications of the ACM, 53(3):66–74, 2010.

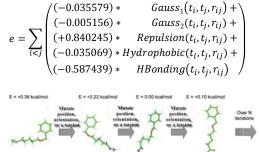
Input and Output

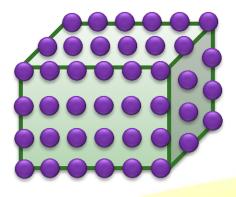

Energy Function

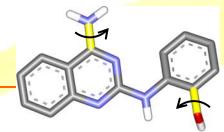
 $C3e = \begin{pmatrix} (-0.035579) * & Gauss_1(t_i, t_j, r_{ij}) + \\ (-0.005156) * & Gauss_2(t_i, t_j, r_{ij}) + \\ (+0.840245) * & Repulsion(t_i, t_j, r_{ij}) + \\ (-0.035069) * Hydrophobic(t_i, t_j, r_{ij}) + \\ (-0.587439) * & HBonding(t_i, t_j, r_{ij}) \end{pmatrix}$ $\mathcal{O} se$: Sum over all pairs of movable heavy atoms *i* and *j* $\propto r_{ii}$: interatomic distance, cutoff r_{ii} = 8 Å $c \in t_i$: atom type of *i* $c \in t_i$: atom type of j

Conformation = (position, orientation, torsions)

Energy Optimization Algorithm

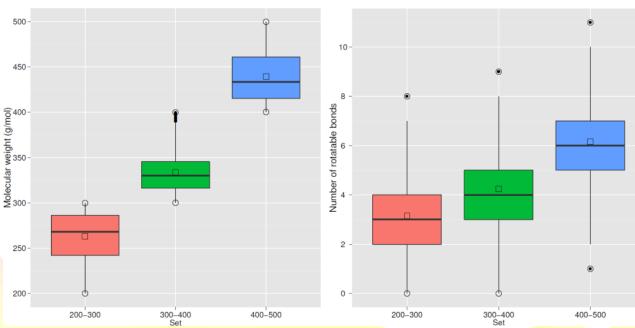

Global optimization: Multithreaded Monte Carlo Local optimization: BFGS Quasi-Newton method




N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, and C. R. Corbeil. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. *British Journal of Pharmacology*, 153(S1):S7–S26, 2008.

Our Tool idock

Based on AutoDock Vina e =**A**Same optimization algorithm ^{CSO}Ur contributions Support for virtual screening Faster evaluation of scoring function Thread pool for high CPU utilization Auto deactivation of inactive torsions Support for 25 chemical elements Support for gzip/bzip2 ligands Verbose output to PDBQT and CSV



8.69x ~

37.51x

3000 ligands

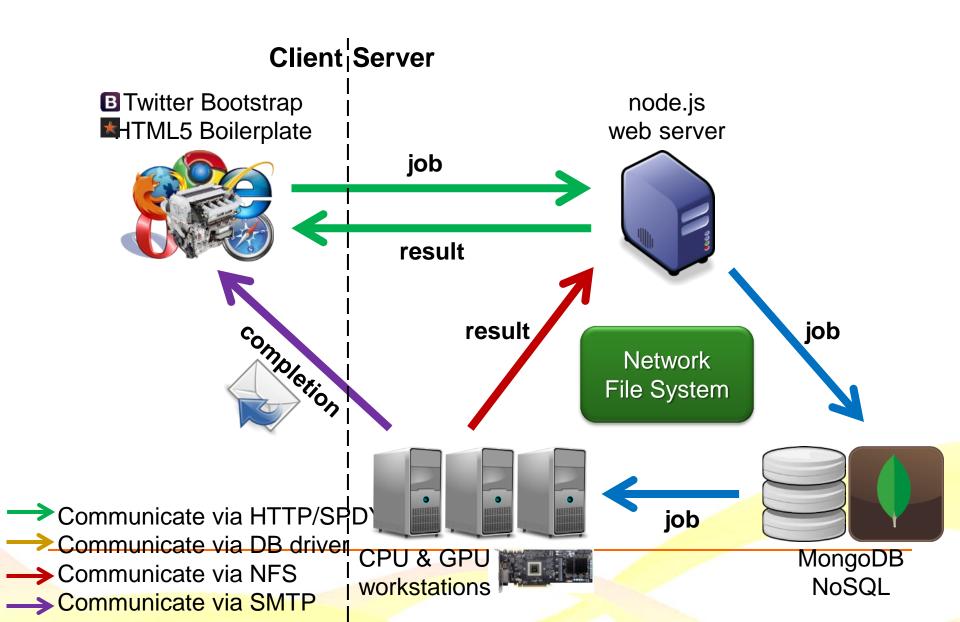
3 molecular weight groups
 [200,300], [300,400], [400,500]
 1000 ligands each group

-		200-300g/mol		300-4	00g/mo1	400-500g/mol		
	Program	CPU	Elapsed	CPU	Elapsed	CPU	Elapsed	
	1HCL h	uman cycl	lin-depender	it kinase	2			
	Vina	12.57	3.33	22.55	5.91	51.62	13.41	
	idock	0.63	0.16	0.92	0.24	1.38	0.36	
	Ratio	20.06	20.25	24.41	24.39	37.51	36.81	
	1J1B hu	man tau p	rotein kinas	e I				
	Vina	9.07	2.47	14.69	3.92	32.28	8.49	
	idock	0.78	0.21	1.25	0.33	2.35	0.62	
	Ratio	11.55	11.92	11.73	11.87	13.73	13.73	
	1LI4 hur	nan S-ade	nosylhomod	vsteine 1	vdrolase			
	Vina	11.82	3.30	19.08	5.22	39.41	10.64	
	idock	0.89	0.23	1.55	0.40	3.15	0.82	
	Ratio	13.24	14.14	12.33	12.95	12.50	12.98	
	1V9U hu	man rhine	ovirus 2 coa	t protein	VP1			
	Vina	9.80	2.95	15.55	4.62	29.75	8.49	
	idock	0.97	0.25	1.64	0.42	3.42	0.89	
	Ratio	10.11	11.74	9.49	10.91	8.69	9.56	
	2IOH int	fluenza A	virus nucle	oprotein	NP			
	Vina	9.51	2.66	15.03	4.08	29.64	7.83	
	idock	0.92	0.24	1.59	0.41	3.41	0.88	
	Ratio	10.35	11.18	9.43	9.93	8.69	8.93	
	2XSK F	cherichia	coli curli n	rotein Cs	gC - SeCys			
	Vina	10.44	2.71	17.89	4.61	40.58	10.41	
	idock	0.71	0.19	1.16	0.30	2.16	0.56	
	Ratio	14.68	14.64	15.47	15.38	18.83	18.57	
	27D1 HI	V 1 rever	se transcrip	1974				
	Vina	9.78	2.70	17.67	4.76	42.03	11.33	
	idock	0.97	0.25	1.52	0.39	2.60	0.69	
	Ratio	10.05	10.73	11.61	12.07	16.14	16.54	
	27NL in	fluenza vi	me RNA n	lumeras	e subunit PA			
	Vina	9.49	2.60	15.04	4.01	29.97	7.82	
	idock	0.89	0.23	1.56	0.40	3.41	0.87	
	Ratio	10.70	11.37	9.65	10.06	8.78	8.98	
	ance h		ne nucleosió	la charal	oralese			
	Vina	9.59	2.57	16.50	4.37	38.42	10.14	
	idock	0.95	0.25	1.55	0.40	2.81	0.74	
	Ratio	10.09	10.45	10.65	10.89	13.65	13.75	
	2HOW 1-		dan a series ath	ionino d	ecarboxylase			
	Vina	9.85	2.64	17.67	4.70	41.69	11.04	
	idock	0.88	0.23	1.35	0.35	2.20	0.58	
	Ratio	11.17	11.50	13.07	13.28	18.99	19.11	
	TAR hu	man adan	osine deami	0000				
	Vina	11.25	3.03	20.21	5.39	46.93	12.53	
	idock	0.80	0.21	1.21	0.32	2.01	0.53	
	Ratio	14.10	14.44	16.68	16.90	23.34	23.59	
	3KEN H	IV protea	se.					
	Vina	10.53	2.80	18.37	4.83	42.43	11.03	
	idock	0.77	0.20	1.20	0.32	2.09	0.55	
	Ratio	13.69	13.85	15.29	15.32	20.32	20.12	
	Average	across th	e above 12		rc			
	Vina	10.31	2.81	17.52	rs 4.70	38.73	10.26	
	idock	0.85	0.22	1.38	0.36	2.58	0.67	
	Ratio	12.48	13.02	13.32	13.66	16.76	16.89	

Availability

Aree, C++, Apache License 2.0 32bit & 64bit Linux, Windows, Mac, FreeBSD, Solaris

github 💽 🛯	earch or Type a Command	⑦ 🕑 Expl	ore Gist Blog Help		🛐 HongjianLi	₽ % ₽	E
uc 📙 HongjianLi / io	dock		រ៉ាំ Pull Request	♂ Unwatch ▼	🛨 Unstar 🤇 1	រ្រៃ Fork 🤇 0	
Code	Network Pul	Requests 0	Issues 0	Wiki	Graphs	Admin	
idock is a multithreaded http://istar.cse.cuhk.e	•	exible ligand docking	for computational drug disc	covery. — Read more	_	DI	IT
E Clone in Window	ws 🗘 ZIP HTTP	SSH Git Read-On	ly https://github.com	n/HongjianLi/ido	.gi 🗈 Re	t+ ite e ess	
𝔑 branch: master ▪	Files Commits	Branches 1	nD	OV	Tags 5	Downloads	
idock /		DI	Ph		Ğ) 341 commits	
Added & after mt19937							
📓 HongjianLi	1 lays to				🖺 latest co	mmit 6cb0e11ac8	
🖿 bin	2 months ago	Recompiled ido	ck 1.6 for Windows on Win	dows 8 [HongjianLi]			
examples	2 months ago	Added a new ex	ample 2VQZ [HongjianLi]				_
igands	a month ago	Removed a larg	ge ligand from the ZINC fold	er [HongjianLi]			
i obj	10 months ago	Reverted obj/.gi	itignore [HongjianLi]				
receptors	2 months ago	Removed non-r	olar hydrogens for 2VQZ r	eceptor Added MGT a	s the nativ [Hongija	anl il	-


THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

istar

Software as a Service

http://istar.cse.cuhk.edu.hk

Ligand Filtering and Previewing

Filter ligands with desired molecular properties Preview the number of ligands to dock

Number of ligands satisfying all the 9 filte	ring conditions: 188,820	
Molecular weight (g/mol): [400, 500]		
Partition coefficient xlogP: [0, 5]		
Rotatable bonds: [2, 8]		
Hydrogen bond donors: [2, 5]		
Hydrogen bond acceptors: [2, 10]		
National ID 01		
Net charge: [0, 0]		
Apolar desolvation (kcal/mol): [0, 12]		
Polar desolvation (kcal/mol): [-50, 0]		
)
Polar surface area tPSA (Å ²): [20, 100]		

Real-Time Progress

Monitor job progress in real time Progress reporting mechanism in daemon Ajax timer and table

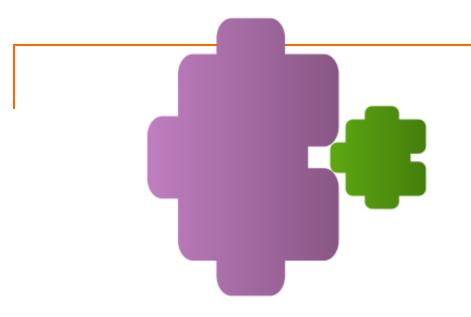
Your jobs

Ligands	Submitted on	Status	Progress	Result
8	2012/10/13 21:50:51	Done on 2012/10/13 22:13:29	100.00000%	B B 4
1,590,058	2012/10/20 19:57:54	Phase 1 in progress	0.07289%	

« «	«	1	>>	»»»
-----	---	---	----	-----

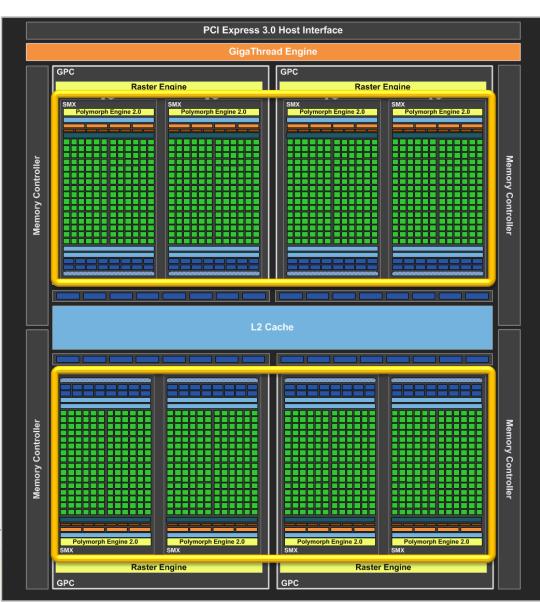
Supplier Output Help purchase compounds from vendors molport specs eMolecules search like ¯a chemisi chemistry solutions for drug discovery AZ BA Substance information **Suppliers** 1 http://zinc.docking.org/substance/25922195 1 | uorsy 2 http://zinc.docking.org/substance/67742829 5 | ambint | chbr | chemonaut | emol | molport 3 4 5 6 7 8 9 10 11 12 12 phase2 / 💱

Availability

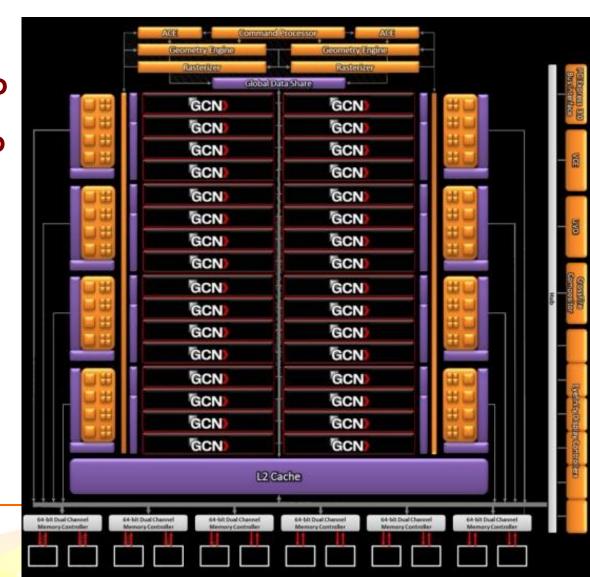

Attps://github.com/HongjianLi/istar Free, Apache License 2.0, Javascript and C++ Chrome 19+, Firefox 12+, IE9+, Safari 5+, Opera 12+

github 🔳	Search or Type a Comn	nand 🕝 😧 Exp	lore Gist Blog Help		HongjianLi	¢ × 1	₽
HongjianLi /	istar		រ៉ាំ្ Pull Request	♂ Unwatch 🝷 ★	Unstar 1	ဖို Fork	0
Code	Network	Pull Requests 0	Issues 0	Wiki Grap	ohs	Admin	
star is a SaaS platfor http://istar.cse.cuhl	rm for idock and igrep - k.edu.hk	- Read more				0	
🐉 Clone in Wind	ows 🗘 ZIP	HTTP SSH Git Read-O	nly https://github.com/	/HongjianLi/ist.gi	Re	H tear ss	
😢 branch: master	• Files Con	nmits Branches 1		$\mathbf{O}\mathbf{V}^{\mathbf{v}}$	Tags	Downloads	S
star /			ELL		Ū	434 comm	its
Replaced navbar-fixe	d-to by ryba static-	-1					
🛐 HongjianLi a	3 3 ninut ag				🖺 latest con	nmit bdc86b653	7
🖿 idock	7 days ago	Appended & to mt19	9937eng [HongjianLi]				
igrep	2 months ago	Explicitly set jobs_pa	ath of type path. Added using l	boost::lexical_cast; [Hongjia	anLi]		
public	30 minutes ago	Replaced navbar-fix	ked-top by navbar-static-top [H	HongjianLi]			
.gitignore	3 months ago	Removed filters *.fa	, *.fa.gz and README_CURF	RENT_README. Added fill	ter [Hongjianl	_i]	
README md	a day ago	Upgraded express r	node module from 3.0.0rc5 to	3.0.0 [Hongijan] i]			

THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

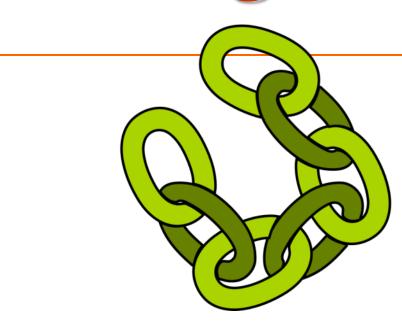


idock 2.0 GPU Acceleration


NVIDIA GK104 Block Diagram

GTX 680 US\$593 G3.09 TFLOPS SP 128 GFLOPS DP CS2GB GDDR5 ^{CS}PCIE 3.0 192GB/s **GTDP 195W C**4 GPCs **C**³4 raster engines **CS8 SMX units C31536 CUDA cores**

AMD Tahiti Block Diagram


37970 US\$516 3.79 TFLOPS SP C947 GFLOPS DP **G3GB GDDR5 3264GB/s GTDP 250W GG32 GCN cores** 32048 stream processors

THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

idock 3.0 De Novo Ligand Design

Motivation

✓ Virtual screening → de novo strategy
 ✓ 10⁶⁰ – 10¹⁰⁰ drug-like molecules
 ✓ Grow an initial scaffold by adding fragments

Design ligands that have higher binding affinities

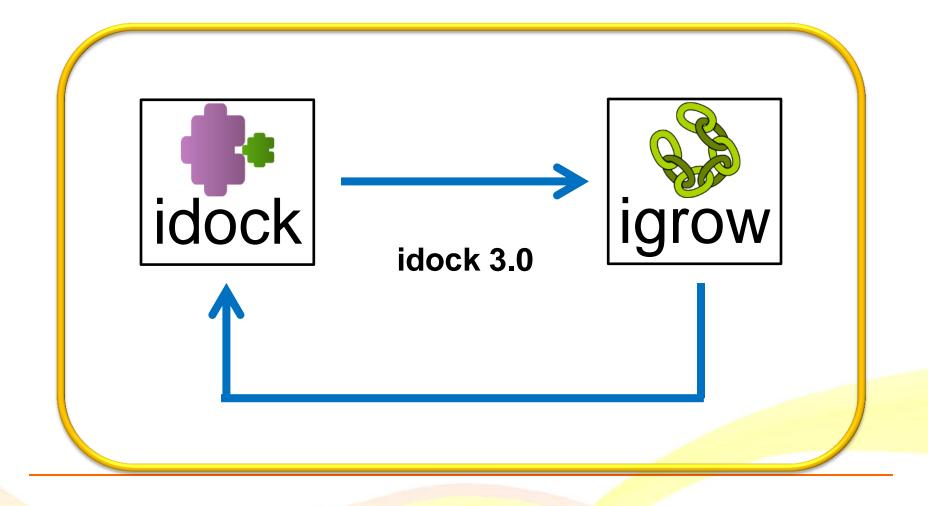
GOAL

Which fragment to choose?
 Which linker atom to choose?
 How to join the fragment in 3D?
 Combinatorial optimization problem

HANDBOOK OF CHEMISTRY and PHYSICS W. M. Haynes Editor-in-Chief 91 ST

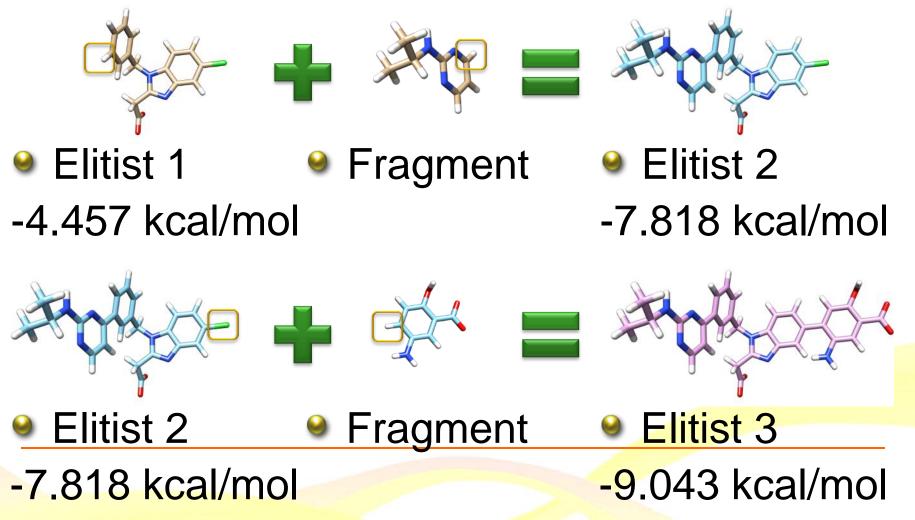
Bond length

C-C: 1.530 Å


–N: 1.425 Å

⊆–N: 1.469 Å

–O: 1.469 Å


THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

Genetic Operator: Selection

Genetic Operator: Addition

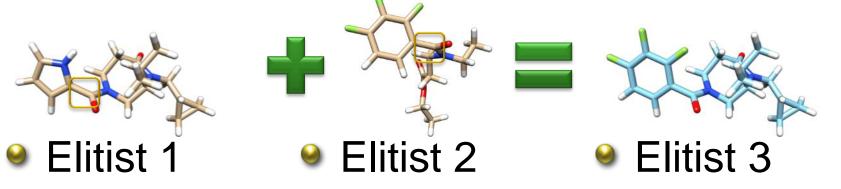
Merge a ligand and a fragment

Genetic Operator: Subtraction

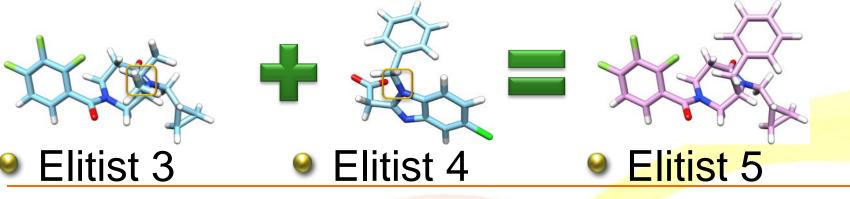
CSDrop part of a ligand

- Elitist 1
- -4.457 kcal/mol

- Elitist 2
- -7.818 kcal/mol

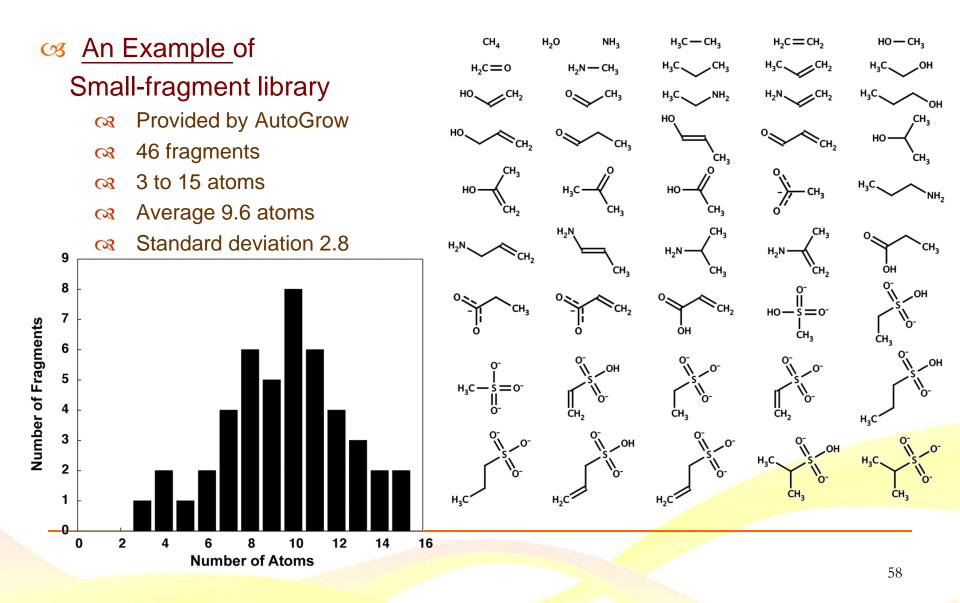

Elitist 3
 7.818 kcal/mol

-9.043 kcal/mol

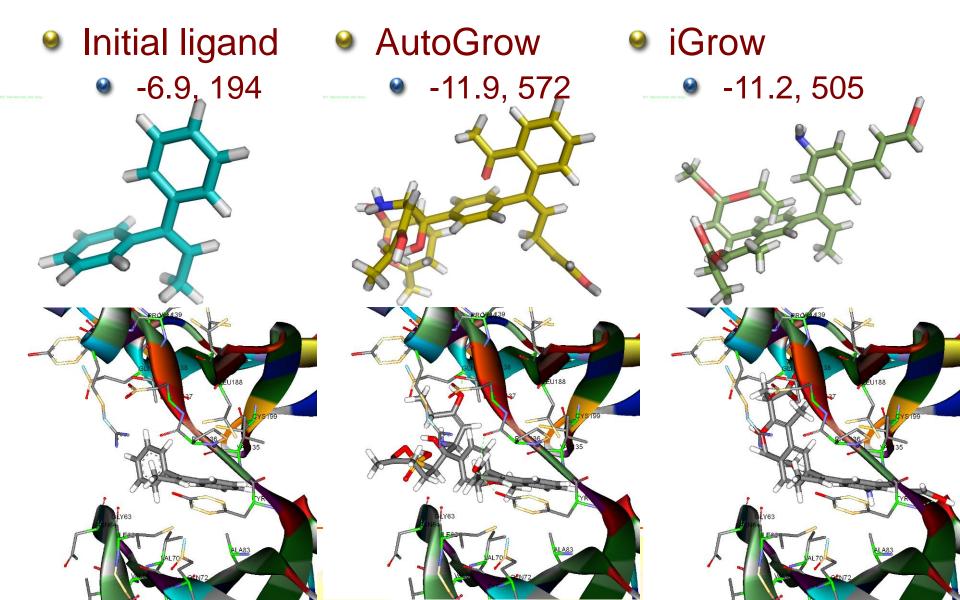

Elitist 4

Genetic Operator: Crossover

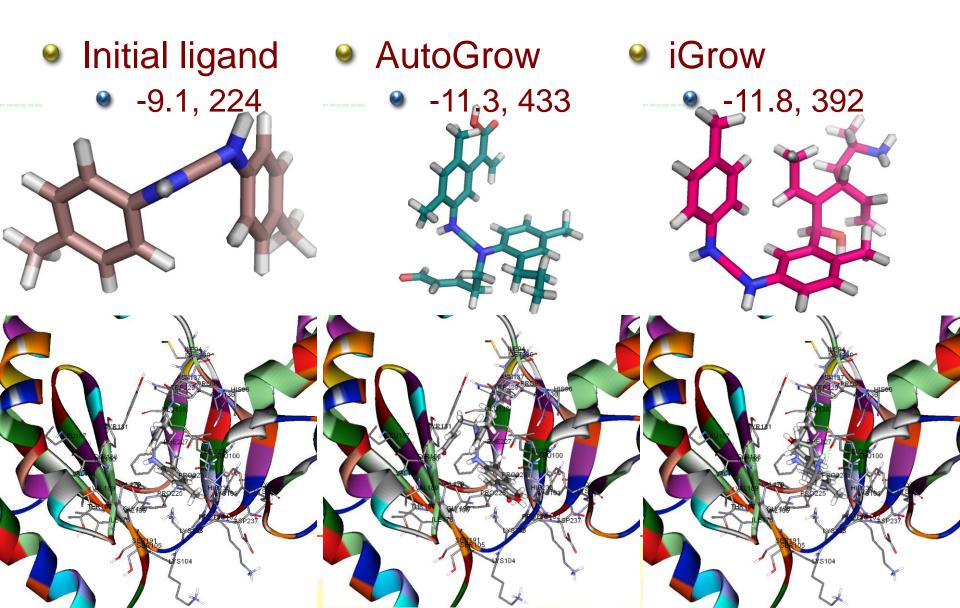
Exchange parts of two ligands


-3.072 kcal/mol -5.027 kcal/mol -7.337 kcal/mol

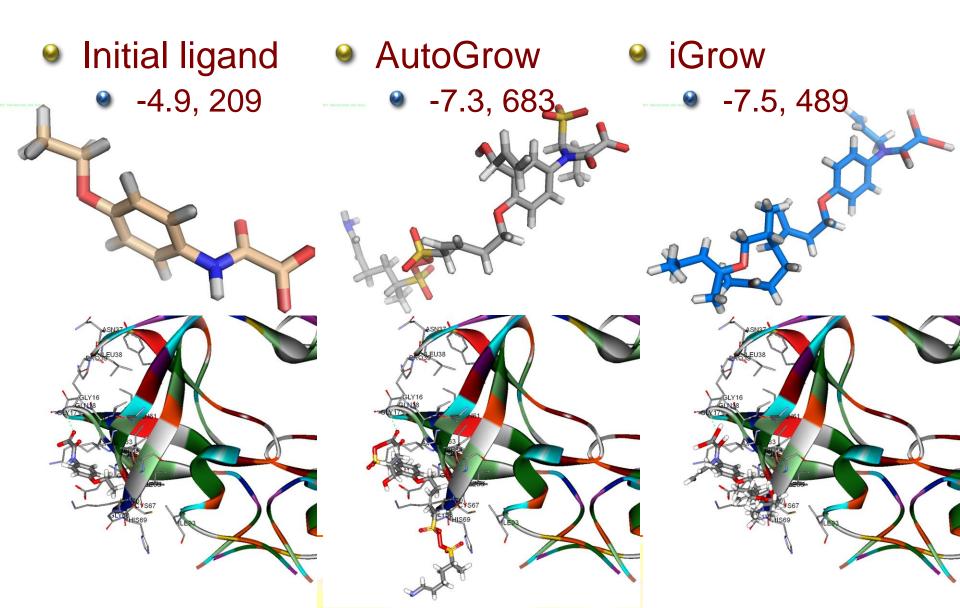
-7.337 kcal/mol -6.126 kcal/mol -8.200 kcal/mol


THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

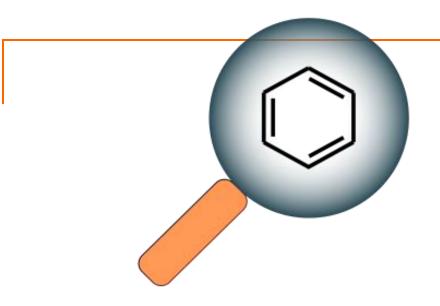
Fragment Library



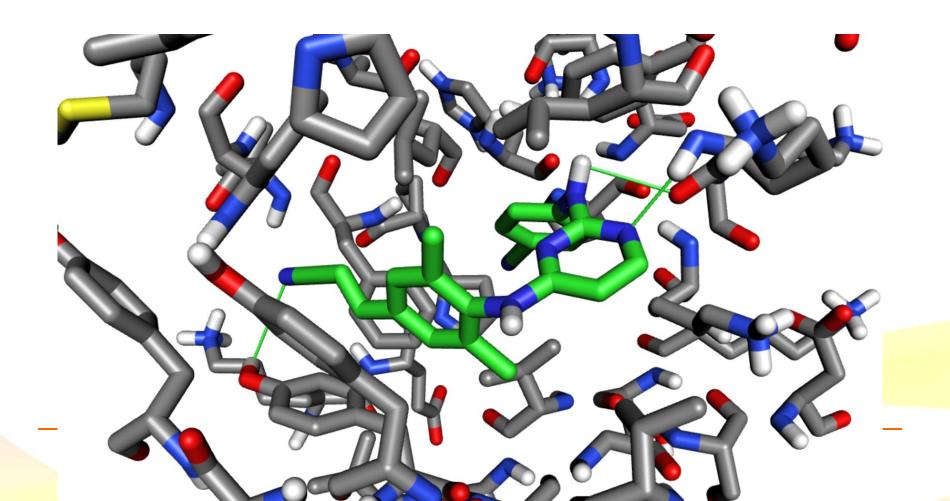
Initial Results: GSK3β-ZINC01019824


GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss

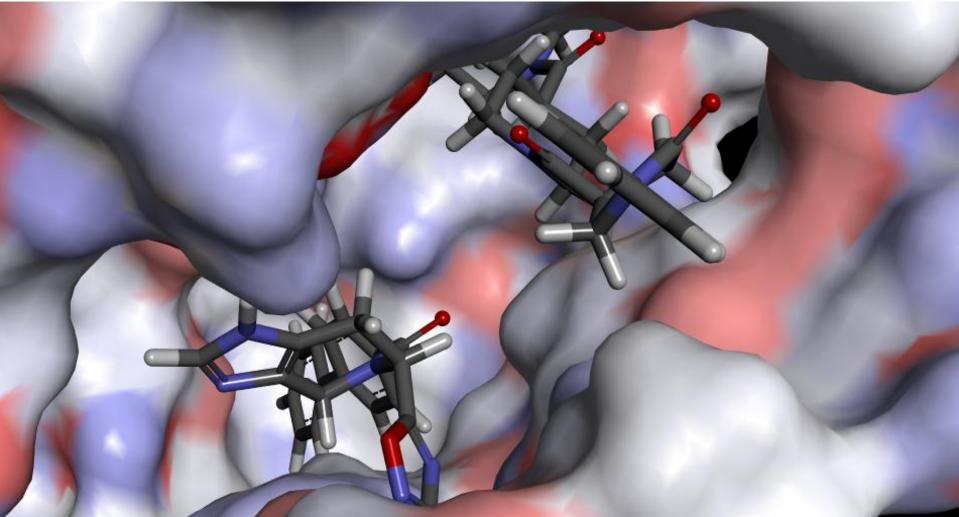
Results: HIV RT-ZINC08442219


Results: HIV PR-ZINC20030231

THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學



iview HTML5 Visualizer


Interactive HTML5 Visualizer

Based on canvas and WebGL
First HTML5 visualizer of protein-ligand complex

Dual Ligand Docking

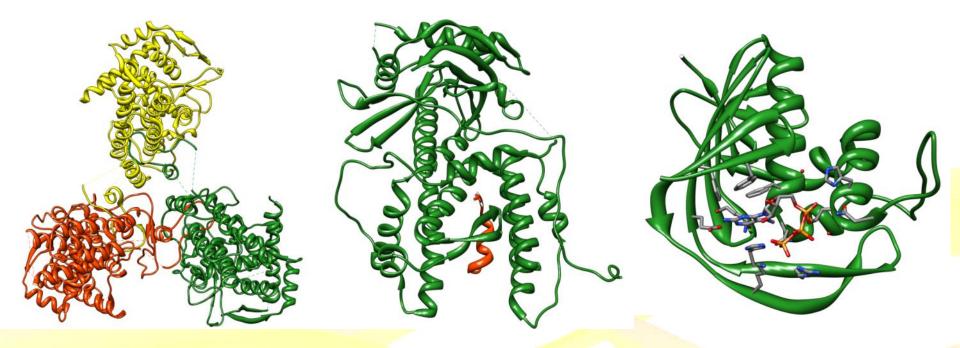
Synergistic effect, suitable for large binding

THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學

Case Study of Influenza A

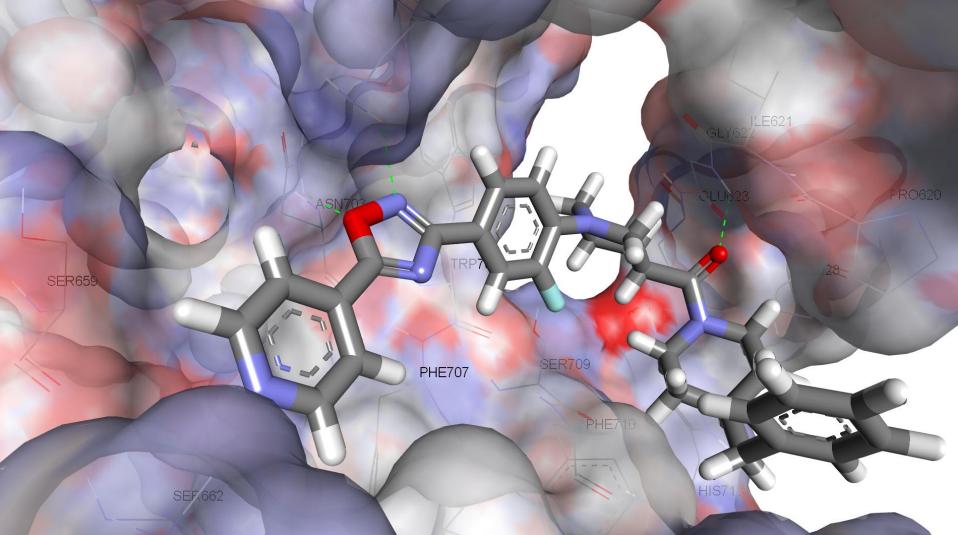
Background

WHO fact sheets 250K–500K deaths, 3M–5M severe illness annually Orug resistance


Proteins	Functions	Binding sites	Inhibitors
НА	Virus attachment to sialic acid receptors on host cell surface; fusion of virus and cell membranes	Sialic acid binding site; TBHQ binding site	Neu5Ac; TBHQ
NA	Cleavage of sialic acid receptors to release progeny viruses from host cells	Active site	Zanamivir; oseltamivir
M2	Acidification and uncoating of endosome-entrapped virus; virus assembly and budding	Inside pore near Ser31	Amantadine; rimantadine
NP	Capsidation of viral RNA and binding of three polymerase subunits to form ribonucleoprotein particles	Tail-loop binding site; RNA binding site	_a
Polymerase	Viral RNA transcription and replication	PA: endonuclease active site; PB1 binding site PB1: polymerase active site PB2: cap binding site; importing binding site	_
M1	Structural component of virion; nuclear export of ribonucleoprotein particles	NEP binding site	-
NEP	Nuclear export of ribonucleoprotein particles from host-cell nucleus	Crm1 binding site; M1 binding site	-
NS1	Protection against host-cell antiviral responses	Double-stranded RNA binding site; CPSF30 binding site	_

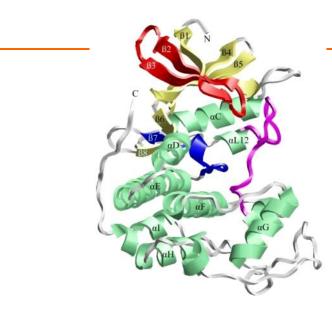
Juan Du, Timothy A. Cross, and Huan-Xiang Zhou. Recent progress in structure-based antiinfluenza drug design. *Drug Discovery Today*, 17(19–20):1111–1120, 2012.

Our Progress

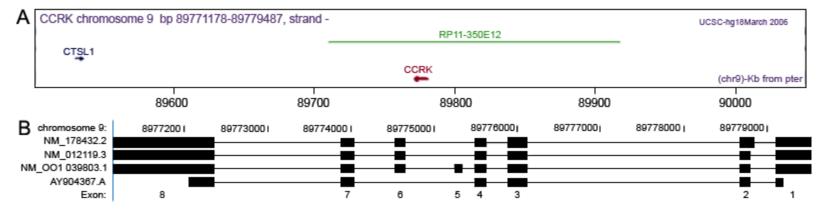

Solution Nucleoprotein Nucleoprotein 2IQH Nacidock 1.4 A Mac@CSE A 7M ligands Polymerase PA
2ZNL
idock 1.5
1 Mac@CSE
73K ligands

PolymerasePB2
 2VQZ
 idock 1.6
 2 Linux@ITSC
 2M ligands

Polymerase PA w/ ZINC40879809


Predicted free energy -11.465 kcal/mol

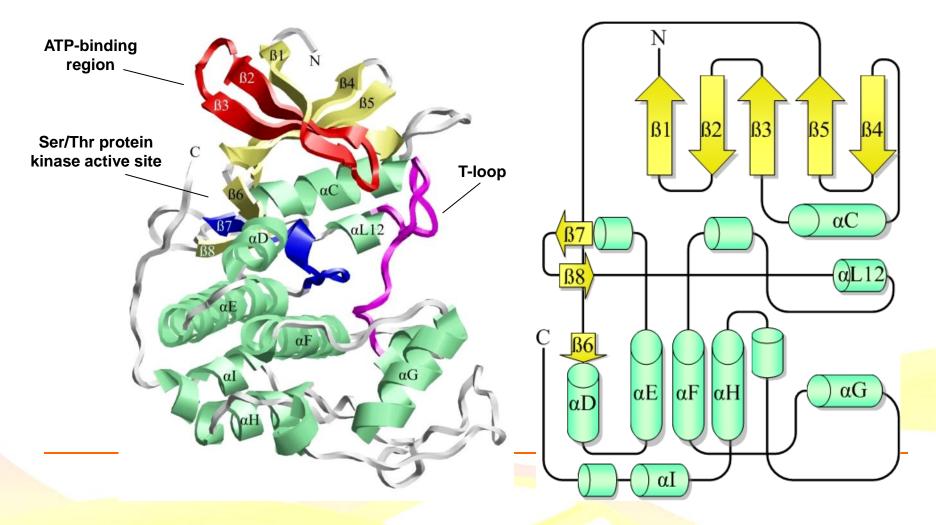
THE CHINESE UNIVERSITY OF HONG KONG 香港中文大學



Case Study of CCRK-Related Cancers

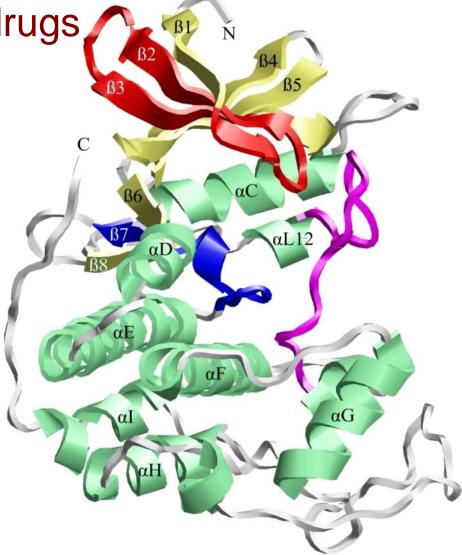
CCRK (Cell Cycle-Related Kinase)

CCRK aliases: p42, PNQLARE, CDK20 4 transcript variants by alternative splicing

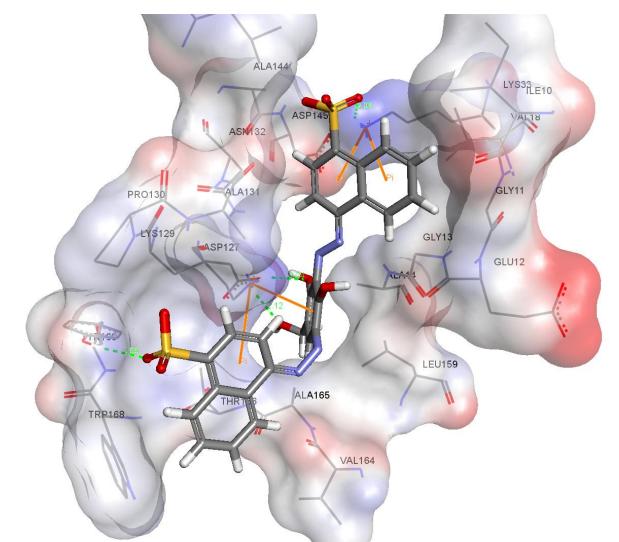


Widely expressed in various cancers

Glioblastoma, cervical adenocarcinoma, colorectal carcinoma, osteogenic sarcoma, breast adenocarcinoma, ovarian carcinoma, lung fibroblast, myoblast, and lymphocyte

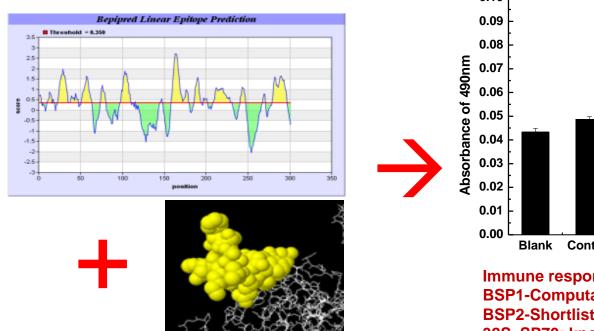

CCRK Homology Model from 1HCL

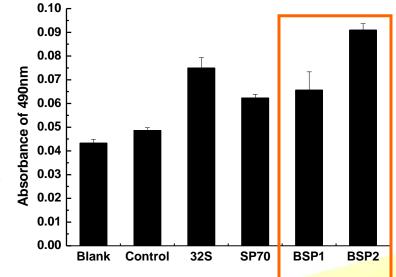
Done with SWISS-MODEL


Our Progress

Repurpose approved drugs Alightarrow 1,715 via DrugBank Alightarrow 3,176 via DSSTOX

CCRK in complex w/ ZINC03830332


Predicted free energy -10.306 kcal/mol



Other Drug Discovery Results

Current collaboration with biomedical experts:

--combined prediction helps identify a novel B-cell epitope with the <u>best wet-lab immune responses</u>, a potential vaccine for EV71 (hand foot and mouth disease)

Immune response in mouse, higher the better BSP1-Computational control (conformational only) BSP2-Shortlisted epitope (best combined result) 32S, SP70: known and documented epitopes

IV. Discussion and Conclusion

Summary
Discussion

Summary

In this talk

- A brief introduction to Bioinformatics research problems
- Computer-aided drug discovery via protein-ligand docking and de novo ligand design. Case studies on influenza and cancers.
- Real Encouraging results have been achieved and promising direction has been pointed out

Discussion

- Bioinformatics becomes more and more important in life sciences and biomedical applications
- Most computational fields (ranging from string algorithms to graphics) have applications in Bioinformatics
- Still long way to go (strong potentials to explore) Massive data are available but annotations are still limited

Selected Publications (2008-now)

T.M. Chan, K.S. Leung, K.H. Lee, M.H. Wong 1, C.K. Lau, Stephen K.W. Tsui, Subtypes of Associated Protein-DNA (Transcription Factor-Transcription Factor Binding Site) Patterns, *Nucleic Acids Research*, 2012, 40 (19), pp. 9392-9403 (IF:8.026)

Po-Yuen Wong, Tak-Ming Chan, Man-Hon Wong and Kwong-Sak Leung, Predicting Approximate Protein-DNA Binding Cores Using Association Rule Mining, In Proceedings of *IEEE ICDE 2012*, pp. 965-976 (Acceptance Rate: 17.7%).

T.M. Chan, K.S. Leung, K.H. Lee, "Memetic Algorithms for de novo Motif Discovery". *IEEE Transactions on Evolutionary Computation*, 2012, 16(5), pp. 730-748.

T.M. Chan, K.C. Wong, K.H. Lee, M.H. Wong, C.K. Lau, Stephen K.W. Tsui, K.S. Leung, Discovering approximate-associated sequence patterns for protein-DNA interactions. *Bioinformatics*, 2011, 27(4), pp. 471-478. (IF:5.468)

(S.K. LOU), J.W. LI, H. QIN, Aldrin K.Y. YIM, L.Y. Lo, Bing Ni, K.S. Leung, Stephen K.W. TSUI, and T.F. CHAN, "Detection of splicing events and multiread locations from RNA-seq data based on a geometric-tail (GT) distribution of intron length", *BMC Bioinformatics*, 2011.07.27Vol12 suppl.5 S2.

Leung, KS, (Wong, KC), (Chan, TM), Wong, MH, Lee, KH, Lau, CK, and Tsui, Stephen, "Discovering Protein-DNA Binding Sequence Patterns Using Association Rule Mining," *Nucleic Acids Research*. 2010, 38(19), pp. 6324-6337.

(S.K. Lou)[†], (B. Ni)[†], L.Y. Lo, Stephen K.W. Tsui, T.F. Chan and K.S. Leung, "ABMapper: a suffix array-based tool for multi-location searching and splice-junction mapping", *Bioinformatics*, Oxford Journal, 2010.02.01 [†]co-1st authors

(T.M. Chan), (G. Li), K.S. Leung and K.H.Lee, Discovering multiple realistic TFBS motifs based on a generalized model, *BMC Bioinformatics*, 2009, 10:321

(G. Li), (T.M. Chan), K.S. Leung and K.H.Lee, A Cluster Refinement Algorithm for Motif Discovery, *IEEE/ACM Transaction on Computational Biology and Bioinformatics*. pp.654-668., 2010.10.01

KS Leung, KH Lee, (JF Wang), (Eddie YT Ng), Henry LY Chan, Stephen KW Tsui, Tony SK Mok, C.H. Tse, Joseph JY Sung, "Data Mining on DNA Sequences of Hepatitis B Virus". *IEEE/ACM Transactions on Computational Biology and Bioinformatics*. vol.8 no.2, pp.428-40. 2011.03.

(Chan, T.M.), Leung, K.S., and Lee, K.H., "TFBS identification based on genetic algorithm with combined representations and adaptive post-processing." *Bioinformatics*, Vol.24, No.3, pp341-349, Oxford Journals, Feb 2008

Hongjian Li, Kwong-Sak Leung, and Man-Hon Wong. idock: A Multithreaded Virtual Screening Tool for Flexible Ligand Docking. 2012 IEEE Symposium on CIBCB, pp.77-84, 2012.

C. M. Tse, H. J. Li, K. S. Leung, K. H. Lee, and M. H. Wong. Interative Drug Design in Virtual Reality. 15th International Conference on Information Visualisation (IV), pp.226-231, 13-15 2011.

10 Related Patents including:

SUNG Joseph Jao Yiu; CHAN Lik Yuen Henry; TSUI Kwok Wing; LEUNG Kwong Sak; et al. "Genomic Markers of Hepatitis B Virus in Hepatocellular Carcinoma". United States Patent no. US7439020B2. U.S.A, 2008.10.21.

SUNG Jao Yiu, Joseph; CHAN Lik Yuen, Henry; TSUI Kwok Wing, Stephen; LEUNG Kwong Sak; et al. "Genomic Markers of Hepatitis B Virus Associated with Hepatocellular Carcinoma." United States Patent no. US7871780. U.S.A, 2011.01.18.

The End

Cost Thank you! Cost Q&A

Introduction: Bridging II: Results and Analysis: Statistical Significance

II: Results and Analysis

Statistical Significance (W=5)

Simulated on over 100,000 rules for each setting
The majority (64%-79%) for R_{TF-TFBS} are statistically significant

		W = 5, E = 0							W :	=5, E=1		
TY	().0	().1	().3		0.0		0.1		0.3
R_*	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS	TF	TF-TFBS
P-value < 0.05	$0(127^*)$	110	$0(165^*)$	147	$0(636^*)$	567	223	226	278	272	1974	2023
Rule No.	172	172	211	211	774	774	346	346	396	396	2559	2559
Significant Ratio	$0(0.74^{*})$	0.64	$0(0.78^{*})$	0.70	$0 (0.82^*)$	0.73	0.64	0.65	0.70	0.69	0.77	0.79