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Figure 1. High-quality depth reconstruction from the video sequence “Road” containing complex occlusions. Left: An input video sequence
taken by a moving camera. Right: Video depth maps automatically computed by our method. The thin posts of the traffic sign and street

lamp, as well as the road with graduate depth change, are accurately constructed in the recovered depth maps.

Abstract

This paper presents a novel method for reconstruct-
ing high-quality video depth maps. A bundle optimization
model is proposed to address the key issues, including im-
age noise and occlusions, in stereo reconstruction. Our
method not only uses the color constancy constraint, but
also explicitly incorporates the geometric coherence con-
straint associating multiple frames in a video, thus can nat-
urally maintain the temporal coherence of the recovered
video depths without introducing over-smoothing artifact.
To make the inference problem tractable, we introduce an
iterative optimization scheme by first initializing disparity
maps using segmentation prior and then refining the dis-
parities by means of bundle optimization. Unlike previ-
ous work estimating complex visibility parameters, our ap-
proach implicitly models the probabilistic visibility in a sta-
tistical way. The effectiveness of our automatic method is
demonstrated using challenging video examples.

1. Introduction

Stereo reconstruction of dense depths from real images
has long been a fundamental problem in computer vision.
The reconstructed depths can be used by a wide spectrum
of applications including 3D modeling, robot navigation,
image-based rendering, and video editing. Although stereo
problem [14, 8, 15, 23] has been extensively studied during
the past decades, obtaining high-quality dense depth data is
still a challenging problem due to many inherent difficulties,
such as image noise, textureless pixels, and occlusions.

Given an input video sequence taken by a freely moving
camera, we propose a novel method to automatically con-
struct high-quality and consistent depth maps for all frames.
Our main contribution is the development of a global opti-
mization model based on multiple frames, which we called
bundle optimization, to resolve most of the aforementioned
difficulties in disparity estimation.

Our method does not explicitly model the binary visi-
bility (occlusion). Instead, the visibility is encoded nat-
urally in the energy definition. Our model also does not
distinguish among image noise, occlusions and estimation
errors, so as to achieve a unified framework in modeling
matching ambiguities. The color constancy constraint and
geometric coherence constraint linking different views are
combined in an energy minimization framework, reliably
reducing the influence of image noise and occlusions in a
statistical way. This process makes our optimization not
produce over-smoothing or blending artifact.

In order to deal with the disparity estimation in texture-
less region and alleviate the problem of segmentation es-
pecially on fine object structures, we only use the image
segmentation prior in the disparity initialization. Then our
iterative optimization algorithm refines the segmented dis-
parities in a pixel-wise manner. Experiments show that this
is rather effective in estimating correct disparities in texture-
less regions while faithfully preserving the fine structures of
object silhouettes.

Our method is very robust against occlusions, matching
ambiguities, and noise. We have conducted experiments on
a variety of challenging examples. Automatically computed
depth maps contain very little noise. Clear object silhou-



ettes are also preserved. One challenging example is shown
in Figure 1, in which the scene contains large textureless
regions, objects with strong occlusions, road with smooth
depth change, and even the thin posts of traffic sign and
street lamp. Our method faithfully reconstructs all these
structures and naturally preserves object silhouettes. Read-
ers are referred to our supplementary video for inspecting
the temporal consistency among the recovered depth maps'.

2. Related Work

Multi-view stereo algorithms [12, 2, 8, 23] estimate
depth or disparity with the input of multiple images. Early
approaches [12, 2] used local and window-based methods,
and employed a local “winner-takes-all” (WTA) strategy in
depth estimation at each pixel. Later on, several global
methods [10, 19, 8] were proposed, which formulate the
depth estimation as an energy-minimization problem, and
commonly apply graph cuts or belief propagation to solve
it. It is known that loopy belief propagation and multi-label
graph cuts do not guarantee global optimal solutions in en-
ergy minimization, especially when the matching costs are
not distinctive in textureless areas.

By assuming that the neighboring pixels with similar col-
ors have similar or continuous depth values, segmentation-
based approach [20, 21, 9] can improve the depth estima-
tion especially for large textureless regions. These meth-
ods typically model each segment as a 3D plane and esti-
mate the plane parameters by matching small patches be-
tween neighboring viewpoints [21, 9], or using a robust fit-
ting algorithm [20]. In [5, 1], non-fronto-parallel planes
were constructed on sparse 3D points obtained by structure
from motion. Recently, Zitnick and Kang [23] proposed an
over-segmentation method to produce segments containing
sufficient information for matching while reducing the risk
of spanning a segment over multiple layers. However, even
with over-segmentation or soft segmentation, the segmenta-
tion errors still inevitably affect the disparity estimation.

Occlusion handling is another major issue in stereo
matching. Methods in [8, 16, 18, 17] use explicit occlu-
sion labeling in disparity estimation. Kang and Szeliski [8]
proposed to combine several techniques, i.e. shiftable win-
dows, temporal selection, and explicit occluded pixel label-
ing, to handle occlusions in dense multi-view stereo within
a global energy minimization framework. Methods de-
scribed in [16, 18, 17] explicitly incorporate the visibility
variables in optimization. However, for dealing with a large
set of images, a large amount of visibility variables will
make the inference difficult.

Traditional multi-view stereo methods compute the lo-
cal depth map associated with each chosen reference frame

IThe supplementary video can be downloaded from the following site:
http://www.cad.zju.edu.cn/home/gfzhang/projects/videodepth.

independently, which typically results in distracting recon-
struction noise and temporally inconsistent depth recovery
in a video. Kang and Szeliski [8] proposed to simultane-
ously optimize a set of depth maps at multiple key-frames,
by adding a temporal smoothness term. This method indeed
makes the disparities across frames vary smoothly. How-
ever, it is sensitive to outliers and may lead to blending
artifacts around object boundaries. In our method, rather
than using direct smoothing or blending of disparities, we
introduce a geometry term which helps to maintain the tem-
poral coherence by measuring the reconstruction noise and
probabilistic visibility in a statistical way. This makes our
disparity estimation robust against outliers and noise. As a
result, the cost distribution of our data term is distinctive,
making our optimization stable.

Multi-view stereo methods for reconstructing 3D object
models also have been widely investigated [15]. Many of
them are proposed to model single object and cannot be
applied to handling large-scale scenes owing to the issues
of computation complexity and memory space requirement.
Gargallo and Sturm [6] proposed to formulate the 3D mod-
eling from images as a Bayesian MAP problem, using mul-
tiple depth maps. Recently, Merrell et al. [11] proposed
a quick depth map fusion method to construct a consistent
surface. They employed a weighted blending method based
on the visibility constraint and confidences. In compari-
son, our method combines color constancy and geometric
coherence constraints, thus can robustly estimate consistent
view-dependent depth maps across video frames.

In summary, many approaches have been proposed to
model 3D objects and estimate depths using multiple in-
put images. However, the issue of how to appropriately ex-
tract useful information in recovering depths from videos
is still not addressed well. In this paper, we show that by
appropriately maintaining the temporal coherence based on
the color and geometry constraints, surprisingly consistent
dense depth maps can be estimated from video sequences.
The recovered consistent depth maps can also be used in
other applications such as view interpolation, depth-based
segmentation, and layer extraction.

3. Disparity Model

Given a video sequence I with n frames, I = {I;|t =
1,...,n}, taken by a freely moving camera, our objective is
to estimate a set of disparity maps D = {Dy|t = 1,...,n}.
Here, I;(x;) denotes the color (or intensity) of pixel x; in
frame ¢t. It is a 3-vector in a color image or a scalar in a
grayscale image. Denoting by 2, the depth value of pixel
x; in frame ¢, by convention, the disparity parameter D;(x;)
(dx, for short) is defined as dyx, = 1/2, .

The camera parameter set for frame ¢ in a video sequence
is denoted as C; = {K¢, R, Tt }, where K, is the intrin-
sic matrix, R; is the rotation matrix, and T is the trans-



lation vector. The parameters for all frames can be esti-
mated reliably by the structure from motion (SFM) tech-
niques [7, 13, 22]. Our system employs the SFM method
proposed by Zhang et al. [22].

In order to robustly estimate a set of disparity maps, we
define the following energy in a video:

E(D;I) = (Ea(Di;1,D\Dy) + E«(Dy)), (1)
t=1

where the data term F/; measures how well the disparity D
fits the given sequence I, and the smoothness term E, en-
codes the smoothness on disparities. For each frame ¢, the
disparity map D; should not only satisfy the color constancy
constraint, but also satisfy a geometric coherence constraint
associating other frames in a video. We call our model the
bundle optimization model because the disparities of dif-
ferent frames are explicitly correlated and optimized in an
energy minimization framework.

3.1. Data Term Definition

Data term definition usually plays an essential role in en-
ergy minimization. If the cost distribution of a data term
is uninformative, the unreliable cost measurement makes
the optimization problematic. For instance, if we define the
data term as the color similarity, in textureless areas or oc-
clusion boundaries, there must exist strong matching ambi-
guity. Using smoothness assumption only compromises the
disparity of one pixel to its neighborhood, but does not help
too much to infer the true value.

Another issue of designing data term for depth estima-
tion is occlusion handling. Visibility terms with binary
values are commonly introduced in many stereo matching
methods [8, 18]. Specifically, if the matching cost errors
or the errors by some other inconsistency measurements of
disparities are above a threshold, the pixels are labeled “oc-
cluded”. Obviously, the binary definition is not always op-
timal since the threshold or other parameters usually need
to be tuned for various scenes and it is difficult to “softly”
incorporate the visibility in energy minimization.

In our data term definition, to make the cost distinctive,
we simultaneously consider the statistical information from
both color and geometry. Specifically, in a video sequence,
if the disparity of one pixel in one frame is mistakenly esti-
mated due to either occlusion or other factors, the projection
of this pixel to other frames using the incorrect disparity
has small probability simultaneously satisfying both color
and geometry constraints. By using this information, our
method is able to automatically and robustly detect the dis-
parity errors so as to improve disparity estimation for pixels
around object silhouettes.

Considering a pixel x; in frame ¢, by epipolar geometry,
the matching pixel in frame ¢’ should lie on the conjugate
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Figure 2. Geometric coherence constraint. The conjugate pixel of
x; in frame ¢’ is denoted as x;s and lies in the conjugate epipolar
line. Ideally, when we project X,/ from frame ¢ back to ¢, the

projected pixel should satisfy x!

= x:;. However, in disparity
’
estimation, the matching process causes errors, making x! —* and

X be two different pixels.

epipolar line. Given the estimated camera parameters and
the disparity dyx, for pixel x;, we compute the conjugate
pixel location in I/ by

X ~ KyRIRK X 4 dy Ky RS (T, — Tyr), (2)

where superscript h denotes the vector in homogeneous co-
ordinate. The 2D point x;/ is computed by dividing x/, by
the scaling factor. We denote the mapping pixel in frame ¢’
from x; as xy = l; p (X4, dx,). The mapping [,/ ; is sym-
metrically defined. So we also have x! —* = ly 4 (%pr, dx,, ).
An illustration is shown in Figure 2.

If there is no occlusion or matching errors, ideally, we
have xfﬁt = x¢. So we define the likelihood of disparity
d for any pixel x; in I; by combining two different con-
straints:

L(Xt7d) :Zp(:(xt7d7ltajt/) 'pv(xtadaDt')a €)]
t/
where p.(x¢,d, I}, I;/) measures the color similarity be-
tween pixel x; and the projected pixel ; 4 (x¢, d) in frame
t’ and is defined as
Oc
pC(Xt7 d7 It7 It’) =

oc + [Tt (%) — T (L o (%, d)) ||

where o. controls the shape of our differentiable robust
function, and is set to 10 in all our experiments. ||I;(x:) —
Iy (It (x¢,d))|| is the color L-2 norm. The value of
pe(x¢,d, It, I1/) is in the range of (0,1].

pv(X¢, d, Dy) is the proposed geometric coherence term
measuring how close pixels x; and x! —! are in image
space, as shown in Figure 2. For ease of explanation, we

first define p, (x¢, d, Dy ) as

l|x¢ — lpr ¢ (xer, Dy (x12))| 2
exp(— 957
04

) “)



which is in a form of Gaussian distribution, where o4 de-
notes the standard deviation.

Both the above color and geometry constraints use the
corresponding pixel information when mapping from frame
t' to frame ¢. But they constrain the disparity in two dif-
ferent ways. In the following, we briefly explain why the
simple likelihood definition in (3) can be used effectively in
disparity estimation without explicitly modeling occlusion.

The above likelihood definition requires the correct dis-
parity to be supported by two constraints simultaneously,
i.e. high color similarity as well as high geometric co-
herence. An erroneously estimated disparity value for
one pixel seldom satisfies both color and geometry con-
straints, generally making p.(x¢,d, It, I+') - py(x¢,d, Dy)
small. So, from a statistics perspective, considering the
mappings from all other frames ¢’ to ¢, incorrect disparity
makes Y p.(+) - p,(-) output very small value. In contrast, a
correct d makes p.(x¢, d, I't, It ) -py (Xt, d, Dy ) output com-
parably large values for all unoccluded pixels. This results
in a highly non-uniform cost distribution for each pixel fa-
voring true disparity values.

In [8], an extra temporal smoothness term was intro-
duced outside the data term definition, which functions sim-
ilarly to the spatial smoothness constraint. It compromises
the disparities temporally, but does not help too much to
infer true disparity values.

Equation (4) introduces a simple geometric coherence
constraint formulation. In our method, due to the errors or
noise inevitably introduced in various parameter estimation
and optimization processes, the disparity estimation D(x)
may deviate from its true position. It is reasonable to as-
sume that a better disparity value of x can be found in the
near neighbors of x. So we modify (4) to

HXt - lt’,t(xt/:dx;imz

xX¢,d,Dy) =  max  exp(—
polxe “) X% €W (x,1) p( 202

where W (xy/) denotes a window centered at x. Its size
is set to 5 x 5 in our experiments. The value of standard
deviation o is set to 3. The window search in (5) empiri-
cally makes the energy decrease faster and our optimization
process be more stable.

Using the likelihood definition in (3), our data term E;
is defined as

Ea(Dy; 1,D\Dy) = > 1 —u(xy) - L(x¢, Dy(x1))  (6)

for cost minimization. u(x;) = 1/ m(ax) L(xt, Di(x¢)), is
Dy (x¢
a normalization factor. Our data cost performs better than

that using color constancy constraint alone, making it pos-
sible to reliably compute disparities along object silhouettes
and handle matching errors and occlusions.

), (5

3.2. Smoothness Term

The smoothness term is simply defined as
E(D) =3 > Ay p(Di(xe), Delye)), (D
Xt y+EN(xt)

where N (x;) denotes the neighbors of pixel x;, and ) is the
smoothness weight. p(-) is a robust function defined by

p(Di(xt), Di(yt)) = min{| Dy (x¢) — De(ye)l, n},

where 7 determines the upper limit of the cost.

In order to preserve discontinuity, A\(x;,y;) is usually
defined in an anisotropic way, encouraging disparity discon-
tinuities coincident with intensity/color change. Our adap-
tive smoothness weight is defined as

) uU) (Xt)
He(x2) = Le(yo)ll + ¢
where u) (X¢) is a normalization factor and defined as

1
ux(x¢) = |N(Xﬁ)|/y£§xt) HIt(Xt) - It(yg)” +e

)\(Xt7Yt) = Ws

ws denotes the smoothness strength and € controls the con-
trast sensitivity. Our adaptive smoothness term imposes
smoothness in flat regions while preserving edges in tex-
tured regions.

4. Bundle Optimization

Minimizing the energy defined in (1) is not straight-
forward since estimating the dense disparity maps for all
video frames in one pass is computationally intractable. In
this section, we introduce an iterative optimization algo-
rithm and associate each video frame to its neighborhood
by multi-view geometry. The corresponding disparity maps
are improved by maintaining necessary color and geometry
constraints.

Iterative optimization generally requires a good start-
ing point to make the optimization process robust and con-
verge rapidly. In our disparity estimation problem, to bet-
ter handle textureless regions, we incorporate the segmen-
tation information into the initialization. It is widely known
that segmentation is a double-edged sword. On one hand,
segmentation-based approaches usually improve the qual-
ity of disparity result in large textureless regions. On the
other hand, they inevitably introduce errors in textured re-
gions and do not handle well the situation that similar-color
pixels are with different disparity values, even using over-
segmentation. Our iterative optimization takes the advan-
tage of segmentation by incorporating it into our initializa-
tion while limiting its problems by performing pixel-wise
disparity refinement in the following optimization.

Table 1 gives an overview of our framework. We de-
scribe the implementation of all steps in Section 4.1 and
4.2.



1. Structure from Motion:
1.1 Recover the camera parameters.
2. Disparity Initialization:
2.1 Apply loopy belief propagation to minimize (8).
2.2 Combine image segmentation to further improve
the initial disparities.
3. Bundle Optimization:
3.1 Process frames from 1 to n:
For each frame ¢, fix disparities in other frames
and refine D; by minimizing (1).
3.2 Repeat step 3.1 for at most 2 passes.
3.3 Final accuracy refinement by nonlinear continu-
ous optimization.

Table 1. Overview of our framework.

4.1. Disparity Initialization

Denoting the disparity range as [dmin, dmax), We equally
quantize the disparity into m + 1 levels where the kth level
di = (m—k)/m-dnin + k/m - dpax, k =0, ..., m.

In the beginning, the disparity maps of the whole se-
quence are unknown. So the energy defined in (1) cannot
be directly minimized. To make the computation feasible,
we separately estimate the disparity map for each frame by
removing the geometric coherence constraint from the like-
lihood definition in (3) and modify it to

ch (xt, Di(xt), It, It ).

t

Linit(X¢, Di(x¢))
So (1) is also correspondingly modified to

17111‘ D f ZZ 1 —u Xf Linit(xtth(Xt)) +

t=1 x;

Z Alxe,ye) -

YtEN(x)

where the normalization factor u(x;) is defined as u(x;) =
1/ max Linit(X¢,dg). Using E;p;:, the disparity maps of

different frames are not directly correlated by a geometric
coherence constraint. So we can optimize D; for each frame
t separately.

Taking into account the possible occlusions, it is better
to only select the frames where the pixels are visible rather
than summing the matching errors over all frames. We em-
ploy the temporal selection method proposed in [8] to im-
prove the matching correctness. Then for each frame ¢, we
use loopy belief propagation [4] to estimate D; by mini-
mizing (8). Figure 3(b) shows one frame result obtained in
this step (i.e., step 2.1 in Table 1). The estimated dispari-
ties are not correct for many pixels, especially in textureless
regions.

We then incorporate the segmentation information into
our initialization to handle textureless regions. The seg-

p(Di(xt), Di(yt))), (8)

ments of each frame are obtained by a mean-shift color seg-
mentation [3]. Similar to the non-fronto-parallal techniques
[20, 18], we model each segment in disparity as a 3D plane
and define plane parameters [a;, b;, ¢;] for each segment s;.
Then, for each pixel x = [z, y| € s;, the corresponding dis-
parity is given by dx = a;x + b;y + ¢;. Taking dy into (8),
FE;i: is formulated as a nonlinear continuous function w.r.t.
the variables a;, b;, ¢;, @ = 1,2, .... The partial derivatives
over a;, b;, ¢; must be computed when applying a nonlinear
continuous optimization to estimating all 3D plane param-
eters. Since L;n;:(X,dx) does not directly depend on the
plane parameters, we apply the following chain rule:

aLinit (Xa dx) _ aLinit (Xa dx) 8dx

aLinit (Xa dx)

— =z
6@1- 8dx 8@1‘ 8dx
. OLinit(X,dx) _ | OLinit(X,dx) OLinit(%,dx) _
Similarly, 5. =y 5. and e,
OLinit(Xsdx) 1y these equations, OLinit(x:dx)

D - is ﬁrstly com-
puted on quantized disparity levels by estimating the gradi-
ents:

aLinit (Xa dx)
Odx

Lint (X7 dk+1) - Linit(X7 dk—l)
A1 — di—1

|d;c = 5
where &k = 0,..,m. Then the continuous function

LS. (x,dy) is formed by cubic-Hermite interpolation. Fi-
nally, the continuous partial derivatives are calculated on
L init (X d )

Since dx = a;x + b;y + ¢;, estimating disparity variable
dy is equivalent to estimating plane parameters [a;, b;, ¢;].
We thus use a nonlinear continuous optimization method
to estimate the plane parameters by minimizing the en-
ergy function (8). Initial 3D plane parameter values can
be obtained by non-fronto-parallel planes extraction meth-
ods [20, 5, 1]. In practice, we adopt a much simpler method
which can already produce satisfying initial values. Partic-
ularly, for each segment s;, we fix a; = 0 and b; = 0 (i.e.,
assuming fronto-parallel plane), and also fix the disparity
values in other segments. Then we compute a set of ¢; by
different assignments of dj where k£ = 0, ..., m and select
the best ¢; minimizing the energy function (8).

After the above process, we further refine the initialized
3D plane parameters [0, 0, ¢f] by minimizing energy func-
tion (8) using the Levenberg-Marquardt method. We show
in Figure 3 one frame example. Figure 3(c) illustrates the
incorporated segmentation during initialization. The dispar-
ity result after initialization is shown in Figure 3(d).

4.2. Iterative Optimization in a Video

After incorporating segmentation in disparity initializa-
tion for individual video frames, disparity estimation is im-
proved in textureless regions. However, there still exist er-
rors, especially around occlusion boundaries as illustrated
in Figure 3(d) and (g). Besides, since the disparity maps are
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Figure 3. Bundle optimization illustration. (a) One frame from the “Road” sequence. (b) The inital result after solving (8) by belief
propagation. (c) Segmentation prior incorporated into our initialization. (d) Initialization result after segmentation and plane fitting using
nonlinear continuous optimization. (e) Our final disparity result after bundle optimization. (f)-(h) Magnified regions from (a), (d), and (e),
showing that our bundle optimization improves disparity estimation significantly on object boundaries.

independently estimated, the temporal consistency among
them is not adequately maintained. The inconsistency can
be easily noticed in video sequence playback, as illustrated
in our supplementary video.

To address this problem, we take the geometric coher-
ence constraint associated with multiple frames into the data
term definition, and iteratively refine the results by mini-
mizing the energy defined in (1), using loopy belief propa-
gation. Each pass starts from frame 1. With the concern of
computation complexity, in processing video frames, we re-
fine disparity map D, while fixing the disparities of all other
frames. The data term only associates frame ¢ with 20-30
neighboring frames. One pass completes when the disparity
map of frame n is optimized. In our experiments, at most
two passes are sufficient to produce temporally consistent
disparity maps.

After the above processes, the obtained disparities are
all discrete values. So we introduce a nonlinear continuous
optimization method to further refine them. The continu-
ous data cost is computed using cubic-Hermite interpolating
function, similar to that described in Section 4.1. Then we
repeat above disparity estimation process: for each frame ¢,
we fix the disparities of all other frames, and refine the dis-
parity map D; using a continuous steepest descent method.

5. Experimental Results

To evaluate the performance of the proposed method,
we have conducted experiments on several challenging se-
quences. In all our experiments, we set the maximal dis-
parity level m = 100, ws = 5/(dmax — dmin), N =

Figure 4. Disparity results on the “Flower Garden” sequence. (a)-
(b) 10" frame and 20" frame in the input sequence. (c)-(d) The
estimated disparity maps for (a)-(b) respectively. The complete
sequence is included in our supplementary video.

0.05(dmax — dmin), and & = 20. Table 2 lists the statistics
of the tested sequences. Our bundle optimization converges
rapidly, where two passes are sufficient for all examples.
The processing time is a few minutes for each video frame.
The computation is mostly spent on the data cost computa-
tion considering all pixels in multiple frames.

Figure 3 shows one example. The “Road” sequence con-
tains large textureless areas with complex occlusions, which
makes stereo reconstruction difficult. During our initial-
ization, by solving the energy function (8), the estimated



Figure 5. Disparity results on the “Angkor Wat” sequence. (a)-(c) The 70" frame, 80" frame, and 90*" frame of the input sequence.
(d)-(f) The estimated disparity maps for (a)-(c) respectively. For illustration of correctness, we warped one frame to another by the
estimated disparities. (g) Warping 70" frame to 90*" frame. (h) Warping 80" frame to 90*" frame. (i) From left to right: magnified
regions of (g), (h), and (c) respectively. The purely black pixels are the missing pixels in the 3D warping. Our warping result, even near
discontinuous object boundaries, is natural, which indicates that our estimated disparities are accurate. The complete sequence is included
in our supplementary video.

sequence Road Angkor Wat | Garden Temple
frames 141 129 150 121
resolution | 960x540 576x352 352x240 | 576x352

Table 2. The information of the tested sequences contained in the
supplementary video and shown in this paper.

disparity map is shown in Figure 3(b). By incorporating
segmentation prior, the disparities are refined as shown in
Figure 3(d). After our bundle optimization, the temporal
consistency is preserved in the recovered video disparity
maps. The reconstruction errors especially around occlu-
sion boundaries are reduced. The result is shown in Fig-
ure 3(e) and the comparison is given in (g) and (h).

The “Angkor Wat” sequence example is shown in Fig-
ure 5. This sequence also contains complex occlusions and
large textureless areas, such as the sky and the yard. As
shown in our results, our approach produces accurate and

consistent disparities even near discontinuous object bound-
aries. This is demonstrated by projecting one frame to oth-
ers using 3D warping, and comparing the boundary struc-
tures, as illustrated in (g), (h), and (i).

Figure 4 shows two frames extracted from the “Flower
Garden” sequence. The disparity reconstruction results are
also natural and consistent, especially along the tree trunk.
The disparities surrounding the branches inherently have
ambiguity regarding almost constant-color background sky.
These regions can be interpreted as either in the background
sky, or in a foreground layer with unknown disparities.

6. Conclusions

In this paper, we have proposed a novel method for
constructing high-quality depth maps from a video. Our
method advances the stereo reconstruction in a few ways.
First, based on the geometry constraint, we model the prob-



abilistic visibility and reconstruction noise using statistical
information simultaneously considering multiple frames.
This model handles occlusions as well as matching errors in
a unified framework. Second, by combining the color con-
stancy constraint and geometric coherence constraint, our
data cost is well-posed even in textureless areas and occlu-
sion boundaries. This makes a standard discrete optimiza-
tion solver, such as BP, converges quickly within a small
number of iterations. Third, we do not directly use segmen-
tation in handling textureless regions, but rather employ it
in the initialization. Therefore, our method is capable of
faithfully reconstructing fine structures.

As discussed in [15], reconstructing complete 3D mod-
els from real images is still a challenging problem. Many
of the methods aim to model a single object and they have
inherent difficulties to model complex outdoor scenes. In
comparison, our method can automatically estimate tempo-
rally consistent view-dependent depth maps. We believe
this work will not only benefit the 3D modeling, but also
easily find applications in video processing, rendering, and
understanding.
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