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Abstract—This paper presents a complete system capable of synthesizing a large

number of pixels that are missing due to occlusion or damage in an uncalibrated

input video. These missing pixels may correspond to the static background or cyclic

motions of the captured scene. Our system employs user-assisted video layer

segmentation, while the main processing in video repair is fully automatic. The input

video is first decomposed into the color and illumination videos. The necessary

temporal consistency is maintained by tensor voting in the spatio-temporal domain.

Missing colors and illumination of the background are synthesized by applying

image repairing. Finally, the occluded motions are inferred by spatio-temporal

alignment of collected samples at multiple scales. We experimented on our system

with some difficult examples with variable illumination, where the capturing camera

can be stationary or in motion.

Index Terms—Video restoration, spatio-temporal consistence, illumination

consistence, tensor voting, applications.

�

1 INTRODUCTION

WE present a system for synthesizing video completion where the

missing background and foreground are too large to be repaired by

image inpainting [3] or video inpainting [2]. One feature of our

system is that the repaired background and foreground maintain

the necessary spatio-temporal and illumination consistency. This

paper is inspired by work in video repairing and space-time video

completion: Video repairing [15] infers occluded background and

motion from a video captured using a static or moving camera.

Space-time video completion [26] is an automatic approach using

nonparametric patch-based sampling to synthesize missing mo-

tion. Without using any segmentation information, the completed

patches may contain errors if the background is complex (e.g.,

nontextures) and the result will not preserve speed irregularity

and may destroy complex structure if present in the moving object.

This paper contributes to video repairing by using tensor voting

[18] to address the pertinent spatio-temporal issues in background

and motion repair. Moreover, variable illumination and moving

camera are allowed. Our alternative approach employs user-

assisted video segmentation, leaving the rest of the processing

fully automatic. We assume a class of camera motions where the

frames can be roughly registered by planar perspective transform.

Our system has the following properties:

. Large static background and cyclic motion that are missing

from the input video can be synthesized in the space-time

volume. The synthesized cyclic motion can vary in velocity

and scale in order to integrate seamlessly with the existing

video.
. Spatial and temporal consistence are maintained in the

synthesized video.
. Background with variable illumination can be handled

uniformly.

1.1 Related Work

We first review in this section the related work in texture synthesis,

inpainting, and techniques in completion and restoration for

images and videos.

Texture synthesis. The nonparametric texture synthesis techni-

que by Efros and Leung [12] performs matching and pixelwise

synthesis to infer missing colors for regular texture images. In Video

textures [19], dynamic programming is used to derive the best

permutation of existing frames to synthesize a video of longer

duration. Linear dynamic systems are used in Dynamic textures [10] to

synthesize unstructured stochastic textures, such as smoke and fire.

Image inpainting and repairing. Image inpainting [3] is capable

of filling small holes seamlessly. Video inpainting [2] uses [3] to

perform frame-by-frame repair and, so, only small holes can be

filled. Therefore, temporal alias manifested into distortion and

flickering will be observed if the missing area is large. Image repairing

[13] uses tensor voting and explicit segmentation information to

synthesize missing pixels in a large hole. Adaptive scales of analysis

are used. Image completion [11] also fills in large image holes. Without

the use of explicit segmentation, however, image completion may

break salient structures present in the image.

Video completion and repairing. Our goal is similar to that of

Wexler et al. in their Space-time video completion [26], where the

missing portions are filled in by sampling spatio-temporal patches

from the input video. Their method defines and uses similarity

measurement in space and time domains. Global space-time

coherence is achieved by using an optimization framework. One

key to the success of this method, as demonstrated by their example

videos taken using a static camera, is the judicious extension of [12]

in the use of nonparametric sampling to handle spatial and temporal

information simultaneously. With the explicit use of segmentation

information, our Video repairing [15] infers large moving motion by

sampling and aligning movels (structured moving objects), which

can be integrated into the existing part of the video. The camera can

be static or moving. Missing static background is repaired by the

construction of a layered mosaic and the application of image

repairing [13]. An optimal alignment in terms of a homographic

transform is computed to repair moving pixels and maintain spatio-

temporal consistency. The moving pixels were assumed to be the

projections of cyclic motions. Cyclic motions were analyzed in [21],

where the capturing camera is moving and affine invariance was

used to identify periodic motion from videos. Time-frequency

analysis [8] was used for cyclic motion detection.

1.2 Our Approach

Fig. 1 gives an overview of our approach, where the sections that

detail the semiautomatic or fully automatic processes are in-

dicated. The rest of this paper is organized as follows: Section 2

details our background completion. In Section 3, our technique for

motion completion is detailed. In Section 4, the results generated

by applying Sections 2 and 3 are presented and discussed,

followed by concluding remarks in Section 5. The conference

version of this paper appears in [15], where the video repairing

method described cannot handle variable illumination. In this
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paper, we generalize the approach by addressing pertinent issues

and presenting related new results.

2 COMPLETION OF STATIC BACKGROUND UNDER

VARIABLE ILLUMINATION

To simultaneously restore the missing background of a damaged
video captured by a static or moving camera without visible
distortion and to enforce the necessary temporal consistency when
the camera motion is smooth, we adopt the layered mosaics
approach. Inspired by geometric proxies used in image-based
rendering systems for rendering antialiased novel views when the
scene is cluttered and complex [24], [4], [1], we first segment the
scene into layers. As our input is a video, the inherent challenge is an
efficient method to perform multiimage segmentation. Similar to
[23], a user-assisted key frame approach is adopted where a layer in
video frames is regarded as a 3D image patch consisting of similar
features for representing a semantically meaningful object. By
segmenting the background into similar layers with depth ordering
where the pixels in each layer have consistent motion, the temporal
consistence inherent in a complex scene can be maintained in the
completed video. We describe each step of our background
completion as follows:

1. Preprocessing. To remove the occluder, a few key frames
(e.g., every other 10 frames) are chosen to mask it off
manually. The resulting holes in these key frames are
tracked and located in all the remaining frames by the
mean shift tracking algorithm [7]. Fig. 2 show some sample
frames from the input and the resulting video after
removing the foreground object. Note that only a rough
specification is needed.

2. Layer segmentation and propagation. To maintain the tempor-
al consistency of the restored background, we segment the

video into layers with consistent motion. For example, for
the middle images in Fig. 2, there are two layers with
overlapping boundaries: a layer for the sky and the house,
and a layer for the flower bed. The user roughly specifies
the layer boundaries for the scene on the same key frames.
These boundaries will be automatically propagated to the
remaining frames by the mean shift tracker.

3. Color and illumination separation. A pixel in each segmented
layer can be regarded as the composition of the correspond-
ing intrinsic color and illumination components. For a static
camera, intrinsic image separation such as [25] can be used
to perform the decomposition. To handle the more complex
case of a moving camera, we first perform image registra-
tion with pixel intensity normalization by tensor voting [14],
which performs exposure correction with image registra-
tion. A reference mosaic for each layer is constructed. The
original pixels before intensity normalization are projected
onto the corresponding location on the mosaic so that [25] or
other techniques for intrinsic image separation can be
applied. Thus, the case of a moving camera can be reduced
to that of a static mosaic when the input frames are related
by homographic transformation.

4. Completion of the background and illumination videos. After
the reference mosaic has been constructed for each layer
with separated pixel colors and illumination, we apply
image repairing [13] to infer, respectively, the missing
pixel colors and illumination in the hole area of each layer
in the reference mosaic. Fig. 3 shows one example, where
the two completed components of the sample frames are
depicted in the middle rows.

5. Boundary blending. After completing the background, we

perform homography blending [15] to reduce the flickering

caused by misregistration among frames and to achieve

better temporal coherence:
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Fig. 1. Overview of our space-time video repairing/completion.

Fig. 2. Top: Sample frames from input video. Middle: Video with the occluder removed. Bottom: Space-time completion of the background video.



a. Let M1 and M2 be two adjacent layers and let M3 be
the overlapping area along their boundary. Let H�1

1

and H�1
2 be the homography that, respectively, warps

M1 [M3 and M2 [M3 to the focal plane of the
reference mosaic. We blend the homographies H1

and H2 for M1 and M2, respectively, and create H3 ¼
�H1 þ ð1� �ÞH2 for M3, where � is the blending
coefficient, which is a function of the distance to the
overlapping boundary on the reference mosaic.

b. A repaired frame is produced by projecting the
mosaic to layer Mi by Hi, i ¼ 1; 2; 3.

By blending homographies instead of pixel colors, we
reduce the abrupt change in color value along the layer
boundary. If there are more than two layers, we generalize
the above by processing two layers at a time, followed by
merging other intermediate results. A hierarchical struc-
ture is used to store the video layers.

Fig. 2 shows the result of completing the background of the
flower garden sequence. Fig. 3 shows an example with variable
illumination for the background. Pixelwise multiplication is
performed between the repaired illumination video and the
repaired background video to produce the completed background
video in Fig. 3d.

3 MOTION COMPLETION

The completed motion should maintain spatial and temporal

consistency across all repaired frames if the camera motion is

smooth. One reasonable constraint for large motion completion is

motion periodicity. We encode this knowledge by sampling

periodic motion in a video: This corresponds to the movel sampling

phase (Section 3.1). To repair a motion, we observe that the missing

pixels inside a hole can be synthesized if we know which part of

the cycle is missing. Computationally, it translates into our movel

alignment phase to perform pixel synthesis (Section 3.2). Our movel

alignment is similar to [5], which also adopts an alignment scheme,

processing the data in a coarse-to-fine warping framework. The

technical advance we make in this paper is that moving cameras

and dynamic scenes can be handled.

Let us define some terminologies here. A movel is a moving

element, corresponding to a set of moving pixels segmented in

each frame. A sample movel is a movel which contains at least one

cycle of the periodic motion (e.g., Fig. 4a). If some frames in a

movel are damaged, we call it a damaged movel (e.g., Fig. 4b). Our

problem is thus reduced to one of aligning the sample movel with

the damaged movel in order to repair the latter (e.g., Fig. 4c).

After we have collected the sample movel and located the

damaged movel, we perform the following automatic preproces-

sing: movel wrapping, movel regularization, and movel stabilization. In

essence, movel wrapping removes undesirable motion discontinu-

ity in the sample movels. Movel regularization maintains temporal

coherence of the repaired movel. Movel stabilization reduces the

search space and alleviates the velocity mismatch problem.

3.1 Phase 1: Movel Sampling

One requirement of the synthesized motion is to maintain the

necessary spatio-temporal consistency of the periodic motion. To

sample a movel, the statistics of the scene background are first

collected. The statistics are the mean and variance of the intensity of

each pixel ðx; yÞ in the field of view, which can be obtained directly

from the input video. For a moving camera, ðx; yÞ refers to the image

coordinates of the resulting reference mosaic. After obtaining the

pixel statistics, moving pixels are detected by comparing the

intensity of the current frame with the collected statistics. Connected

components are then constructed for the moving pixels. After

834 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 5, MAY 2006

Fig. 3. Chair and Chest. Video completion of static background under variable illumination. Five sample frames are shown in each row. (a) Input video. (b) Completed
background video (intensity is normalized). (c) Completed illumination video. (d) Final result after combining the repaired background and the illumination videos. (See
the supplementary video, which can be found at http://computer.org/tpami/archives.htm.)



removing isolated noise, a video mask is produced, which is used to

sample a movel. The time-frequency analysis is applied to detect

and characterize the periodicity from the input video after

extracting moving pixels [8]. Note that both stationary (i.e.,

periodicity with statistics that do not change with time) and

nonstationary periodicities can be handled by this method.

If there are multiple motions, multiple movels will be extracted.

Interactive segmentation [17] is used in case the above simple

segmentation does not work well. The video matting method

proposed in [6] can also be used to produce a matte for moving the

foreground so that it can be extracted from the video.

3.1.1 Movel Wrapping

We assume that the sample movels contain at least one motion

cycle and that the damaged movels can be repaired by using the

data embedded in the sample movels. A number of sample movels

are first concatenated so that damaged movels with a large number

of missing frames can be repaired. In the concatenation process,

the first and the last frames of a sample movel may not be the

same. They should be morphed to create a natural transition for

seamless looping. We use 3D tensor voting to automatically infer a

smooth surface in the spatio-temporal volume.

In our implementation, we use the last five frames and first five

frames of a period of a sample movel to infer their natural

connection. The video masks for these frames are used to extract

the 2D boundaries of a movel. Let Pt be the corresponding set of

moving pixels in a movel for frame t. Let @Pt be the boundary pixels

of Pt. Denote the space-time volume resulted by superimposing the

boundary pixels of the 10 frames along the temporal axis by

Boundary ¼ [t¼n�4���n;1���5@Pt; ð1Þ

where n is the total number of frames in the sample movel.

Boundary is used as an input to the 3D tensor voting [18] to vote

for a surface in the spatio-temporal domain, which infers the in-

between movel boundary that optimally and smoothly connects

the first and the last frame in the period:

Surf ¼ SurfaceExtractðTensorV otingðBoundaryÞÞ; ð2Þ

where SurfaceExtractð�Þ is a surface extraction procedure to

produce an implicit surface representation Surf by tensor voting

[18]. Surf is therefore used to represent the space-time boundary

Boundary of the movel. Finally, view morphing [20] is applied to

infer the color of the pixels inside the space-time volume bounded

by Surf .

3.1.2 Movel Regularization

In this step, we process the repaired movel to preserve the inherent
temporal coherence by regularization. Again, we make use of
3D tensor voting [18]. Fig. 5a shows the centroids of all connected
components in a movel. In a damaged movel, we only compute
centroids for the frames where image holes are absent (Fig. 5c). Note

that, even for smooth camera motion, because the centroids are
found individually in each frame, the corresponding path along the
temporal axes are not smooth.

Let Centroid ¼ fðx; y; tÞg be the set of all centroids in the

wrapped sample movel. Three-dimensional tensor voting [18] is

used to vote for a smooth trajectory in the spatio-temporal domain,

which implicitly enforces the desired spatio-temporal coherence:

Curve ¼ CurveExtractðTensorV otingðCentroidÞÞ; ð3Þ

where CurveExtractð�Þ is the curve extraction procedure in tensor

voting which produces a smooth 3D space curve Curve.

For a damaged movel, a lot of centroids are missing. To

regularize a damaged movel, we perform multiscale tensor voting

for (3) and vote for the curve in multiple scales. This is done by

prefiltering and subsampling the centroids in each pass of tensor

voting. Therefore, a large gap can be filled and new centroids are

inferred after tensor voting.

3.1.3 Movel Stabilization

This step translates the segmented moving pixels of all frames in a

movel such that each centroid is at the image center after the

translation. Movel stabilization provides the following benefits: 1) In
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Fig. 5. Regularizing a sample movel (a) and (b) and a damaged movel (c) and (d) by
3D tensor voting. In each figure, the temporal axis is horizontal. The vertical axis is
one of the spatial axes. (a) and (c) show the centroids of the connected components
in all frames before regularization. (b) and (d) show the regularized centroids
obtained by curve extraction using 3D tensor voting. When a large gap is present in
a damaged movel (c), hierarchical 3D tensor voting is used.

Fig. 4. (a) Sample movel, (b) damaged movel, (c) repaired movel, (d) sample movel after wrapping and stabilization.



movel alignment (Section 3.2), Levenberg-Marquardt minimization

converges much faster if we translate both the sample and damaged

movels to the image center as the total number of pixels (in the

spatio-temporal volume) to be processed in movel alignment can be

significantly reduced. 2) The velocities of the sample movel and the

damaged movel are not the same, in general, which makes the initial

guess difficult to set. Movel stabilization reduces the search space in

the Gaussian pyramid used in the multiscale processing.

Using the first frame at time t0 as a reference, all other frames in

a movel are translated such that their regularized centroids

(existing or inferred) lie on a straight line parallel to the temporal

axis at the frame center (Fig. 4d). The 2D translation for the

respective frame is simply ð�x; �yÞ ¼ ct � ct0 , where ct is the

centroid of frame t. Both the sample movel and damaged movel

will be stabilized before the movel alignment in the next phase.

3.2 Phase 2: Movel Alignment

Our movel alignment method is similar to the image registration

method proposed in [22]. Movel alignment is performed in the

4D homogeneous coordinates. A homographic transform in the

space-time domain will be estimated. In [22], the initial translation is

input manually, while, in our movel alignment, we use the phase

correlation to automatically estimate the initial translation from the

damaged movels to sample movels in the 3D space-time coordinates

by Mellin transform [9] because movels are already regularized and

stabilized.

Our algorithm supports a subclass of camera and object

motions. For example, we cannot recover a rotated face that has

not been sampled in a sample movel. The subclass of camera

motion we handle consists of transformation expressible by

homography in the spatio-temporal space.

Let ðx; y; tÞ and ðx0; y0; t0Þ be the respective movel coordinates

before and after alignment. In our implementation, we concatenate

a number of wrapped sample movels before computing the

alignment with the damaged movel in order that missing motion

larger than one cycle can be repaired. The concatenated sample

movels and the damage movel can be aligned by a 4� 4

homographic transform H:

x0 ¼ Hx; ð4Þ

where x0 ¼ ½x0 y0 t0 1�T and x ¼ ½x y t 1�T .

The problem is now reduced to the estimation of h ¼ ½hk�;
0 � k � 15. To speed up the estimation and to avoid local minimum,

we can turn off some parameters because rotation is not allowed.

The upper 3� 3 submatrix is made an identity (or diagonal) matrix

if the motion to be repaired only involves translation (and scaling, in

addition). We minimize the squared intensity errors in the volume.

Let I be the sample movel and I0 be the aligned damaged movel, we

define the error term in the overlapping volume of I and I0 as

follows:

E ¼
X
½I0ðx0; y0; t0Þ � Iðx; y; tÞ�2: ð5Þ

We perform the optimization by the Levenberg-Marquardt

iterative minimization algorithm. The intensity gradient ð@I0

@x0 ;
@I0

@y0 ;
@I0

@t0 Þ
T is computed at each voxel ðx0; y0; t0Þ. The Hessian matrix A ¼

½akl� and weighted gradient vector b ¼ ½bk� are computed: akl ¼P
@e
@hk

@e
@hl

, bk ¼ �
P
e @e
@hk

, where the partial derivative of e ¼
I0ðx0; y0; t0Þ � Iðx; y; tÞ with respect to hk; 0 � k � 15 is computed.

Then,we updatehby�h ¼ ðAþ �IÞ�1bandhmþ1  hm þ �h,where

� is a time-varying parameter. This method is similar to [22], except

that the sampling on the temporal axis is different from that of the

spatial axis in our spatio-temporal alignment: Instead of resampling

along the time axis, note that our alignment method allows scale

change of the movels along the x, y, and t axes. Also, because a movel

has been stabilized, we can handle velocity mismatch between the

sample and the damaged movels in our alignment.

Estimation efficiency can be significantly enhanced by construct-

ing a Gaussian pyramid on the sample movel and the damaged

movel, which are first converted into gray levels. The highest

resolution is the sampling resolution of the movels. Lower

resolution levels are obtained by prefiltering the 3D spatio-temporal

data, followed by subsampling using a factor of two along the

spatio-temporal axes. After automatic initialization (by phase

correlation), the Levenberg-Marquardt optimization is executed to

refine the warping transform. Typically, the optimal H converges

within 20 iterations if rotation is not considered. The detailed

algorithm can be found in [15]. Note that a similar hierarchical

alignment on 2D images was also found in Caspi and Irani [5].

Fig. 6 shows the efficacy of our movel alignment method by

using an example. Note that, in 3D space, when misalignment is

present, simple blending easily generates a blurry artifact. In our

method, we apply the graph cut algorithm, similar to that used in

texture synthesis [16], to search for a least expensive cut in the

overlapping volume of the sample and damaged movels to reduce

any blurry or popping artifacts if exist.

Finally, recall that movel stabilization is performed before movel

alignment. After repairing the damaged movels, we translate the

repaired movels back to their original positions using the regularized

centroids. Since all centroids have been regularized and the repaired

frames are restored from the regularized sample movel, the resulting

repaired frames exhibit the necessary spatio-temporal coherence.
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Fig. 6. An optimal 4� 4 homographic transform is computed to align a sample movel and a damaged movel. Top: Damaged movel. Bottom: Repaired movel.



4 RESULTS

Fig. 7 shows the result on the Sculpture sequence. Five sample frames

from the input video, the damaged video (with the sculpture

removed), and the completed video produced by our system are

shown. In particular, we are capable of repairing the motion in the

fourth frame of Fig. 7, where the character is almost occluded by the

sculpture in the input video. The camera is stationary in this

example. All the missing motions and the previously occluded

background are also repaired. Note the continuity between the

synthesized motion and the existing motion when the restored video

is played.

Fig. 8 shows a more challenging sequence, Chairs, where the

camera is moving and multiple motions at different speeds are

present. This result shows the strength as well as some limitations of

our video repair system, which indicates areas for future research.

Here, the camera is moving. There are multiple motions in the input

video. The near character walks faster than the far character. The far

character is occasionally occluded by the chairs and the near

character. Both motions are completely occluded in the third frame.

All background and motions are repaired by our method with

acceptable visual quality, except that the shadows of the characters

cannot be synthesized since we do not sample shadows in movels.

Fig. 3 shows the repaired result of Chairs and Chest. The camera is

stationary. A large region was removed from every frame of the

input video. No pixels in the damaged video can be used to repair

the hole. Our method can synthesize the missing pixels and preserve

the necessary spatial, temporal, and lighting consistencies.

Fig. 9 shows the result on Mug and Snoopy Toy. A moving camera

was used. The moving snoopy toy was occluded by a large mug

hanging from above. The object extraction is precise, and is

accomplished by using Lazy Snapping [17]. Note that our system

can tolerate some specular highlight here, which lies on a plane.

However, the highlight on the moving snoopy toy, which is a

glossy object, is not preserved. This is caused by our approach in

which a movel is sampled and aligned in the separated color video,

which is presumably under relatively constant illumination after

separation. The repaired frame is then combined with the repaired

illumination video.
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Fig. 7. Sculpture sequence: sample frames from the input video, damaged video, and repaired video. The camera is static. Movels are sampled automatically. (See the

supplementary video, which can be found at http://computer.org/tpami/archives.htm.)

Fig. 8. Chairs sequence: sample frames from the input video, damaged video, and repaired video. Moving camera with multiple motions at different speed. Movels are

sampled automatically. (See the supplementary video, which can be found at http://computer.org/tpami/archives.htm.)



Since the background illumination behind the motion is

repaired, after the combination, the illumination on the repaired

movel will be forced to be consistent with the repaired background

illumination. For example, compare the moving snoopy toy (with

respect to the environment) in the top and bottom rows of Fig. 9.

Despite that, the overall completed video is a realistic and visually

acceptable video restoration.

Fig. 10 shows one potential application in film restoration. In this

example, we repair the highlighted damaged areas. We also remove

the statue from the center of the frames.
Typically, given frame resolution 600� 800 and that the number

of frames in a damaged movel is 50 and the number of frames in a

sample movel is 200, the total running time (excluding the easy

human interaction in movel sampling) to generate the final restored

video results is about 5 hours on a PIII 1GHz PC. The time complexity

is linear with the number of pixels in the damaged movels.

5 DISCUSSION AND CONCLUDING REMARKS

Our video completion system is capable of synthesizing missing

pixels for completing or repairing the static background and moving

objects. Since a reference video mosaic is needed, our system works

for a subclass of camera motions: rotation about a fixed point and

panning without significant parallax. If the scene is approximately

Lambertian, illumination, spatial, and temporal consistencies are

maintained after background completion. Under the periodic

motion assumption, our system samples the periodic motion of

foreground objects as movels and aligns them with damaged

movels to achieve motion completion. Temporal consistency of

movel alignment is preserved by movel wrapping and movel

regularization. In the presence of variable background illumination,

our system separates the input video into a color component and an

illumination component which are, respectively, repaired. The
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Fig. 9. Mug and Snoopy Toy. Video completion with a moving camera and an occluded moving object under variable scene illumination. Movels are sampled by the user-

assisted method. Five samples frames are shown. (a) Input video. (b) Completed background video (intensity normalized). (c) Completed illumination video. (d) Final

result after combining the repaired movel, color, and illumination video. (See the supplementary video, which can be found at http://computer.org/tpami/archives.htm.)

Fig. 10. Parade. Results for showing the potential application in film restoration. The image holes and the road texture behind the removed statue are seamlessly

repaired.



restored video preserves the scene structure as well as the variable

illumination and maintains spatio-temporal consistency.
As shown in Fig. 8, since our movel does not capture self

shadows or moving shadows, we cannot repair the shadow of a

damaged movel. Another limitation is on the incorrect lighting on a

repaired movel. Currently, we do not relight a repaired movel. In the

future, we are interested in incorporating more knowledge into the

movels so that better lighting and shadow on the repaired movels

can be handled. We are also investigating ways to improve the

running time of the system.
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